CN113302318B - 方向性电磁钢板的制造方法 - Google Patents

方向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN113302318B
CN113302318B CN202080008979.0A CN202080008979A CN113302318B CN 113302318 B CN113302318 B CN 113302318B CN 202080008979 A CN202080008979 A CN 202080008979A CN 113302318 B CN113302318 B CN 113302318B
Authority
CN
China
Prior art keywords
steel sheet
annealing
insulating film
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080008979.0A
Other languages
English (en)
Other versions
CN113302318A (zh
Inventor
高谷真介
牛神义行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of CN113302318A publication Critical patent/CN113302318A/zh
Application granted granted Critical
Publication of CN113302318B publication Critical patent/CN113302318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/141Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/141Amines; Quaternary ammonium compounds
    • C23F11/142Hydroxy amines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/16Sulfur-containing compounds
    • C23F11/161Mercaptans
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

该方向性电磁钢板的制造方法在脱碳退火工序中控制氧化度PH2O/PH2,在成品退火工序中将混合气体气氛中的氢的体积率控制为50%以上,在退火分离剂除去工序中使用添加有抑制剂的溶液进行水洗,在平滑化工序中控制混合气体和温度来进行退火,在绝缘被膜形成工序中控制烧结温度及热处理温度。

Description

方向性电磁钢板的制造方法
技术领域
本发明涉及方向性电磁钢板的制造方法。
本申请基于2019年1月16日在日本申请的特愿2019-005133号而主张优先权,并将其内容援引于此。
背景技术
方向性电磁钢板主要被用于变压器中。变压器在从被安装至被废弃为止的长时间中连续地被励磁,持续产生能量损耗,因此以交流被磁化时的能量损耗、即铁损成为决定变压器的性能的主要指标。
为了降低方向性电磁钢板的铁损,迄今为止提出了大量方法。例如,关于钢板组织,为提高被称为高斯取向的{110}<001>取向上的集中度的方法,关于钢板,为增加提高电阻的Si等固溶元素的含量的方法、减薄钢板的板厚的方法等。
另外,已知对钢板赋予张力是对铁损的降低有效的方法。因此,通常,以降低铁损为目的,在方向性电磁钢板的表面形成有被膜。该被膜通过对方向性电磁钢板赋予张力,从而降低作为钢板单板的铁损。此外,关于该被膜,在将方向性电磁钢板层叠来使用时,通过确保钢板间的电绝缘性,从而降低作为铁心的铁损。
作为形成有被膜的方向性电磁钢板,有下述钢板,所述钢板在母钢板的表面形成含有Mg的氧化被膜即镁橄榄石被膜、进一步在该镁橄榄石被膜的表面上形成绝缘被膜。即,这种情况下,母钢板上的被膜包含镁橄榄石被膜和绝缘被膜。镁橄榄石被膜及绝缘被膜各自承担绝缘性功能及对母钢板的张力赋予功能这两个功能。
含有Mg的氧化被膜即镁橄榄石被膜通过下述方式形成:在使钢板中产生二次再结晶的成品退火中,以氧化镁(MgO)作为主要成分的退火分离剂与在脱碳退火时形成于母钢板上的氧化硅(SiO2)在以900~1200℃实施30小时以上的热处理中发生反应。
绝缘被膜通过下述方式形成:在成品退火后的母钢板上例如涂布包含磷酸或磷酸盐、胶体二氧化硅、及铬酸酐或铬酸盐的涂敷溶液,以300~950℃进行10秒以上烧结干燥。
关于被膜,为了发挥绝缘性及对母钢板的张力赋予的功能,在这些被膜与母钢板之间要求高的密合性。
以往以来,上述密合性主要是通过由母钢板与镁橄榄石被膜的界面的凹凸带来的锚固效应来确保。然而,近年来,弄清楚了:该界面的凹凸也会造成方向性电磁钢板被磁化时的磁畴壁移动的障碍,因此也成为妨碍低铁损化的要因。
于是,为了进一步低铁损化,不使含有Mg的氧化被膜即镁橄榄石被膜存在且以将上述的界面平滑化的状态来确保绝缘被膜的密合性的技术例如在日本特开昭49-096920号公报(专利文献1)及国际公开第2002/088403号(专利文献2)中被提出。
在专利文献1中公开的方向性电磁钢板的制造方法中,将镁橄榄石被膜通过酸洗等进行除去,将母钢板表面通过化学研磨或电解研磨进行平滑化。在专利文献2中公开的方向性电磁钢板的制造方法中,在成品退火时使用包含氧化铝(Al2O3)的退火分离剂,抑制镁橄榄石被膜的形成本身,将母钢板表面平滑化。
然而,就专利文献1及专利文献2的制造方法而言,在与母钢板表面相接触地(在母钢板表面上直接)形成绝缘被膜的情况下,存在绝缘被膜对于母钢板表面不易密合(得不到充分的密合性)的问题。
现有技术文献
专利文献
专利文献1:日本特开昭49-096920号公报
专利文献2:国际公开第2002/088403号
发明内容
发明所要解决的课题
本发明鉴于上述的课题而进行。本发明的目的是提供不具有镁橄榄石被膜、并且磁特性(特别是铁损)及被膜密合性优异的方向性电磁钢板的制造方法。
用于解决课题的手段
本发明的发明者们为了低铁损化,以不生成镁橄榄石被膜、在将钢板表面进行了平滑化的方向性电磁钢板用钢板的表面形成绝缘被膜为前提,对提高钢板与绝缘被膜的密合性(被膜密合性)的方法进行了研究。
其结果发现:通过将规定的工序适宜地组合,从而能够制造不具有镁橄榄石被膜、并且磁特性及被膜密合性优异的方向性电磁钢板。
本发明的主旨如下所述。
(1)本发明的一个方案的方向性电磁钢板的制造方法具备下述工序:
将钢坯进行热轧而得到热轧钢板的热轧工序,所述钢坯作为化学组成以质量%计含有:
C:0.030~0.100%、
Si:0.80~7.00%、
Mn:0.01~1.00%、
S及Se的合计:0~0.060%、
酸可溶性Al:0.010~0.065%、
N:0.004~0.012%、
Cr:0~0.30%、
Cu:0~0.40%、
P:0~0.50%、
Sn:0~0.30%、
Sb:0~0.30%、
Ni:0~1.00%、
B:0~0.008%、
V:0~0.15%、
Nb:0~0.20%、
Mo:0~0.10%、
Ti:0~0.015%、
Bi:0~0.010%、
剩余部分包含Fe及杂质;
对上述热轧钢板实施冷轧而得到冷轧钢板的冷轧工序;
对上述冷轧钢板进行脱碳退火而得到脱碳退火钢板的脱碳退火工序;
在上述脱碳退火钢板上涂布含有MgO的退火分离剂并使其干燥的退火分离剂涂布工序;
对涂布有上述退火分离剂的上述脱碳退火钢板进行成品退火,得到成品退火钢板的成品退火工序;
从上述成品退火钢板的表面除去剩余的退火分离剂的退火分离剂除去工序;
将除去了上述剩余的退火分离剂的上述成品退火钢板的表面进行平滑化的平滑化工序;
在平滑化后的上述成品退火钢板的表面形成绝缘被膜的绝缘被膜形成工序,
其中,在上述脱碳退火工序中,在氧化度即PH2O/PH2为0.18~0.80的气氛下、以退火温度为750~900℃进行10~600秒保持,
在上述成品退火工序中,将涂布有上述退火分离剂的上述脱碳退火钢板在以体积率计含有50%以上的氢的混合气体气氛中、在1100~1200℃的温度下保持10小时以上,
在上述退火分离剂除去工序中,从上述成品退火钢板的表面将上述剩余的退火分离剂使用添加有三乙醇胺、松香胺或硫醇中的至少1者的抑制剂的溶液进行水洗并除去,使钢板表面的铁系氢氧化物量及铁系氧化物量成为每单面0.9g/m2以下,
在上述平滑化工序中,将除去了上述剩余的退火分离剂的上述成品退火钢板在以体积率计包含50%以上的氢或一氧化碳的混合气体气氛中以1000℃以上的温度进行退火,
在上述绝缘被膜形成工序中,在平滑化后的上述成品退火钢板的表面涂布以磷酸盐或胶体二氧化硅作为主要成分的绝缘被膜的涂敷液,在350~600℃下烧结,在800~1000℃的温度下进行热处理来形成绝缘被膜。
(2)根据上述(1)所述的方向性电磁钢板的制造方法,其也可以在上述热轧工序与上述冷轧工序之间具备将上述热轧钢板进行退火的热轧板退火工序、或进行酸洗的热轧板酸洗工序中的至少1者。
(3)根据上述(1)或(2)所述的方向性电磁钢板的制造方法,其也可以在上述脱碳退火工序中进行将上述冷轧钢板在含有氨的气氛中进行退火的氮化处理。
(4)根据上述(1)~(3)中任一项所述的方向性电磁钢板的制造方法,其也可以在下述任一时间点具备进行磁畴控制处理的磁畴控制工序:上述冷轧工序与上述脱碳退火工序之间、上述脱碳退火工序与上述退火分离剂涂布工序之间、上述平滑化工序与上述绝缘被膜形成工序之间、或上述绝缘被膜形成工序后。
(5)根据上述(1)~(4)中任一项所述的方向性电磁钢板的制造方法,其也可以在上述退火分离剂除去工序中,在上述水洗后使用体积比浓度低于20%的酸性溶液进行酸洗。
(6)根据上述(1)~(5)中任一项所述的方向性电磁钢板的制造方法,其中,上述钢坯作为化学组成也可以以质量%计含有选自下述元素中的至少1种:
Cr:0.02~0.30%、
Cu:0.05~0.40%、
P:0.005~0.50%、
Sn:0.02~0.30%、
Sb:0.01~0.30%、
Ni:0.01~1.00%、
B:0.0005~0.008%、
V:0.002~0.15%、
Nb:0.005~0.20%、
Mo:0.005~0.10%、
Ti:0.002~0.015%、及
Bi:0.001~0.010%。
发明效果
根据本发明的上述方案,能够提供不具有镁橄榄石被膜、并且磁特性及被膜密合性优异的方向性电磁钢板的制造方法。
附图说明
图1是表示本发明的一个实施方式的方向性电磁钢板的制造方法的流程图。
具体实施方式
以下,对本发明的优选的实施方式进行详细说明。但是,本发明并不仅限于本实施方式中公开的构成,在不脱离本发明的主旨的范围内可以进行各种变更。另外,关于本实施方式中所示的数值限定范围,下限值及上限值包含于该范围内。关于表示为“超过”或“低于”的数值,该值不包含于数值范围内。关于各元素的含量的“%”,只要没有特别指定则是指“质量%”。
本发明的一个实施方式的方向性电磁钢板的制造方法(以下有时称为“本实施方式的方向性电磁钢板的制造方法”)是不具有镁橄榄石被膜的方向性电磁钢板的制造方法,具备以下的工序:
(i)将具有规定的化学组成的钢坯进行热轧而得到热轧钢板的热轧工序;
(ii)对上述热轧钢板实施一次冷轧或夹有中间退火的两次以上的冷轧而得到冷轧钢板的冷轧工序;
(iii)对上述冷轧钢板进行脱碳退火而得到脱碳退火钢板的脱碳退火工序;
(iv)在上述脱碳退火钢板上涂布含有MgO的退火分离剂并使其干燥的退火分离剂涂布工序;
(v)对涂布有退火分离剂的上述脱碳退火钢板进行成品退火,得到成品退火钢板的成品退火工序;
(vi)从上述成品退火钢板的表面除去剩余的退火分离剂的退火分离剂除去工序;
(vii)将除去了上述剩余的退火分离剂的上述成品退火钢板的表面进行平滑化的平滑化工序;和
(viii)在平滑化后的上述成品退火钢板的表面形成绝缘被膜的绝缘被膜形成工序。
此外,本实施方式的方向性电磁钢板的制造方法也可以进一步具备以下的工序。
(I)将热轧钢板进行退火的热轧板退火工序
(II)将热轧钢板进行酸洗的热轧板酸洗工序
(III)进行磁畴控制处理的磁畴控制工序
本实施方式的方向性电磁钢板的制造方法并非只要控制上述的工序之中的单纯一个工序即可,而需要对上述的各工序复合地并且不可分地进行控制。通过以规定的条件控制所有各工序,能够降低铁损,并且提高被膜密合性。
以下,对各工序进行详细说明。
<热轧工序>
在热轧工序中,将钢坯进行热轧而得到热轧钢板,所述钢坯作为化学组成以质量%计含有C:0.030~0.100%、Si:0.80~7.00%、Mn:0.01~1.00%、S+Se的合计:0~0.060%、酸可溶性Al:0.010~0.065%、N:0.004~0.012%、Cr:0~0.30%、Cu:0~0.40%、P:0~0.50%、Sn:0~0.30%、Sb:0~0.30%、Ni:0~1.00%、B:0~0.008%、V:0~0.15%、Nb:0~0.20%、Mo:0~0.10%、Ti:0~0.015%、Bi:0~0.010%、剩余部分包含Fe及杂质。本实施方式中,将热轧工序后的钢板称为热轧钢板。
对于供于热轧工序的钢坯(板坯)的制造方法没有限定。例如只要将具有规定的化学组成的钢液进行熔炼,使用该钢液来制造板坯即可。可以通过连续铸造法来制造板坯,也可以使用钢液来制造钢锭,将钢锭进行开坯来制造板坯。另外,也可以通过其他的方法来制造板坯。
板坯的厚度没有特别限定,例如为150~350mm。板坯的厚度优选为220~280mm。作为板坯,也可以使用厚度为10~70mm的所谓的薄板坯。
首先,对钢坯的化学组成的限定理由进行说明。以下,关于化学组成的“%”是指“质量%”。
[C:0.030~0.100%]
C(碳)是对一次再结晶组织的控制而言有效的元素,但由于对磁特性造成不良影响,因此是在成品退火前通过脱碳退火来除去的元素。如果钢坯的C含量超过0.100%,则脱碳退火时间变长,生产率降低。因此,C含量设定为0.100%以下。优选为0.085%以下,更优选为0.070%以下。
C含量优选为低,但在考虑工业生产中的生产率、制品的磁特性的情况下,C含量的实质性的下限为0.030%。
[Si:0.80~7.00%]
硅(Si)会提高方向性电磁钢板的电阻来降低铁损。如果Si含量低于0.80%,则在成品退火时产生γ相变,损害方向性电磁钢板的晶体取向。因此,Si含量为0.80%以上。Si含量优选为2.00%以上,更优选为2.50%以上。
另一方面,如果Si含量超过7.00%,则冷加工性降低,在冷轧时变得容易产生开裂。因此,Si含量为7.00%以下。Si含量优选为4.50%以下,进一步优选为4.00%以下。
[Mn:0.01~1.00%]
锰(Mn)会提高方向性电磁钢板的电阻来降低铁损。另外,Mn与S或Se结合而生成MnS或MnSe,作为抑制剂发挥功能。在Mn含量在0.01~1.00%的范围内的情况下,二次再结晶稳定。因此,Mn含量为0.01~1.00%。Mn含量的优选的下限为0.08%,进一步优选为0.09%。Mn含量的优选的上限为0.50%,进一步优选为0.20%。
[S及Se中的任一者或两者的合计:0~0.060%]
S(硫)及Se(硒)是与Mn结合而形成作为抑制剂发挥功能的MnS和/或MnSe的元素。
如果S及Se中的任一者或两者的合计(S+Se)超过0.060%,则在热轧后MnS或MnSe的析出分散变得不均匀。这种情况下,得不到所期望的二次再结晶组织,磁通密度降低,或者在纯化后MnS残存于钢中,磁滞损耗劣化。因此,S与Se的合计含量设定为0.060%以下。
S与Se的合计含量的下限没有特别限制,只要为0%即可。该下限也可以设定为0.003%以上。在作为抑制剂使用的情况下,优选为0.015%以上。
[酸可溶性Al(Sol.Al):0.010~0.065%]
酸可溶性Al(铝)(Sol.Al)是与N结合而生成作为抑制剂发挥功能的AlN或(Al、Si)N的元素。酸可溶性Al低于0.010%时,不会充分表现出效果,二次再结晶不会充分进行。因此,酸可溶性Al含量设定为0.010%以上。酸可溶性Al含量优选为0.015%以上,更优选为0.020%以上。
另一方面,如果酸可溶性Al含量超过0.065%,则AlN、(Al、Si)N的析出分散变得不均匀,得不到所需的二次再结晶组织,磁通密度降低。因此,酸可溶性Al(Sol.Al)设定为0.065%以下。酸可溶性Al优选为0.055%以下,更优选为0.050%以下。
[N:0.004~0.012%]
N(氮)是与Al结合而形成作为抑制剂发挥功能的AlN、(Al、Si)N的元素。N含量低于0.004%时,AlN、(Al、Si)N的形成变得不充分,因此N设定为0.004%以上。优选为0.006%以上,更优选为0.007%以上。
另一方面,如果N含量超过0.012%,则有可能在钢板中形成泡疤(空孔)。因此,将N含量设定为0.012%以下。
上述钢坯的化学组成包含上述元素,剩余部分包含Fe及杂质。然而,考虑由化合物形成带来的抑制剂功能的强化、对磁特性的影响,也可以在以下的范围内含有选择元素中的1种或2种以上来代替Fe的一部分。作为代替Fe的一部分而含有的选择元素,例如可列举出Cr、Cu、P、Sn、Sb、Ni、B、V、Nb、Mo、Ti、Bi。其中,选择元素也可以不含有,因此其下限分别为0%。另外,即使这些选择元素作为杂质含有,也不会损害上述效果。此外,所谓“杂质”是指在工业上制造钢时,从作为原料的矿石、废料中混入的物质、或从制造环境等中混入的物质。
[Cr:0~0.30%]
Cr(铬)是与Si同样地对于提高电阻来降低铁损而言有效的元素。因此,也可以含有Cr。在要得到上述效果的情况下,Cr含量优选为0.02%以上,更优选为0.05%以上。
另一方面,如果Cr含量超过0.30%,则磁通密度的降低成为问题,因此Cr含量的上限优选为0.30%,更优选为0.20%,进一步优选为0.12%。
[Cu:0~0.40%]
Cu(铜)也是对于提高电阻来降低铁损而言有效的元素。因此,也可以含有Cu。在要得到该效果的情况下,Cu含量优选为0.05%以上,更优选为0.10%以上。
另一方面,如果Cu含量超过0.40%,则有可能铁损降低效果饱和,并且在热轧时成为“铜鳞状折叠”的表面瑕疵的原因。因此,Cu含量的上限优选为0.40%,更优选为0.30%,进一步优选为0.20%。
[P:0~0.50%]
P(磷)也是对于提高电阻来降低铁损而言有效的元素。因此,也可以含有P。在要得到该效果的情况下,P含量优选为0.005%以上,更优选为0.010%以上。
另一方面,如果P含量超过0.50%,则有可能轧制性产生问题。因此,P含量的上限优选为0.50%,更优选为0.20%,进一步优选为0.15%。
[Sn:0~0.30%]
[Sb:0~0.30%]
Sn(锡)及Sb(锑)是对于使二次再结晶稳定化、使{110}<001>取向发达而言有效的元素。因此,也可以含有Sn或Sb。在要得到该效果的情况下,Sn含量优选为0.02%以上,更优选为0.05%以上。另外,Sb含量优选为0.01%以上,更优选为0.03%以上。
另一方面,如果Sn变得超过0.30%、或Sb变得超过0.30%,则有可能对磁特性造成不良影响。因此,优选将Sn含量、Sb含量的上限分别设定为0.30%。Sn含量的上限更优选为0.15%,进一步优选为0.10%。Sb含量的上限更优选为0.15%,进一步优选为0.10%。
[Ni:0~1.00%]
Ni(镍)也是对于提高电阻来降低铁损而言有效的元素。另外,Ni是在控制热轧钢板的金属组织从而可提高磁特性的方面有效的元素。因此,也可以含有Ni。在要得到上述效果的情况下,Ni含量优选为0.01%以上,更优选为0.02%以上。
另一方面,如果Ni含量超过1.00%,则有时二次再结晶变得不稳定。因此,优选将Ni含量设定为1.00%以下,更优选设定为0.20%以下,进一步优选设定为0.10%以下。
[B:0~0.008%]
B(硼)是对于与N结合而形成发挥抑制剂效果的BN而言有效的元素。因此,也可以含有B。在要得到上述效果的情况下,B含量优选为0.0005%以上,更优选为0.0010%以上。
另一方面,如果B含量超过0.008%,则有可能对磁特性造成不良影响。因此,B含量的上限优选为0.008%,更优选为0.005%,进一步优选为0.003%。
[V:0~0.15%]
[Nb:0~0.20%]
[Ti:0~0.015%]
V(钒)、Nb(铌)及Ti(钛)是与N、C结合而作为抑制剂发挥功能的元素。因此,也可以含有V、Nb、或Ti。在要得到上述效果的情况下,V含量优选为0.002%以上,更优选为0.010%以上。Nb含量优选为0.005%以上,更优选为0.020%以上。Ti含量优选为0.002%以上,更优选为0.004%以上。
另一方面,如果钢坯以超过0.15%的范围含有V、以超过0.20%的范围含有Nb、以超过0.015%的范围含有Ti,则这些元素残留于最终制品中,作为最终制品,有时V含量超过0.15%、Nb含量超过0.20%、或Ti含量超过0.015%。这种情况下,有可能最终制品(电磁钢板)的磁特性劣化。
因此,V含量的上限优选为0.15%,更优选为0.10%,进一步优选为0.05%。Ti含量的上限优选为0.015%,更优选为0.010%,进一步优选为0.008%。Nb含量的上限优选为0.20%,更优选为0.10%,进一步优选为0.08%。
[Mo:0~0.10%]
Mo(钼)也是对于提高电阻来降低铁损而言有效的元素。因此,也可以含有Mo。在要得到上述效果的情况下,Mo含量优选为0.005%以上,更优选为0.01%以上。
另一方面,如果Mo含量超过0.10%,则有可能钢板的轧制性产生问题。因此,Mo含量的上限优选为0.10%,更优选为0.08%,进一步优选为0.05%。
[Bi:0~0.010%]
Bi(铋)是对于将硫化物等析出物稳定化从而强化作为抑制剂的功能而言有效的元素。因此,也可以含有Bi。在要得到上述效果的情况下,Bi含量优选为0.001%以上,更优选为0.002%以上。
另一方面,如果Bi含量超过0.010%,则有可能对磁特性造成不良影响。因此,Bi含量的上限优选为0.010%,更优选为0.008%,进一步优选为0.006%。
上述的化学组成只要通过钢的一般的分析方法进行测定即可。例如,化学组成只要使用ICP-AES(电感耦合等离子体原子发射光谱法;Inductively Coupled Plasma-Atomic Emission Spectrometry)进行测定即可。此外,sol.Al只要使用将试样用酸进行加热分解后的滤液通过ICP-AES进行测定即可。另外,C及S只要使用燃烧-红外线吸收法进行测定即可,N只要使用不活泼气体熔融-热导率法进行测定即可,O只要使用不活泼气体熔融-非分散型红外线吸收法进行测定即可。
接下来,对将上述钢坯进行热轧时的条件进行说明。
对于热轧条件没有特别限定。例如为以下的条件。
在热轧之前将板坯进行加热。将板坯装入周知的加热炉或周知的均热炉中进行加热。作为1个方法,将板坯加热至1280℃以下。通过将板坯的加热温度设定为1280℃以下,例如能够避免在高于1280℃的温度下进行加热时产生的各种问题(需要专用的加热炉及熔融氧化皮量多等)。板坯的加热温度的下限值没有特别限定。在加热温度过低的情况下,有时热轧变得困难,生产率降低。因此,加热温度只要在1280℃以下的范围内考虑生产率来设定即可。板坯的加热温度的优选的下限为1100℃。板坯的加热温度的优选的上限为1250℃。
另外,作为其他方法,将板坯加热至1320℃以上的高温。通过加热至1320℃以上的高温,从而使AlN、Mn(S,Se)溶解,通过在之后的工序中使其微细析出,能够稳定地表现出二次再结晶。
也可以省略板坯加热工序本身,而在铸造后直至板坯的温度下降之前开始热轧。
接着,对于加热后的板坯实施使用了热轧机的热轧,制造热轧钢板。热轧机例如具备粗轧机和配置于粗轧机的下游的精轧机。粗轧机具备排成一列的粗轧机架。各粗轧机架包含上下配置的多个辊。精轧机也同样地具备排成一列的精轧机架。各精轧机架包含上下配置的多个辊。将加热后的钢材通过粗轧机进行轧制后,进一步通过精轧机进行轧制,制造热轧钢板。
热轧工序中的成品温度(利用精轧机最后将钢板压下的精轧机架的出口侧的钢板温度)例如为700~1150℃。通过以上的热轧工序,制造热轧钢板。
<热轧板退火工序>
在热轧板退火工序中,根据需要,对通过热轧工序得到的热轧钢板进行退火(热轧板退火)而得到热轧退火钢板。本实施方式中,将热轧板退火工序后的钢板称为热轧退火钢板。
热轧板退火以下述事项等作为目的来进行的:将热轧时产生的不均匀组织尽可能均匀化、控制作为抑制剂的AlN的析出(微细析出)、控制第二相/固溶碳。退火条件只要根据目的来选择公知的条件即可。例如在将热轧时产生的不均匀组织均匀化的情况下,将热轧钢板在750~1200℃的退火温度(热轧板退火炉中的炉温)下保持30~600秒。
热轧板退火未必需要进行,热轧板退火工序的实施的有无只要根据对最终制造的方向性电磁钢板所要求的特性及制造成本来决定即可。
<热轧板酸洗工序>
在热轧板酸洗工序中,对于热轧工序后的热轧钢板、或在进行了热轧板退火的情况下对于热轧板退火工序后的热轧退火钢板,根据需要,为了除去生成于表面的氧化皮,进行酸洗。对于酸洗条件没有特别限定,只要以公知的条件进行即可。
<冷轧工序>
在冷轧工序中,对于热轧工序后、热轧板退火工序后、或热轧板酸洗工序后的热轧钢板或热轧退火钢板,实施一次冷轧或夹有中间退火的两次以上的冷轧而制成冷轧钢板。本实施方式中,将冷轧工序后的钢板称为冷轧钢板。
最终的冷轧中的优选的冷轧率(不进行中间退火的累积冷轧率、或进行了中间退火后的累积冷轧率)优选为80%以上,更优选为90%以上。最终的冷轧率的优选的上限为95%。
这里,最终的冷轧率(%)如下来定义。
最终的冷轧率(%)=(1-最终的冷轧后的钢板的板厚/最终的冷轧前的钢板的板厚)×100
<脱碳退火工序>
在脱碳退火工序中,对于通过冷轧工序制造的冷轧钢板,根据需要进行磁畴控制处理后,实施脱碳退火而使其进行一次再结晶。另外,在脱碳退火中,将对磁特性造成不良影响的C从钢板中除去。本实施方式中,将脱碳退火工序后的钢板称为脱碳退火钢板。
为了上述的目的,在脱碳退火中,在氧化度即(PH2O/PH2)为0.18~0.80的气氛下、以退火温度为750~900℃进行10~600秒保持。此外,氧化度即PH2O/PH2可以通过气氛中的水蒸汽分压PH2O(atm)与氢分压PH2(atm)之比来定义。
如果氧化度(PH2O/PH2)低于0.18,则急速地形成外部氧化型的致密的氧化硅(SiO2),阻碍碳向体系外的扩散,因此产生脱碳不良,成品退火后的磁性劣化。另一方面,如果超过0.80,则钢板表面的氧化被膜变厚从而导致难以除去。
此外,如果退火温度低于750℃,则不仅脱碳速度变慢从而生产率降低,而且产生脱碳不良,成品退火后的磁性劣化。另一方面,如果超过900℃,则一次再结晶粒径超过所期望的尺寸,因此成品退火后的磁性劣化。
此外,如果保持时间低于10秒,则无法充分地进行脱碳,因此成品退火后的磁性劣化。另一方面,如果超过600秒,则一次再结晶粒径超过所期望的尺寸,因此成品退火后的磁性劣化。
此外,也可以根据上述的氧化度(PH2O/PH2)来控制直至退火温度为止的升温过程中的加热速度。例如,在进行包含感应加热的加热的情况下,只要将平均加热速度设定为5~1000℃/秒即可。另外,在进行包含通电加热的加热的情况下,只要将平均加热速度设定为5~3000℃/秒即可。
此外,在脱碳退火工序中,也可以进一步在上述的保持之前、中途、之后的任一个阶段、或两个以上的阶段中进行在含有氨的气氛中进行退火而将冷轧钢板氮化的氮化处理。在板坯加热温度低的情况下,脱碳退火工序优选包含氮化处理。通过在脱碳退火工序中进一步进行氮化处理,从而在成品退火工序的二次再结晶前生成AlN、(Al,Si)N等抑制剂,因此能够稳定地表现出二次再结晶。
对于氮化处理的条件没有特别限定,但优选的是,按照氮含量增加0.003%以上、优选增加0.005%以上、进一步优选增加0.007%以上的方式进行氮化处理。如果氮(N)含量达到0.030%以上,则效果饱和,因此也可以按照成为0.030%以下的方式进行氮化处理。
对于氮化处理的条件没有特别限定,只要以公知的条件来进行即可。
例如,在0.01~0.15的氧化度(PH2O/PH2)、在750~900℃下保持10~600秒后进行氮化处理的情况下,不将冷轧钢板冷却至室温,在降温的过程中在含有氨的气氛中保持来进行氮化处理。优选在降温的过程中将氧化度(PH2O/PH2)设定为0.0001~0.01的范围。在0.01~0.15的氧化度(PH2O/PH2)、在750~900℃下保持10~600秒中进行氮化处理的情况下,只要向该氧化度的气氛气体中导入氨即可。
<退火分离剂涂布工序>
在退火分离剂涂布工序中,对于脱碳退火工序后的脱碳退火钢板(也包含进行了氮化处理的脱碳退火钢板),根据需要进行了磁畴控制处理之后,涂布以MgO作为主要成分的退火分离剂,使所涂布的退火分离剂干燥。上述退火分离剂一般以水浆料的状态被涂布于钢板表面并被干燥,但也可以使用静电涂布法。
<成品退火工序>
对涂布有上述退火分离剂的脱碳退火钢板进行成品退火,制成成品退火钢板。通过对涂布有退火分离剂的脱碳退火钢板实施成品退火,从而二次再结晶进行,晶体取向集中于{110}<001>取向。本实施方式中,将成品退火工序后的钢板称为成品退火钢板。
具体而言,在该成品退火工序中,将涂布有退火分离剂的脱碳退火钢板在以体积率计含有50%以上的氢的混合气体气氛中、在1100~1200℃的温度下保持10小时以上。退火时间的上限没有特别限制,例如只要设定为30小时即可。通过这样的成品退火,从而在脱碳退火钢板中上述的二次再结晶进行,晶体取向集中于{110}<001>取向。
<退火分离剂除去工序>
在退火分离剂除去工序中,从成品退火后的钢板(成品退火钢板)的表面将在成品退火中未与钢板反应的未反应的退火分离剂等剩余的退火分离剂进行水洗除去。
此时,从防止水洗除去后的铁的腐蚀的观点出发,使用添加有三乙醇胺、松香胺或硫醇中的至少1者作为抑制剂(防蚀剂)的水溶液进行洗涤除去。通过该洗涤处理,将钢板表面的铁系氢氧化物量及铁系氧化物量以合计控制为每单面为0.9g/m2以下是重要的。
在钢板表面的剩余的退火分离剂的除去不充分、钢板表面的铁系氢氧化物量及铁系氧化物量的合计超过每单面为0.9g/m2的情况下,基底金属面的露出变得不充分,因此有可能无法充分进行钢板表面的平滑化。此外,铁系氢氧化物量及铁系氧化物量的下限没有特别限制,例如只要设定为0.01g/m2即可。
为了除去剩余的退火分离剂,除了利用包含上述的抑制剂的溶液而进行的洗涤以外,也可以进一步使用洗涤器进行除去。通过使用洗涤器,能够可靠地进行使绝缘被膜形成工序中的润湿性恶化的剩余的退火分离剂的除去。
此外,在即使进行上述处理也无法充分地除去剩余的退火分离剂的情况下,也可以在水洗除去后进行酸洗。在进行酸洗的情况下,只要使用体积比浓度低于20%的酸性溶液进行酸洗即可。例如,作为酸,优选使用含有合计低于20体积%的硫酸、硝酸、盐酸、磷酸、氯酸、氧化铬水溶液、硫酸铬、高锰酸、过氧硫酸及过氧磷酸中的1种或2种以上的溶液,更优选低于10体积%。体积比浓度的下限没有特别限制,例如只要设定为0.1体积%即可。通过使用这样的溶液,能够将钢板表面的剩余的退火分离剂有效地除去。此外,体积%设定为以室温下的体积为基准的比率即可。
此外,在进行酸洗的情况下,优选将溶液的液温设定为20~80℃。通过将液温设定为上述范围,能够将钢板表面的剩余退火分离剂有效地除去。
<平滑化工序>
通过进行上述那样的水洗而使基底金属露出后,通过在以体积率计包含50%以上的氢或一氧化碳的混合气体气氛中以1000℃以上的温度进行退火,得到表面(基底金属面)被平滑化的成品退火钢板。以下,将用于平滑化的退火称为平滑化退火。
在上述的平滑化退火中,通过在包含还原气体的混合气体气氛中对使基底金属面露出后的钢板进行加热,从而从基底金属面引起原子的蒸发及原子的移动,显现出没有磁钉扎的平滑的表面。与还原气体混合的气体优选为氮气或氩气等不活泼气体。在工业上,使用氢与氮的混合气体是成本最低的,也可以使用一氧化碳作为氢的代替。
如果平滑化退火中的混合气体气氛中所含的氢或一氧化碳的体积率变得低于50%,则由于基底金属面的氧化导致金属光泽减少,其结果是,最终制品的磁特性劣化。如果氢或一氧化碳的体积率增大,则基底金属面的平滑化效果变大,但只要混合气体气氛以体积率计含有50%以上的氢或一氧化碳,则表现出该效果,因此将氢或一氧化碳的体积率的下限设定为50%。氢或一氧化碳的体积率的上限没有特别限制,例如设定为100%即可。
平滑化退火中的退火温度高时可在短时间内得到平滑化效果,但只要该退火温度为1000℃以上,则能够有效地促进源自基底金属面的原子的蒸发及原子的移动。此外,在平滑化退火中的退火温度低于1000℃的情况下,平滑化效果变得不充分,磁特性变得低劣。因此,将平滑化退火中的退火温度的下限设定为1000℃。平滑化退火中的退火温度的上限没有特别限定,但如果退火温度超过1200℃,则平滑化效果饱和,因此优选将退火温度控制为1200℃以下。
在成品退火钢板的表面存在凸凹的情况下,起因于因该凸凹而妨碍磁畴壁的移动从而导致铁损增大。然而,通过在使成品退火钢板的表面充分露出后进行上述的平滑化退火,可得到平坦度极高的平滑状态,通过磁畴壁的移动顺利地进行,可得到高的铁损改善效果。
<绝缘被膜形成工序>
在绝缘被膜形成工序中,对平滑化后的成品退火钢板的表面,根据需要进行磁畴控制处理后,形成绝缘被膜。本实施方式中,将绝缘被膜形成工序后的钢板称为方向性电磁钢板。
该绝缘被膜通过对方向性电磁钢板赋予张力,使作为钢板单板的铁损降低,并且在将方向性电磁钢板层叠来使用时,通过确保钢板间的电绝缘性,使作为铁心的铁损降低。
绝缘被膜通过下述方式形成:在成品退火钢板的表面涂布以磷酸盐或胶体二氧化硅中的至少一者作为主要成分的绝缘被膜的涂敷液,在350~600℃下烧结,之后在800~1000℃的温度下进行热处理。
作为磷酸盐,优选Ca、Al、Sr等磷酸盐,其中,更优选磷酸铝盐。胶体二氧化硅并不特别限定于特定性状的胶体二氧化硅。粒子尺寸也不特别限定于特定的粒子尺寸,但优选为200nm(数均粒径)以下。例如为5~30nm。如果粒子尺寸超过200nm,则有可能在涂布液中沉降。此外,涂布液也可以进一步包含铬酸酐或铬酸盐。
如果绝缘被膜的烧结温度低于350℃,则绝缘被膜在通板中引起液体垂流,成为外观不良的原因,并且得不到具有充分的密合性的绝缘被膜。此外,如果超过600℃,则加热速度过快,因此仅绝缘被膜的最表面进行硬化,内部的硬化延迟,因此成为被膜形成不良的原因,被膜密合性变得不充分。此外,如果烧结后的热处理温度低于800℃,则导致被膜形成不良(硬化不足),得不到充分的被膜张力。此外,如果超过1000℃,则引起磷酸盐的分解,导致被膜形成不良,被膜密合性变得不充分。
在被膜的形成时,通过将气氛的氧化度(PH2O/PH2)设定为0.01~1.5,从而能够在不使磷酸盐超过必要地分解的情况下进行绝缘被膜形成,因此是优选的。
绝缘被膜形成用涂布液例如可以通过辊涂机等湿式涂布方法来涂布于钢板表面。
<磁畴控制工序>
在本实施方式的方向性电磁钢板的制造方法中,在下述任一时间点具备进行磁畴控制处理的磁畴控制工序:冷轧工序与脱碳退火工序之间(第1)、脱碳退火工序与退火分离剂涂布工序之间(第2)、平滑化工序与绝缘被膜形成工序之间(第3)、或绝缘被膜形成工序后(第4)。
通过进行磁畴控制处理,能够使方向性电磁钢板的铁损进一步降低。在冷轧工序与脱碳退火工序之间、脱碳退火工序与退火分离剂涂布工序之间、平滑化工序与绝缘被膜形成工序之间进行磁畴控制处理的情况下,只要通过沿着轧制方向以规定间隔形成沿与轧制方向交差的方向延伸的线状或点状的槽部,从而将180°磁畴的宽度缩窄(将180°磁畴细化)即可。
此外,在绝缘被膜形成工序后进行磁畴控制处理的情况下,只要通过沿着轧制方向以规定间隔形成沿与轧制方向交差的方向延伸的线状或点状的应力应变部、槽部,从而将180°磁畴的宽度缩窄(将180°磁畴细化)即可。
在形成应力应变部的情况下,可以应用激光束照射、电子射线照射等。另外,在形成槽部的情况下,可以应用下述槽形成法:利用齿轮等的机械性的槽形成法、通过电解蚀刻来形成槽的化学性的槽形成法、及利用激光照射的热性的槽形成法等。在由于应力应变部、槽部的形成而导致在绝缘被膜中产生损伤从而绝缘性等特性劣化的情况下,也可以再次形成绝缘被膜来修补损伤。
将本实施方式的方向性电磁钢板的制造方法的一个例子示于图1中。示出了由实线围成的工序为必需工序、由虚线围成的工序为任选工序。
通过本实施方式的制造方法制造的方向性电磁钢板不具有镁橄榄石被膜。具体而言,该方向性电磁钢板具有:母钢板、相接地配置于母钢板上的中间层、和相接地配置于中间层上且成为最表面的绝缘被膜。
方向性电磁钢板不具有镁橄榄石被膜这一事项只要通过X射线衍射来确认即可。例如,只要对从方向性电磁钢板上除去绝缘被膜后的表面进行X射线衍射,将所得到的X射线衍射光谱与PDF(粉末衍射文件;Powder Diffraction File)进行对照即可。例如,对于镁橄榄石(Mg2SiO4)的鉴定,只要使用JCPDS编号:34-189即可。本实施方式中,在上述X射线衍射光谱的主要构成不为镁橄榄石的情况下,判断方向性电磁钢板不具有镁橄榄石被膜。
此外,为了从方向性电磁钢板上仅除去绝缘被膜,只要将具有被膜的方向性电磁钢板浸渍于高温的碱溶液中即可。具体而言,通过在NaOH:30质量%+H2O:70质量%的氢氧化钠水溶液中在80℃下浸渍20分钟后,进行水洗并干燥,可以从方向性电磁钢板上除去绝缘被膜。通常,通过碱溶液而使仅绝缘被膜被溶解,通过盐酸等酸性溶液而使镁橄榄石被膜被溶解。
通过本实施方式的制造方法制造的方向性电磁钢板由于不具有镁橄榄石被膜,因此磁特性(铁损特性)优异,并且由于分别最佳地控制了制造工序,因此被膜密合性也优异。
实施例1
接下来,对本发明的实施例进行说明,但实施例中的条件是为了确认本发明的可实施性及效果而采用的一个条件例,本发明并不限于这一个条件例。只要在不脱离本发明的主旨的情况下达成本发明的目的,则本发明可采用各种条件。
在表1中所示的化学组成的钢板坯之中,将No.A13及No.a11加热至1350℃并供于热轧,制成板厚为2.6mm的热轧钢板。对该热轧钢板实施一次冷轧或夹有中间退火的多次冷轧,制成最终板厚为0.22mm的冷轧钢板。对于板厚为0.22mm的冷轧钢板,作为脱碳退火工序,在表2~4中所示的条件下实施脱碳退火。
另外,在表1中所示的化学组成的钢板坯之中,将No.A13及No.a11以外的钢板坯加热至1150℃并供于热轧,制成板厚为2.6mm的热轧钢板。对该热轧钢板实施一次冷轧或夹有中间退火的多次冷轧,制成最终板厚为0.22mm的冷轧钢板。对于板厚为0.22mm的冷轧钢板,作为脱碳退火工序,在表2~4中所示的条件下实施脱碳退火,在降温过程中实施在含有氨的气氛中进行保持的氮化处理。
此外,对于No.B5,对热轧后的热轧钢板实施在1100℃下进行退火、接着在900℃下进行退火的热轧板退火后,进行酸洗而将生成于表面的氧化皮除去,然后进行冷轧。
另外,在脱碳退火时,直至退火温度为止的升温过程中的平均加热速度低于15℃/秒。
对于脱碳退火后的脱碳退火钢板,以7.0g/m2的涂布量涂布以MgO作为主体的退火分离剂并使其干燥。
对于涂布有退火分离剂的脱碳退火钢板,在1100℃或1200℃下进行了成品退火。成品退火条件设定为表2~4中记载的那样。
在成品退火后,如表5~7中所示的那样,从成品退火钢板的表面将剩余的退火分离剂使用添加有三乙醇胺、松香胺或硫醇中的至少1者的抑制剂的溶液进行水洗除去。
此外,在上述的水洗后根据需要进行酸洗。例如,对于表中的酸洗为“有”的实施例,通过将剩余的退火分离剂浸渍于硫酸水溶液中(硫酸的体积比浓度:1体积%)来进行酸洗。
从成品退火钢板上除去剩余的退火分离剂之后,以表5~7中所示的混合气体气氛条件及退火温度条件对成品退火钢板实施平滑化退火。通过该平滑化退火,将成品退火钢板的表面平滑化。
之后,涂布以胶体二氧化硅和磷酸盐作为主体、根据需要添加了铬酸酐的绝缘被膜的涂敷液,在表8~10中所示的烧结温度下进行烧结、进一步在表8~10中所示的温度下进行热处理来形成绝缘被膜。
此外,在各实施例中,如表8~10中所示的那样,在下述任一时间点进行磁畴控制处理:冷轧工序与脱碳退火工序之间(第1)、脱碳退火工序与退火分离剂涂布工序之间(第2)、平滑化工序与绝缘被膜形成工序之间(第3)、或绝缘被膜形成工序后(第4)。在磁畴控制处理中,通过机械或化学方式形成槽,或者使用激光来形成应力应变部或槽部。
对于所得到的方向性电磁钢板No.B1~B44和b1~b30,评价铁损及被膜密合性。
<铁损>
对于从所制作的方向性电磁钢板中采集的试样,基于JIS C 2550-1:2000,通过爱普斯坦试验来测定励磁磁通密度为1.7T、频率为50Hz下的铁损W17/50(W/kg)。对于进行了磁畴控制的方向性电磁钢板,将铁损W17/50低于0.7W/kg的情况判断为合格。另外,对于未进行磁畴控制的方向性电磁钢板,将铁损W17/50低于1.0W/kg的情况判断为合格。
<被膜密合性>
将从所制造的方向性电磁钢板中采集的试验片卷绕到直径为20mm的圆筒上(180°弯曲),以开卷时的被膜残存面积率对绝缘被膜的被膜密合性进行评价。绝缘被膜的被膜密合性的评价是通过目视来判断绝缘被膜的剥离的有无。将未从钢板上剥离、被膜残存面积率为90%以上的情况设定为◎(很好),将85%以上且低于90%的情况设定为〇(好),将80%以上且低于85%的情况设定为△(差),将低于80%的情况设定为×(NG)。将被膜残存面积率为85%以上的情况(上述的◎或〇)判断为合格。
将结果示于表8~10中。
[表1]
[表2]
※1:氢-氮混合气氛气体(以氢的比率来记载)
[表3]
※1:氢-氮混合气氛气体(以氢的比率来记载)
[表4]
※1:氢-氮混合气氛气体(以氢的比率来记载)
[表5]
※2:铁系氢氧化物量及铁系氧化物量(每单面)
[表6]
※2:铁系氢氧化物量及铁系氧化物量(每单面)
[表7]
※2:铁系氢氧化物量及铁系氧化物量(每单面)
[表8]
[表9]
[表10]
如由表1~10获知的那样,作为发明例的No.B1~B44的全部工序条件都满足本发明的范围,铁损低。此外,被膜密合性也优异。
与此相对,关于作为比较例的No.b1~b30,1个以上的工序条件脱离了本发明的范围,铁损和/或被膜密合性差。此外,关于比较例No.b22,由于无法轧制,因此未进行其之后的评价。
产业上的可利用性
根据本发明的上述方案,能够提供不具有镁橄榄石被膜、并且磁特性及被膜密合性优异的方向性电磁钢板的制造方法。所得到的方向性电磁钢板由于磁特性及被膜密合性优异,因此本发明在产业上的可利用性高。

Claims (6)

1.一种方向性电磁钢板的制造方法,其特征在于,具备下述工序:
将钢坯进行热轧而得到热轧钢板的热轧工序,所述钢坯作为化学组成以质量%计含有:
C:0.030~0.100%、
Si:0.80~7.00%、
Mn:0.01~1.00%、
S及Se的合计:0~0.060%、
酸可溶性Al:0.010~0.065%、
N:0.004~0.012%、
Cr:0~0.30%、
Cu:0~0.40%、
P:0~0.50%、
Sn:0~0.30%、
Sb:0~0.30%、
Ni:0~1.00%、
B:0~0.008%、
V:0~0.15%、
Nb:0~0.20%、
Mo:0~0.10%、
Ti:0~0.015%、
Bi:0~0.010%、
剩余部分为Fe及杂质;
对所述热轧钢板实施冷轧而得到冷轧钢板的冷轧工序;
对所述冷轧钢板进行脱碳退火而得到脱碳退火钢板的脱碳退火工序;
在所述脱碳退火钢板上涂布含有MgO的退火分离剂并使其干燥的退火分离剂涂布工序;
对涂布有所述退火分离剂的所述脱碳退火钢板进行成品退火,得到成品退火钢板的成品退火工序;
从所述成品退火钢板的表面除去剩余的退火分离剂的退火分离剂除去工序;
将除去了所述剩余的退火分离剂的所述成品退火钢板的表面进行平滑化的平滑化工序;
在平滑化后的所述成品退火钢板的表面形成绝缘被膜的绝缘被膜形成工序,
其中,在所述脱碳退火工序中,在氧化度即PH2O/PH2为0.18~0.80的气氛下、以退火温度为750~900℃进行10~600秒保持,
在所述成品退火工序中,将涂布有所述退火分离剂的所述脱碳退火钢板在以体积率计含有50%以上的氢的混合气体气氛中、在1100~1200℃的温度下保持10小时以上,
在所述退火分离剂除去工序中,从所述成品退火钢板的表面将所述剩余的退火分离剂使用添加有三乙醇胺、松香胺或硫醇中的至少1者的抑制剂的溶液进行水洗,在所述水洗后使用体积比浓度低于20%的酸性溶液进行酸洗并除去,使钢板表面的铁系氢氧化物量及铁系氧化物量成为每单面0.9g/m2以下,
在所述平滑化工序中,将除去了所述剩余的退火分离剂的所述成品退火钢板在以体积率计包含50%以上的氢或一氧化碳的混合气体气氛中以1000℃以上的温度进行退火,
在所述绝缘被膜形成工序中,在平滑化后的所述成品退火钢板的表面涂布以磷酸盐或胶体二氧化硅作为主要成分的绝缘被膜的涂敷液,在350~600℃下烧结,在800~1000℃的温度下进行热处理来形成绝缘被膜。
2.根据权利要求1所述的方向性电磁钢板的制造方法,其特征在于,在所述热轧工序与所述冷轧工序之间具备将所述热轧钢板进行退火的热轧板退火工序、或进行酸洗的热轧板酸洗工序中的至少1者。
3.根据权利要求1或2所述的方向性电磁钢板的制造方法,其特征在于,在所述脱碳退火工序中进行将所述冷轧钢板在含有氨的气氛中进行退火的氮化处理。
4.根据权利要求1或2所述的方向性电磁钢板的制造方法,其特征在于,在下述任一时间点具备进行磁畴控制处理的磁畴控制工序:所述冷轧工序与所述脱碳退火工序之间、所述脱碳退火工序与所述退火分离剂涂布工序之间、所述平滑化工序与所述绝缘被膜形成工序之间、或所述绝缘被膜形成工序后。
5.根据权利要求3所述的方向性电磁钢板的制造方法,其特征在于,在下述任一时间点具备进行磁畴控制处理的磁畴控制工序:所述冷轧工序与所述脱碳退火工序之间、所述脱碳退火工序与所述退火分离剂涂布工序之间、所述平滑化工序与所述绝缘被膜形成工序之间、或所述绝缘被膜形成工序后。
6.根据权利要求1所述的方向性电磁钢板的制造方法,其特征在于,所述钢坯作为化学组成以质量%计含有选自下述元素中的至少1种:
Cr:0.02~0.30%、
Cu:0.05~0.40%、
P:0.005~0.50%、
Sn:0.02~0.30%、
Sb:0.01~0.30%、
Ni:0.01~1.00%、
B:0.0005~0.008%、
V:0.002~0.15%、
Nb:0.005~0.20%、
Mo:0.005~0.10%、
Ti:0.002~0.015%、及
Bi:0.001~0.010%。
CN202080008979.0A 2019-01-16 2020-01-16 方向性电磁钢板的制造方法 Active CN113302318B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019005133 2019-01-16
JP2019-005133 2019-01-16
PCT/JP2020/001198 WO2020149351A1 (ja) 2019-01-16 2020-01-16 方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
CN113302318A CN113302318A (zh) 2021-08-24
CN113302318B true CN113302318B (zh) 2024-01-09

Family

ID=71613144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080008979.0A Active CN113302318B (zh) 2019-01-16 2020-01-16 方向性电磁钢板的制造方法

Country Status (7)

Country Link
US (1) US20220081747A1 (zh)
EP (1) EP3913096A4 (zh)
JP (1) JP7235058B2 (zh)
KR (1) KR102574182B1 (zh)
CN (1) CN113302318B (zh)
RU (1) RU2767356C1 (zh)
WO (1) WO2020149351A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021013633A2 (pt) * 2019-01-16 2021-09-14 Nippon Steel Corporation Chapa de aço elétrico de grão orientado
WO2023195517A1 (ja) * 2022-04-06 2023-10-12 日本製鉄株式会社 方向性電磁鋼板及び絶縁被膜の形成方法
WO2023195518A1 (ja) * 2022-04-06 2023-10-12 日本製鉄株式会社 方向性電磁鋼板及び絶縁被膜の形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480322A (ja) * 1990-07-20 1992-03-13 Nippon Steel Corp 低鉄損一方向性珪素鋼板の製造方法
JPH05279864A (ja) * 1992-03-31 1993-10-26 Nippon Steel Corp 方向性珪素鋼板の絶縁被膜形成方法
JPH08269573A (ja) * 1995-03-31 1996-10-15 Nippon Steel Corp 密着性の優れた一方向性電磁鋼板の絶縁被膜形成方法
JPH0949027A (ja) * 1995-08-09 1997-02-18 Nippon Steel Corp 表面性状の優れるグラス被膜を有さない方向性電磁鋼板の焼鈍分離剤及びそれを用いた方向性電磁鋼板の製造方法
JPH10130727A (ja) * 1996-10-28 1998-05-19 Nippon Steel Corp 磁束密度が高い低鉄損鏡面一方向性電磁鋼板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224499B2 (zh) 1973-01-22 1977-07-01
JP2583357B2 (ja) * 1990-12-28 1997-02-19 新日本製鐵株式会社 低鉄損一方向性珪素鋼板の製造方法
US5129965A (en) * 1990-07-20 1992-07-14 Nippon Steel Corporation Method of producing grain oriented silicon steel sheets each having a low watt loss and a mirror surface
JPH0699812A (ja) * 1992-09-18 1994-04-12 Hitachi Ltd 個室寝台車
JP3470475B2 (ja) * 1995-11-27 2003-11-25 Jfeスチール株式会社 極めて鉄損の低い方向性電磁鋼板とその製造方法
JP3496067B2 (ja) * 1996-10-28 2004-02-09 新日本製鐵株式会社 鏡面一方向性電磁鋼板の製造方法
JP3952570B2 (ja) * 1998-01-14 2007-08-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
IT1299137B1 (it) * 1998-03-10 2000-02-29 Acciai Speciali Terni Spa Processo per il controllo e la regolazione della ricristallizzazione secondaria nella produzione di lamierini magnetici a grano orientato
WO2002088403A1 (fr) 2001-04-23 2002-11-07 Nippon Steel Corporation Procede de production de tole d'acier au silicium unidirectionnel exempte de pellicule de revetement minerale inorganique
JP4288054B2 (ja) * 2002-01-08 2009-07-01 新日本製鐵株式会社 方向性珪素鋼板の製造方法
CN107109563B (zh) * 2014-12-24 2019-10-22 杰富意钢铁株式会社 取向性电磁钢板及其制造方法
JP6558325B2 (ja) * 2016-08-19 2019-08-14 Jfeスチール株式会社 クロムフリー張力被膜形成用処理液、クロムフリー張力被膜付方向性電磁鋼板、クロムフリー張力被膜付方向性電磁鋼板の製造方法およびトランス用コア
JP6945364B2 (ja) 2017-06-23 2021-10-06 株式会社三共 遊技機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480322A (ja) * 1990-07-20 1992-03-13 Nippon Steel Corp 低鉄損一方向性珪素鋼板の製造方法
JPH05279864A (ja) * 1992-03-31 1993-10-26 Nippon Steel Corp 方向性珪素鋼板の絶縁被膜形成方法
JPH08269573A (ja) * 1995-03-31 1996-10-15 Nippon Steel Corp 密着性の優れた一方向性電磁鋼板の絶縁被膜形成方法
JPH0949027A (ja) * 1995-08-09 1997-02-18 Nippon Steel Corp 表面性状の優れるグラス被膜を有さない方向性電磁鋼板の焼鈍分離剤及びそれを用いた方向性電磁鋼板の製造方法
JPH10130727A (ja) * 1996-10-28 1998-05-19 Nippon Steel Corp 磁束密度が高い低鉄損鏡面一方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
JPWO2020149351A1 (ja) 2021-12-02
EP3913096A4 (en) 2022-09-28
KR20210111802A (ko) 2021-09-13
EP3913096A1 (en) 2021-11-24
RU2767356C1 (ru) 2022-03-17
KR102574182B1 (ko) 2023-09-07
CN113302318A (zh) 2021-08-24
WO2020149351A1 (ja) 2020-07-23
BR112021013529A2 (pt) 2021-09-21
US20220081747A1 (en) 2022-03-17
JP7235058B2 (ja) 2023-03-08

Similar Documents

Publication Publication Date Title
KR102579758B1 (ko) 방향성 전자 강판의 제조 방법
CN113302318B (zh) 方向性电磁钢板的制造方法
CN113272459B (zh) 方向性电磁钢板的制造方法
CN113302317B (zh) 方向性电磁钢板的制造方法
JP7299512B2 (ja) 方向性電磁鋼板の製造方法
CN113286905B (zh) 方向性电磁钢板的制造方法
CN113286902B (zh) 方向性电磁钢板的制造方法
CN113272454B (zh) 方向性电磁钢板的制造方法
RU2768932C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant