CN113272454B - 方向性电磁钢板的制造方法 - Google Patents

方向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN113272454B
CN113272454B CN202080008839.3A CN202080008839A CN113272454B CN 113272454 B CN113272454 B CN 113272454B CN 202080008839 A CN202080008839 A CN 202080008839A CN 113272454 B CN113272454 B CN 113272454B
Authority
CN
China
Prior art keywords
annealing
steel sheet
hot
grain
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080008839.3A
Other languages
English (en)
Other versions
CN113272454A (zh
Inventor
高谷真介
牛神义行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of CN113272454A publication Critical patent/CN113272454A/zh
Application granted granted Critical
Publication of CN113272454B publication Critical patent/CN113272454B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/24Polishing of heavy metals of iron or steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

该方向性电磁钢板的制造方法在脱碳退火工序中控制氧化度PH2O/PH2,在退火分离剂涂布工序中控制退火分离剂的MgO与Al2O3的质量比率,在最终退火工序中将混合气体气氛中的氢的体积率控制为50%以上,在退火分离剂除去工序中使用添加了抑制剂的溶液进行水洗,在平滑化工序中通过化学研磨来控制平均粗糙度Ra,在绝缘覆膜形成工序中使用包含结晶性磷化物的覆膜形成溶液。

Description

方向性电磁钢板的制造方法
技术领域
本发明涉及方向性电磁钢板的制造方法。
本申请基于2019年1月16日在日本申请的特愿2019-005085号主张优先权,将其内容援引于此。
背景技术
方向性电磁钢板主要被用于变压器中。变压器在从被安装至被废弃为止的长时间内连续地被励磁,持续产生能量损耗,因此以交流被磁化时的能量损耗、即铁损成为决定变压器的性能的主要指标。
为了降低方向性电磁钢板的铁损,迄今为止提出了许多的方法。例如,对于钢板组织,为提高在被称为高斯取向的{110}<001>取向上的集聚的方法,对于钢板,为增加提高电阻的Si等固溶元素的含量的方法、减薄钢板的板厚的方法等。
另外,已知对钢板赋予张力是对铁损的降低有效的方法。因此,通常,以降低铁损为目的,在方向性电磁钢板的表面形成有覆膜。该覆膜通过对方向性电磁钢板赋予张力而降低作为钢板单板的铁损。该覆膜进一步在将方向性电磁钢板层叠而使用时,通过确保钢板间的电绝缘性而降低作为铁心的铁损。
作为形成有覆膜的方向性电磁钢板,有在母钢板的表面形成含有Mg的氧化覆膜即镁橄榄石覆膜、进一步在该镁橄榄石覆膜的表面上形成绝缘覆膜的钢板。即,这种情况下,母钢板上的覆膜包含镁橄榄石覆膜和绝缘覆膜。镁橄榄石覆膜及绝缘覆膜各自承担绝缘性功能及对母钢板的张力赋予功能这两个功能。
含有Mg的氧化覆膜即镁橄榄石覆膜如下形成:利用在使钢板中产生二次再结晶的最终退火,以氧化镁(MgO)作为主要成分的退火分离剂与在脱碳退火时形成于母钢板上的氧化硅(SiO2)在900~1200℃下实施30小时以上的热处理中发生反应,从而形成。
绝缘覆膜通过在最终退火后的母钢板上例如涂布包含磷酸或磷酸盐、胶体二氧化硅、及无水铬酸或铬酸盐的涂敷溶液并在300~950℃下进行10秒以上烧结干燥而形成。
覆膜为了发挥绝缘性及对母钢板的张力赋予的功能,对这些覆膜与母钢板之间要求高的密合性。
以往,上述密合性主要通过由母钢板与镁橄榄石覆膜的界面的凹凸带来的锚固效应来确保。然而,近年来,弄清楚了该界面的凹凸由于也成为方向性电磁钢板被磁化时的磁畴壁移动的障碍,因此也成为妨碍低铁损化的要因。
于是,为了进一步低铁损化,不存在含有Mg的氧化覆膜即镁橄榄石覆膜且以将上述的界面平滑化的状态来确保绝缘覆膜的密合性的技术例如在日本特开昭49-096920号公报(专利文献1)及国际公开第2002/088403号(专利文献2)中被提出。
在专利文献1中公开的方向性电磁钢板的制造方法中,将镁橄榄石覆膜通过酸洗等而除去,将母钢板表面通过化学研磨或电解研磨而平滑化。在专利文献2中公开的方向性电磁钢板的制造方法中,在最终退火时使用包含氧化铝(Al2O3)的退火分离剂,抑制镁橄榄石覆膜的形成本身,将母钢板表面平滑化。
然而,就专利文献1及专利文献2的制造方法而言,与母钢板表面相接触地(在母钢板表面上直接地)形成绝缘覆膜的情况下,存在绝缘覆膜相对于母钢板表面难以密合(得不到充分的密合性)的问题。
现有技术文献
专利文献
专利文献1:日本特开昭49-096920号公报
专利文献2:国际公开第2002/088403号
发明内容
发明所要解决的课题
本发明鉴于上述的课题而作出。本发明的目的是提供不具有镁橄榄石覆膜、并且磁特性(特别是铁损)及覆膜密合性优异的方向性电磁钢板的制造方法。
用于解决课题的手段
本发明者们为了低铁损化,以不生成镁橄榄石覆膜、在将钢板表面平滑化了的方向性电磁钢板用钢板的表面形成绝缘覆膜为前提,对提高钢板与绝缘覆膜的密合性(覆膜密合性)的方法进行了研究。
其结果发现:通过将规定的工序适宜地组合,能够制造不具有镁橄榄石覆膜、并且磁特性及覆膜密合性优异的方向性电磁钢板。
本发明的主旨如下所述。
(1)本发明的一方案的方向性电磁钢板的制造方法具备以下工序:
将钢坯进行热轧而得到热轧钢板的热轧工序,所述钢坯作为化学组成,以质量%计含有:
C:0.030~0.100%、
Si:0.80~7.00%、
Mn:0.01~1.00%、
S及Se的合计:0~0.060%、
酸可溶性Al:0.010~0.065%、
N:0.004~0.012%、
Cr:0~0.30%、
Cu:0~0.40%、
P:0~0.50%、
Sn:0~0.30%、
Sb:0~0.30%、
Ni:0~1.00%、
B:0~0.008%、
V:0~0.15%、
Nb:0~0.20%、
Mo:0~0.10%、
Ti:0~0.015%、
Bi:0~0.010%,
剩余部分包含Fe及杂质;
对上述热轧钢板实施冷轧而得到冷轧钢板的冷轧工序;
对上述冷轧钢板进行脱碳退火而得到脱碳退火板的脱碳退火工序;
在上述脱碳退火板上涂布含有Al2O3和MgO的退火分离剂并使其干燥的退火分离剂涂布工序;
对涂布有上述退火分离剂的上述脱碳退火板进行最终退火而得到最终退火板的最终退火工序;
从上述最终退火板的表面除去剩余的退火分离剂的退火分离剂除去工序;
将除去了上述剩余的退火分离剂的上述最终退火板的表面进行平滑化的平滑化工序;以及
在平滑化后的上述最终退火板的表面形成绝缘覆膜的绝缘覆膜形成工序,
在上述脱碳退火工序中,
在氧化度即PH2O/PH2为0.18~0.80的气氛下、退火温度750~900℃下进行10~600秒保持,
在上述退火分离剂涂布工序中,
将上述退火分离剂中的上述MgO与上述Al2O3的质量比率即MgO/(MgO+Al2O3)设定为5~50%,将水合水分设定为1.5质量%以下,
在上述最终退火工序中,
将涂布有上述退火分离剂的上述脱碳退火板在以体积率计含有50%以上的氢的混合气体气氛中、在1100~1200℃的温度下保持10小时以上,
在上述退火分离剂除去工序中,
使用添加了三乙醇胺、松香胺、或硫醇中的至少1者即抑制剂的溶液将剩余的退火分离剂从上述最终退火板的表面水洗除去,使钢板表面的铁系氢氧化物量及铁系氧化物量为每单面0.9g/m2以下,
在上述平滑化工序中,
通过化学研磨,使除去了上述剩余的退火分离剂的上述最终退火板的表面的平均粗糙度Ra达到0.1μm以下,
在上述绝缘覆膜形成工序中,
涂布包含磷酸盐、胶体二氧化硅、及结晶性磷化物的覆膜形成溶液并在350~1150℃下烧结,降温后,涂布包含磷酸盐及胶体二氧化硅但不含结晶性磷化物的覆膜形成溶液并在350~1150℃下进行烧结,从而形成绝缘覆膜。
(2)根据上述(1)所述的方向性电磁钢板的制造方法,其中,也可以在上述热轧工序与上述冷轧工序之间,具备将上述热轧钢板进行退火的热轧板退火工序、或进行酸洗的热轧板酸洗工序中的至少1者。
(3)根据上述(1)或(2)所述的方向性电磁钢板的制造方法,其中,也可以在上述脱碳退火工序中,进行将上述冷轧钢板在含有氨的气氛中进行退火的氮化处理。
(4)根据上述(1)~(3)中任一项所述的方向性电磁钢板的制造方法,其中,也可以在上述冷轧工序与上述脱碳退火工序之间、上述脱碳退火工序与上述退火分离剂涂布工序之间、上述平滑化工序与上述绝缘覆膜形成工序之间、或上述绝缘覆膜形成工序后的任一时候,具备进行磁畴控制处理的磁畴控制工序。
(5)根据上述(1)~(4)中任一项所述的方向性电磁钢板的制造方法,其中,也可以在上述退火分离剂除去工序中,在上述水洗后,使用体积比浓度低于20%的酸性溶液进行酸洗。
(6)根据上述(1)~(5)中任一项所述的方向性电磁钢板的制造方法,其中,也可以上述钢坯作为化学组成以质量%计含有选自由:
Cr:0.02~0.30%、
Cu:0.05~0.40%、
P:0.005~0.50%、
Sn:0.02~0.30%、
Sb:0.01~0.30%、
Ni:0.01~1.00%、
B:0.0005~0.008%、
V:0.002~0.15%、
Nb:0.005~0.20%、
Mo:0.005~0.10%、
Ti:0.002~0.015%及
Bi:0.001~0.010%、
构成的组中的至少1种。
发明效果
根据本发明的上述方案,能够提供不具有镁橄榄石覆膜、并且磁特性及覆膜密合性优异的方向性电磁钢板的制造方法。
附图说明
图1是表示本发明的一实施方式的方向性电磁钢板的制造方法的流程图。
具体实施方式
以下,对本发明的优选的实施方式进行详细说明。但是,本发明并不仅限制于本实施方式中公开的构成,在不脱离本发明的主旨的范围内可以进行各种变更。另外,关于本实施方式中所示的数值限定范围,下限值及上限值包含于该范围内。表示为“超过”或“低于”的数值该值不包含于数值范围内。关于各元素的含量的“%”,只要没有特别指定则是指“质量%”。
本发明的一实施方式的方向性电磁钢板的制造方法(以下有时称为“本实施方式的方向性电磁钢板的制造方法”。)是不具有镁橄榄石覆膜的方向性电磁钢板的制造方法,具备以下的工序。
(i)将具有规定的化学组成的钢坯进行热轧而得到热轧钢板的热轧工序
(ii)对上述热轧钢板实施一次或插有中间退火的两次以上的冷轧而得到冷轧钢板的冷轧工序
(iii)对上述冷轧钢板进行脱碳退火而得到脱碳退火板的脱碳退火工序
(iv)在上述脱碳退火板上涂布含有Al2O3和MgO的退火分离剂并使其干燥的退火分离剂涂布工序
(v)对涂布有退火分离剂的上述脱碳退火板进行最终退火而得到最终退火板的最终退火工序
(vi)将剩余的退火分离剂从上述最终退火板的表面除去的退火分离剂除去工序
(vii)将除去了上述剩余的退火分离剂的上述最终退火板的表面进行平滑化的平滑化工序
(viii)在平滑化后的上述最终退火板的表面形成绝缘覆膜的绝缘覆膜形成工序
此外,本实施方式的方向性电磁钢板的制造方法也可以进一步具备以下的工序。
(I)将热轧钢板进行退火的热轧板退火工序
(II)将热轧钢板进行酸洗的热轧板酸洗工序
(III)进行磁畴控制处理的磁畴控制工序
本实施方式的方向性电磁钢板的制造方法并非只要控制上述的工序中的单纯一个工序即可,需要对上述的各工序复合地并且不可分地进行控制。通过以规定的条件控制各工序的全部,能够降低铁损,并且提高覆膜密合性。
以下,对各工序进行详细说明。
<热轧工序>
在热轧工序中,将作为化学组成以质量%计含有C:0.030~0.100%、Si:0.80~7.00%、Mn:0.01~1.00%、S+Se的合计:0~0.060%、酸可溶性Al:0.010~0.065%、N:0.004~0.012%、Cr:0~0.30%、Cu:0~0.40%、P:0~0.50%、Sn:0~0.30%、Sb:0~0.30%、Ni:0~1.00%、B:0~0.008%、V:0~0.15%、Nb:0~0.20%、Mo:0~0.10%、Ti:0~0.015%、Bi:0~0.010%、剩余部分包含Fe及杂质的钢坯进行热轧而得到热轧钢板。本实施方式中,将热轧工序后的钢板称为热轧钢板。
对于供于热轧工序的钢坯(板坯)的制造方法没有限定。例如只要将具有规定的化学组成的钢水进行熔炼,使用该钢水来制造板坯即可。可以通过连续铸造法来制造板坯,也可以使用钢水来制造钢锭,将钢锭进行开坯来制造板坯。另外,也可以通过其它的方法来制造板坯。
板坯的厚度没有特别限定,例如为150~350mm。板坯的厚度优选为220~280mm。作为板坯,也可以使用厚度为10~70mm的所谓的薄板坯。
首先,对钢坯的化学组成的限定理由进行说明。以下,关于化学组成的%是指质量%。
[C:0.030~0.100%]
C(碳)是对一次再结晶组织的控制而言有效的元素,但由于对磁特性会造成不良影响,因此是在最终退火前要通过脱碳退火而除去的元素。若钢坯的C含量超过0.100%,则脱碳退火时间变长,生产率降低。因此,C含量设定为0.100%以下。优选为0.085%以下,更优选为0.070%以下。
C含量优选低,但在考虑到工业生产中的生产率、产品的磁特性的情况下,C含量的实质性的下限为0.030%。
[Si:0.80~7.00%]
硅(Si)会提高方向性电磁钢板的电阻而降低铁损。如果Si含量低于0.80%,则在最终退火时产生γ相变,损害方向性电磁钢板的晶体取向。因此,Si含量为0.80%以上。Si含量优选为2.00%以上,更优选为2.50%以上。
另一方面,如果Si含量超过7.00%,则冷加工性降低,在冷轧时变得容易产生裂纹。因此,Si含量为7.00%以下。Si含量优选为4.50%以下,进一步优选为4.00%以下。
[Mn:0.01~1.00%]
锰(Mn)会提高方向性电磁钢板的电阻而降低铁损。另外,Mn与S或Se结合而生成MnS或MnSe,作为抑制剂发挥功能。Mn含量在0.01~1.00%的范围内的情况下,二次再结晶会稳定。因此,Mn含量为0.01~1.00%。Mn含量的优选的下限为0.08%,进一步优选为0.09%。Mn含量的优选的上限为0.50%,进一步优选为0.20%。
[S及Se中的任一者或两者的合计:0~0.060%]
S(硫)及Se(硒)是与Mn结合而形成作为抑制剂发挥功能的MnS和/或MnSe的元素。
如果S及Se中的任一者或两者的合计(S+Se)超过0.060%,则在热轧后MnS或MnSe的析出分散变得不均匀。这种情况下,得不到所期望的二次再结晶组织,磁通密度降低,或者在纯化后MnS残留于钢中,磁滞损耗劣化。因此,S与Se的合计含量设定为0.060%以下。
S与Se的合计含量的下限没有特别限制,只要为0%即可。该下限也可以设定为0.003%以上。在作为抑制剂使用的情况下,优选为0.015%以上。
[酸可溶性Al(Sol.Al):0.010~0.065%]
酸可溶性Al(铝)(Sol.Al)是与N结合而生成作为抑制剂发挥功能的AlN或(Al、Si)N的元素。酸可溶性Al低于0.010%时,不会充分表现出效果,二次再结晶未充分进行。因此,酸可溶性Al含量设定为0.010%以上。酸可溶性Al含量优选为0.015%以上,更优选为0.020%以上。
另一方面,如果酸可溶性Al含量超过0.065%,则AlN、(Al、Si)N的析出分散变得不均匀,得不到所需的二次再结晶组织,磁通密度降低。因此,酸可溶性Al(Sol.Al)设定为0.065%以下。酸可溶性Al优选为0.055%以下,更优选为0.050%以下。
[N:0.004~0.012%]
N(氮)是与Al结合而形成作为抑制剂发挥功能的AlN、(Al、Si)N的元素。由于N含量低于0.004%时,AlN、(Al、Si)N的形成变得不充分,因此N设定为0.004%以上。优选为0.006%以上,更优选为0.007%以上。
另一方面,如果N含量超过0.012%,则有可能在钢板中形成泡疤(空孔)。因此,将N含量设定为0.012%以下。
上述钢坯的化学组成包含上述元素,剩余部分包含Fe及杂质。然而,考虑由化合物形成带来的抑制剂功能的强化、对磁特性的影响,也可以在以下的范围内含有选择元素中的1种或2种以上来代替Fe的一部分。作为代替Fe的一部分而含有的选择元素,例如可列举出Cr、Cu、P、Sn、Sb、Ni、B、V、Nb、Mo、Ti、Bi。其中,选择元素也可以不含有,因此其下限分别为0%。另外,即使这些选择元素作为杂质而含有,也不会损害上述效果。需要说明的是,所谓“杂质”是指在工业上制造钢时,从作为原料的矿石、废料、或从制造环境等中混入的物质。
[Cr:0~0.30%]
Cr(铬)是与Si同样地对于提高电阻而降低铁损而言有效的元素。因此,也可以含有Cr。在得到上述效果的情况下,Cr含量优选为0.02%以上,更优选为0.05%以上。
另一方面,如果Cr含量超过0.30%,则磁通密度的降低成为问题,因此Cr含量的上限优选为0.30%,更优选为0.20%,进一步优选为0.12%。
[Cu:0~0.40%]
Cu(铜)也是对于提高电阻而降低铁损而言有效的元素。因此,也可以含有Cu。在得到该效果的情况下,Cu含量优选为0.05%以上,更优选为0.10%以上。
另一方面,如果Cu含量超过0.40%,则有时铁损降低效果饱和,并且在热轧时成为“铜鳞状折叠”的表面瑕疵的原因。因此,Cu含量的上限优选为0.40%,更优选为0.30%,进一步优选为0.20%。
[P:0~0.50%]
P(磷)也是对于提高电阻而降低铁损而言有效的元素。因此,也可以含有P。在得到该效果的情况下,P含量优选为0.005%以上,更优选为0.010%以上。
另一方面,如果P含量超过0.50%,则有时轧制性产生问题。因此,P含量的上限优选为0.50%,更优选为0.20%,进一步优选为0.15%。
[Sn:0~0.30%]
[Sb:0~0.30%]
Sn(锡)及Sb(锑)是对于使二次再结晶稳定化、使{110}<001>取向发达而言有效的元素。因此,也可以含有Sn或Sb。在得到该效果的情况下,Sn含量优选为0.02%以上,更优选为0.05%以上。另外,Sb含量优选为0.01%以上,更优选为0.03%以上。
另一方面,如果Sn变得超过0.30%、或Sb变得超过0.30%,则有可能对磁特性造成不良影响。因此,优选将Sn含量、Sb含量的上限分别设定为0.30%。Sn含量的上限更优选为0.15%,进一步优选为0.10%。Sb含量的上限更优选为0.15%,进一步优选为0.10%。
[Ni:0~1.00%]
Ni(镍)也是对于提高电阻而降低铁损而言有效的元素。另外,Ni是在控制热轧钢板的金属组织而可提高磁特性的基础上有效的元素。因此,也可以含有Ni。在得到上述效果的情况下,Ni含量优选为0.01%以上,更优选为0.02%以上。
另一方面,如果Ni含量超过1.00%,则有时二次再结晶变得不稳定。因此,优选将Ni含量设定为1.00%以下,更优选设定为0.20%以下,进一步优选设定为0.10%以下。
[B:0~0.008%]
B(硼)是对于与N结合而形成发挥抑制剂效果的BN而言有效的元素。因此,也可以含有B。在得到上述效果的情况下,B含量优选为0.0005%以上,更优选为0.0010%以上。
另一方面,如果B含量超过0.008%,则有可能对磁特性造成不良影响。因此,B含量的上限优选为0.008%,更优选为0.005%,进一步优选为0.003%。
[V:0~0.15%]
[Nb:0~0.20%]
[Ti:0~0.015%]
V(钒)、Nb(铌)及Ti(钛)是与N、C结合而作为抑制剂发挥功能的元素。因此,也可以含有V、Nb、或Ti。在得到上述效果的情况下,V含量优选为0.002%以上,更优选为0.010%以上。Nb含量优选为0.005%以上,更优选为0.020%以上。Ti含量优选为0.002%以上,更优选为0.004%以上。
另一方面,如果钢坯以超过0.15%的范围含有V、以超过0.20%的范围含有Nb、以超过0.015%的范围含有Ti,则这些元素会残留于最终产品中,作为最终产品,有时V含量超过0.15%、Nb含量超过0.20%、或Ti含量超过0.015%。这种情况下,有可能最终产品(电磁钢板)的磁特性会劣化。
因此,V含量的上限优选为0.15%,更优选为0.10%,进一步优选为0.05%。Ti含量的上限优选为0.015%,更优选为0.010%,进一步优选为0.008%。Nb含量的上限优选为0.20%,更优选为0.10%,进一步优选为0.08%。
[Mo:0~0.10%]
Mo(钼)也是对于提高电阻而降低铁损而言有效的元素。因此,也可以含有Mo。在得到上述效果的情况下,Mo含量优选为0.005%以上,更优选为0.01%以上。
另一方面,如果Mo含量超过0.10%,则有时钢板的轧制性产生问题。因此,Mo含量的上限优选为0.10%,更优选为0.08%,进一步优选为0.05%。
[Bi:0~0.010%]
Bi(铋)是对于将硫化物等析出物稳定化而强化作为抑制剂的功能而言有效的元素。因此,也可以含有Bi。在得到上述效果的情况下,Bi含量优选为0.001%以上,更优选为0.002%以上。
另一方面,如果Bi含量超过0.010%,则有时对磁特性造成不良影响。因此,Bi含量的上限优选为0.010%,更优选为0.008%,进一步优选为0.006%。
上述的化学组成只要通过钢的一般的分析方法进行测定即可。例如,化学组成只要使用ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry,电感耦合等离子体发射光谱法)进行测定即可。需要说明的是,sol.Al只要使用将试样用酸进行加热分解后的滤液、通过ICP-AES进行测定即可。另外,C及S只要使用燃烧-红外线吸收法进行测定即可,N只要使用不活泼气体融解-热导率法进行测定即可,O只要使用不活泼气体融解-非分散型红外线吸收法进行测定即可。
接着,对将上述钢坯进行热轧时的条件进行说明。
对于热轧条件没有特别限定。例如为以下的条件。
在热轧之前将板坯进行加热。将板坯装入周知的加热炉或周知的均热炉中进行加热。作为1个方法,将板坯加热至1280℃以下。通过将板坯的加热温度设定为1280℃以下,例如能够避免在高于1280℃的温度下进行加热时的各种问题(需要专用的加热炉、及熔融氧化皮量多等)。板坯的加热温度的下限值没有特别限定。在加热温度过低的情况下,有时热轧变得困难,生产率降低。因此,加热温度只要在1280℃以下的范围内考虑生产率而设定即可。板坯的加热温度的优选的下限为1100℃。板坯的加热温度的优选的上限为1250℃。
另外,作为其它的方法,将板坯加热至1320℃以上的高温度。通过加热至1320℃以上的高温,使AlN、Mn(S,Se)熔解,通过在之后的工序中使其微细析出,能够稳定地表现出二次再结晶。
也可以省略板坯加热工序其本身,在铸造后在板坯的温度下降之前开始热轧。
接着,对于加热后的板坯,实施使用了热轧机的热轧,制造热轧钢板。热轧机例如具备粗轧机和配置于粗轧机的下游的精轧机。粗轧机具备排成一列的粗轧机架。各粗轧机架包含上下配置的多个辊。精轧机也同样地具备排成一列的精轧机架。各精轧机架包含上下配置的多个辊。将加热后的钢材通过粗轧机而轧制后,进一步通过精轧机进行轧制,制造热轧钢板。
热轧工序中的最终温度(利用精轧机最后将钢板压下的精轧机架的出口侧的钢板温度)例如为700~1150℃。通过以上的热轧工序,制造热轧钢板。
<热轧板退火工序>
在热轧板退火工序中,根据需要,对通过热轧工序而得到的热轧钢板进行退火(热轧板退火)而得到热轧退火板。本实施方式中,将热轧板退火工序后的钢板称为热轧退火板。
热轧板退火以将热轧时产生的不均匀组织尽可能均匀化、控制作为抑制剂的AlN的析出(微细析出)、控制第二相/固溶碳等作为目的而进行。退火条件只要根据目的而选择公知的条件即可。例如在将热轧时产生的不均匀组织均匀化的情况下,将热轧钢板在750~1200℃的退火温度(热轧板退火炉中的炉温)下保持30~600秒。
热轧板退火并非必须进行,热轧板退火工序的实施的有无只要根据对最终制造的方向性电磁钢板所要求的特性及制造成本来决定即可。
<热轧板酸洗工序>
在热轧板酸洗工序中,对于热轧工序后的热轧钢板、或在进行了热轧板退火的情况下对于热轧板退火工序后的热轧退火板,根据需要,为了除去生成于表面的氧化皮,进行酸洗。对于酸洗条件没有特别限定,只要以公知的条件进行即可。
<冷轧工序>
在冷轧工序中,对于热轧工序后、热轧板退火工序后、或热轧板酸洗工序后的热轧钢板或热轧退火板,实施一次或插有中间退火的两次以上的冷轧而制成冷轧钢板。本实施方式中,将冷轧工序后的钢板称为冷轧钢板。
最终的冷轧中的优选的冷轧率(不进行中间退火的累积冷轧率、或进行了中间退火后的累积冷轧率)优选为80%以上,更优选为90%以上。最终的冷轧率的优选的上限为95%。
这里,最终的冷轧率(%)如下来定义。
最终的冷轧率(%)=(1-最终的冷轧后的钢板的板厚/最终的冷轧前的钢板的板厚)×100
<脱碳退火工序>
在脱碳退火工序中,对于通过冷轧工序而制造的冷轧钢板,根据需要进行磁畴控制处理后,实施脱碳退火而使其一次再结晶。另外,在脱碳退火中,将对磁特性造成不良影响的C从钢板中除去。本实施方式中,将脱碳退火工序后的钢板称为脱碳退火板。
为了上述的目的,在脱碳退火中,在氧化度即PH2O/PH2为0.18~0.80的气氛下、在退火温度750~900℃下进行10~600秒保持。需要说明的是,氧化度即PH2O/PH2可以通过气氛中的水蒸汽分压PH2O(atm)与氢分压PH2(atm)之比来定义。
如果氧化度(PH2O/PH2)低于0.18,则急速地形成外部氧化型的致密的氧化硅(SiO2),阻碍碳向体系外的放散,因此产生脱碳不良。另一方面,如果超过0.80,则钢板表面的氧化覆膜变厚而除去变得困难。
此外,如果退火温度低于750℃,则产生脱碳不良,最终退火后的磁性会劣化。另一方面,如果超过900℃,则一次再结晶粒径超过所期望的尺寸,因此最终退火后的磁性会劣化。
此外,如果保持时间低于10秒,则无法充分地进行脱碳。另一方面,如果超过600秒,则一次再结晶粒径超过所期望的尺寸,因此最终退火后的磁性会劣化。
需要说明的是,也可以根据上述的氧化度(PH2O/PH2)来控制至退火温度为止的升温过程中的加热速度。例如,在进行包含感应加热的加热的情况下,只要将平均加热速度设定为5~1000℃/秒即可。另外,在进行包含通电加热的加热的情况下,只要将平均加热速度设定为5~3000℃/秒即可。
此外,在脱碳退火工序中,也可以进一步在上述的保持之前、途中、之后的任一个或两个以上的阶段进行在含有氨的气氛中进行退火而将冷轧钢板氮化的氮化处理。在板坯加热温度低的情况下,优选脱碳退火工序包含氮化处理。通过在脱碳退火工序中进一步进行氮化处理,由于在最终退火工序的二次再结晶前生成AlN、(Al,Si)N等抑制剂,因此能够稳定地表现出二次再结晶。
对于氮化处理的条件没有特别限定,但优选按照氮含量增加0.003%以上、优选增加0.005%以上、进一步优选增加0.007%以上的方式进行氮化处理。如果氮(N)含量达到0.030%以上,则效果饱和,因此也可以按照达到0.030%以下的方式进行氮化处理。
对于氮化处理的条件没有特别限定,只要以公知的条件来进行即可。
例如,在0.01~0.15的氧化度(PH2O/PH2)、在750℃~900℃下保持10~600秒后进行氮化处理的情况下,不将冷轧钢板冷却至室温,在降温的过程中在含有氨的气氛中进行保持来进行氮化处理。在降温的过程中优选将氧化度(PH2O/PH2)设定为0.0001~0.01的范围。在0.01~0.15的氧化度(PH2O/PH2)、在750~900℃下保持10~600秒中进行氮化处理的情况下,只要向该氧化度的气氛气体中导入氨即可。
<退火分离剂涂布工序>
在退火分离剂涂布工序中,对于脱碳退火工序后的脱碳退火板(也包含进行氮化处理后的脱碳退火板),根据需要进行磁畴控制处理后,涂布含有Al2O3和MgO的退火分离剂,并使所涂布的退火分离剂干燥。
在退火分离剂包含MgO而不含Al2O3的情况下,在最终退火工序中,在钢板上会形成镁橄榄石覆膜。另一方面,在退火分离剂包含Al2O3而不含MgO的情况下,在钢板中会形成莫来石(3Al2O3·2SiO2)。该莫来石由于成为磁畴壁移动的障碍,因此成为方向性电磁钢板的磁特性的劣化的原因。
因此,在本实施方式的方向性电磁钢板的制造方法中,作为退火分离剂,使用含有Al2O3和MgO的退火分离剂。通过使用含有Al2O3和MgO的退火分离剂,在最终退火后,能够获得在表面不形成镁橄榄石覆膜、并且平滑表面的钢板。
退火分离剂中,将MgO与Al2O3的质量比率即MgO/(MgO+Al2O3)设定为5~50%,将水合水分设定为1.5质量%以下。
MgO/(MgO+Al2O3)低于5%时,由于形成大量的莫来石,因此铁损劣化。另一方面,超过50%时,由于形成镁橄榄石,因此铁损劣化。
此外,如果退火分离剂中的水合水分超过1.5质量%,则有时二次再结晶变得不稳定,或者在最终退火中钢板表面被氧化(形成SiO2),钢板表面的平滑化变得困难。水合水分的下限没有特别限制,例如只要设定为0.1质量%即可。
退火分离剂通过水浆料涂布或静电涂布等而涂布于钢板表面。在退火分离剂涂布工序中,也可以进一步将氮化锰、氮化铁或氮化铬等在最终退火工序中在二次再结晶前发生分解而将脱碳钢板或脱碳氮化板氮化的氮化物添加到退火分离剂中。
<最终退火工序>
对涂布有上述退火分离剂的脱碳退火板进行最终退火,制成最终退火板。通过对涂布有退火分离剂的脱碳退火板实施最终退火,二次再结晶进行,晶体取向集聚于{110}<001>取向上。本实施方式中,将最终退火工序后的钢板称为最终退火板。
具体而言,在该最终退火工序中,将涂布有退火分离剂的脱碳退火板在以体积率计含有50%以上的氢的混合气体气氛中、在1100~1200℃的温度下保持10小时以上。退火时间的上限没有特别限制,例如只要设定为30小时即可。通过这样的最终退火,在脱碳退火板中上述的二次再结晶进行,晶体取向集聚于{110}<001>取向上。
<退火分离剂除去工序>
在退火分离剂除去工序中,将在最终退火中未与钢板反应的未反应的退火分离剂等剩余的退火分离剂从最终退火后的钢板(最终退火板)的表面水洗除去。
此时,从防止水洗除去后的铁的腐蚀的观点出发,使用添加有三乙醇胺、松香胺、或硫醇中的至少1者作为抑制剂(防蚀剂)的水溶液来进行洗涤除去。通过该洗涤处理将钢板表面的铁系氢氧化物量及铁系氧化物量以合计计控制为每单面0.9g/m2以下是重要的。
在钢板表面的剩余的退火分离剂的除去不充分、钢板表面的铁系氢氧化物量及铁系氧化物量的合计超过每单面0.9g/m2的情况下,由于基底金属面的露出变得不充分,因此有时无法充分地进行钢板表面的镜面化。需要说明的是,铁系氢氧化物量及铁系氧化物量的下限没有特别限制,例如只要设定为0.01g/m2即可。
为了除去剩余的退火分离剂,除了利用包含上述的抑制剂的溶液的洗涤以外,也可以进一步使用洗涤器进行除去。通过使用洗涤器,能够可靠地进行会使绝缘覆膜形成工序中的润湿性恶化的剩余的退火分离剂的除去。
此外,在即使进行上述处理也无法充分地除去剩余的退火分离剂的情况下,也可以在水洗除去后进行酸洗。在进行酸洗的情况下,只要使用体积比浓度低于20%的酸性溶液进行酸洗即可。例如,优选使用含有合计低于20体积%的硫酸、硝酸、盐酸、磷酸、氯酸、氧化铬水溶液、硫酸铬、高锰酸、过氧硫酸及过氧磷酸中的1种或2种以上作为酸的溶液,更优选低于10体积%。体积比浓度的下限没有特别限制,例如只要设定为0.1体积%即可。通过使用这样的溶液,能够将钢板表面的剩余的退火分离剂有效地除去。需要说明的是,体积%只要设定为以室温下的体积为基准的比率即可。
此外,在进行酸洗的情况下,优选将溶液的液温设定为20~80℃。通过将液温设定为上述范围,能够将钢板表面的剩余退火分离剂有效地除去。
<平滑化工序>
通过进行上述那样的水洗而使基底金属露出后,通过化学研磨将平均粗糙度Ra调整为0.10μm以下,从而得到表面(基底金属面)得以平滑化的最终退火板。平均粗糙度Ra的下限没有特别限制,例如只要设定为0.01μm即可。
作为用于得到平滑面的化学研磨而已知的方法之一有电解研磨。作为电解研磨的方法,例如通过在磷酸和无水铬酸的电解液中进行电研磨,能够实现钢板表面的平滑化。此外,还有使用在双氧水中添加了少量的氢氟酸的溶液的方法。
在最终退火板的表面存在凸凹的情况下,起因于由于该凸凹而妨碍磁畴壁的移动,从而铁损增大。然而,通过在使最终退火板的表面充分露出后进行上述的平滑化处理,可得到平坦度极高的平滑状态,通过磁畴壁的移动顺利地进行,可得到高的铁损改善效果。
<绝缘覆膜形成工序>
在绝缘覆膜形成工序中,对平滑化后的最终退火板的表面,根据需要进行磁畴控制处理后,形成绝缘覆膜。本实施方式中,将绝缘覆膜形成工序后的钢板称为方向性电磁钢板。
该绝缘覆膜通过对方向性电磁钢板赋予张力,使作为钢板单板的铁损降低,并且在将方向性电磁钢板层叠而使用时,通过确保钢板间的电绝缘性,使作为铁心的铁损降低。
绝缘覆膜通过在最终退火板的表面涂布包含磷酸盐、胶体二氧化硅、及结晶性磷化物的覆膜形成溶液(覆膜形成溶液1)并在350~1150℃下烧结、在降温后涂布包含磷酸盐及胶体二氧化硅但不含结晶性磷化物的覆膜形成溶液(覆膜形成溶液2)并在350~1150℃下烧结而形成。
结晶性磷化物只要使用作为化学组成、Fe、Cr、P、及O的合计含量为70原子%~100原子%、Si被限制在10原子%以下的化合物即可。需要说明的是,该化合物的上述化学组成的剩余部分只要为杂质即可。例如,结晶性磷化物优选为Fe3P、Fe2P、FeP、FeP2、Fe2P2O7、(Fe、Cr)3P、(Fe、Cr)2P、(Fe、Cr)P、(Fe、Cr)P2、(Fe、Cr)2P2O7中的1种或2种以上。结晶性磷化物的平均直径优选为10~300nm。此外,覆膜形成溶液1中的结晶性磷化物以质量比计优选为3~35%。
该覆膜形成溶液1只要设定为除了控制上述的结晶性磷化物以外、与覆膜形成溶液2同等的溶液即可。例如,覆膜形成溶液1只要以磷酸盐或胶体二氧化硅作为主要成分即可。
覆膜形成溶液1的烧结只要烧结温度为350~1150℃即可。此外,烧结时间优选为5~300秒,优选是气氛的氧化度PH2O/PH2为0.001~1.0的水蒸汽-氮-氢的混合气体。通过该热处理,能够形成具有含结晶性磷化物层的绝缘覆膜。为了再现性良好地发挥绝缘覆膜的密合性,更优选将氧化度PH2O/PH2设定为0.01~0.15、将烧结温度设定为650~950℃、将保持时间设定为30~270秒。热处理后,为了使结晶性磷化物不发生化学变化(在冷却时结晶性磷化物不会摄入水分而发生变质),较低地保持气氛的氧化度而将钢板冷却。冷却气氛优选氧化度PH2O/PH2为0.01以下的气氛。
进行覆膜形成溶液1的烧结,例如降温至室温(约25℃)后,涂布以磷酸盐和胶体二氧化硅作为主体且不含结晶性磷化物的覆膜形成溶液2并进一步烧结。
覆膜形成溶液2的烧结只要烧结温度为350~1150℃即可。此外,烧结时间优选为5~300秒,优选是气氛的氧化度PH2O/PH2为0.001~1.0的水蒸汽-氮-氢的混合气体。通过该热处理,能够在具有含结晶性磷化物层的绝缘覆膜上形成不具有含结晶性磷化物层的绝缘覆膜。为了再现性良好地发挥绝缘覆膜的密合性,更优选将氧化度PH2O/PH2设定为0.01~0.15、将烧结温度设定为650~950℃、将保持时间设定为30~270秒。在热处理后,为了使结晶性磷化物不发生化学变化(在冷却时结晶性磷化物不会摄入水分而发生变质),较低地保持气氛的氧化度而将钢板冷却。冷却气氛优选氧化度PH2O/PH2为0.01以下的气氛。
通过上述的两次烧结退火,能够形成含结晶性磷化物层和与含结晶性磷化物层上相接的不含有结晶性磷化物的绝缘覆膜。
覆膜形成溶液1及覆膜形成溶液2例如可以通过辊涂机等湿式涂布方法而涂布于钢板表面。
<磁畴控制工序>
在本实施方式的方向性电磁钢板的制造方法中,也可以在冷轧工序与脱碳退火工序之间(第1)、脱碳退火工序与退火分离剂涂布工序之间(第2)、平滑化工序与绝缘覆膜形成工序之间(第3)、或绝缘覆膜形成工序后(第4)的任一时候,具备进行磁畴控制处理的磁畴控制工序。
通过进行磁畴控制处理,能够使方向性电磁钢板的铁损进一步降低。在冷轧工序与脱碳退火工序之间、脱碳退火工序与退火分离剂涂布工序之间、平滑化工序与绝缘覆膜形成工序之间进行磁畴控制处理的情况下,只要通过沿着轧制方向以规定间隔形成沿与轧制方向交叉的方向延伸的线状或点状的槽部,将180°磁畴的宽度缩窄(将180°磁畴细分化)即可。
此外,在绝缘覆膜形成工序后进行磁畴控制处理的情况下,只要通过沿着轧制方向以规定间隔形成沿与轧制方向交叉的方向延伸的线状、或点状的应力应变部、槽部,将180°磁畴的宽度缩窄(将180°磁畴细分化)即可。
在形成应力应变部的情况下,可以应用激光束照射、电子射线照射等。另外,在形成槽部的情况下,可以应用利用齿轮等的机械性槽形成法、通过电解蚀刻来形成槽的化学性槽形成法、及利用激光照射的热槽形成法等。在通过应力应变部、槽部的形成而在绝缘覆膜中产生损伤而绝缘性等特性劣化的情况下,也可以再次形成绝缘覆膜而修补损伤。
将本实施方式的方向性电磁钢板的制造方法的一个例子示于图1中。由实线围成的工表示为必须工序、由虚线围成的工序表示为任选的工序。
通过本实施方式的制造方法而制造的方向性电磁钢板不具有镁橄榄石覆膜。具体而言,该方向性电磁钢板具有母钢板、相接地配置于母钢板上的中间层、和相接地配置于中间层上且成为最表面的绝缘覆膜。
方向性电磁钢板不具有镁橄榄石覆膜只要通过X射线衍射来确认即可。例如,只要对从方向性电磁钢板除去绝缘覆膜后的表面进行X射线衍射,将所得到的X射线衍射光谱与PDF(Powder Diffraction File,粉末衍射文件)进行对照即可。例如,对于镁橄榄石(Mg2SiO4)的鉴定,只要使用JCPDS编号:34-189即可。本实施方式中,在上述X射线衍射光谱的主要构成不为镁橄榄石的情况下,判断为方向性电磁钢板不具有镁橄榄石覆膜。
需要说明的是,为了从方向性电磁钢板仅除去绝缘覆膜,只要将具有覆膜的方向性电磁钢板浸渍于高温的碱溶液中即可。具体而言,通过在NaOH:30质量%+H2O:70质量%的氢氧化钠水溶液中、在80℃下浸渍20分钟后,进行水洗并干燥,可以从方向性电磁钢板除去绝缘覆膜。通常,通过碱溶液仅绝缘覆膜被溶解,通过盐酸等酸性溶液而镁橄榄石覆膜被溶解。
通过本实施方式的制造方法而制造的方向性电磁钢板由于不具有镁橄榄石覆膜,因此磁特性(铁损特性)优异,并且由于最优地控制了各个制造工序,因此覆膜密合性也优异。
实施例1
接着,对本发明的实施例进行说明,但实施例中的条件是为了确认本发明的可实施性及效果而采用的一个条件例,本发明并不限定于该一个条件例。只要在不脱离本发明的主旨的情况下达成本发明的目的,则本发明可采用各种条件。
在表1中所示的化学组成的钢板坯中,将No.A13及No.a11加热至1350℃而供于热轧,制成板厚为2.6mm的热轧钢板。对该热轧钢板实施一次冷轧或插有中间退火的多次冷轧,制成最终板厚为0.22mm的冷轧钢板。对于板厚为0.22mm的冷轧钢板,作为脱碳退火工序,在表2~4中所示的条件下实施脱碳退火。
此外,在表1中所示的化学组成的钢板坯中,将No.A13及No.a11以外加热至1150℃而供于热轧,制成板厚为2.6mm的热轧钢板。对该热轧钢板实施一次的冷轧或插有中间退火的多次的冷轧,制成最终板厚为0.22mm的冷轧钢板。对于板厚为0.22mm的冷轧钢板,作为脱碳退火工序,在表2~4中所示的条件下实施脱碳退火,在降温过程中实施在含有氨的气氛中进行保持的氮化处理。
需要说明的是,对于No.B5,对热轧后的热轧钢板实施在1100℃下进行退火、接着在900℃下进行退火的热轧板退火后,进行酸洗而将生成于表面的氧化皮除去,然后进行冷轧。
另外,在脱碳退火时,至退火温度为止的升温过程中的平均加热速度低于15℃/秒。
对于上述的脱碳退火后的脱碳退火板,涂布Al2O3与MgO的比率(MgO/(Al2O3+MgO))及水合水分为表2~4中所示的条件的退火分离剂并使其干燥。
对于涂布有退火分离剂的脱碳退火板,在1100℃或1200℃下进行了最终退火。最终退火条件设定为表5~7中记载的那样。
在最终退火后,如表5~7中所示的那样,使用添加了三乙醇胺、松香胺、或硫醇中的至少1者即抑制剂的溶液将剩余的退火分离剂从最终退火板的表面水洗除去。
此外,在上述的水洗后根据需要进行酸洗。例如,对于表中“有”酸洗的实施例,通过将剩余的退火分离剂浸渍于硫酸水溶液中(硫酸的体积比浓度:1体积%)而进行酸洗。
从最终退火板上除去剩余的退火分离剂之后,通过在磷酸和无水铬酸的电解液中的化学研磨(电解研磨),将最终退火板的表面设定为表8~10中所示的平均粗糙度Ra。
之后,涂布在包含磷酸镁及胶体二氧化硅、根据需要包含无水铬酸的水溶液的100质量份中搅拌混合结晶性磷化物的微粉末10质量份而得到的覆膜形成溶液(覆膜形成溶液1),在表8~10中所示的温度下进行烧结。降温后,进一步涂布不含结晶性磷化物、以胶体二氧化硅和磷酸盐作为主体、根据需要添加无水铬酸的覆膜形成溶液(覆膜形成溶液2),在表8~10中所示的温度下进行烧结。进行这些烧结而形成绝缘覆膜。
需要说明的是,覆膜形成溶液1中混合的结晶性磷化物为Fe3P、Fe2P、FeP、FeP2、Fe2P2O7、(Fe、Cr)3P、(Fe、Cr)2P、(Fe、Cr)P、(Fe、Cr)P2、(Fe、Cr)2P2O7中的至少1种。
此外,在各实施例中,如表11~13中所示的那样,在冷轧工序与脱碳退火工序之间(第1)、脱碳退火工序与退火分离剂涂布工序之间(第2)、平滑化工序与绝缘覆膜形成工序之间(第3)、或绝缘覆膜形成工序后(第4)的任一时刻进行磁畴控制处理。在磁畴控制处理中,或者通过机械性或化学性的方式形成槽,或者使用激光而形成应力应变部或槽部。
对于所得到的方向性电磁钢板No.B1~B41、b1~b31,评价铁损及覆膜密合性。
<铁损>
对于从所制作的方向性电磁钢板采集的试样,基于JIS C 2550-1:2000,通过爱普斯坦试验而测定励磁磁通密度1.7T、频率50Hz下的铁损W17/50(W/kg)。对于进行了磁畴控制的方向性电磁钢板,将铁损W17/50低于0.7W/kg的情况判断为合格。另外,对于未进行磁畴控制的方向性电磁钢板,将铁损W17/50低于1.0W/kg的情况判断为合格。
<覆膜密合性>
将从所制造的方向性电磁钢板采集的试验片卷绕到直径为20mm的圆筒上(180°弯曲),以开卷时的覆膜残留面积率来评价绝缘覆膜的覆膜密合性。绝缘覆膜的覆膜密合性的评价通过目视来判断绝缘覆膜的剥离的有无。将未从钢板剥离、覆膜残留面积率为90%以上设定为◎(VERY GOOD,非常好),将85%以上且低于90%设定为〇(GOOD,好),将80%以上且低于85%设定为△(POOR,差),将低于80%设定为×(NG,不好)。将覆膜残留面积率为85%以上的情况(上述的◎或〇)判断为合格。
将其结果示于表11~13中。
表1
Figure BDA0003157619820000231
表2
Figure BDA0003157619820000241
表3
Figure BDA0003157619820000251
表4
Figure BDA0003157619820000261
表5
Figure BDA0003157619820000271
※1:氢-氮混合气氛气体(以氢的比率来记载)
※2:铁系氢氧化物量及铁系氧化物量(每单面)
表6
Figure BDA0003157619820000281
※1:氢-氮混合气氛气体(以氢的比率来记载)
※2:铁系氢氧化物量及铁系氧化物量(每单面)
表7
Figure BDA0003157619820000291
※1:氢-氮混合气氛气体(以氢的比率来记载)
※2:铁系氢氧化物量及铁系氧化物量(每单面)
表8
Figure BDA0003157619820000301
表9
Figure BDA0003157619820000311
表10
Figure BDA0003157619820000321
表11
Figure BDA0003157619820000331
表12
Figure BDA0003157619820000341
表13
Figure BDA0003157619820000351
如由表1~13可知的那样,作为发明例的No.B1~B41全部的工序条件满足本发明范围,铁损低。此外,覆膜密合性也优异。
与此相对,关于作为比较例的No.b1~b31,1个以上的工序条件脱离本发明范围,铁损和/或覆膜密合性差。需要说明的是,关于比较例No.b23,由于无法轧制,因此未进行之后的评价。
产业上的可利用性
根据本发明的上述方案,能够提供不具有镁橄榄石覆膜、并且磁特性及覆膜密合性优异的方向性电磁钢板的制造方法。由于所得到的方向性电磁钢板的磁特性及覆膜密合性优异,因此本发明在产业上的可利用性高。

Claims (6)

1.一种方向性电磁钢板的制造方法,其特征在于,具备以下工序:
将钢坯进行热轧而得到热轧钢板的热轧工序,所述钢坯作为化学组成,以质量%计含有:
C:0.030~0.100%、
Si:0.80~7.00%、
Mn:0.01~1.00%、
S及Se的合计:0~0.060%、
酸可溶性Al:0.010~0.065%、
N:0.004~0.012%、
Cr:0~0.30%、
Cu:0~0.40%、
P:0~0.50%、
Sn:0~0.30%、
Sb:0~0.30%、
Ni:0~1.00%、
B:0~0.008%、
V:0~0.15%、
Nb:0~0.20%、
Mo:0~0.10%、
Ti:0~0.015%、
Bi:0~0.010%,
剩余部分由Fe及杂质构成;
对所述热轧钢板实施冷轧而得到冷轧钢板的冷轧工序;
对所述冷轧钢板进行脱碳退火而得到脱碳退火板的脱碳退火工序;
在所述脱碳退火板上涂布含有Al2O3和MgO的退火分离剂并使其干燥的退火分离剂涂布工序;
对涂布有所述退火分离剂的所述脱碳退火板进行最终退火而得到最终退火板的最终退火工序;
从所述最终退火板的表面除去剩余的退火分离剂的退火分离剂除去工序;
将除去了所述剩余的退火分离剂的所述最终退火板的表面进行平滑化的平滑化工序;以及
在平滑化后的所述最终退火板的表面形成绝缘覆膜的绝缘覆膜形成工序,
在所述脱碳退火工序中,
在氧化度即PH2O/PH2为0.18~0.80的气氛下、退火温度750~900℃下进行10~600秒保持,
在所述退火分离剂涂布工序中,
将所述退火分离剂中的所述MgO与所述Al2O3的质量比率即MgO/(MgO+Al2O3)设定为5~50%,将水合水分设定为1.5质量%以下,
在所述最终退火工序中,
将涂布有所述退火分离剂的所述脱碳退火板在以体积率计含有50%以上的氢的混合气体气氛中、在1100~1200℃的温度下保持10小时以上,
在所述退火分离剂除去工序中,
使用添加了三乙醇胺、松香胺、或硫醇中的至少1者即抑制剂的溶液将剩余的退火分离剂从所述最终退火板的表面水洗除去,使钢板表面的铁系氢氧化物量及铁系氧化物量为每单面为0.9g/m2以下,
在所述平滑化工序中,
通过化学研磨,使除去了所述剩余的退火分离剂的所述最终退火板的表面的平均粗糙度Ra达到0.1μm以下,
在所述绝缘覆膜形成工序中,
涂布包含磷酸盐、胶体二氧化硅、及结晶性磷化物的覆膜形成溶液并在350~1150℃下烧结,降温后,涂布包含磷酸盐及胶体二氧化硅但不含结晶性磷化物的覆膜形成溶液并在350~1150℃下进行烧结,从而形成绝缘覆膜。
2.根据权利要求1所述的方向性电磁钢板的制造方法,其特征在于,在所述热轧工序与所述冷轧工序之间,具备将所述热轧钢板进行退火的热轧板退火工序、或进行酸洗的热轧板酸洗工序中的至少1者。
3.根据权利要求1或2所述的方向性电磁钢板的制造方法,其特征在于,在所述脱碳退火工序中,进行将所述冷轧钢板在含有氨的气氛中进行退火的氮化处理。
4.根据权利要求1或2所述的方向性电磁钢板的制造方法,其特征在于,在所述冷轧工序与所述脱碳退火工序之间、所述脱碳退火工序与所述退火分离剂涂布工序之间、所述平滑化工序与所述绝缘覆膜形成工序之间、或所述绝缘覆膜形成工序后的任一时候,具备进行磁畴控制处理的磁畴控制工序。
5.根据权利要求1或2所述的方向性电磁钢板的制造方法,其特征在于,在所述退火分离剂除去工序中,在所述水洗后,使用体积比浓度低于20%的酸性溶液进行酸洗。
6.根据权利要求1或2所述的方向性电磁钢板的制造方法,其特征在于,所述钢坯作为化学组成以质量%计含有选自由:
Cr:0.02~0.30%、
Cu:0.05~0.40%、
P:0.005~0.50%、
Sn:0.02~0.30%、
Sb:0.01~0.30%、
Ni:0.01~1.00%、
B:0.0005~0.008%、
V:0.002~0.15%、
Nb:0.005~0.20%、
Mo:0.005~0.10%、
Ti:0.002~0.015%及
Bi:0.001~0.010%、
构成的组中的至少1种。
CN202080008839.3A 2019-01-16 2020-01-16 方向性电磁钢板的制造方法 Active CN113272454B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019005085 2019-01-16
JP2019-005085 2019-01-16
PCT/JP2020/001175 WO2020149336A1 (ja) 2019-01-16 2020-01-16 方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
CN113272454A CN113272454A (zh) 2021-08-17
CN113272454B true CN113272454B (zh) 2023-04-18

Family

ID=71613649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080008839.3A Active CN113272454B (zh) 2019-01-16 2020-01-16 方向性电磁钢板的制造方法

Country Status (6)

Country Link
US (1) US11946113B2 (zh)
EP (1) EP3913081A4 (zh)
JP (1) JP7269504B2 (zh)
KR (1) KR102583079B1 (zh)
CN (1) CN113272454B (zh)
WO (1) WO2020149336A1 (zh)

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224499B2 (zh) 1973-01-22 1977-07-01
US4087812A (en) * 1975-12-23 1978-05-02 International Business Machines Corporation Digital-to-analog and analog-to-digital converter circuit
JPS585968B2 (ja) * 1977-05-04 1983-02-02 新日本製鐵株式会社 超低鉄損一方向性電磁鋼板の製造方法
JP2683036B2 (ja) * 1987-06-10 1997-11-26 川崎製鉄株式会社 焼鈍分離剤
JPH0347975A (ja) * 1989-07-13 1991-02-28 Kawasaki Steel Corp 低鉄損一方向性珪素鋼板
JP2583357B2 (ja) 1990-12-28 1997-02-19 新日本製鐵株式会社 低鉄損一方向性珪素鋼板の製造方法
JP2530521B2 (ja) * 1991-01-04 1996-09-04 新日本製鐵株式会社 鉄損の低い方向性電磁鋼板の製造方法
JPH05279864A (ja) 1992-03-31 1993-10-26 Nippon Steel Corp 方向性珪素鋼板の絶縁被膜形成方法
JP2647341B2 (ja) * 1994-04-15 1997-08-27 新日本製鐵株式会社 超低鉄損方向性電磁鋼板の製造法
JPH08222423A (ja) * 1995-02-13 1996-08-30 Kawasaki Steel Corp 鉄損の低い方向性けい素鋼板およびその製造方法
JP3178988B2 (ja) * 1995-03-31 2001-06-25 新日本製鐵株式会社 密着性の優れた一方向性電磁鋼板の絶縁被膜形成方法
JPH09118922A (ja) * 1995-10-23 1997-05-06 Nippon Steel Corp 占積率の高い方向性珪素鋼板の製造方法
JP3386742B2 (ja) * 1998-05-15 2003-03-17 川崎製鉄株式会社 磁気特性に優れる方向性電磁鋼板の製造方法
JP3386751B2 (ja) * 1999-06-15 2003-03-17 川崎製鉄株式会社 被膜特性と磁気特性に優れた方向性けい素鋼板の製造方法
EP1298225B1 (en) 2001-04-23 2010-04-07 Nippon Steel Corporation Method for producing unidirectional silicon steel sheet free of inorganic mineral coating film
JP4119635B2 (ja) 2001-06-07 2008-07-16 新日本製鐵株式会社 脱炭性の良好な鏡面方向性電磁鋼板の製造方法
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
US9175362B2 (en) * 2010-02-18 2015-11-03 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing grain-oriented electrical steel sheet
PL2548977T3 (pl) * 2010-03-17 2015-10-30 Nippon Steel & Sumitomo Metal Corp Sposób wytwarzania elektromagnetycznie zorientowanego arkusza stali
CN102952931B (zh) * 2011-08-30 2014-10-29 宝山钢铁股份有限公司 一种无玻璃膜取向硅钢制造方法及退火隔离剂
JP5672273B2 (ja) * 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP2878689B1 (en) 2012-07-26 2018-09-05 JFE Steel Corporation Method of producing grain-oriented electrical steel sheet
KR101977440B1 (ko) 2012-12-28 2019-05-10 제이에프이 스틸 가부시키가이샤 방향성 전기 강판의 제조 방법 및 방향성 전기 강판 제조용의 1 차 재결정 강판
KR101762339B1 (ko) 2015-12-22 2017-07-27 주식회사 포스코 방향성 전기강판 및 방향성 전기강판의 제조방법
JP2019005085A (ja) 2017-06-22 2019-01-17 サミー株式会社 回胴式遊技機
US11186891B2 (en) 2017-07-13 2021-11-30 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing same
US20200123632A1 (en) 2017-07-13 2020-04-23 Nippon Steel Corporation Grain-oriented electrical steel sheet
EP3770290B1 (en) 2018-03-22 2024-04-24 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
KR102483579B1 (ko) 2018-07-13 2023-01-03 닛폰세이테츠 가부시키가이샤 방향성 전자 강판용 원판, 방향성 전자 강판용 원판의 재료가 되는 방향성 규소 강판, 방향성 전자 강판용 원판의 제조 방법, 및 방향성 전자 강판의 제조 방법

Also Published As

Publication number Publication date
US20220098689A1 (en) 2022-03-31
JPWO2020149336A1 (ja) 2021-11-25
JP7269504B2 (ja) 2023-05-09
BR112021013519A2 (pt) 2021-09-14
KR102583079B1 (ko) 2023-10-04
KR20210111809A (ko) 2021-09-13
US11946113B2 (en) 2024-04-02
WO2020149336A1 (ja) 2020-07-23
EP3913081A4 (en) 2022-10-05
EP3913081A1 (en) 2021-11-24
CN113272454A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
KR102579758B1 (ko) 방향성 전자 강판의 제조 방법
CN113302318B (zh) 方向性电磁钢板的制造方法
CN113272459B (zh) 方向性电磁钢板的制造方法
CN113302317B (zh) 方向性电磁钢板的制造方法
KR102576546B1 (ko) 방향성 전자 강판의 제조 방법
CN113272454B (zh) 方向性电磁钢板的制造方法
CN113286902B (zh) 方向性电磁钢板的制造方法
KR102574232B1 (ko) 방향성 전자 강판의 제조 방법
CN113286905B (zh) 方向性电磁钢板的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant