CN117157427A - 方向性电磁钢板及绝缘被膜的形成方法 - Google Patents

方向性电磁钢板及绝缘被膜的形成方法 Download PDF

Info

Publication number
CN117157427A
CN117157427A CN202280026265.1A CN202280026265A CN117157427A CN 117157427 A CN117157427 A CN 117157427A CN 202280026265 A CN202280026265 A CN 202280026265A CN 117157427 A CN117157427 A CN 117157427A
Authority
CN
China
Prior art keywords
steel sheet
insulating film
annealing
grain
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280026265.1A
Other languages
English (en)
Inventor
竹田和年
片冈隆史
高谷真介
小之仓勇树
国田雄树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of CN117157427A publication Critical patent/CN117157427A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/10Orthophosphates containing oxidants
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明的方向性电磁钢板具有母材钢板和形成于上述母材钢板的表面的绝缘被膜,上述绝缘被膜具有形成于上述母材钢板侧且包含结晶性磷酸金属盐的中间层、和形成于上述绝缘被膜的表面侧的张力被膜层,上述中间层的平均厚度为0.3~10.0μm,上述绝缘被膜的平均厚度为2.0~10.0μm,上述中间层的上述结晶性磷酸金属盐为磷酸锌、磷酸锰、磷酸铁、磷酸锌钙中的1种或2种以上,上述张力被膜层包含磷酸金属盐和二氧化硅,上述张力被膜层中的上述二氧化硅的含量为20~60质量%。

Description

方向性电磁钢板及绝缘被膜的形成方法
技术领域
本发明涉及方向性电磁钢板及绝缘被膜的形成方法。
本申请基于2021年04月06日在日本申请的特愿2021-064964号而主张优先权,并将其内容援引于此。
背景技术
方向性电磁钢板主要被用于变压器中。变压器在从安装至废弃为止的长时间被连续地励磁,持续产生能量损耗。因此,以交流磁化时的能量损耗、即铁损成为决定变压器的性能的主要指标。
为了降低方向性电磁钢板的铁损,从(a)提高向{110}<001>取向(高斯取向)的聚集、(b)增多Si等固溶元素的含量而提高钢板的电阻、或(c)减薄电磁钢板的板厚的观点出发,迄今为止开发了许多技术。
此外,对钢板赋予张力对于铁损的降低是有效的。在高温下于钢板表面形成热膨胀系数比钢板小的材质的被膜是用于铁损降低的有效的手段。在电磁钢板的成品退火工序中,钢板表面的氧化物与退火分离剂反应而生成的被膜密合性优异的镁橄榄石系被膜(无机质系被膜)是能够对钢板赋予张力的被膜。
此外,例如,专利文献1中公开的将以胶体状二氧化硅和磷酸盐作为主体的涂敷液烘烤于钢板表面而形成绝缘被膜的方法由于对钢板赋予张力的效果大,因此是对于铁损的降低有效的方法。因此,保留在成品退火工序中生成的镁橄榄石系被膜、并对其上实施以磷酸盐作为主体的绝缘涂敷成为一般的方向性电磁钢板的制造方法。
然而,近年来,变压器的小型化及高性能化的要求提高,为了变压器的小型化,对方向性电磁钢板要求即使是磁通密度高的情况下铁损也良好那样的高磁场铁损优异。同时,近年来,镁橄榄石系被膜会妨碍磁畴壁的移动、对铁损造成不良影响变得清楚。在方向性电磁钢板中,磁畴在交流磁场下磁畴壁移动而发生变化。虽然该磁畴壁的移动顺利并且迅速对于铁损的降低是有效的,但认为镁橄榄石系被膜由于其自身为非磁性体,并且在钢板/被膜界面具有凹凸结构,该凹凸结构会妨碍磁畴壁的移动,因此对铁损造成不良影响。
因此,作为改善高磁场铁损的手段,研究了以下技术:将无机质系被膜通过研磨等机械手段、或酸洗等化学手段而除去的方法;通过防止高温成品退火中的无机质系被膜的生成来制造不具有无机质系被膜的方向性电磁钢板的技术;将钢板表面制成镜面状态的技术(换言之,将钢板表面以磁气平滑化的技术)。
作为无机质系被膜的生成防止技术,例如在专利文献2中公开了一种技术,其中,在通常的成品退火后进行酸洗而将表面形成物除去后,通过化学研磨或电解研磨而将钢板表面制成镜面状态。判明对于通过这样的公知的方法而得到的不具有无机质系被膜的方向性电磁钢板的表面,通过形成张力赋予绝缘被膜,可得到更优异的铁损改善效果。此外,如果利用张力赋予绝缘被膜,则除了铁损改善以外,还能够赋予耐蚀性、耐热性、滑动性这样的各种特性。
然而,关于无机质系被膜,具有表现出绝缘性的效果、以及在形成张力被膜(张力赋予绝缘被膜)时作为确保密合性的中间层的效果。即,无机质系被膜由于以较深地进入钢板中的状态形成,因此与作为金属的钢板的密合性优异。因此,在无机质系被膜的表面形成以胶体状二氧化硅或磷酸盐等作为主要成分的张力赋予型的被膜(张力被膜)的情况下,被膜密合性优异。另一方面,由于一般金属与氧化物的结合困难,因此在不存在无机质系被膜的情况下,在张力被膜与钢板表面之间,难以确保充分的密合性。
因此,研究了在对于不具有无机质系被膜的方向性电磁钢板形成张力被膜的情况下,设置代替无机质系被膜的作为中间层的作用的层。
例如在专利文献3中公开了一种技术,其中,通过将不具有无机质系被膜的方向性电磁钢板在弱还原性气氛中进行退火,使硅钢板中必然含有的硅选择性热氧化,从而在钢板表面形成SiO2层后,形成张力赋予型绝缘被膜。此外,在专利文献4中公开了一种技术,其中,通过将不具有无机质系被膜的方向性电磁钢板在硅酸盐水溶液中进行阳极电解处理,从而在钢板表面形成SiO2层后,形成张力赋予型绝缘被膜。
此外,在专利文献5中公开了一种技术,其中,通过在形成张力赋予涂层时预先施加成为中间层的涂层,从而确保张力赋予绝缘被膜的密合性。
此外,在专利文献6中公开了一种方向性电磁钢板,其是具备母材钢板和张力赋予绝缘被膜的方向性电磁钢板,其中,上述张力赋予绝缘被膜存在于上述方向性电磁钢板的表面,在上述母材钢板与上述张力赋予绝缘被膜之间,存在厚度为100~500nm的铁系氧化物层。
现有技术文献
专利文献
专利文献1:日本特开昭48-039338号公报
专利文献2:日本特开昭49-96920号公报
专利文献3:日本特开平6-184762号公报
专利文献4:日本特开平11-209891号公报
专利文献5:日本特开平5-279747号公报
专利文献6:日本特开2020-111814号公报
发明内容
发明所要解决的课题
然而,上述专利文献3中公开的技术为了在弱还原性气氛中实施退火,需要准备可控制气氛的退火设备,处理成本存在问题。此外,在上述专利文献4中公开的技术中,为了通过在硅酸盐水溶液中实施阳极电解处理而在钢板表面得到与张力赋予型绝缘被膜保持充分的密合性的SiO2层,需要准备新的电解处理设备,处理成本存在问题。
此外,就专利文献5中公开的技术而言,存在无法密合性良好地保持具有大张力的张力赋予绝缘被膜的问题。
此外,在专利文献6中公开的技术中,为了形成铁系氧化物层,设定为在氧浓度为1~21体积%、并且露点为-20~30℃的气氛中,对表面处理后的方向性电磁钢板在钢板温度700~900℃下进行5~60秒钟加热处理。因此,在以相同生产线来制造具有无机质系被膜的钢板的情况下,需要变更退火炉的气氛,作业性低劣。
如上所述,在以不使设备制约、作业性劣化的方法作为前提的情况下,难以提供不具有无机质系被膜、被膜密合性优异、被膜张力高、磁特性优异的方向性电磁钢板。
因此,本发明的课题是提供不具有无机质系被膜、被膜密合性优异、被膜张力优异、并且磁特性优异的方向性电磁钢板。此外,本发明中,课题是提供这样的方向性电磁钢板所具有的绝缘被膜的形成方法。
用于解决课题的手段
本发明者们对上述的课题进行了研究。其结果发现,在不具有镁橄榄石系被膜的方向性电磁钢板中,通过在母材钢板与张力被膜之间具有由结晶性磷酸金属盐形成的中间层,能够提高被膜密合性、被膜张力、及磁特性。
本发明是基于上述的见识而进行的。本发明的主旨如下所述。
[1]本发明的一方案的方向性电磁钢板具有母材钢板和形成于上述母材钢板的表面的绝缘被膜,上述绝缘被膜具有形成于上述母材钢板侧且包含结晶性磷酸金属盐的中间层、和形成于上述绝缘被膜的表面侧的张力被膜层,上述中间层的平均厚度为0.3~10.0μm,上述绝缘被膜的平均厚度为2.0~10.0μm,上述中间层的上述结晶性磷酸金属盐为磷酸锌、磷酸锰、磷酸铁、磷酸锌钙中的1种或2种以上,上述张力被膜层包含磷酸金属盐和二氧化硅,上述张力被膜层中的上述二氧化硅的含量为20~60质量%。
[2]本发明的另一方案的绝缘被膜的形成方法是形成上述[1]所述的方向性电磁钢板所具备的上述绝缘被膜的方法,具备以下工序:在钢板上涂布包含10~100质量%的Al2O3的退火分离剂并使其干燥后,进行成品退火的成品退火工序;对于上述成品退火工序后的上述钢板除去剩余的上述退火分离剂的退火分离剂除去工序;将上述退火分离剂除去工序后的上述钢板在液温为40~85℃、且包含5~50质量%的磷酸金属盐的处理液中浸渍5~150秒钟的浸渍工序;将上述浸渍工序后的上述钢板从上述处理液中拉起并除去剩余的上述处理液之后,使其干燥的干燥工序;在上述干燥工序后的上述钢板上涂布按照相对于磷酸金属盐100质量份而胶体二氧化硅成为30~150质量份的方式包含磷酸金属盐和胶体二氧化硅的涂敷液并使其干燥后,以板温为700~950℃的状态保持10~120秒钟的张力被膜层形成工序。
[3]根据上述[2]所述的绝缘被膜的形成方法,其中,上述退火分离剂也可以进一步包含MgO:5~90质量%、氯化物:0.5~10.0质量%中的1种或2种。
发明效果
根据本发明的上述方案,能够提供不具有镁橄榄石系被膜、被膜密合性优异、被膜张力优异、并且磁特性优异的方向性电磁钢板。此外,根据本发明的上述方案,能够提供被膜密合性优异、磁特性优异的方向性电磁钢板所具有的绝缘被膜的形成方法。
附图说明
图1是本实施方式的方向性电磁钢板的截面图的一个例子。
具体实施方式
对本发明的一实施方式的方向性电磁钢板(本实施方式的方向性电磁钢板)及包含本实施方式的方向性电磁钢板所具备的绝缘被膜的形成方法的本实施方式的方向性电磁钢板的制造方法进行说明。
首先,对本实施方式的方向性电磁钢板进行说明。
本实施方式的方向性电磁钢板100如图1中所示的那样,具有母材钢板1、和形成于母材钢板1的表面的绝缘被膜2,在母材钢板1的表面不具有镁橄榄石系被膜。
此外,该绝缘被膜2具有形成于绝缘被膜2的表面侧(即方向性电磁钢板100的表面侧)的张力被膜层22和形成于母材钢板1侧且包含结晶性磷酸金属盐的中间层21。
<母材钢板>
(化学组成)
本实施方式的方向性电磁钢板100在形成于母材钢板1的表面的绝缘被膜2的结构上具有大的特征,方向性电磁钢板100所具备的母材钢板1对其化学组成没有限定,为公知的范围为宜。在得到作为方向性电磁钢板一般所要求的特性的情况下,作为化学成分,优选包含以下成分。在本实施方式中,化学成分所涉及的%只要没有事先说明,则为质量%。
C:0.010%以下
C(碳)是对制造工序中的至脱碳退火工序的完成为止的工序中的钢板的组织控制有效的元素。然而,若C含量超过0.010%,则作为制品板的方向性电磁钢板的磁特性降低。因此,在本实施方式的方向性电磁钢板的母材钢板中,C含量优选设定为0.010%以下。C含量更优选为0.005%以下。C含量越低越优选,但即使将C含量降低至低于0.0001%,组织控制的效果也饱和,变成仅制造成本提高。因此,C含量也可以设定为0.0001%以上。
Si:2.50~4.00%
Si(硅)是提高方向性电磁钢板的电阻、改善铁损特性的元素。Si含量低于2.50%时,得不到充分的涡流损耗降低效果。因此,Si含量优选设定为2.50%以上。Si含量更优选为2.70%以上,进一步优选为3.00%以上。
另一方面,若Si含量超过4.00%,则方向性电磁钢板脆化,通板性显著劣化。此外,方向性电磁钢板的加工性降低,在轧制时钢板可能断裂。因此,Si含量优选设定为4.00%以下。Si含量更优选为3.80%以下,进一步优选为3.70%以下。
Mn:0.01~0.50%
Mn(锰)是在制造工序中与S结合而形成MnS的元素。该析出物作为抑制剂(正常结晶粒生长的抑制剂)发挥功能,在钢中,表现出二次再结晶。Mn进而是也提高钢的热加工性的元素。在Mn含量低于0.01%的情况下,无法充分得到上述那样的效果。因此,Mn含量优选设定为0.01%以上。Mn含量更优选为0.02%以上。
另一方面,若Mn含量超过0.50%,则不会表现出二次再结晶,钢的磁特性降低。因此,在本实施方式的方向性电磁钢板的母材钢板中,Mn含量优选设定为0.50%以下。Mn含量更优选为0.20%以下,进一步优选为0.10%以下。
N:0.010%以下
N(氮)是在制造工序中与Al结合而形成作为抑制剂发挥功能的AlN的元素。然而,若N含量超过0.010%,则在方向性电磁钢板中抑制剂过量残存,磁特性降低。因此,在本实施方式的方向性电磁钢板的母材钢板中,N含量优选设定为0.010%以下。N含量更优选为0.008%以下。
另一方面,N含量的下限值没有特别规定,但即使降低至低于0.001%,也变成仅制造成本提高。因此,N含量也可以设定为0.001%以上。
sol.Al:0.020%以下
sol.Al(酸可溶性铝)是在方向性电磁钢板的制造工序中与N结合而形成作为抑制剂发挥功能的AlN的元素。然而,若母材钢板的sol.Al含量超过0.020%,则在母材钢板中抑制剂过量残存,磁特性降低。因此,在本实施方式的方向性电磁钢板的母材钢板中,sol.Al含量优选设定为0.020%以下。sol.Al含量更优选为0.010%以下,进一步优选为低于0.001%。sol.Al含量的下限值没有特别规定,但即使降低至低于0.0001%,也变成仅制造成本提高。因此,sol.Al含量也可以设定为0.0001%以上。
S:0.010%以下
S(硫)是在制造工序中与Mn结合而形成作为抑制剂发挥功能的MnS的元素。然而,在S含量超过0.010%的情况下,因残存的抑制剂而磁特性降低。因此,在本实施方式的方向性电磁钢板的母材钢板中,S含量优选设定为0.010%以下。方向性电磁钢板中的S含量更优选尽可能低。例如低于0.001%。然而,即使将方向性电磁钢板中的S含量降低至低于0.0001%,也变成仅制造成本提高。因此,方向性电磁钢板中的S含量也可以为0.0001%以上。
剩余部分:Fe及杂质
本实施方式的方向性电磁钢板的母材钢板的化学组成也可以含有上述的元素(基本元素),且剩余部分为Fe及杂质。然而,以提高磁特性等作为目的,也可以进一步在以下所示的范围内含有Sn、Cu、Se、Sb中的1种以上。此外,作为这些以外的元素,例如即使含有合计为1.0%以下的W、Nb、Ti、Ni、Co、V、Cr、Mo中的任1种或2种以上(为有意的添加还是作为杂质而含有都没有问题),也不会阻碍本实施方式的方向性电磁钢板的效果。
这里,所谓杂质是指在工业上制造母材钢板时从作为原料的矿石、废料、或制造环境等中混入的元素,是容许以对本实施方式的方向性电磁钢板的作用不造成不良影响的含量含有的元素。
Sn:0~0.50%
Sn(锡)是经由一次再结晶组织控制而有助于磁特性改善的元素。为了得到磁特性改善效果,优选将Sn含量设定为0.01%以上。Sn含量更优选为0.02%以上,进一步优选为0.03%以上。
另一方面,在Sn含量超过0.50%的情况下,二次再结晶变得不稳定,磁特性劣化。因此,Sn含量优选设定为0.50%以下。Sn含量更优选为0.30%以下,进一步优选为0.10%以下。
Cu:0~0.50%
Cu(铜)是有助于二次再结晶组织中的Goss取向占有率的增加的元素。为了得到上述效果,优选将Cu含量设定为0.01%以上。Cu含量更优选为0.02%以上,进一步优选为0.03%以上。
另一方面,在Cu含量超过0.50%的情况下,在热轧中钢板脆化。因此,在本实施方式的方向性电磁钢板的母材钢板中,优选将Cu含量设定为0.50%以下。Cu含量更优选为0.30%以下,进一步优选为0.10%以下。
Se:0~0.020%
Se(硒)是具有磁特性改善效果的元素。在含有Se的情况下,为了良好地发挥磁特性改善效果,优选将Se含量设定为0.001%以上。Se含量更优选为0.003%以上,进一步优选为0.006%以上。
另一方面,若Se含量超过0.020%,则被膜的密合性劣化。因此,优选将Se含量设定为0.020%以下。Se含量更优选为0.015%以下,进一步优选为0.010%以下。
Sb:0~0.50%
Sb(锑)是具有磁特性改善效果的元素。在含有Sb的情况下,为了良好地发挥磁特性改善效果,优选将Sb含量设定为0.005%以上。Sb含量更优选为0.01%以上,进一步优选为0.02%以上。
另一方面,若Sb含量超过0.50%,则被膜的密合性显著劣化。因此,优选将Sb含量设定为0.50%以下。Sb含量更优选为0.30%以下,进一步优选为0.10%以下。
如上所述,本实施方式中例示出方向性电磁钢板的母材钢板的化学组成含有上述的基本元素、且剩余部分包含Fe及杂质、或含有基本元素、进一步含有其他的任选元素的1种以上、且剩余部分包含Fe及杂质。
本实施方式的方向性电磁钢板的母材钢板的化学组成可以使用公知的ICP发光分光分析法来测定。关于Si,可以通过JIS G 1212(1997)中规定的方法(硅定量方法)来求出。具体而言,若使上述的切粉溶解于酸中,则氧化硅作为沉淀物而析出,因此用滤纸滤取该沉淀物(氧化硅),测定质量,求出Si含量。
关于C含量及S含量,通过周知的高频燃烧法(燃烧-红外线吸收法)来求出。具体而言,将上述的溶液在氧气流中通过高频加热而燃烧,检测所产生的二氧化碳、二氧化硫,求出C含量及S含量。
关于N含量,使用周知的不活泼气体熔融-热导率法来求出。
但是,在测定时,在表面形成有绝缘被膜的情况下,将其剥离后进行测定。作为剥离方法,通过在高浓度碱液(例如加热至85℃的30%氢氧化钠溶液)中浸渍20分钟以上,能够使其剥离。是否剥离可以通过目视来判定。在小试样的情况下,也可以通过表面磨削使其剥离。
<绝缘被膜>
本实施方式的方向性电磁钢板100在母材钢板1的表面形成有绝缘被膜2。在本实施方式的方向性电磁钢板100中,不具有镁橄榄石系被膜。此外,也不具有专利文献3、4中所示那样的SiO2层。因此,对于母材钢板1,直接相接触地形成有绝缘被膜2。
此外,该绝缘被膜2从母材钢板1侧起依次包含中间层21和张力被膜层22。
(中间层)
中间层21包含结晶性磷酸金属盐,厚度为0.3~10.0μm的层(被膜)。
如上述那样,一般而言,方向性电磁钢板具有在成品退火工序中生成的镁橄榄石系被膜和形成于其上的绝缘被膜(张力绝缘被膜)。然而,因近年来该镁橄榄石系被膜会妨碍磁畴壁的移动、对铁损造成不良影响变得清楚,从而为了进一步的磁特性提高,对没有镁橄榄石系被膜的方向性电磁钢板进行了研究。然而,在不存在镁橄榄石系被膜的情况下,在张力被膜与母材钢板表面之间,难以确保充分的密合性。
在本实施方式的方向性电磁钢板100中,通过在母材钢板1与张力被膜之间形成包含结晶性磷酸金属盐的中间层21,从而经由中间层21使母材钢板1与张力被膜层22的密合性提高。
这是因为若中间层21包含结晶性磷酸金属盐,则形成于其上的张力被膜(形成后成为张力被膜层22)也包含磷酸金属盐,因此亲和性高,中间层与张力被膜层的密合性优异。此外,在如后述那样在包含磷酸金属盐的处理液中浸渍而形成中间层21的情况下,能够在母材钢板1的表面利用化学反应而形成,也能够确保中间层21与母材钢板1的密合性。
在中间层21不包含结晶性磷酸金属盐的情况下,得不到上述的效果。中间层中的结晶性磷酸金属盐的比例优选为80质量%以上,更优选为90质量%以上,也可以为100质量%。作为磷酸金属盐,从密合性的方面考虑,设定为磷酸锌、磷酸锰、磷酸铁、磷酸锌钙中的1种或2种以上。
从与母材钢板的密合性的方面考虑,磷酸金属盐中,金属(M)与Fe的合计量(mol)相对于P量(mol)优选为2.0倍以上,更优选为3.0倍以上。
磷酸金属盐若为水合物则耐蚀性降低,因此优选不为水合物。水合物一般上述的金属(M)与Fe的合计量(mol)相对于P量(mol)成为1.5倍以下。就本实施方式的方向性电磁钢板而言,也有在中间层的形成的过程中不可避免地生成的水合物最终残存的情况,但为少量(通常低于绝缘被膜2整体的5.0质量%)。
此外,从密合性的观点出发,在中间层的形成时,使处理液中不含胶体二氧化硅。作为中间层的磷酸金属盐的剩余部分,有时包含氧化物、或从母材钢板扩散的Fe、Si等元素,但由于如上所述不是有意含有二氧化硅,因此Si含量例如为1.0质量%以下。
中间层21在与形成于其上的张力被膜不同的时机形成,但中间层21与张力被膜层22都作为绝缘被膜2发挥效果。
磷酸金属盐中的金属(M)量(mol)、Fe量(mol)、P量(mol)分别通过在绝缘被膜的厚度方向的截面中使用EDS(能量色散型X射线分光分析法)进行分析来求出。测定在3处左右进行,将其平均值作为各自的量(mol)。
此外,水合物的量可以通过利用热天平法测定水分量从而粗略地求出。
中间层21的平均厚度为0.3~10.0μm。
中间层21的平均厚度低于0.3μm时,经由中间层的母材钢板与绝缘被膜的密合性的提高效果不充分。另一方面,若中间层的平均厚度超过10.0μm,则磁特性的劣化变得显著。
(张力被膜层)
在本实施方式的方向性电磁钢板100中,通过在中间层21的表面形成张力被膜,从而在绝缘被膜2的表面侧具有张力被膜层22。
张力被膜层22只要是作为方向性电磁钢板的绝缘被膜而使用的层,则没有特别限定,但从与中间层21的密合性(经由中间层21的与母材钢板1的密合性)的观点出发,按照二氧化硅的含量成为20质量%以上的方式包含磷酸金属盐和二氧化硅(来源于涂敷液的胶体二氧化硅)。另一方面,若张力被膜层的二氧化硅含量超过60质量%,则成为粉化的原因,因此设定为60质量%以下。
张力被膜层22优选包含合计为70质量%以上的磷酸金属盐和二氧化硅。作为磷酸金属盐和二氧化硅以外的剩余部分,有时包含氧化铝、氮化硅等陶瓷微粒子。
张力被膜层22的厚度没有限定,但在将中间层21的平均厚度设定为上述范围的情况下,作为绝缘被膜2(中间层21+张力被膜层22)的平均厚度设定为2.0~10.0μm。绝缘被膜2的平均厚度低于2.0μm时,得不到充分的被膜张力。此外,磷酸的溶出变多。该情况下,成为粘性、耐蚀性降低的原因,有时也成为被膜剥离的原因。此外,绝缘被膜2的厚度超过10.0μm时,占积率降低而磁特性劣化,或者因为裂纹等而密合性降低,或者耐蚀性降低。
绝缘被膜2的厚度通过以下的方法来求出。
可以通过对试样的截面用扫描电子显微镜进行观察,测量5点以上的厚度来测定平均厚度。绝缘被膜2中中间层21与张力被膜层22可以通过来源于二氧化硅的硅(Si)的含量来判别(在张力被膜层中如上所述包含二氧化硅)。
此外,通过将中间层21的平均厚度与张力被膜层22的平均厚度合计,能够得到绝缘被膜2的平均厚度。
在中间层21及张力被膜层22中,对于磷酸金属盐的质量比例、磷酸金属盐的种类,可以通过以下的方法来求出。
与测量中间层21和张力被膜层22的厚度的方法同样地,通过使用扫描电子显微镜和能量色散型元素分析装置,可以确定磷酸金属盐的质量比例和磷酸金属盐的种类。
此外,中间层21的磷酸金属盐是否为结晶性磷酸金属盐可以通过X射线晶体结构解析法来判断。
此外,张力被膜层22的二氧化硅含量可以通过使用扫描电子显微镜和能量色散型元素分析装置来测定。
<制造方法>
如果利用满足以下说明的制造条件的制造方法,则能够优选地制造本实施方式的方向性电磁钢板。但是当然,本实施方式的方向性电磁钢板并不特别限定于制造方法。即,具有上述的构成的方向性电磁钢板不论其制造条件,都视为本实施方式的方向性电磁钢板。
本实施方式的方向性电磁钢板可以通过包含以下工序的制造方法来制造:
(I)将具有规定的化学组成的钢坯进行热轧而得到热轧板的热轧工序;
(II)对上述热轧板进行退火的热轧板退火工序;
(III)对上述热轧板退火工序后的上述热轧板进行冷轧而得到钢板(冷轧板)的冷轧工序;
(IV)对上述冷轧工序后的钢板进行脱碳退火的脱碳退火工序;
(V)在上述脱碳退火工序后的上述钢板上涂布包含10~100质量%的Al2O3的退火分离剂并使其干燥后,进行成品退火的成品退火工序;
(VI)对于上述成品退火工序后的上述钢板除去剩余的上述退火分离剂的退火分离剂除去工序;
(VII)将上述退火分离剂除去工序后的上述钢板在液温为40~85℃、且包含5~50质量%的磷酸金属盐的处理液中浸渍5~150秒钟的浸渍工序;
(VIII)将上述浸渍工序后的上述钢板从上述处理液中拉起并除去剩余的上述处理液之后,使其干燥的干燥工序;
(IX)在上述干燥工序后的上述钢板上涂布按照相对于磷酸金属盐100质量份而胶体二氧化硅成为30~150质量份的方式包含磷酸金属盐和胶体二氧化硅的涂敷液并使其干燥后,以板温为700~950℃的状态保持10~120秒钟的张力被膜层形成工序。
此外,本实施方式的方向性电磁钢板的制造方法也可以进一步包含以下工序中的一者或两者:
(X)在上述脱碳退火工序与上述成品退火工序之间,对上述钢板进行氮化处理的氮化处理工序;
(XI)在张力被膜层形成工序之后,进行上述钢板的磁畴控制的磁畴细分化工序。
此外,本实施方式的方向性电磁钢板的制造方法也可以进一步在上述退火分离剂除去工序与上述浸渍工序之间包含:
(XII)控制上述钢板的表面的反应性的表面调整工序。
其中,在本实施方式的方向性电磁钢板的制造中,特征性的是与绝缘被膜的形成主要相关联的(V)成品退火工序~(IX)张力被膜层形成工序的工序,其他的工序或没有记载的条件可以采用公知的条件。
以下,对这些工序进行说明。
<热轧工序>
在热轧工序中,将具有规定的化学组成的板坯等钢坯加热后进行热轧,得到热轧板。钢坯的加热温度优选设定为1100~1450℃的范围内。加热温度更优选为1300~1400℃。
钢坯的化学组成只要根据最终想得到的方向性电磁钢板的化学组成而变更即可,例如可例示出以质量%计含有C:0.01~0.20%、Si:2.50~4.00%、sol.Al:0.01~0.040%、Mn:0.01~0.50%、N:0.020%以下、S:0.005~0.040%、Cu:0~0.50%、Sn:0~0.50%、Se:0~0.020%及Sb:0~0.50%、剩余部分包含Fe及杂质的化学组成。
对于热轧条件,没有特别限定,只要基于所要求的特性而适当设定即可。热轧板的板厚例如优选为2.0mm以上且3.0mm以下的范围内。
<热轧板退火工序>
热轧板退火工序是将经由热轧工序而制造的热轧板进行退火的工序。通过实施这样的退火处理,能够在钢板组织中产生再结晶,实现良好的磁特性,因此优选。
在进行热轧板退火的情况下,只要按照公知的方法将经由热轧工序而制造的热轧板进行退火即可。关于在退火时将热轧板加热的手段,没有特别限定,可以采用公知的加热方式。此外,对于退火条件,也没有特别限定。例如,可以对热轧板在900~1200℃的温度域中进行10秒~5分钟的退火。
<冷轧工序>
在冷轧工序中,对热轧板退火工序后的热轧板实施冷轧,得到钢板(冷轧板)。冷轧可以为一次(中间不包含退火的一连串的)冷轧,也可以在冷轧工序的最终道次之前,将冷轧中断而实施至少1次或2次以上的中间退火,实施插有中间退火的多次的冷轧。
在进行中间退火的情况下,优选在1000~1200℃的温度下保持5~180秒钟。退火气氛没有特别限定。中间退火的次数若考虑制造成本则优选3次以内。
此外,在冷轧工序之前,也可以对热轧板的表面实施酸洗。
在本实施方式的冷轧工序中,只要按照公知的方法,将热轧板退火工序后的热轧板进行冷轧,制成钢板即可。例如,最终压下率可以设定为80~95%的范围内。如果最终压下率为80%以上,则能够得到{110}<001>取向在轧制方向上具有高聚集度的Goss核,因此优选。另一方面,在最终压下率超过95%的情况下,在之后进行的成品退火工序中,二次再结晶变得不稳定的可能性变高,因此不优选。
最终压下率是冷轧的累积压下率,在进行中间退火的情况下,是最终中间退火后的冷轧的累积压下率。
<脱碳退火工序>
在脱碳退火工序中,对所得到的钢板进行脱碳退火。就脱碳退火而言,只要是能够使钢板一次再结晶,并且将对磁特性造成不良影响的C从钢板中除去,则脱碳退火条件没有限定,但例如可例示出将退火气氛(炉内气氛)中的氧化度(PH2O/PH2)设定为0.3~0.6、在退火温度800~900℃下进行10~600秒钟保持。
<氮化处理工序>
在脱碳退火工序与后述的成品退火工序之间,也可以进行氮化处理。
在氮化处理工序中,例如通过将脱碳退火工序后的钢板在氮化处理气氛(含有氢、氮、及氨等具有氮化能力的气体的气氛)内维持在700~850℃左右来进行氮化处理。在利用AlN作为抑制剂的情况下,优选通过氮化处理将氮化处理工序后的钢板的N含量设定为40ppm以上。另一方面,在氮化处理工序后的钢板的N含量变得超过1000ppm的情况下,在成品退火中即使在二次再结晶完成后也在钢板内过量存在AlN。这样的AlN会成为铁损劣化的原因。因此,氮化处理工序后的钢板的N含量优选设定为1000ppm以下。
<成品退火工序>
在成品退火工序中,对于脱碳退火工序后的、或进一步进行氮化处理的(氮化处理工序后的)钢板涂布包含10~100质量%的Al2O3的退火分离剂并使其干燥后,进行成品退火。
在以往的方向性电磁钢板的制造方法中,通过涂布以MgO作为主体的退火分离剂而进行成品退火,从而在钢板(冷轧板)的表面形成镁橄榄石系被膜。与此相对,在本实施方式的方向性电磁钢板的制造方法中,按照不形成镁橄榄石系被膜的方式,使用包含Al2O3的退火分离剂。
另一方面,Al2O3的比例也可以为100质量%,但从防止在钢板表面烘烤Al2O3的观点考虑,在本实施方式的方向性电磁钢板的制造方法中,优选在退火分离剂中包含MgO。MgO也可以为0%,但在得到上述效果的情况下,MgO的比例优选设定为5质量%以上。在包含MgO的情况下,为了确保10质量%以上的Al2O3,MgO的比例设定为90质量%以下。MgO的比例优选为50质量%以下。
此外,在本实施方式的方向性电磁钢板的制造方法中,也可以使退火分离剂中进一步含有氯化物。通过退火分离剂包含氯化物,可得到变得更不易形成镁橄榄石系被膜的效果。氯化物的含量没有特别限定,也可以为0%,但在得到上述效果的情况下,优选为0.5~10质量%。作为氯化物,例如氯化铋、氯化钙、氯化钴、氯化铁、氯化镍等是有效的。
成品退火条件没有限定,但例如可以采用在1150~1250℃的温度下保持10~60小时的条件。
<退火分离剂除去工序>
对于成品退火工序后的钢板,除去剩余的退火分离剂。例如通过进行水洗,可以除去剩余的退火分离剂。
<表面调整工序>
也可以在退火分离剂除去工序与浸渍工序之间进行控制钢板的表面的反应性的表面调整工序。
表面调整工序的条件没有限定,但可例示出将退火分离剂除去工序后的钢板在市售的表面调整剂中浸渍30秒~1分钟的条件。
<浸渍工序>
<干燥工序>
将退火分离剂除去工序后(或根据需要进一步进行了表面调整工序之后)的钢板在液温为40~85℃且包含5~50质量%规定的磷酸金属盐的处理液中浸渍5~150秒钟(浸渍工序)。之后,从处理液中拉起,将剩余的上述处理液除去后,使其干燥(干燥工序)。由此,在钢板(母材钢板)的表面形成包含结晶性磷酸金属盐的中间层。
液温低于40℃或浸渍时间低于5秒时,得不到充分的厚度的中间层。另一方面,若液温超过85℃、或浸渍时间超过150秒,则中间层的厚度变得过量。
此外,若处理液的磷酸金属盐低于5质量%,则中间层的形成慢,在工业上成本变高。在使中间层的膜厚变得均匀的情况下,磷酸金属盐优选为10质量%以上。
另一方面,若磷酸金属盐超过50质量%,则有时结晶粒粗大化而成为密合性降低的原因。作为处理液中包含的磷酸金属盐,只要设定为磷酸锌、磷酸锰、磷酸锌钙中的1种或2种以上即可。
此外,若干燥时的温度高,则有可能产生空隙而密合性变得低劣,因此干燥时的温度优选设定为300℃以下。更优选为200℃以下。干燥时的温度优选为100℃以上。
<张力被膜层形成工序>
在张力被膜层形成工序中,通过在干燥工序后的钢板(在母材钢板上形成有中间层的钢板)上涂布包含磷酸金属盐和胶体二氧化硅的涂敷液并使其干燥后,在板温为700~950℃的状态下保持10~120秒钟,形成张力被膜。包含该张力被膜的层(张力被膜层22)和中间层21成为绝缘被膜2。
若保持时的板温低于700℃,则成为低张力而磁特性变得低劣。因此,板温优选设定为700℃以上。另一方面,若板温超过950℃,则钢板的刚性变得容易降低而发生变形。该情况下,有时通过移送等而在钢板中形成应变,磁特性变得低劣。因此,板温优选设定为950℃以下。
此外,若保持时间低于10秒,则溶出性变得低劣。因此,保持时间设定为10秒以上。另一方面,若保持时间超过120秒,则生产率变得低劣。因此,保持时间优选为120秒以下。
涂敷液按照相对于磷酸金属盐100质量份而胶体二氧化硅成为30~150质量份的方式包含磷酸金属盐和胶体二氧化硅。作为磷酸金属盐,例如可以使用选自磷酸铝、磷酸锌、磷酸镁、磷酸镍、磷酸铜、磷酸锂、磷酸钴等中的1种或2种以上的混合物。
在涂敷液中,作为追加元素,也可以包含钒、钨、钼、锆等。在含有这些元素的情况下,例如可以作为含氧酸添加到涂敷液中。
胶体二氧化硅可以使用S类型、C类型的胶体二氧化硅。胶体二氧化硅的S类型是指二氧化硅溶液为碱性的胶体二氧化硅,C类型是指对二氧化硅粒子表面进行铝处理,二氧化硅溶液为碱性~中性的胶体二氧化硅。S类型的胶体二氧化硅一般被广泛使用,价格也比较廉价,但在与酸性的磷酸金属盐溶液混合时有可能凝聚而沉淀,需要注意。C类型的胶体二氧化硅即使与磷酸金属盐溶液混合也稳定,没有可能沉淀,但处理工时多而比较高价。优选根据所制备的涂敷液的稳定性来分开使用。
<磁畴细分化工序>
在本实施方式的方向性电磁钢板的制造方法中,也可以进一步包含对张力被膜层形成工序之后的上述钢板进行磁畴细分化的磁畴细分化工序。
通过进行磁畴细分化处理,能够更加降低方向性电磁钢板的铁损。
作为磁畴细分化处理的方法,有通过沿着轧制方向以规定间隔形成沿与轧制方向交叉的方向延伸的线状或点状的槽部而缩窄180°磁畴的宽度的(进行180°磁畴的细分化的)方法;通过沿着轧制方向以规定间隔形成沿与轧制方向交叉的方向延伸的线状或点状的应力应变部或槽部而缩窄180°磁畴的宽度的(进行180°磁畴的细分化的)方法。
在形成应力应变部的情况下,可以适用激光束照射、电子射线照射等。此外,在形成槽部的情况下,可以适用利用齿轮等的机械的槽形成法、通过电解蚀刻而形成槽的化学的槽形成法、及利用激光照射的热的槽形成法等。
在通过应力应变部或槽部的形成而在绝缘被膜中产生损伤而绝缘性等特性劣化那样的情况下,也可以再次形成绝缘被膜而修补损伤。
实施例
铸造以质量%计包含C:0.08%、Si:3.29%、sol.Al:0.028%、N:0.008%、Mn:0.15%、S:0.007%、剩余部分为Fe及杂质的板坯。
将该板坯加热至1350℃后,进行热轧,制成板厚为2.2mm的热轧板。
对该热轧板在1100℃下进行10秒的退火(热轧板退火)后,冷轧至板厚成为0.22mm为止,得到钢板(冷轧板)。
对该钢板,在(PH2O/PH2)为0.4的气氛中在830℃下进行90秒的脱碳退火。
之后,除了No.127以外,在钢板上涂布包含48质量%Al2O3、48质量%MgO、4质量%铋氯化物的退火分离剂并使其干燥后,在1200℃下进行20小时的成品退火。对于No.127,在钢板上涂布仅包含Al2O3(100质量%)的退火分离剂并使其干燥后,在1200℃下进行20小时的成品退火。
对于成品退火工序后的钢板,通过水洗而除去剩余的退火分离剂,结果在钢板表面没有形成镁橄榄石系被膜。
将该钢板浸渍于表1中所示的处理液中后加热至100~150℃并使其干燥,形成中间层(中间层No.1~10中的任一者)。中间层的平均厚度如表1中所示的那样。
X射线晶体结构解析法的结果是,中间层No.1~No.9的中间层的磷酸金属盐都为结晶性磷酸金属盐。这些结晶性磷酸金属盐中,金属(M)与Fe的合计量(mol)与P量(mol)之比大致为2:1或3:1。No.10的磷酸金属盐(磷酸镁)不是结晶性磷酸金属盐。
将形成有各种中间层的钢板(No.101~127)根据需要切断成多个,对于各个钢板,涂布包含表2中所示的磷酸金属盐及胶体二氧化硅的涂敷液,按照成为表2中的板温的方式在干燥炉内烘烤表2的时间,在表面形成张力被膜。在涂敷液中含有钒、钨、钼、锆的情况下,以表2所示的摩尔比,以含氧酸(V2O4、WO3、MoO3、ZrO2)的形式添加。在形成时,通过改变涂敷液的涂布量来改变张力被膜层的厚度。在一部分涂敷液中,作为剩余部分,包含氧化铝或氮化硅。
由此,制造了钢板(方向性电磁钢板)。
对于所得到的钢板(No.101~127),通过上述的方法,求出张力被膜层的二氧化硅、磷酸金属盐的含量、绝缘被膜的平均厚度。
将结果示于表2中。
此外,对母材钢板的化学组成进行了调査,结果包含Si:3.28%、C:0.001%、sol.Al:低于0.001%、N:0.001%、Mn:0.07%、S:低于0.0005%,剩余部分为Fe及杂质。
此外,对于这些钢板,通过后述的方法,求出绝缘被膜的密合性、被膜张力、耐蚀性、溶出性、磁特性。将各自的结果示于表3中。
[密合性]
被膜的密合性通过进行下述弯曲密合试验后的被膜的剥离程度(面积率)来评价:从钢板采集宽度30mm、长度300mm的样品,将该样品在氮气流中、800℃下实施2小时的消除应力退火,之后卷绕到10mmφ的圆柱上,开卷。
将评价基准设定为以下那样,在A或B的情况下,判断为被膜密合性优异。
A:剥离面积率0~0.5%
B:剥离面积率超过0.5%且为5.0%以下
C:剥离面积率超过5.0%且为20%以下
D:剥离面积率超过20%且为50%以下
E:剥离面积率超过50%
[被膜张力]
被膜张力是从钢板采集样品,由将样品的单面的绝缘被膜剥离时的弯曲状况进行倒数而算出。
在所得到的被膜张力为4.0MPa以上的情况下,判断为被膜张力优异。
[耐蚀性]
依据JIS Z2371:2015的盐水喷雾试验,在35℃的气氛中对样品自然降下7小时5%NaCl水溶液。
之后,对生锈面积通过10分评价来进行。
评价基准设定为如下那样,将评分为5以上(5~10)判断为耐蚀性优异。
10:没有产生锈
9:锈产生为极少量(面积率为0.1%以下)
8:产生锈的面积率=超过0.1%且为0.25%以下
7:产生锈的面积率=超过0.25%且为0.50%以下
6:产生锈的面积率=超过0.50%且为1%以下
5:产生锈的面积率=超过1%且为2.5%以下
4:产生锈的面积率=超过2.5%且为5%以下
3:产生锈的面积率=超过5%且为10%以下
2:产生锈的面积率=超过10%且为25%以下
1:产生锈的面积率=超过25%且为50%以下
[溶出性]
从所得到的钢板采集样品,将样品在沸腾的纯水中煮沸10分钟,测定溶出到纯水中的磷酸的量。通过将该溶出的磷酸的量除以煮沸的方向性电磁钢板的绝缘被膜的面积来评价溶出性(mg/m2)。
溶出到纯水中的磷酸的量的测定通过将溶出有磷酸的纯水(溶液)冷却,利用ICP-AES来测定将冷却后的溶液用纯水稀释后的样品的磷酸浓度,由此来算出。
如果每单位面积的溶出量低于140mg/m2,则判断为溶出性优异。
[磁特性]
作为磁特性,评价铁损。具体而言,对于所得到的钢板,以UA(照射能量密度)为2.0mJ/mm2的条件照射激光束而进行磁畴细分化处理,测定磁畴细分化处理后的铁损(1.7T时的50Hz下的铁损W17/50)。
如果铁损为0.70W/kg以下,则判断为磁特性优异。
[表3]
如表1~表3中所示的那样,就作为本发明例的No.101~115、127而言,被膜密合性优异,被膜张力优异,并且磁特性优异。此外,耐蚀性、溶出性也充分。与此相对,就No.116~126而言,被膜密合性、被膜张力、磁特性中的至少1个低劣。此外,耐蚀性、溶出性也存在低劣的情况。
符号的说明
1 母材钢板
2 绝缘被膜
21 中间层
22 张力被膜层
100 方向性电磁钢板

Claims (3)

1.一种方向性电磁钢板,其特征在于,其具有:
母材钢板、和
形成于所述母材钢板的表面的绝缘被膜,
所述绝缘被膜具有:
形成于所述母材钢板侧且包含结晶性磷酸金属盐的中间层、和
形成于所述绝缘被膜的表面侧的张力被膜层,
所述中间层的平均厚度为0.3~10.0μm,
所述绝缘被膜的平均厚度为2.0~10.0μm,
所述中间层的所述结晶性磷酸金属盐为磷酸锌、磷酸锰、磷酸铁、磷酸锌钙中的1种或2种以上,
所述张力被膜层包含磷酸金属盐和二氧化硅,所述张力被膜层中的所述二氧化硅的含量为20~60质量%。
2.一种绝缘被膜的形成方法,其特征在于,其是形成权利要求1所述的方向性电磁钢板所具备的所述绝缘被膜的方法,具备以下工序:
在钢板上涂布包含10~100质量%的Al2O3的退火分离剂并使其干燥后,进行成品退火的成品退火工序;
对于所述成品退火工序后的所述钢板除去剩余的所述退火分离剂的退火分离剂除去工序;
将所述退火分离剂除去工序后的所述钢板在液温为40~85℃、且包含5~50质量%的磷酸金属盐的处理液中浸渍5~150秒钟的浸渍工序;
将所述浸渍工序后的所述钢板从所述处理液中拉起并除去剩余的所述处理液之后,使其干燥的干燥工序;
在所述干燥工序后的所述钢板上涂布按照相对于磷酸金属盐100质量份而胶体二氧化硅成为30~150质量份的方式包含磷酸金属盐和胶体二氧化硅的涂敷液并使其干燥后,以板温为700~950℃的状态保持10~120秒钟的张力被膜层形成工序。
3.根据权利要求2所述的绝缘被膜的形成方法,其特征在于,所述退火分离剂进一步包含MgO:5~90质量%、氯化物:0.5~10.0质量%中的1种或2种。
CN202280026265.1A 2021-04-06 2022-04-06 方向性电磁钢板及绝缘被膜的形成方法 Pending CN117157427A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-064964 2021-04-06
JP2021064964 2021-04-06
PCT/JP2022/017195 WO2022215709A1 (ja) 2021-04-06 2022-04-06 方向性電磁鋼板及び絶縁被膜の形成方法

Publications (1)

Publication Number Publication Date
CN117157427A true CN117157427A (zh) 2023-12-01

Family

ID=83546226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280026265.1A Pending CN117157427A (zh) 2021-04-06 2022-04-06 方向性电磁钢板及绝缘被膜的形成方法

Country Status (6)

Country Link
EP (1) EP4321634A1 (zh)
JP (1) JPWO2022215709A1 (zh)
KR (1) KR20230151013A (zh)
CN (1) CN117157427A (zh)
BR (1) BR112023020231A2 (zh)
WO (1) WO2022215709A1 (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS5224499B2 (zh) 1973-01-22 1977-07-01
JPH05279747A (ja) 1992-04-02 1993-10-26 Nippon Steel Corp 方向性電磁鋼板の絶縁皮膜形成方法
JP2698003B2 (ja) 1992-08-25 1998-01-19 新日本製鐵株式会社 一方向性珪素鋼板の絶縁皮膜形成方法
JP3172025B2 (ja) * 1994-01-13 2001-06-04 新日本製鐵株式会社 密着性良好な一方向性珪素鋼板の絶縁皮膜形成方法
JP2962715B2 (ja) 1997-10-14 1999-10-12 新日本製鐵株式会社 電磁鋼板の絶縁皮膜形成方法
JPH11181576A (ja) * 1997-12-19 1999-07-06 Kawasaki Steel Corp 被膜密着性がよく鉄損値が極めて低い方向性電磁鋼板 およびその製造方法
JP3921199B2 (ja) * 2003-11-04 2007-05-30 新日本製鐵株式会社 張力付与性絶縁皮膜の皮膜密着性に優れる一方向性珪素鋼板の製造方法
WO2014043760A1 (en) 2012-09-21 2014-03-27 University Of South Australia Communication system and method
JP7265122B2 (ja) 2019-01-16 2023-04-26 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
BR112023020231A2 (pt) 2023-11-14
JPWO2022215709A1 (zh) 2022-10-13
WO2022215709A1 (ja) 2022-10-13
KR20230151013A (ko) 2023-10-31
EP4321634A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
RU2771318C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
CN113396242A (zh) 方向性电磁钢板、方向性电磁钢板的绝缘被膜形成方法及方向性电磁钢板的制造方法
RU2767356C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
CN113272459B (zh) 方向性电磁钢板的制造方法
RU2771130C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
RU2768094C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
CN117157427A (zh) 方向性电磁钢板及绝缘被膜的形成方法
WO2022215714A1 (ja) 方向性電磁鋼板及び絶縁被膜の形成方法
WO2023195517A1 (ja) 方向性電磁鋼板及び絶縁被膜の形成方法
WO2022215710A1 (ja) 方向性電磁鋼板及び絶縁被膜の形成方法
WO2023195518A1 (ja) 方向性電磁鋼板及び絶縁被膜の形成方法
CN113286905B (zh) 方向性电磁钢板的制造方法
WO2023204266A1 (ja) 方向性電磁鋼板およびその製造方法
WO2023204267A1 (ja) 方向性電磁鋼板およびその製造方法
KR102583079B1 (ko) 방향성 전자 강판의 제조 방법
RU2768932C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
RU2771315C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination