CN110391297A - 具有改进的终止结构的氮化镓晶体管 - Google Patents

具有改进的终止结构的氮化镓晶体管 Download PDF

Info

Publication number
CN110391297A
CN110391297A CN201910328305.8A CN201910328305A CN110391297A CN 110391297 A CN110391297 A CN 110391297A CN 201910328305 A CN201910328305 A CN 201910328305A CN 110391297 A CN110391297 A CN 110391297A
Authority
CN
China
Prior art keywords
substrate
transistor
hole injection
layer
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910328305.8A
Other languages
English (en)
Other versions
CN110391297B (zh
Inventor
D·M·金策
M·J·哈姆丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Navidas Semiconductor Co ltd
Original Assignee
Navidas Semiconductor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Navidas Semiconductor Co filed Critical Navidas Semiconductor Co
Publication of CN110391297A publication Critical patent/CN110391297A/zh
Application granted granted Critical
Publication of CN110391297B publication Critical patent/CN110391297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • H01L29/7832Field effect transistors with field effect produced by an insulated gate with multiple gate structure the structure comprising a MOS gate and at least one non-MOS gate, e.g. JFET or MESFET gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本申请案涉及一种具有改进的终止结构的氮化镓晶体管。一种氮化镓晶体管包含定位于栅极与漏极之间的一或多个P型空穴注入结构。所述P型空穴注入结构经配置以在晶体管沟道中注入空穴以与捕获到的载流子(例如,电子)组合,因此沟道的电导率较不易受施加到所述晶体管的先前电压电位影响。

Description

具有改进的终止结构的氮化镓晶体管
相关申请的交叉引用
本申请要求2018年4月23日提交的第62/661,585号美国临时专利申请“具有改进的终止结构的氮化镓晶体管(GALLIUM NITRIDE TRANSISTOR WITH IMPROVEDTERMINATION)”的优先权,所述美国临时专利申请出于所有目的而特此以全文引用的方式并入。
技术领域
本发明大体上涉及半导体装置,且确切地说,涉及基于氮化镓(GaN)的装置。
背景技术
在半导体技术中,GaN用以形成各种集成电路装置,例如高功率场效应晶体管、金属绝缘体半导体场效应晶体管(metal insulator semiconductor field effecttransistor,MISFET)、高频晶体管、高功率肖特基整流器和高电子迁移率晶体管(highelectron mobility transistor,HEMT)。可通过生长可生长于硅、碳化硅、蓝宝石、氮化镓或其它基质上的外延层来形成这些装置。常常使用AlGaN与GaN的异质外延接面来形成装置。此结构已知在接面处形成高电子迁移率二维电子气体(two-dimensional electrongas,2DEG)。有时,添加额外层以改进或修改2DEG中的电子的电荷密度和迁移率。
在一些应用中,可能需要具有改进GaN装置的可靠性和/或性能的改进的终止结构。
发明内容
本公开的一些实施例涉及基于镓氮化镓(GaN)的晶体管,其包含一或多个空穴注入结构以缓解引起电流崩溃的捕获到的载流子的影响。GaN晶体管包含到衬底的源极、栅极和漏极连接。沟道形成于所述源极与所述漏极之间,且取决于所述源极与所述栅极之间施加的电压电位而允许或阻挡穿过所述沟道的电流流动。一或多个P型结构形成于所述衬底上且定位于所述沟道中。所述P型结构经配置以在所述沟道中注入空穴以与捕获到的载流子组合并中和所述载流子。中和所述捕获到的载流子使得所述沟道能够更导电且较不易受施加到所述晶体管的先前电压电位影响。
在一些实施例中,一种晶体管包括半导体衬底和形成于所述衬底中且包含与所述衬底的一部分接触的源极电极的源极区。漏极区形成于所述衬底中且与所述源极区分离。栅极区形成于所述衬底中且包含与所述衬底的一部分接触的栅极堆叠,其中所述栅极区定位于所述源极区与所述漏极区之间。空穴注入区形成于所述衬底中且包含与所述衬底的一部分接触的P型层,其中所述空穴注入区定位于所述栅极区与所述漏极区之间。介电层形成于所述P型层的第一部分上方且与其接触。连续金属层(1)形成于所述衬底的所述漏极区上方且与其接触以形成漏极电极,(2)形成于所述P型层的第二部分上方且与其接触以形成空穴注入电极,且(3)形成于所述介电层的一部分上方与其接触以形成用于所述空穴注入区的场板。
在一些实施例中,所述连续金属层跨越所述衬底的所述漏极区延伸,与所述P型层的第一侧表面邻接并跨越所述P型层的顶表面的第一区延伸。在各种实施例中,所述介电层跨越所述衬底的表面延伸,与所述P型层的第二侧表面邻接并跨越所述P型层的所述顶表面的第二区延伸。在一些实施例中,所述场板跨越所述介电层延伸并在变得与所述P型层的所述第二侧表面共面之前终止。
在一些实施例中,所述连续金属层与所述P型层欧姆接触。在各种实施例中,所述晶体管进一步包括沿着所述漏极区的长度形成的多个个别空穴注入区。在各种实施例中,所述空穴注入区是第一空穴注入区,且第二空穴注入区形成于所述衬底中且定位于所述第一空穴注入区与所述栅极区之间。
在一些实施例中,所述第二空穴注入区包含与所述衬底的一部分接触且不与所述连续金属层欧姆接触的P型层。在各种实施例中,所述连续金属层形成于所述P型层的顶表面的大约二分之一上方,且所述介电层形成于所述P型层的所述顶表面的剩余部分上方。在一些实施例中,所述半导体衬底包括氮化镓。
在一些实施例中,一种晶体管包括半导体衬底和形成于所述衬底中且包含与所述衬底的一部分接触的源极电极的源极区。漏极区形成于所述衬底中且与所述源极区分离。栅极区形成于所述衬底中且包含与所述衬底的一部分接触的栅极堆叠,其中所述栅极区定位于所述源极区与所述漏极区之间。空穴注入区形成于所述衬底中且包含与所述衬底的一部分接触的P型层,其中所述空穴注入区定位于所述栅极区与所述漏极区之间。介电层跨越所述P型层的顶表面的第一区延伸。金属层(1)跨越所述衬底的漏极区延伸以形成漏极电极,(2)跨越所述P型层的所述顶表面的第二区延伸以形成空穴注入电极,且(3)跨越所述介电层的一部分延伸以形成场板。
在一些实施例中,所述场板是空穴注入区场板。在各种实施例中,所述金属层跨越所述衬底的所述漏极区延伸,与所述P型层的第一侧表面邻接,并跨越所述P型层的所述顶表面的所述第二区延伸以形成所述空穴注入电极。在一些实施例中,所述介电层跨越所述衬底的表面延伸,与所述P型层的第二侧表面邻接并跨越所述P型层的所述顶表面的所述第一区延伸。在各种实施例中,所述场板跨越所述介电层延伸并在变得与所述P型层的所述第二侧表面共面之前终止。
在一些实施例中,所述金属层与所述P型层欧姆接触。在各种实施例中,所述晶体管进一步包括沿着所述漏极区的长度形成的多个个别空穴注入区。在一些实施例中,所述空穴注入区是第一空穴注入区,且第二空穴注入区形成于所述衬底中且定位于所述第一空穴注入区与所述栅极区之间。在各种实施例中,所述第二空穴注入区包含与所述衬底的一部分接触且不与所述连续金属层欧姆接触的P型层。
在一些实施例中,一种晶体管包括半导体衬底和形成于所述衬底中且包含与所述衬底的一部分接触的源极电极的源极区。漏极区形成于所述衬底中且与所述源极区分离。栅极区形成于所述衬底中且包含与所述衬底的一部分接触的栅极堆叠,其中所述栅极区定位于所述源极区与所述漏极区之间。浮置空穴注入区形成于所述衬底中且包含与所述衬底的一部分接触的P型层,其中所述空穴注入区定位于所述栅极区与所述漏极区之间。
为了更好地理解本公开的性质和优点,应参考以下描述和附图。但是,应理解,附图中的每一个仅出于说明的目的而提供,且并不既定作为本公开的范围的限度的定义。而且,一般说来,且除非相反从描述显而易见,否则元件通常相同或至少在功能或目的上类似,在描述中不同图中的元件使用相同附图标记。
附图说明
图1说明根据本公开的实施例的基于GaN的半导体晶体管100的简化平面图;
图2说明图1中展示的基于GaN的半导体晶体管的有源区的放大部分平面图;
图3说明跨越图2中所说明的晶体管单元上的线A-A的部分横截面图;
图4说明根据本公开的实施例的基于GaN的晶体管的漏极区的简化平面图;
图5说明跨越图4中所展示的晶体管的部分横截面图;
图6说明根据本公开的实施例的基于GaN的晶体管的漏极区的简化平面图;
图7说明跨越图6中所展示的晶体管的部分横截面图;
图8说明图7中所展示的晶体管的横截面B-B;
图9说明根据本公开的实施例的基于GaN的晶体管的部分横截面图;
图10说明跨越图9中所展示的晶体管的部分横截面图C-C;
图11说明根据本公开的实施例的基于GaN的晶体管的部分横截面图;
图12说明根据本公开的实施例的基于GaN的晶体管的简化平面图;
图13说明根据本公开的实施例的基于GaN的晶体管的简化平面图;
图14说明根据本公开的实施例的基于GaN的晶体管的简化平面图;
图15说明根据本公开的实施例的基于GaN的晶体管的部分横截面图;且
图16说明根据本公开的实施例的基于GaN的晶体管的平面图。
具体实施方式
本发明的某些实施例涉及基于GaN的增强型场效应晶体管,其具有在沟道中注入空穴以缓解晶体管中的“电流崩溃”的空穴注入结构。电流崩溃是不合需要的“记忆”效应,其中装置的传导电流可取决于先前施加的电压并还取决于这些先前施加的电压存在多久。更具体地说,在晶体管操作期间,电子会捕获于外延层和/或介电层中(称为捕获到的载流子),并会排斥流经晶体管沟道的其它电子,从而使得更难以穿过2DEG层传导电流,从而穿过沟道引起电阻增大。在一些实施例中,添加一或多个空穴注入结构用以在沟道中注入空穴,因此空穴与捕获到的电子组合并中和所述电子。减少捕获到的电子引起沟道中的更低电阻,从而缓和记忆效应。
本公开的一些实施例涉及具有邻近漏极触点形成的P型空穴注入结构的基于GaN的晶体管。空穴注入电极可形成于P型空穴注入结构上,因此空穴注入电极电耦合到漏极欧姆金属。在其它实施例中,P型空穴注入结构可与漏极欧姆金属电绝缘,且可电容耦合到漏极欧姆金属。
为了更好地了解根据本公开的具有P型空穴注入结构的基于GaN的晶体管的特征和方面,通过论述根据本公开的实施例的半导体装置的若干特定实施方案来在以下章节中提供本公开的其它内容背景。这些实施例仅仅是作为实例,且其它实施例可用于其它半导体装置中,例如但不限于砷化镓、磷化铟和其它类型的半导体材料。
图1说明基于GaN的半导体晶体管100的简化平面图。如图1中所展示,晶体管100建构于衬底105上。晶体管100可具有由无源区115包围的有源区110,所述无源区包含用以形成到晶体管的电连接的源极端120、栅极端125和漏极端130。有源区110可具有跨越有源区重复的一或多个晶体管“单元”,如在本文中更详细地论述。晶体管100是根据本公开的实施例的具有空穴注入器的GaN晶体管的说明性实例,但是,本领域的技术人员将了解,在其它实施例中,GaN晶体管100可具有不同于在本文中阐述的具体实例的大小、形状和配置,且本公开决不限于在本文中阐述的实例。
图2说明基于GaN的晶体管的可形成图1中的晶体管100的有源区110的一部分的漏极区220的放大部分平面图。图3说明跨越图2的漏极区220的线A-A的部分横截面图,并还展示晶体管单元205的源极区210和栅极区215的横截面图。以下描述将同时参考图2和3。
在一些实施例中,漂移区225安置于源极区210与漏极区220之间以便耐受高电压。沟道区形成于栅极堆叠320下的2DEG中,且经配置以取决于栅极端125(见图1)与源极端120之间施加的电压而阻挡或传导电流。一或多个空穴注入器230邻近漂移区225安置,且经配置以将空穴注入到沟道中以与捕获到的电子组合,如下文更详细地描述。
如图3中所说明,在一些实施例中,衬底105可包含可包含碳化硅、蓝宝石、氮化铝或其它材料的第一层305。第二层310安置于第一层305上并可包含氮化镓或其它材料。第三层315安置于上第二层310,并可包含例如但不限于氮化铝、氮化铟等其它第III族氮化物与例如氮化铝镓和氮化铟镓等第III族氮化物合金的复合堆叠。在一个实施例中,第三层315是Al0.20Ga0.80N。
在一些实施例中,二维电子气体(2DEG)感应层形成于衬底105内且可邻近第二层310与第三层315之间的交接面定位。在一些实施例中,2DEG层由压电效应(应力)、带隙差动和/或极化电荷的组合感应。举例而言,在表面处可存在传导带的减少,其中其下降到低于费米能级以产生装满电子的电位阱。在一些实施例中,2DEG感应层包括约20奈米厚的例如Al0.25Ga0.75N范围内的AlGaN。在替代性实施例中,2DEG感应层可包括AlN、AlGaInN或另一种材料。在一些实施例中,2DEG感应层包括具有高Al内容物的薄边界层和具有较少Al内容物的较厚层。在一些实施例中,2DEG感应层可具有GaN顶盖层,而在其它实施例中,2DEG感应层不具有GaN顶盖层。
在一些实施例中,一或多个栅极堆叠320形成于衬底105上以形成栅极结构。举例来说,栅极堆叠320可包含若干复合半导体层(例如,3N层),所述复合半导体各自可包含氮和来自周期表的第三列的一或多种元素,例如铝或镓或铟等等。这些层可掺杂或未掺杂。如果这些层掺杂,那么其可掺杂有N型或P型掺杂剂。在一些实施例中,栅极堆叠320可以是绝缘栅极、肖特基栅极、PN栅极、凹槽栅极或其它类型的栅极。
在一些实施例中,一或多个空穴注入器230形成于衬底105上。空穴注入器230可形成有安置于衬底105上的P型结构325。在一些实施例中,可使用掺杂有P型掺杂剂的氮化镓来形成P型结构325,作为非限制性实例,P型掺杂剂可以是镁。P型结构325可在半导体装置的操作期间充当空穴注入器,以改进晶体管100的性能和/或可靠性,如在本文中更详细地描述。
可沉积并图案化欧姆金属层323以形成到衬底105的欧姆触点,包含形成于源极欧姆焊垫330与衬底105之间的源极欧姆触点327、形成于漏极欧姆焊垫335与衬底105之间的漏极欧姆触点333、和其它需要的区。在一些实施例中,欧姆金属层323可包含铝、钛、镍、金或其它金属。在沉积并图案化欧姆金属层323之后,欧姆金属层可经退火以形成剩余欧姆金属与2DEG感应层之间的可在欧姆接触区(例如,源极和漏极)中暴露的低电阻电连接件。
额外依序沉积式金属层可包含可使用市售工艺图案化的MG层(栅极金属层)340、M0层345、M1层350、M2层355等等。为了彼此和/或与衬底105电绝缘金属层340、345、350和355,可使用一或多个介入介电层。在一些实施例中,介电层可包含但不限于可所沉积并图案化的氮化硅(例如,Si3N4、Si2N或SN)或氧化硅(例如,SiO2或类似物)。在一些实施例中,介入介电层各自仅包括单个绝缘体材料层,而在其它实施例中,每个层可包括多个层。举例来说,可使用化学机械抛光或其它技术来平坦化绝缘体层。
在一些实施例中,MG层340可用以形成MG源极场板365、栅极电极370和空穴注入电极375。在各种实施例中,空穴注入电极375可紧邻且与漏极欧姆焊垫335电接触而定位,因此空穴注入器230与漏极欧姆焊垫335具有大体上相同的电压。
在一些实施例中,M0层345可用以形成M0源极场板380和M0漏极场板385。在各种实施例中,M1层350可用以形成M1源极场板390和M1中间漏极板395。在一些实施例中,M2层355可用以形成源极总线235、栅极总线240和漏极总线245。源极总线235将每个晶体管单元205的源极欧姆焊垫330电耦合到源极端120(见图1)。栅极总线240将每个晶体管单元205的栅极电极370电耦合到栅极端125(见图1)。漏极总线245将每个晶体管单元205的漏极欧姆焊垫335电耦合到漏极端130(见图1)。
在一些实施例中,一或多个通孔360可穿过介入绝缘体层中的一或多个形成,以将彼此一或多个金属层340、345、350与355电连接。
在一些实施例中,晶体管100在栅极堆叠320下对所施加电场作出反应以控制下方的2DEG沟道的电导率。沟道的电导率是依据栅极端125(见图1)与源极端120之间施加的电压电位。栅极端125可被认作控制物理栅极的打开和关闭。通过在栅极下产生或消除2DEG沟道,施加到栅极端125的电压准许电子和/或空穴在源极端120与漏极端130之间流动或阻挡其通过。沟道的电导率受栅极端125(见图1)与源极端120之间的所施加电压电位的量值影响。
在一些实施例中,在晶体管100的操作期间,电子会捕获于衬底105内的外延层和/或介电层中(通常被称为“捕获到的载流子”),并会排斥流经漂移区225的其它电子,从而更多地阻止电流在源极端120与漏极端130之间流动。此现象会引起漂移区225中的电阻的增大(例如,RDSON的增大),并通常被称为“动态Rdson”或“电流崩溃”。动态Rdson是不合需要的“记忆”效应,其中装置的传导电流可取决于源极端120与漏极端130之间的先前所施加电压,并还取决于这些先前施加的电压存在多久。
更具体地说,当在关断之后又接通晶体管时,漂移区225的电阻可在某一时间段内增大。为了阻止动态Rdson增大,在图1和2中所说明的实施例中,P型GaN的多个空穴注入器230岛紧邻漏极欧姆焊垫335放置,且电耦合到漏极欧姆金属,空穴注入电极375形成于MG层340中。每个空穴注入器230接近漏极区220在漂移区225中注入空穴。空穴与捕获到的电子组合并中和所述电子,从而防止或至少缓和电流崩溃。
在一个实施例中,每个空穴注入器230岛可介于0.5与5平方微米之间,但在其它实施例中,每个岛可介于0.75与2平方微米之间,且在一个实施例中,每个岛介于0.9与1.1平方微米之间,然而,本领域的技术人员将了解,本发明不限于正方形几何结构或前述尺寸,且可使用具有其它几何结构和/或尺寸的空穴注入器。
如上文关于图1所论述,晶体管100可布置于重复单元中,在图2和3中说明其实例。每个单元可包含源极、栅极、漏极和一或多个空穴注入结构。邻近单元可使用相同漏极并可具有其自有栅极和源极终端。类似地,邻近单元可使用相同源极并具有其自有漏极终端。在一些实施例中,晶体管结构包含多个交叉指状源极和漏极指状物,栅极结构安置于每个源极指状物与漏极指状物之间。因此,如图3中所展示,漂移区225可形成于漏极区220的任一侧上。
图4说明根据本公开的另一实施例基于GaN的晶体管400的漏极区220的简化平面图。晶体管400建构成类似于图1到3中所说明的晶体管100(相同数字指相同元件),然而,晶体管400具有多个电容耦合式空穴注入器,如下文更详细地描述。图5说明跨越晶体管400的部分横截面图,在晶体管的与图3中所说明的横截面类似的区中制成横截面(相同数字指相同元件)。以下描述将同时参考图4和5。
类似于图1到3中所说明的实施例,晶体管400包含形成于衬底105上的一或多个空穴注入器430。空穴注入器430可形成有安置于衬底105上的P型结构325。在一些实施例中,可使用掺杂有例如镁等p型掺杂剂的氮化铝镓或氮化镓的组合来形成P型结构325。P型结构325可在半导体装置的操作期间充当空穴注入器,以改进晶体管400的性能和/或可靠性,如在本文中更详细地描述。
相比于图1到3中的晶体管100,图4和5中的晶体管400包含空穴注入器430,但不具有空穴注入电极375(见图3)且空穴注入器430远离漏极欧姆焊垫335间隔开使得空穴注入器430与漏极欧姆焊垫335电绝缘。更具体地说,晶体管400的空穴注入器430仅包含P型结构325并且不包含空穴注入器电极(例如,在P型结构325的顶部上不存在金属)。另外,晶体管400的空穴注入器430包含定位于P型结构325与漏极欧姆焊垫335之间的间隙450,其中所述间隙填充有产生电浮置空穴注入器的介电材料。如本文所使用,术语“浮置空穴注入器”应意味着空穴注入结构(例如,P型GaN区)不欧姆耦合到源极、栅极或漏极电极,而是替代地使用电容耦合或电容耦合与泄漏电流的组合以使得浮置空穴注入器能够在漂移区225中注入空穴。
图6说明根据本公开的另一实施例的基于GaN的晶体管600的漏极区220的简化平面图。晶体管600建构成类似于图1到3中所说明的晶体管100(相同数字指相同元件),然而,晶体管600具有呈条形状的多个空穴注入器630,且漏极欧姆金属充当漏极欧姆电极和空穴注入器电极两者,如下文更详细地描述。图7说明跨越晶体管600的部分横截面图,在晶体管的与图3中所说明的横截面类似的区中制成横截面(类似数字指类似元件)。以下描述将同时参考图6和7。
类似于图1到3中所说明的实施例,晶体管600包含形成于衬底105上的一或多个空穴注入器630。空穴注入器630可形成有安置于衬底105上的P型结构325,然而,而非是定位于漏极触点333的任一侧上的正方形岛,P型结构布置于跨越漏极触点延伸并延伸进入形成于漏极触点的任一侧上的漂移区225的重复条中。
相比图1到3中的晶体管100,图6和7中的晶体管600包含空穴注入器630,但不具有如图3中所展示的单独形成的空穴注入电极375。更具体地说,漏极欧姆焊垫335形成漏极欧姆触点333和空穴注入电极两者。这在图8中更明确地加以说明,其是图7中所说明的晶体管600的横截面B-B。如图8中所展示,重复P型结构325形成于衬底105上。漏极欧姆焊垫335与漏极触点333以及P型结构触点805两者接触。因此,漏极欧姆焊垫335将P型结构325电耦合到漏极触点333。
图9说明根据本公开的另一实施例的基于GaN的晶体管900的部分横截面图。晶体管900建构成类似于图6到8中所说明的晶体管600(相同数字指相同元件),然而,晶体管900具有形成于呈条形状的P型结构325上方的介电层905,且漏极欧姆焊垫335充当漏极欧姆电极和空穴注入器电极两者,如下文更详细地描述。图10说明跨越图9中所说明的晶体管900的部分横截面图C-C。以下描述将同时参考图9和10。
类似于图6到8中所说明的实施例,晶体管900包含形成于衬底105上的一或多个空穴注入器930。空穴注入器930可形成有安置于衬底105上的P型结构325。P型结构325可布置于跨越漏极触点333延伸并延伸进入形成于漏极触点的任一侧上的漂移区225的重复条中。
相比于图6到8中的晶体管600,图9和10中的晶体管900包含形成于P型结构325和衬底105的部分上方的介电层905。开口910形成于介电层905中,且漏极欧姆焊垫335形成于介电层的顶部上和开口910内,以与P型结构325电接触。在一些实施例中,开口910可跨越P型结构325之间的间隔延伸,从而使衬底105的部分暴露,因此漏极欧姆焊垫335可形成每个P型结构之间的漏极触点333。其它实施例可具有形成于介电层905中的不同开口配置,以使得漏极欧姆焊垫335可形成空穴注入器电极和漏极电极两者。因为,漏极欧姆焊垫335与漏极触点333以及P型结构325两者接触,所以漏极欧姆金属层将P型结构325电耦合到漏极触点333。
图11说明根据本公开的另一实施例的基于GaN的晶体管1100的部分横截面图。晶体管1100建构成类似于图9和10中所说明的晶体管900(相同数字指相同元件),然而,晶体管1100具有带漏极触点333的间隙的两个单独P型结构325,如下文更详细地描述。
类似于图9和10中所说明的实施例,晶体管1100包含形成于衬底105上的一或多个空穴注入器1130。空穴注入器1130可形成有安置于衬底105上的P型结构325。P型结构325可布置于安置于漏极触点333的任一侧上的重复岛中。晶体管1100包含覆盖每个P型结构325的全部的介电层1105,因此其与漏极欧姆焊垫335电绝缘。漏极欧姆焊垫335在P型结构325之间延伸,以与形成漏极触点333的衬底105接触。漏极欧姆焊垫335还在P型结构325顶部上方延伸,介电层1105定位于漏极欧姆金属层与P型结构之间。因此,空穴注入器1130与漏极欧姆焊垫335电绝缘,且空穴注入器使用到漏极欧姆焊垫335的电容耦合以使得P型结构325能够在漂移区225中注入空穴。
继续参考图11,在一些实施例中,源极场板365、380和/或390的漏极边缘处的电场可高于包围区域,且结果这些区可引起漂移区225中的捕获到的载流子的更高集中度。因此,在一些实施例中,将一或多个浮置P型GaN结构1110a…1110c定位成与源极场板365、380和/或390的漏极边缘对准可引起漂移区225中的捕获到的载流子的高效和/或有效中和。
更具体地说,在一些实施例中,浮置P型GaN结构1110a…1110c经配置以在存在高电场的情况下在漂移区225中注入空穴,如在本文中和图13和14中进一步详细描述。在一些实施例中,可使用掺杂有可以是例如镁的P型掺杂剂的氮化镓来形成P型GaN结构1110a…1110c。
图12说明根据本公开的另一实施例的基于GaN的晶体管1200的简化平面图。晶体管1200建构成类似于图11中所说明的晶体管1100(相同数字指相同元件),然而,而非具有三个源极场板365、380、390中的每一个下的多个浮置P型GaN结构,晶体管1200具有定位于唯一源极场板380的漏极边缘下且与其对准的多个浮置P型GaN结构1205。更具体地说,在图12中所说明的实施例中,在漂移区225中,多个浮置P型GaN结构1205部分地定位于M0源极场板380下且完全定位于M1源极场板390下。在其它实施例中,浮置P型GaN结构1205可在与图12中所展示不同的位置中放置于漂移区225内。在一些实施例中,浮置P型GaN结构1205可与上文更详细地描述的P型GaN结构325(见图11)执行相同功能。在一些实施例中,可使用掺杂有可以是例如镁的P型掺杂剂的氮化镓来形成浮置P型GaN结构1205。
图13说明根据本公开的另一实施例的基于GaN的晶体管1300的简化平面图。晶体管1300建构成类似于图11中所说明的晶体管1100(相同数字指相同元件),然而,而非具有三个源极场板365、380、390中的每一个下的多个浮置P型GaN结构,晶体管1300具有定位于唯一源极场板390的漏极边缘下且与其对准的多个浮置P型GaN结构1305。更具体地说,在所说明的实施例中,在图13中,在漂移区225中,多个浮置P型GaN结构1305部分地定位于M1源极场板390下。在其它实施例中,浮置P型GaN结构1305可在与图13中所展示不同的位置中放置于漂移区225内。在一些实施例中,浮置P型GaN结构1305可与上文更详细地描述的P型GaN结构325(见图11)执行相同功能。在一些实施例中,可使用掺杂有可以是例如镁的P型掺杂剂的氮化镓来形成浮置P型GaN结构1305。
图14说明根据本公开的另一实施例的基于GaN的晶体管1400的简化平面图。晶体管1400建构成类似于图1到3中所说明的晶体管100(相同数字指相同元件),然而,晶体管1400具有在漂移区225内紧接于栅极电极370,邻近且在源极场板365、380和390下定位的多个P型GaN结构1405。在所说明的实施例中,在图14中,P型GaN结构1405在最接近于栅极电极370的MG源极场板365的第一边缘上居中,然而,在其它实施例中,其可定位于邻近栅极电极370的任何位置处。
在一些实施例中,P型GaN结构1405可通过电容耦合或泄漏采用接近栅极电极的电位。电子的捕获可由将热电子加速到介电质或衬底区中的高电场引起。P型GaN结构1405可阻止漂移区中的高电压和高电场到达栅极区并减少在所述区中发生的捕获的量。此减少的载流子注入可减少动态Rdson影响并提高产品的寿命。尽管晶体管1400类似于图1到3中所说明的晶体管100,但本领域的技术人员应了解,晶体管1400可具有不同结构,包含先前图中所展示的晶体管400、600、900或1100的结构或任何其它配置。
图15说明根据本公开的另一实施例的基于GaN的晶体管1500的部分横截面图。晶体管1500建构成类似于图11中所说明的晶体管1100(相同数字指相同元件),其包含欧姆耦合到漏极端的P型结构,然而,晶体管1500具有仅覆盖P型结构325的一部分的介电层1510,且漏极欧姆焊垫335与P型结构欧姆接触,如下文更详细地描述。此外,晶体管1500包含定位于漏极触点333的源极侧上的浮置空穴注入器1545。
类似于图11中所说明的实施例,晶体管1500包含形成于衬底105上的一或多个空穴注入器1530。每个空穴注入器1530可形成有安置于衬底105上的P型结构325。在图15中,对称线1535用以仅展示漏极区的左侧部分和右侧部分的镜像的右侧部分。P型结构325可布置于安置于漏极触点333的两侧(即,左、右侧)上的重复岛中。
晶体管1500包含覆盖每个P型结构325的一部分的介电层1510,每个P型结构的剩余部分与漏极电阻焊垫335形成欧姆接触区1505。在所说明的实施例中,在图15中,介电层1510覆盖P型结构325的大约二分之一,然而在其它实施例中,其可覆盖多于或少于P型结构的一半。
在一些实施例中,漏极欧姆焊垫335可经配置为连续金属层,其(1)形成于衬底105的漏极区220上方且与其接触以形成漏极电极333,(2)形成于P型层325的第二部分上方且与其接触以形成空穴注入电极375,且(3)形成于介电层1510的一部分上方与其接触以形成用于空穴注入区的场板1515。在其它实施例中,可替代前述连续金属层使用一或多个单独但电耦合的金属层。在所说明的实施例中,在图15中,场板1515跨越介电层1510的至少一部分延伸,并在一些实施例中延伸直到其与P型层325的源极侧边缘1550共面为止,而在其它实施例中,其延伸经过P型层325的源极侧边缘。在一个实施例中,场板1515延伸经过P型层的源极侧边缘1550了0.125微米与2微米之间,但在其它实施例中,其延伸经过0.2与0.75微米之间。
在一些实施例中,沿着漏极区220的长度形成多个个别空穴注入器1530,从而形成一系列依序空穴注入器岛。漏极欧姆焊垫335还可在个别P型结构325之间延伸,以与形成漏极触点333的部分的衬底105接触,类似于图10中所说明的结构。
在一些实施例中,第二场板385可定位于场板1515上方,且第三场板395可定位于第二场板上方。场板1515、385和395的远端可产生由虚线圆标识的高场强度区1540。
在一些实施例中,可选浮置空穴注入器1545可由P型层325的一部分形成。浮置空穴注入器1545不欧姆耦合到漏极欧姆焊垫335并可电容耦合到漏极欧姆焊垫。浮置空穴注入器1545可定位于空穴注入器1530与栅极区(见图11)之间。
图16说明根据本公开的另一实施例的基于GaN的晶体管1600的平面图。晶体管1600建构成类似于图1到3中所说明的晶体管100,然而,晶体管1600包含使用P型GaN岛形成的栅极结构,如下文更详细地描述。基于GaN的晶体管1600制造于可类似于图1中的衬底105的衬底1605上,并可包含源极欧姆金属垫1610和漏极欧姆金属垫1620,栅极电极1615和有源2DEG区1625在所述金属垫之间。在栅极电极1615下,在之间具有间隙的一或多个P型GaN岛1630a、1630b可安置于衬底1605上。在各种实施例中,可跨越一或多个P型GaN岛1630a、1630b形成单个栅极电极1615,且可形成栅极电极与P型GaN岛之间的触点。
当零电压相对于源极欧姆金属垫1610施加到栅极电极1615时,电流流经区1635中的P型GaN岛1630a、1630b之间的2DEG层。当施加正栅极电压时,2DEG形成于P型GaN岛1630a、1630b下,且电流可在栅极下流过有源2DEG区的整个宽度。如果栅极电极1615相对于源极欧姆金属垫1610负偏置,那么P型GaN岛1630a、1630b之间的间隙将围绕P型GaN岛形成反向偏置接面。此反向偏置条件围绕每个P型GaN岛1630a、1630b形成耗尽区并限制穿过区1635的电子流动。负栅极电极1615越相对于源极欧姆金属垫1610偏置,区1635变得越具电阻性,直到晶体管1600夹断所有电流流动为止。因此,P型GaN岛1630a、1630b形成控制穿过晶体管沟道的电流流动的栅极结构。这还允许所述结构阻挡施加到漏极1620的电压,并因此限制栅极的源极侧上的电场。这是通过图12中所说明的P型GaN结构1205实现的类似电场限制效果。
在前文说明书中,本发明的实施例已经参考可针对不同实施方案变化的许多特定细节进行描述。因此,应在说明性意义上而非限制性意义上看待说明书和图式。本发明范围的单一和排他性指示符和由申请人预期是本发明范围的内容是以产生包含任何后续校正的此类权利要求的特定形式产生于本申请的权利要求书集合的字面和等效范围。

Claims (20)

1.一种晶体管,其包括:
半导体衬底;
源极区,其形成于所述衬底中且包含与所述衬底的一部分接触的源极电极;
漏极区,其形成于所述衬底中且与所述源极区分离;
栅极区,其形成于所述衬底中且包含与所述衬底的一部分接触的栅极堆叠,所述栅极区定位于所述源极区与所述漏极区之间;
空穴注入区,其形成于所述衬底中且包含与所述衬底的一部分接触的P型层,所述空穴注入区定位于所述栅极区与所述漏极区之间;
介电层,其形成于所述P型层的第一部分上方且与其接触;以及
连续金属层,其(1)形成于所述衬底的所述漏极区上方且与其接触以形成漏极电极,(2)形成于所述P型层的第二部分上方且与其接触以形成空穴注入电极,且(3)形成于所述介电层的一部分上方与其接触以形成用于所述空穴注入区的场板。
2.根据权利要求1所述的晶体管,其中所述连续金属层跨越所述衬底的所述漏极区延伸,与所述P型层的第一侧表面邻接并跨越所述P型层的顶表面的第一区延伸。
3.根据权利要求2所述的晶体管,其中所述介电层跨越所述衬底的表面延伸,与所述P型层的第二侧表面邻接并跨越所述P型层的所述顶表面的第二区延伸。
4.根据权利要求3所述的晶体管,其中所述场板跨越所述介电层延伸并在变得与所述P型层的所述第二侧表面共面之前终止。
5.根据权利要求1所述的晶体管,其中所述连续金属层与所述P型层欧姆接触。
6.根据权利要求1所述的晶体管,其进一步包括沿着所述漏极区的长度形成的多个个别空穴注入区。
7.根据权利要求1所述的晶体管,其中所述空穴注入区是第一空穴注入区,且第二空穴注入区形成于所述衬底中且定位于所述第一空穴注入区与所述栅极区之间。
8.根据权利要求7所述的晶体管,其中所述第二空穴注入区包含与所述衬底的一部分接触且不与所述连续金属层欧姆接触的P型层。
9.根据权利要求1所述的晶体管,其中所述连续金属层形成于所述P型层的顶表面的大约二分之一上方,且所述介电层形成于所述P型层的所述顶表面的剩余部分上方。
10.根据权利要求1所述的晶体管,其中所述半导体衬底包括氮化镓。
11.一种晶体管,其包括:
半导体衬底;
源极区,其形成于所述衬底中且包含与所述衬底的一部分接触的源极电极;
漏极区,其形成于所述衬底中且与所述源极区分离;
栅极区,其形成于所述衬底中且包含与所述衬底的一部分接触的栅极堆叠,所述栅极区定位于所述源极区与所述漏极区之间;
空穴注入区,其形成于所述衬底中且包含与所述衬底的一部分接触的P型层,所述空穴注入区定位于所述栅极区与所述漏极区之间;
介电层,其跨越所述P型层的顶表面的第一区延伸;以及
金属层,其(1)跨越所述衬底的漏极区延伸以形成漏极电极,(2)跨越所述P型层的所述顶表面的第二区延伸以形成空穴注入电极,且(3)跨越所述介电层的一部分延伸以形成场板。
12.根据权利要求11所述的晶体管,其中所述场板是空穴注入区场板。
13.根据权利要求11所述的晶体管,其中所述金属层跨越所述衬底的所述漏极区延伸,与所述P型层的第一侧表面邻接,并跨越所述P型层的所述顶表面的所述第二区延伸以形成所述空穴注入电极。
14.根据权利要求13所述的晶体管,其中所述介电层跨越所述衬底的表面延伸,与所述P型层的第二侧表面邻接并跨越所述P型层的所述顶表面的所述第一区延伸。
15.根据权利要求14所述的晶体管,其中所述场板跨越所述介电层的第一区延伸并在变得与所述P型层的所述第二侧表面共面之前终止。
16.根据权利要求11所述的晶体管,其中所述金属层与所述P型层欧姆接触。
17.根据权利要求11所述的晶体管,其进一步包括沿着所述漏极区的长度形成的多个个别空穴注入区。
18.根据权利要求11所述的晶体管,其中所述空穴注入区是第一空穴注入区,且第二空穴注入区形成于所述衬底中且定位于所述第一空穴注入区与所述栅极区之间。
19.根据权利要求18所述的晶体管,其中所述第二空穴注入区包含与所述衬底的一部分接触且不与所述连续金属层欧姆接触的P型层。
20.一种晶体管,其包括:
半导体衬底;
源极区,其形成于所述衬底中且包含与所述衬底的一部分接触的源极电极;
漏极区,其形成于所述衬底中且与所述源极区分离;
栅极区,其形成于所述衬底中且包含与所述衬底的一部分接触的栅极堆叠,所述栅极区定位于所述源极区与所述漏极区之间;
浮置空穴注入区,其形成于所述衬底中且包含与所述衬底的一部分接触的P型层,所述空穴注入区定位于所述栅极区与所述漏极区之间。
CN201910328305.8A 2018-04-23 2019-04-23 具有改进的终止结构的氮化镓晶体管 Active CN110391297B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862661585P 2018-04-23 2018-04-23
US62/661,585 2018-04-23

Publications (2)

Publication Number Publication Date
CN110391297A true CN110391297A (zh) 2019-10-29
CN110391297B CN110391297B (zh) 2023-08-22

Family

ID=68236584

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910328305.8A Active CN110391297B (zh) 2018-04-23 2019-04-23 具有改进的终止结构的氮化镓晶体管
CN201910329100.1A Active CN110391298B (zh) 2018-04-23 2019-04-23 氮化镓晶体管结构

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910329100.1A Active CN110391298B (zh) 2018-04-23 2019-04-23 氮化镓晶体管结构

Country Status (4)

Country Link
US (2) US10847644B2 (zh)
JP (1) JP7075128B2 (zh)
CN (2) CN110391297B (zh)
TW (2) TWI715018B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021113308A1 (en) 2019-12-03 2021-06-10 Cambridge Electronics, Inc. Iii-nitride transistor with a modified drain access region
US11211481B2 (en) 2020-01-13 2021-12-28 Cambridge Gan Devices Limited III-V semiconductor device
CN113497137A (zh) * 2020-04-07 2021-10-12 苏州捷芯威半导体有限公司 一种半导体器件及其制备方法
CN113875019B (zh) 2020-04-30 2024-07-02 英诺赛科(苏州)半导体有限公司 半导体器件以及制造半导体器件的方法
KR20220006402A (ko) * 2020-07-08 2022-01-17 삼성전자주식회사 고전자 이동도 트랜지스터
TWI798676B (zh) * 2021-04-08 2023-04-11 杰力科技股份有限公司 氮化鎵高電子移動率電晶體
US20220384586A1 (en) * 2021-06-01 2022-12-01 Navitas Semiconductor Limited Field plate structures for gan high voltage transistors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027284A (ja) * 2005-07-13 2007-02-01 Sanken Electric Co Ltd 電界効果トランジスタ
JP2011181743A (ja) * 2010-03-02 2011-09-15 Panasonic Corp 電界効果トランジスタ
CN103311292A (zh) * 2012-03-13 2013-09-18 国际商业机器公司 氮化镓超结器件
JP2015122544A (ja) * 2015-03-30 2015-07-02 パナソニックIpマネジメント株式会社 スイッチ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549336A (en) * 1981-12-28 1985-10-29 Mostek Corporation Method of making MOS read only memory by specified double implantation
FR2545989B1 (fr) 1983-05-10 1985-07-05 Thomson Csf Transistor a effet de champ, fonctionnant en regime d'enrichissement
US7417265B2 (en) * 2006-02-03 2008-08-26 Semiconductor Components Industries, L.L.C. Schottky diode structure with enhanced breakdown voltage and method of manufacture
JP2007250792A (ja) * 2006-03-15 2007-09-27 Furukawa Electric Co Ltd:The 半導体素子
US7943469B2 (en) * 2006-11-28 2011-05-17 Intel Corporation Multi-component strain-inducing semiconductor regions
JP5903642B2 (ja) * 2011-08-08 2016-04-13 パナソニックIpマネジメント株式会社 半導体装置
US8680535B2 (en) 2011-12-23 2014-03-25 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor structure with improved breakdown voltage performance
JP6326638B2 (ja) 2013-04-25 2018-05-23 パナソニックIpマネジメント株式会社 半導体装置
US9343562B2 (en) 2013-12-06 2016-05-17 Infineon Technologies Americas Corp. Dual-gated group III-V merged transistor
US9337279B2 (en) 2014-03-03 2016-05-10 Infineon Technologies Austria Ag Group III-nitride-based enhancement mode transistor
CN104167445B (zh) * 2014-08-29 2017-05-10 电子科技大学 具有埋栅结构的氮化镓基增强耗尽型异质结场效应晶体管
US11322599B2 (en) * 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
TWI648858B (zh) * 2016-06-14 2019-01-21 黃知澍 Ga-face III族/氮化物磊晶結構及其主動元件與其製作方法
US10741682B2 (en) 2016-11-17 2020-08-11 Semiconductor Components Industries, Llc High-electron-mobility transistor (HEMT) semiconductor devices with reduced dynamic resistance
US10439059B2 (en) 2016-12-20 2019-10-08 Massachusetts Institute Of Technology High-linearity transistors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027284A (ja) * 2005-07-13 2007-02-01 Sanken Electric Co Ltd 電界効果トランジスタ
JP2011181743A (ja) * 2010-03-02 2011-09-15 Panasonic Corp 電界効果トランジスタ
CN103311292A (zh) * 2012-03-13 2013-09-18 国际商业机器公司 氮化镓超结器件
JP2015122544A (ja) * 2015-03-30 2015-07-02 パナソニックIpマネジメント株式会社 スイッチ装置

Also Published As

Publication number Publication date
TW201946275A (zh) 2019-12-01
TWI785236B (zh) 2022-12-01
US20190326427A1 (en) 2019-10-24
CN110391298B (zh) 2023-08-22
TWI715018B (zh) 2021-01-01
CN110391297B (zh) 2023-08-22
TW202005086A (zh) 2020-01-16
CN110391298A (zh) 2019-10-29
JP2019192912A (ja) 2019-10-31
US20190326426A1 (en) 2019-10-24
JP7075128B2 (ja) 2022-05-25
US10868165B2 (en) 2020-12-15
US10847644B2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
CN110391297A (zh) 具有改进的终止结构的氮化镓晶体管
CN102365745B (zh) 反向扩散抑制结构
CN106449727B (zh) 防雪崩的准垂直hemt
CN103022118B (zh) 氮化物半导体装置
CN104201210B (zh) 二极管以及包括该二极管的组件
JP4041075B2 (ja) 半導体装置
CN103178108B (zh) 具有掩埋式场板的化合物半导体器件
CN102354705B (zh) 半导体装置
US20190355844A1 (en) Asymmetrical blocking bidirectional gallium nitride switch
CN102484124B (zh) 氮化物半导体装置
CN107359196A (zh) 半导体装置
CN109196650A (zh) 多台阶表面钝化结构及其制造方法
CN102318048A (zh) 半导体装置
KR20140042470A (ko) 노멀리 오프 고전자이동도 트랜지스터
JP7325631B2 (ja) 半導体装置
CN216250739U (zh) 一种具有高导通能力的氮化镓晶体管
CN113224155A (zh) 一种具有高导通能力的氮化镓晶体管及其制备方法
JP2011204892A (ja) 半導体装置及びその製造方法
CN113394283B (zh) 具有复合层结构的高压hemt器件
JP7313197B2 (ja) 半導体装置
CN114497181A (zh) 一种功率器件的体内复合终端结构及制备方法
CN108352408A (zh) 半导体装置、电子部件、电子设备以及半导体装置的制造方法
CN113812006A (zh) 氮化物半导体装置及其制造方法
JP2020194919A (ja) 半導体装置
CN108074964A (zh) 低电阻低泄漏器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20201023

Address after: Ai Erlandubailin

Applicant after: Navidas Semiconductor Co.,Ltd.

Address before: California, USA

Applicant before: NAVITAS SEMICONDUCTOR, Inc.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant