CN110832112B - 方向性电磁钢板 - Google Patents

方向性电磁钢板 Download PDF

Info

Publication number
CN110832112B
CN110832112B CN201880044569.4A CN201880044569A CN110832112B CN 110832112 B CN110832112 B CN 110832112B CN 201880044569 A CN201880044569 A CN 201880044569A CN 110832112 B CN110832112 B CN 110832112B
Authority
CN
China
Prior art keywords
steel sheet
film
less
coating
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880044569.4A
Other languages
English (en)
Other versions
CN110832112A (zh
Inventor
高谷真介
奥村俊介
长野翔二
片冈隆史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of CN110832112A publication Critical patent/CN110832112A/zh
Application granted granted Critical
Publication of CN110832112B publication Critical patent/CN110832112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

一种方向性电磁钢板,其具有:钢板;形成于上述钢板上的含有SiO2的氧化物覆膜;和形成于上述氧化物覆膜上的张力绝缘覆膜,上述钢板作为化学组成以质量%计含有C:0.085%以下、Si:0.80~7.00%、Mn:1.00%以下、酸可溶性Al:0.065%以下、S:0.013%以下、Cu:0~0.80%、N:0~0.012%、P:0~0.50%、Ni:0~1.00%、Sn:0~0.30%、Sb:0~0.30%,剩余部分包含Fe及杂质,其中,上述张力绝缘覆膜含有铬化合物,上述氧化物覆膜及上述张力绝缘覆膜中的Fe量为70mg/m2~250mg/m2

Description

方向性电磁钢板
技术领域
本发明涉及作为变压器的铁心材料使用的方向性电磁钢板、特别是覆膜密合性优异的方向性电磁钢板。
本申请基于2017年07月13日在日本申请的特愿2017-137433号而主张优先权,并将其内容援引于此。
背景技术
方向性电磁钢板主要被用于变压器。变压器由于在从被安装到被废弃为止的长时间内连续地被励磁,持续产生能量损失,因此被交流磁化时的能量损失即铁损成为决定变压器的性能的主要参数。
为了降低变压器中使用的方向性电磁钢板的铁损,迄今为止,进行了大量开发。例如,提高向被称为高斯方位的{110}<001>方位的聚集;增加提高电阻的Si等固溶元素的含量;减薄板厚等。另外,已知对钢板赋予张力对于降低铁损是有效的。
为了对钢板赋予张力,在高温下在钢板上形成由热膨胀系数小于钢板的材质形成的覆膜是有效的。在最终退火工序中钢板表面的氧化物与退火分离剂反应而生成的镁橄榄石系覆膜能够对钢板赋予张力,与钢板的密合性(覆膜密合性)也优异。
专利文献1中公开了一种方法,其是通过将以胶体状二氧化硅和磷酸盐作为主体的涂敷液进行烧结来形成绝缘覆膜。该方法对于钢板的张力赋予的效果大,对铁损降低是有效的。因此,这样的在保留最终退火工序中产生的镁橄榄石系覆膜的基础上实施以磷酸盐作为主体的绝缘涂敷的方法成为一般的方向性电磁钢板的制造方法。
另一方面,近年来,弄清楚了:镁橄榄石系覆膜会阻碍磁畴壁移动,对铁损造成不良影响。在方向性电磁钢板中,磁畴在交流磁场之下伴随着磁畴壁的移动而发生变化。该磁畴壁移动顺利地进行对铁损改善是有效的。然而,镁橄榄石系覆膜由于在钢板/绝缘覆膜界面中具有凹凸结构,因此会妨碍磁畴壁的移动,对铁损造成不良影响。
针对这样的课题,迄今为止,提出了抑制镁橄榄石系覆膜的形成、将钢板表面平滑化的技术。
例如,专利文献2~5中,公开了一种技术,其是通过控制脱碳退火的气氛露点,使用氧化铝作为退火分离剂,从而在最终退火后不会形成镁橄榄石系覆膜,将钢板表面平滑化。
然而,在像这样操作而将钢板表面平滑化的情况下,为了对钢板赋予张力,需要在钢板表面形成具有充分的密合性的绝缘覆膜。作为形成具有充分的密合性的张力绝缘覆膜的方法,例如在专利文献6中公开了一种方法,其是在钢板表面形成非晶质氧化物覆膜后,形成张力绝缘覆膜。另外,在专利文献7~11中公开了一种技术,其是以形成密合性更高的张力绝缘覆膜为目的,控制非晶质氧化物覆膜的结构。
在专利文献7中公开了确保张力绝缘覆膜与钢板的覆膜密合性的方法。在该方法中,通过下述方式来确保张力绝缘覆膜与钢板的覆膜密合性:对使钢板表面平滑化后的单方向性电磁钢板的钢板表面实施导入微小凹凸的前处理后,形成外部氧化型的氧化物,从而以贯通外部氧化膜的膜厚的形式形成以二氧化硅作为主体的粒状外部氧化物。
在专利文献8中公开了确保张力绝缘覆膜与钢板的覆膜密合性的方法。在该方法中,通过下述方式来确保张力绝缘覆膜与钢板的覆膜密合性:在使钢板表面平滑化后的单方向性电磁钢板上形成外部氧化型氧化膜的热处理工序中,将200℃~1150℃的温度区域的升温速度控制为10℃/秒~500℃/秒,将铁、铝、钛、锰、铬等金属系氧化物在外部氧化膜中所占的截面面积率设定为50%以下。
在专利文献9中公开了确保张力绝缘覆膜与钢板的覆膜密合性的方法。在该方法中,通过下述方式来确保张力绝缘覆膜与钢板的覆膜密合性:在使钢板表面平滑化后的单方向性电磁钢板上形成外部氧化型氧化膜,在接下来的形成张力绝缘覆膜的工序中,将带外部氧化型氧化膜的钢板与张力绝缘覆膜形成用涂布液的接触时间设定为20秒以下,从而将外部氧化型氧化膜中的密度降低层的比率设定为30%以下。
在专利文献10中公开了确保张力绝缘覆膜与钢板的覆膜密合性的方法。在该方法中,通过下述方式来确保张力绝缘覆膜与钢板的覆膜密合性:在1000℃以上的温度下进行在使钢板表面平滑化后的单方向性电磁钢板上形成外部氧化型氧化膜的热处理,将从外部氧化型氧化膜的形成温度至200℃为止的温度区域的冷却速度控制为100℃/秒以下,将外部氧化型氧化膜中的空洞以截面面积率计设定为30%以下。
在专利文献11中公开了确保张力绝缘覆膜与钢板的覆膜密合性的方法。在该方法中,通过下述方式来确保张力绝缘覆膜与钢板的覆膜密合性:在使钢板表面平滑化后的单方向性电磁钢板上形成外部氧化型氧化膜的热处理工序中,通过在600℃~1150℃的温度范围、并且气氛露点为-20℃~0℃的条件下进行热处理,在气氛露点为5℃~60℃的条件下进行热处理后的冷却,在外部氧化型氧化膜中以截面面积率计含有5%~30%的金属铁。
然而,在上述的现有技术中会产生难以充分地发挥所期待的覆膜密合性的情况。
现有技术文献
专利文献
专利文献1:日本特开昭48-039338号公报
专利文献2:日本特开平07-278670号公报
专利文献3:日本特开平11-106827号公报
专利文献4:日本特开平11-118750号公报
专利文献5:日本特开2003-268450号公报
专利文献6:日本特开平07-278833号公报
专利文献7:日本特开2002-322566号公报
专利文献8:日本特开2002-348643号公报
专利文献9:日本特开2003-293149号公报
专利文献10:日本特开2002-363763号公报
专利文献11:日本特开2003-313644号公报
发明内容
发明所要解决的课题
鉴于现有技术的现状,本发明的课题是在没有形成镁橄榄石系覆膜且使钢板表面平滑化的方向性电磁钢板中提高张力绝缘覆膜的覆膜密合性。即,本发明的目的是提供张力绝缘覆膜的覆膜密合性优异的方向性电磁钢板。
用于解决课题的手段
本发明的发明者们对解决上述课题的方法进行了深入研究。其结果发现:对于钢板表面具有氧化物覆膜和含有铬化合物的张力绝缘覆膜的方向性电磁钢板而言,如果将张力绝缘覆膜中的Fe量优化,则能够提高张力绝缘覆膜的覆膜密合性。本发明是基于上述发现而进行的,其主旨如下所述。
(1)根据本发明的一个实施方式的方向性电磁钢板,其具有:钢板;形成于上述钢板上的含有SiO2的氧化物覆膜;和形成于上述氧化物覆膜上的张力绝缘覆膜,上述钢板作为化学组成以质量%计含有C:0.085%以下、Si:0.80~7.00%、Mn:1.00%以下、酸可溶性Al:0.065%以下、S:0.013%以下、Cu:0~0.80%、N:0~0.012%、P:0~0.50%、Ni:0~1.00%、Sn:0~0.30%、Sb:0~0.30%,剩余部分包含Fe及杂质,其中,上述张力绝缘覆膜含有铬化合物,上述氧化物覆膜及上述张力绝缘覆膜中的Fe量为70mg/m2~250mg/m2
(2)根据上述(1)所述的方向性电磁钢板,其中,上述钢板的上述化学组成也可以以质量%计含有Cu:0.01~0.80%。
发明效果
根据本发明的上述方案,能够在不具有镁橄榄石系覆膜且钢板表面平滑化的方向性电磁钢板的表面上介由氧化物覆膜形成覆膜密合性显著优异的张力绝缘覆膜。即,能够提供覆膜密合性优异的方向性电磁钢板。
附图说明
图1是表示张力绝缘覆膜及氧化物覆膜的Fe量与覆膜残存率的关系的图。
图2是表示张力绝缘覆膜及氧化物覆膜的Fe量与层间电流的关系的图。
具体实施方式
本发明的一个实施方式的方向性电磁钢板(以下有时称为“本实施方式的电磁钢板”)具有:钢板;形成于上述钢板上的含有SiO2的氧化物覆膜;和形成于上述氧化物覆膜上的张力绝缘覆膜,上述钢板作为化学组成以质量%计含有C:0.085%以下、Si:0.80~7.00%、Mn:1.00%以下、酸可溶性Al:0.065%以下、S:0.013%以下、Cu:0~0.80%、N:0~0.012%、P:0~0.50%、Ni:0~1.00%、Sn:0~0.30%、Sb:0~0.30%,剩余部分包含Fe及杂质,其中,上述张力绝缘覆膜含有铬化合物,上述氧化物覆膜及上述张力绝缘覆膜中的Fe量为70mg/m2~250mg/m2
以下,对本实施方式的电磁钢板进行说明。
<氧化物覆膜及张力绝缘覆膜>
本发明的发明者们认为:在没有镁橄榄石系覆膜且使钢板表面平滑化后的方向性电磁钢板的表面上形成张力绝缘覆膜时,为了确保优异的覆膜密合性,在张力绝缘覆膜的烧结工序中,形成下述覆膜是重要的:作为承担钢板与张力绝缘覆膜的密合的密合层起到贡献的含有SiO2的氧化物覆膜,特别是含有非晶质的SiO2的覆膜,更优选实质上由非晶质的SiO2构成的覆膜。这里,所谓非晶质是原子、分子不形成有规则的空间晶格而进行混乱的排列的固体。具体而言,在进行X射线衍射时,显示下述状态:仅检测到光晕,未检测到特定的峰。在本实施方式的方向性电磁钢板中,氧化物覆膜优选实质上仅由非晶质的SiO2构成。
如果形成内部氧化型的非晶质氧化物,则张力绝缘覆膜以形成部位作为起点而剥离。因此,非晶质氧化物的形态学优选为外部氧化型。所谓内部氧化型的非晶质氧化物是非晶质氧化物陷入到钢板与非晶质氧化物的界面中的形态的氧化物,将以陷入部的深度方向的长度与陷入部的底边的长度之比表示的长宽比为1.2以上的非晶质氧化物定义为内部氧化型的非晶质氧化物。
另外,伴随着作为覆膜而形成非晶质SiO2,原来存在于非晶质SiO2的形成部位的Fe扩散到张力绝缘覆膜中。因此,认为将氧化物覆膜及张力绝缘覆膜的Fe量优化是重要的,并进行了以下所示的实验来进一步反复研究。
在本实施方式的电磁钢板中,有时将钢板(母材钢板)以外的部位即氧化物覆膜(非晶质SiO2)及张力绝缘覆膜这两个部位中含有的Fe的量简单地称为张力绝缘覆膜的Fe量。
作为试验用原材料,在含有3.4%的Si的板厚为0.23mm的脱碳退火板上涂布以氧化铝作为主体的退火分离剂而进行最终退火,使其二次再结晶化,准备了没有镁橄榄石系覆膜的方向性电磁钢板。
对该方向性电磁钢板在氮为25%、氢为75%、露点为-30℃~5℃的气氛中实施均热时间为10秒的热处理,在钢板表面形成了以二氧化硅(SiO2)作为主体的覆膜。
在具有该含有SiO2的氧化物覆膜的钢板的表面(具体而言,氧化物覆膜的表面)涂布以磷酸盐、铬酸、胶体二氧化硅作为主体的涂布液,在氮为3~97%、氢为3~97%、露点为-30~30℃的气氛中、在850℃下进行100秒烧结而形成含有铬化合物的张力绝缘覆膜,对该覆膜的覆膜密合性进行了调查。
如果不含有铬化合物,则耐蚀性大大降低,因此在本实施方式的电磁钢板中,张力绝缘覆膜设定为含有铬化合物的张力绝缘覆膜。铬化合物如果即使少量含有也可得到其效果,但优选为1.0g/m2以上。
覆膜密合性以下述覆膜的面积率(以下有时称为“覆膜残存率”)进行了评价:将从钢板中采集的试验片卷绕到直径为30mm的圆筒上(180°弯曲)之后,开卷时,没有从钢板剥离而保持与钢板密合的状态的覆膜的面积率。
接着,将钢板浸渍于溴甲醇溶液中而将母材钢板溶解,回收残渣,将氧化物覆膜及张力绝缘覆膜进行了回收。将回收的残渣用高氯酸及硝酸溶解,通过ICP(InductivelyCoupled Plasma)高频电感耦合等离子体发光分光分析法对溶解后的溶液的Fe量进行了分析。对于无法充分溶解的残渣,进一步用盐酸溶解,通过ICP对Fe量进行了分析。
将通过ICP分析得到的氧化物覆膜及张力绝缘覆膜的Fe量与覆膜残存率的关系示于图1中。由图1可知:为了确保80%以上的覆膜残存率,Fe量需要设定为250mg/m2以下;为了确保90%以上的覆膜残存率,Fe量需要设定为200mg/m2以下。
本发明的发明者们为了进一步确认张力绝缘覆膜的绝缘性,对氧化物覆膜及张力绝缘覆膜的Fe量与层间电流的关系进行了调查。层间电流通过依据JIS C 2550的方法进行了测定。
图2中示出了测定结果。由图2可知:如果氧化物覆膜及张力绝缘覆膜的Fe量低于70mg/m2,则层间电流超过300mA,绝缘性不足。另外可知:如果氧化物覆膜及张力绝缘覆膜的Fe量为150mg/m2以上,则层间电流变得低于50mA,能够确保优异的绝缘性。还可知:如果氧化物覆膜及张力绝缘覆膜的Fe量低于70mg/m2,则钢板表面会变色发黑。
绝缘性的不足及钢板表面的黑色化的原因并不明确,但认为是由于:因烧结条件而生成了导电性的铁和磷的化合物。因此,在张力绝缘覆膜中,为了确保密合性与绝缘性,需要将氧化物覆膜及张力绝缘覆膜的Fe量设定为70mg/m2~250mg/m2。优选为150mg/m2~200mg/m2
张力绝缘覆膜及氧化物覆膜中的Si以SiO2换算的附着量优选为低于全部附着量的50%。如果Si以SiO2换算的附着量为全部附着量的50%以上,则覆膜张力变得过高,有可能覆膜的密合性降低。
绝缘覆膜及氧化物覆膜中的Si以SiO2换算的附着量可以通过与上述的Fe量的测定同样的方法,通过ICP(Inductively Coupled Plasma)高频电感耦合等离子体发光分光分析法来求出。
由于与张力绝缘覆膜相比,氧化物覆膜较薄(~数nm),因此绝缘覆膜及氧化物覆膜中的Fe量和Si以SiO2换算的附着量与绝缘覆膜中的Fe量和Si以SiO2换算的附着量接近。
<成分组成>
接下来,对本实施方式的电磁钢板的化学组成(成分组成)进行说明。以下,化学组成所涉及的“%”是指“质量%”。
C:0.085%以下
C是通过磁时效而使铁损显著增大的元素。如果C含量超过0.085%,则铁损的增大变得显著,因此C含量设定为0.085%以下。C含量优选为0.010%以下,更优选为0.005%以下。C越为少量,对于铁损的降低而言越优选,因此下限没有特别限定,但由于0.0001%左右为检测极限,因此0.0001%为实质性的下限。
Si:0.80~7.00%
Si是在二次再结晶退火中控制二次再结晶、有助于磁特性的提高的元素。如果Si含量低于0.80%,则在二次再结晶退火中钢板发生相变,变得难以控制二次再结晶,得不到良好的磁通密度及铁损特性。因此,Si含量设定为0.80%以上。优选为2.50%以上,更优选为3.00%。
另一方面,如果Si含量超过7.00%,则钢板脆化,制造工序中的通板性显著恶化。因此,Si含量设定为7.00%以下。优选为4.00%以下,更优选为3.75%以下。
Mn:1.00%以下
Mn如果含量超过1.00%,则在二次再结晶退火中钢板发生相变,得不到良好的磁通密度及铁损特性。因此,Mn含量设定为1.00%以下。优选为0.70%以下,更优选为0.50%以下。
另一方面,Mn是奥氏体形成元素,是在二次再结晶退火中控制二次再结晶、有助于磁特性的提高的元素。如果Mn含量低于0.01%,则有可能在热轧时钢板脆化。因此,Mn含量优选设定为0.01%以上。Mn含量更优选为0.05%以上,进一步优选为0.10%以上。
酸可溶性Al:0.065%以下
酸可溶性Al如果含量超过0.065%,则AlN的析出变得不均匀,得不到所需的二次再结晶组织,磁通密度降低,另外,钢板脆化。因此,酸可溶性Al含量设定为0.065%以下。优选为0.060%以下,更优选为0.050%以下。
另一方面,酸可溶性Al是与N结合而生成作为抑制剂发挥功能的(Al、Si)N的元素。如果酸可溶性Al含量低于0.010%,则AlN生成量变少,有可能不会充分地进行二次再结晶,因此酸可溶性Al含量优选设定为0.010%以上。更优选为0.015%以上,进一步优选为0.020%以上。
S:0.013%以下
S是与Mn结合而形成作为抑制剂发挥功能的MnS的元素。如果S含量超过0.013%,则生成微细的硫化物,铁损特性降低。因此,S含量设定为0.013%以下。优选为0.010%以下,更优选为0.007%以下。
S越少量越优选,因此下限没有特别限定,但由于0.0001%左右为检测极限,因此0.0001%为实质性的下限。从形成所需量的作为抑制剂发挥功能的MnS的方面考虑,S含量优选为0.003%以上,更优选为0.005%以上。
本实施方式的电磁钢板的成分组成除了上述元素以外,为了提高特性,还可以含有0.01~0.80%的Cu。另外,在不损害本实施方式的电磁钢板的特性的范围内,也可以含有N:0.001~0.012%、P:0.50%以下、Ni:1.00%以下、Sn:0.30%以下、Sb:0.30%以下中的1种或2种以上。但是,上述这些元素由于未必需要含有,因此这些元素的下限为0%。
Cu:0~0.80%
Cu是与S结合而形成作为抑制剂发挥功能的CuS的元素。如果Cu含量低于0.01%,则不会充分表现出效果,因此Cu含量设定为0.01%以上。优选为0.04%以上,更优选为0.07%以上。
另一方面,如果Cu含量超过0.80%,则析出物的分散变得不均匀,铁损降低效果饱和。因此,Cu含量设定为0.80%以下。优选为0.60%以下,更优选为0.45%以下。
N:0~0.012%
N是与Al结合而形成作为抑制剂发挥功能的AlN的元素。N含量低于0.001%时,AlN的形成变得不充分,因此N含量优选为0.001%以上。更优选为0.006%以上。
另一方面,N也是在冷轧时在钢板中形成泡疤(空孔)的元素。如果N超过0.012%,则在冷轧时,有可能在钢板中生成泡疤(空孔)。因此,N含量优选为0.012%以下。更优选为0.010%以下。
P:0~0.50%
P是提高钢板的比电阻、有助于铁损的降低的元素。P的下限包含0%,但从确实地得到效果的方面考虑,优选为0.02%以上。
另一方面,如果P含量超过0.50%,则轧制性降低。因此,P含量优选为0.50%以下。更优选为0.35%以下。
Ni:0~1.00%
Ni是提高钢板的比电阻、有助于铁损的降低、并且控制热轧钢板的金属组织、有助于磁特性的提高的元素。Ni的下限包含0%,但从确实地得到效果的方面考虑,Ni含量优选为0.02%以上。如果Ni含量超过1.00%,则二次再结晶会不稳定地进行,因此Ni优选为1.00%以下。更优选为0.75%以下。
Sn:0~0.30%
Sb:0~0.30%
Sn及Sb是在晶体晶界偏析、起到在最终退火时防止Al被退火分离剂所放出的水分氧化(通过该氧化,在卷材位置抑制剂强度不同,磁特性发生变动)的作用的元素。下限包含0%,但从确实地得到效果的方面考虑,任一元素均优选将含量设定为0.02%以上。
另一方面,任一元素均如果超过0.30%,则二次再结晶变得不稳定,磁特性劣化。因此,Sn及Sb中的任一者均含量优选为0.30%以下。更优选任一元素均为0.25%以下。
在本实施方式的电磁钢板中,除了上述元素以外的剩余部分为Fe及杂质。杂质是从钢原料和/或在炼钢过程中不可避免地混入钢中的元素。
<制造方法>
接下来,对本实施方式的电磁钢板的制造方法进行说明。
将具有所需的化学组成的钢液通过通常的方法进行铸造,将铸坯供于通常的热轧,制成热轧钢板(方向性电磁钢板的原材料)。接着,对热轧钢板实施热轧板退火后,实施1次的冷轧或夹有中间退火的多次的冷轧,制成与最终制品相同的板厚的钢板。接着,对该冷轧后的钢板实施脱碳退火。
在脱碳退火中,优选在湿氢气氛中进行加热。通过利用上述气氛而进行的热处理,能够将钢板中的C含量降低至在制品板中不会有因磁时效而导致的磁特性的劣化的区域,同时能够使钢板组织进行一次再结晶。该一次再结晶成为二次再结晶的准备。
在脱碳退火后,将钢板在氨气氛中进行退火,生成AlN抑制剂。
接着,在1100℃以上的温度下进行最终退火。出于防止钢板的烧结的目的,最终退火以下述形态进行:在钢板表面涂布以Al2O3作为主要成分的退火分离剂、且卷取钢板后的卷材的形态。
在最终退火后,使用洗涤器,除去多余的退火分离剂,并且控制钢板的表面状态。在进行多余的退火分离剂的除去的情况下,优选进行利用洗涤器的处理,并且进行水洗。
洗涤器优选按照刷子的压下量成为1.0mm~5.0mm的方式进行控制。
如果刷子的压下量低于1.0mm,则无法将剩余的退火分离剂充分除去,覆膜密合性降低,因此不优选。另外,如果刷子的压下量变得超过5.0mm,则钢板表面被过度地削去从而表面活性提高,铁的溶出量变得过大,覆膜中的Fe量变得过量,覆膜密合性降低,因此不优选。
接着,在氢及氮的混合气氛中进行退火,形成氧化物覆膜。形成氧化物覆膜的蒸气混合气氛的氧分压(PH2O/PH2)优选为0.005以下,更优选为0.001以下。另外,保持温度优选为600~1150℃,更优选为700~900℃。如果为该条件,则形成含有非晶质SiO2的氧化物覆膜。
氧分压超过0.005时,还形成非晶质氧化膜以外的铁系氧化物,覆膜密合性降低。另外,保持温度低于600℃时,不会充分地生成非晶质氧化物。另外,保持温度超过1150℃时,设备负荷变高,因此不优选。
在将氧化物覆膜的形态学控制为长宽比低于1.2的外部氧化型的情况下,优选的是,在用于形成氧化物覆膜的退火中,将冷却时的氧分压设定为0.005以下。
通过在形成有氧化物覆膜的钢板上涂布由磷酸铝、铬酸及胶体二氧化硅形成的张力绝缘覆膜,在氮为3~97%、氢为3~97%、氧分压为0.0005~1.46的气氛中、在835~870℃下进行20~100秒烧结,能够得到磁特性良好的方向性电磁钢板(本实施方式的电磁钢板)。
实施例
接下来,对本发明的实施例进行说明,但实施例中的条件是为了确认本发明的可实施性及效果而采用的一个条件例,本发明并不限于该一个条件例。只要不脱离本发明的主旨并达成本发明的目的,则本发明可采用各种条件。
<实施例1>
将表1中所示的成分组成的硅钢加热至1100℃而供于热轧,制成板厚为2.6mm的热轧钢板。对该热轧钢板在1100℃下实施退火后,实施一次的冷轧或夹有中间退火的多次的冷轧而制成最终板厚为0.23mm的冷轧钢板。
表1
Figure BDA0002353060990000121
对上述冷轧钢板实施了脱碳退火和氮化退火。之后,涂布了以氧化铝作为主体的退火分离剂的水浆料。接着,进行1200℃、20小时的最终退火,得到了没有镁橄榄石系覆膜、具有镜面光泽的完成了二次再结晶的方向性电磁钢板。
对该钢板在氮为25%、氢为75%、表2中所示的氧分压的气氛中、在800℃下实施了30秒的均热处理后,在氮为25%、氢为75%、表2中所示的氧分压的气氛中冷却至室温。在退火的保持温度为600℃以上的情况下,在钢板表面形成了覆膜。
对于该形成的覆膜,使用X射线衍射及TEM进行了确认。另外,还一并进行了使用FT-IR的确认。
具体而言,在形成有覆膜的各个钢No.制造条件No.的组合中,也对钢板截面进行FIB(聚焦离子束;Focused Ion Beam)加工、利用透射电子显微镜(TEM)对10μm×10μm的范围进行了观察。其结果是,确认了覆膜由SiO2形成。另外,对表面通过傅里叶变换红外分光法(FT-IR)进行分析,其结果是,在波数为1250(cm-1)的位置存在峰。由于该峰为来源SiO2的峰,因此,由此也确认了覆膜是由SiO2形成。另外,对于具有覆膜的钢板,在进行X射线衍射时,除了基底金属的峰以外仅检测到光晕,没有检测到特定的峰。
即,所形成的覆膜均为由SiO2形成的非晶质氧化物覆膜。
在该具有非晶质氧化物覆膜的方向性电磁钢板上涂布包含磷酸铝、铬酸及胶体二氧化硅的张力绝缘覆膜形成液,在氮为10~30%、氢为70~90%、表2中所示的氧分压气氛中,以表2中所示的烧结温度、烧结时间进行烧结,形成了张力绝缘覆膜。
另外,调整涂敷液的配合比率,将张力绝缘覆膜中的Si以SiO2换算的附着量设定为低于全部附着量的50%。
从形成有张力绝缘覆膜的方向性电磁钢板中采集试验片,卷绕到直径为30mm的圆筒上(180°弯曲),以弯曲恢复时的覆膜残存率对绝缘覆膜的密合性进行了评价。绝缘覆膜的密合性的评价是通过目视来判断张力绝缘覆膜有无剥离。将没有从钢板剥离、覆膜残存率为90%以上的情况设定为“优”,将80%以上且低于90%的情况设定为“良”,将低于80%的情况设定为“差”。
接着,为了测定张力绝缘覆膜及氧化物覆膜的Fe量,将钢板浸渍于溴甲醇溶液中,将母钢板溶解,对残渣进行了回收。将回收的残渣用高氯酸及硝酸溶解,通过ICP对溶解后的溶液的Fe量进行了分析。需要说明的是,无法充分溶解的残渣进一步用盐酸溶解,通过ICP对Fe量进行了分析。将Fe量和绝缘覆膜的密合性的评价示于表2中。
另外,按照JIS C 2550对层间电流进行了测定。将层间电流一并示于表2中。
表2
Figure BDA0002353060990000151
产业上的可利用性
如上所述,根据本发明,能够在没有镁橄榄石系覆膜、使钢板表面平滑化后的方向性电磁钢板的表面上形成覆膜密合性显著优异的张力绝缘覆膜,能够提供覆膜密合性优异的带张力绝缘覆膜的方向性电磁钢板。因而,本发明在电磁钢板制造产业中可利用性高。

Claims (2)

1.一种方向性电磁钢板,其特征在于,其具有:
不具有镁橄榄石系覆膜的钢板;
形成于所述不具有镁橄榄石系覆膜的钢板上的含有SiO2的氧化物覆膜;和
形成于所述氧化物覆膜上的张力绝缘覆膜,
所述不具有镁橄榄石系覆膜的钢板作为化学组成以质量%计含有:
C:0.085%以下、
Si:0.80~7.00%、
Mn:1.00%以下、
酸可溶性Al:0.065%以下、
S:0.013%以下、
Cu:0~0.80%、
N:0~0.012%、
P:0~0.50%、
Ni:0~1.00%、
Sn:0~0.30%、
Sb:0~0.30%,
剩余部分包含Fe及杂质,
其中,所述张力绝缘覆膜含有铬化合物,
所述氧化物覆膜及所述张力绝缘覆膜中的Fe量为70mg/m2~250mg/m2
2.根据权利要求1所述的方向性电磁钢板,其特征在于,所述不具有镁橄榄石系覆膜的钢板的所述化学组成以质量%计含有Cu:0.01~0.80%。
CN201880044569.4A 2017-07-13 2018-07-13 方向性电磁钢板 Active CN110832112B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017137433 2017-07-13
JP2017-137433 2017-07-13
PCT/JP2018/026623 WO2019013354A1 (ja) 2017-07-13 2018-07-13 方向性電磁鋼板

Publications (2)

Publication Number Publication Date
CN110832112A CN110832112A (zh) 2020-02-21
CN110832112B true CN110832112B (zh) 2021-12-21

Family

ID=65001333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880044569.4A Active CN110832112B (zh) 2017-07-13 2018-07-13 方向性电磁钢板

Country Status (8)

Country Link
US (1) US11145446B2 (zh)
EP (1) EP3653754A4 (zh)
JP (1) JP6881580B2 (zh)
KR (1) KR102436986B1 (zh)
CN (1) CN110832112B (zh)
BR (1) BR112020000223A2 (zh)
RU (1) RU2727435C1 (zh)
WO (1) WO2019013354A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102582981B1 (ko) * 2019-01-16 2023-09-26 닛폰세이테츠 가부시키가이샤 방향성 전자 강판
EP4273280A1 (en) 2022-05-04 2023-11-08 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961744A (en) * 1992-04-07 1999-10-05 Nippon Steel Corporation Grain oriented silicon steel sheet having low core loss and method of manufacturing same
CN103140603A (zh) * 2010-09-28 2013-06-05 杰富意钢铁株式会社 方向性电磁钢板
CN103189544A (zh) * 2010-10-29 2013-07-03 新日铁住金株式会社 电磁钢板及其制造方法
US20140338794A1 (en) * 2011-09-16 2014-11-20 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet having excellent iron loss properties

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JP2514913B2 (ja) 1987-10-19 1996-07-10 忠三 岸本 ヒトbcdfを含有する神経系障害治療剤
JP2698003B2 (ja) * 1992-08-25 1998-01-19 新日本製鐵株式会社 一方向性珪素鋼板の絶縁皮膜形成方法
JP2671084B2 (ja) 1992-08-19 1997-10-29 新日本製鐵株式会社 鉄損特性の優れる高磁束密度方向性電磁鋼板及びその製造方法
JP2653638B2 (ja) 1994-04-05 1997-09-17 新日本製鐵株式会社 鉄損の低い方向性電磁鋼板の製造方法
JP2664337B2 (ja) 1994-04-15 1997-10-15 新日本製鐵株式会社 一方向性珪素鋼板の絶縁皮膜形成方法
JP3178988B2 (ja) * 1995-03-31 2001-06-25 新日本製鐵株式会社 密着性の優れた一方向性電磁鋼板の絶縁被膜形成方法
JPH09143583A (ja) 1995-11-24 1997-06-03 Nippon Steel Corp 異種金属の溶融分離装置
JPH09143563A (ja) * 1995-11-28 1997-06-03 Nippon Steel Corp グラス被膜の良好な高磁束密度方向性電磁鋼板の製造方法
JP3337958B2 (ja) 1997-10-06 2002-10-28 新日本製鐵株式会社 磁気特性が優れた鏡面一方向性電磁鋼板の製造方法
JPH11118750A (ja) 1997-10-14 1999-04-30 Kurita Water Ind Ltd 参照電極設置用装置
JP3930696B2 (ja) 2001-04-23 2007-06-13 新日本製鐵株式会社 張力付与性絶縁皮膜の皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP4288022B2 (ja) 2001-06-08 2009-07-01 新日本製鐵株式会社 一方向性珪素鋼板とその製造方法
JP4044739B2 (ja) 2001-05-22 2008-02-06 新日本製鐵株式会社 張力付与性絶縁皮膜の皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP4288054B2 (ja) 2002-01-08 2009-07-01 新日本製鐵株式会社 方向性珪素鋼板の製造方法
JP4044781B2 (ja) 2002-04-08 2008-02-06 新日本製鐵株式会社 張力付与性絶縁皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP4473489B2 (ja) 2002-04-25 2010-06-02 新日本製鐵株式会社 一方向性珪素鋼板とその製造方法
KR100979785B1 (ko) 2005-05-23 2010-09-03 신닛뽄세이테쯔 카부시키카이샤 피막 밀착성이 우수한 방향성 전자강판 및 그 제조 방법
US7942982B2 (en) 2006-11-22 2011-05-17 Nippon Steel Corporation Grain-oriented electrical steel sheet excellent in coating adhesion and method of producing the same
JP5228563B2 (ja) 2008-03-25 2013-07-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2010040666A (ja) 2008-08-01 2010-02-18 Toyota Motor Corp 磁性材料のSiO2薄膜形成方法
BR112012020741B1 (pt) 2010-02-18 2022-07-19 Nippon Steel Corporation Método de produção de folha de aço para fins elétricos com grão orientado
JP4840518B2 (ja) 2010-02-24 2011-12-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5672273B2 (ja) 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2014104393A1 (ja) 2012-12-28 2014-07-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP2902509B1 (en) 2014-01-30 2018-08-29 Thyssenkrupp Electrical Steel Gmbh Grain oriented electrical steel flat product comprising an insulation coating
JP2017137433A (ja) 2016-02-04 2017-08-10 株式会社デュエル ポリエチレン用接着コート剤およびポリエチレン製品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961744A (en) * 1992-04-07 1999-10-05 Nippon Steel Corporation Grain oriented silicon steel sheet having low core loss and method of manufacturing same
CN103140603A (zh) * 2010-09-28 2013-06-05 杰富意钢铁株式会社 方向性电磁钢板
CN103189544A (zh) * 2010-10-29 2013-07-03 新日铁住金株式会社 电磁钢板及其制造方法
US20140338794A1 (en) * 2011-09-16 2014-11-20 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet having excellent iron loss properties

Also Published As

Publication number Publication date
KR102436986B1 (ko) 2022-08-29
CN110832112A (zh) 2020-02-21
BR112020000223A2 (pt) 2020-07-07
KR20200022016A (ko) 2020-03-02
JPWO2019013354A1 (ja) 2020-04-30
EP3653754A1 (en) 2020-05-20
US20200176156A1 (en) 2020-06-04
RU2727435C1 (ru) 2020-07-21
WO2019013354A1 (ja) 2019-01-17
EP3653754A4 (en) 2020-11-11
JP6881580B2 (ja) 2021-06-02
US11145446B2 (en) 2021-10-12

Similar Documents

Publication Publication Date Title
CN110832118B (zh) 方向性电磁钢板
CN113396242B (zh) 方向性电磁钢板、方向性电磁钢板的绝缘被膜形成方法及方向性电磁钢板的制造方法
CN113302318B (zh) 方向性电磁钢板的制造方法
CN110832112B (zh) 方向性电磁钢板
CN110832113B (zh) 方向性电磁钢板
CN110832111B (zh) 方向性电磁钢板
CN113272459B (zh) 方向性电磁钢板的制造方法
KR102555134B1 (ko) 방향성 전자 강판 및 그의 제조 방법
CN113272453A (zh) 方向性电磁钢板的制造方法
JP7151791B2 (ja) 方向性電磁鋼板
CN113396231B (zh) 方向性电磁钢板、方向性电磁钢板的绝缘被膜形成方法及方向性电磁钢板的制造方法
JP7092215B2 (ja) 方向性電磁鋼板及びその製造方法
RU2768932C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
CN113286905B (zh) 方向性电磁钢板的制造方法
CN117157427A (zh) 方向性电磁钢板及绝缘被膜的形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant