CN109364983A - 用于丙烯生产的双重催化剂体系 - Google Patents

用于丙烯生产的双重催化剂体系 Download PDF

Info

Publication number
CN109364983A
CN109364983A CN201811179717.1A CN201811179717A CN109364983A CN 109364983 A CN109364983 A CN 109364983A CN 201811179717 A CN201811179717 A CN 201811179717A CN 109364983 A CN109364983 A CN 109364983A
Authority
CN
China
Prior art keywords
catalyst
dual
sio
catalyst system
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811179717.1A
Other languages
English (en)
Inventor
阿鲁德拉·帕拉尼
塔兹·伊斯兰·布延
索赫尔·谢赫
穆罕默德·纳西姆·阿赫塔尔
阿布杜拉·M·埃塔尼
苏莱曼·萨利赫·阿尔-哈塔夫
穆罕默德·A·阿尔-雅美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
King Fahd University of Petroleum and Minerals
Original Assignee
Saudi Arabian Oil Co
King Fahd University of Petroleum and Minerals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co, King Fahd University of Petroleum and Minerals filed Critical Saudi Arabian Oil Co
Publication of CN109364983A publication Critical patent/CN109364983A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0341Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J35/19
    • B01J35/30
    • B01J35/40
    • B01J35/615
    • B01J35/617
    • B01J35/635
    • B01J35/638
    • B01J35/647
    • B01J35/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • C07C6/06Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond at a cyclic carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0358Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J35/643
    • B01J35/69
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/03Catalysts comprising molecular sieves not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/03Catalysts comprising molecular sieves not having base-exchange properties
    • C07C2529/035Crystalline silica polymorphs, e.g. silicalites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nanotechnology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明提供了用于生产丙烯的方法的实施方案,所述实施方案利用双重催化剂体系,所述双重催化剂体系包含浸渍有金属氧化物的介孔二氧化硅催化剂和所述介孔二氧化硅催化剂下游的丝光沸石骨架反转(MFI)结构化的二氧化硅催化剂,其中所述介孔二氧化硅催化剂包括至少2.5nm至40nm的孔径分布和至少0.600cm3/g的总孔体积,并且所述MFI结构化的二氧化硅催化剂具有0.001mmol/g至0.1mmol/g的总酸度。通过接触所述介孔二氧化硅催化剂进行复分解,并且随后通过接触所述MFI结构化的二氧化硅催化剂进行裂化来从丁烯流生产所述丙烯。

Description

用于丙烯生产的双重催化剂体系
相关申请的交叉引用
本申请要求2015年7月2日提交的美国临时申请序列号62/188,178的权益。
技术领域
本公开的实施方案大体上涉及经由复分解反应进行的丙烯生产,并且更确切地说,涉及使用包含复分解催化剂和裂化催化剂的双重催化剂体系将丁烯转化成丙烯。
背景技术
近年来,对丙烯的需求已经显著增加以满足聚丙烯、环氧丙烷以及丙烯酸的不断增长的市场。目前,世界范围内生产的大部分丙烯(7400万吨/年)是来自主要生产乙烯的蒸汽裂化单元的副产物(57%)、或来自主要生产汽油的流体催化裂化(FCC)单元的副产物(30%)。这些过程不能充分应对丙烯需求的快速增长。
其它丙烯生产工艺占总丙烯产量的约12%。在这些工艺中有丙烷脱氢(PDH)、需要乙烯和丁烯这两者的复分解反应、高苛刻度FCC、烯烃裂化以及甲醇制烯烃(MTO)。然而,丙烯需求已经超过乙烯和汽油/馏分油需求,并且丙烯的供应并没有跟上丙烯需求的这一增长。
发明内容
因此,对使用双重催化剂体系选择性生产丙烯的改进的方法存在持续的需求。本公开的实施方案涉及经由双重催化剂体系从丁烯生产丙烯。
在一个实施方案中,提供了一种用于生产丙烯的方法。所述方法包括提供包含以下各项的双重催化剂体系:浸渍有金属氧化物的介孔二氧化硅催化剂、以及所述介孔二氧化硅催化剂下游的丝光沸石骨架反转(MFI)结构化的二氧化硅催化剂。所述介孔二氧化硅催化剂包括至少约0.600cm3/g的总孔体积,并且所述MFI结构化的二氧化硅催化剂包括0.001mmol/g至0.1mmol/g的总酸度。所述方法还包括通过使包含丁烯的物流与所述双重催化剂体系接触来经由复分解和裂化从所述包含丁烯的物流生产丙烯,其中所述包含丁烯的物流先接触所述介孔二氧化硅催化剂,之后接触所述MFI结构化的二氧化硅催化剂。
在另一个实施方案中,提供了一种用于从丁烯生产丙烯的双重催化剂体系。所述双重催化剂体系包含复分解催化剂区和所述复分解催化剂区下游的裂化催化剂区。所述复分解催化剂区包含浸渍有金属氧化物的介孔二氧化硅催化剂,其中所述介孔二氧化硅催化剂包括至少2.5nm至40nm的孔径分布和至少0.600cm3/g的总孔体积。所述裂化催化剂区包含丝光沸石骨架反转(MFI)结构化的二氧化硅催化剂,其中所述MFI结构化的二氧化硅催化剂包括至少1.5nm至3nm的孔径分布、和0.001mmol/g至0.1mmol/g的总酸度。
所述的实施方案的另外的特征和优势将在随后的详细说明中阐述,并且部分地对于本领域技术人员来说将从该说明中显而易见或将通过实施所述的实施方案来识别,包括随后的详细说明、权利要求书、以及附图。
附图说明
图1是图示了根据本公开的一个或多个实施方案的CARiACT Q10载体、和以等于约10的二氧化硅/WO3的摩尔比浸渍有WO3的CARiACT Q10载体的XRD图谱的X射线粉末衍射(XRD)图。
图2是MFI-2000催化剂的XRD图。
图3是CARiACT Q10载体的扫描电子显微镜(SEM)图像。
图4是根据本公开的一个或多个实施方案的浸渍有10重量%的WO3的CARiACT Q10载体的SEM图像。
图5是MFI-2000催化剂的SEM图像。
具体实施方式
本公开的实施方案涉及用于经由催化复分解和催化裂化将包含丁烯的物流转化成包含丙烯的物流的体系和方法。确切地说,本发明的实施方案涉及一种用于从丁烯流更大程度生产丙烯(C3=)的含有复分解催化剂和裂化催化剂的两阶段催化剂体系。在操作中,复分解催化剂之后是裂化催化剂以提供更大的丙烯产率、以及任选的更大的丙烯和乙烯的组合产率。
如下式1和2中所示,“复分解”或“自复分解”一般是两步过程:使用复分解催化剂体系的2-丁烯异构化,然后是交叉复分解。如下式3中所示,“催化裂化”指的是将C4-C6烯烃转化成丙烯和其它烷烃和/或烯烃,例如C1-C2烯烃。
式1:2-丁烯异构化
式2:交叉复分解
式3:催化裂化
参考式1-式3,“复分解”反应和“催化裂化”反应不限于这些反应物和产物;然而,式1-式3提供了反应方法的基本说明。如式1和式2中所示,复分解反应在两个烯烃之间发生。与双键的碳原子键合的基团在分子之间交换以产生具有交换基团的两个新的烯烃。被选用于烯烃复分解反应的特定催化剂一般可以决定是形成顺式异构体还是反式异构体,这是因为烯烃分子与催化剂的配位起重要作用,取代基对新形成的分子的双键的空间影响也是如此。
本发明的双重催化剂体系包含:介孔二氧化硅催化剂,所述介孔二氧化硅催化剂是浸渍有金属氧化物的介孔二氧化硅催化剂载体;以及所述介孔二氧化硅催化剂下游的丝光沸石骨架反转(MFI)结构化的二氧化硅催化剂。各种结构被考虑用于所述介孔二氧化硅催化剂载体,例如分子筛。如本申请中所用的“介孔”意指二氧化硅载体具有窄的孔径分布。确切地说,所述介孔二氧化硅催化剂包括约2.5nm至约40nm的窄的孔径分布和至少约0.600cm3/g的总孔体积。不受理论所束缚,本发明的孔径分布和孔体积被尺寸设定成实现更好的催化活性和减少的孔被金属氧化物堵塞,而更小的孔体积和孔径催化剂体系容易发生孔堵塞,从而使得催化活性降低。
此外,利用所述介孔二氧化硅催化剂下游的MFI结构化的二氧化硅催化剂惊人地提供了从丁烯流生产丙烯的最好产率。本领域普通技术人员本来是通过首先将丁烯裂化成丙烯,然后经由复分解将任何剩余的丁烯裂化来预期最好的产率。然而,惊人地发现,通过将MFI结构化的二氧化硅催化剂放置在介孔二氧化硅催化剂的下游,丙烯产率增加,并且除此之外,丙烯和乙烯的组合产率增加。
在一个或多个实施方案中,所述介孔二氧化硅催化剂的孔径分布可以在以下范围内:约2.5nm至约40nm、或约2.5nm至约20nm、或约2.5nm至约4.5nm、或约2.5nm至约3.5nm、或约8nm至约18nm、或约12nm至约18nm。在另外的实施方案中,所述总孔体积可以是约0.600cm3/g至约2.5cm3/g、或约0.600cm3/g至约1.5cm3/g、或约0.600cm3/g至约1.3cm3/g、或约0.600cm3/g至约0.800cm3/g、或约0.600cm3/g至约0.700cm3/g、或约0.900cm3/g至约1.3cm3/g。
此外,虽然考虑了更宽的范围,但是在一个或多个实施方案中,所述介孔二氧化硅催化剂可以包括约250平方米/克(m2/g)至约600m2/g的表面积。在另外的实施方案中,所述介孔二氧化硅催化剂可以具有以下表面积:约450m2/g至约600m2/g、或约250m2/g至约350m2/g、或约275m2/g至约325m2/g、或约275m2/g至约300m2/g。此外,所述介孔二氧化硅催化剂可以具有以下总酸度:最多约0.5毫摩尔/克(mmol/g)、或约0.01mmol/g至约0.5mmol/g、或约0.1mmol/g至约0.5mmol/g、或约0.3mmol/g至约0.5mmol/g、或约0.4mmol/g至约0.5mmol/g。酸度一般维持在约0.5mmol/g或小于约0.5mmol/g以获得所期望的丙烯选择性和减少的不期望的副产物,如芳族化合物的产生。增加酸度可以提高总丁烯转化率;然而,该提高的转化率可能会导致更小的选择性和芳族副产物的产生增加,这可能会导致催化剂结焦和失活。
此外,所述介孔二氧化硅催化剂可以具有以下粒度:约20nm至约200nm、或约50nm至约150nm、或约75nm至约125nm。在另外的实施方案中,所述介孔二氧化硅催化剂可以具有以下单个晶体尺寸:约1μm至约100μm、或约10μm至约40μm。
考虑了介孔二氧化硅载体的各种制剂以及制备所述制剂的方法。举例来说,所述介孔二氧化硅催化剂载体可以经由湿式浸渍、水热合成、或这两者来制备。此外,所述介孔二氧化硅催化剂载体的特征可以在于有序孔结构。举例来说,该有序结构可以具有孔的六角形阵列。具有六角形孔阵列的介孔二氧化硅载体的一个合适的实施方案可以是圣芭芭拉无定形(Santa Barbara Amorphous)(SBA-15)介孔二氧化硅分子筛。或者,介孔二氧化硅载体的另一个合适的实施方案是由富士硅化学株式会社(Fuji Silysia Chemical Ltd.)生产的CARiACT Q-10(Q-10)球形催化剂载体。
复分解反应的催化剂是二氧化硅载体的浸渍的金属氧化物。所述金属氧化物可以包含来自IUPAC元素周期表(IUPAC Periodic Table)的第6族-第10族的金属的一种或氧化物。在一个或多个实施方案中,所述金属氧化物可以是钼、铼、钨、或其组合的氧化物。在一个具体的实施方案中,所述金属氧化物是氧化钨(WO3)。预期可以将各种量的金属氧化物浸渍到介孔二氧化硅催化剂载体中。举例来说而不是以限制的方式,二氧化硅与金属氧化物(例如WO3)的摩尔比是约5至约60、或约5至约15、或约20至约50、或约20至约40、或约25至约35。
此外,各种二氧化硅结构被考虑用于MFI结构化的二氧化硅催化剂。举例来说,所述MFI结构化的二氧化硅催化剂可以包括MFI结构化的铝硅酸盐沸石催化剂或不含氧化铝的MFI结构化的二氧化硅催化剂。如本文所用的“不含”意指在MFI结构化的二氧化硅催化剂中的氧化铝少于0.001重量%。此外,预期除了氧化铝之外或作为氧化铝的替代物,MFI结构化的二氧化硅催化剂可以包括其它浸渍的金属氧化物。类似于介孔二氧化硅催化剂,所述MFI结构化的催化剂可以具有浸渍在二氧化硅载体中的氧化铝、金属氧化物、或这两者。除了氧化铝之外或作为氧化铝的替代物,预期包括先前所列的金属氧化物,特别是来自IUPAC元素周期表的第6族-第10族的金属的一种或多种氧化物,更特别是钼、铼、钨、钛、或其组合的金属氧化物。
对于MFI结构化的铝硅酸盐沸石催化剂,考虑了各种量的氧化铝。在一个或多个实施方案中,所述MFI结构化的铝硅酸盐沸石催化剂可以具有以下二氧化硅与氧化铝的摩尔比:约5至约5000、或约100至约4000、或约200至约3000、或约1500至约2500、或约1000至约2000。考虑了MFI结构化的铝硅酸盐沸石催化剂的各种合适的商业实施方案,例如ZSM-5沸石,如由Zeolyst国际公司(Zeolyst International)生产的MFI-280或由沙特阿拉伯国家石油公司(Saudi Aramco)生产的MFI-2000。
各种合适的商业实施方案也被考虑用于所述不含氧化铝的MFI结构化的催化剂。一个这样的实例是由沙特阿拉伯国家石油公司生产的硅沸石-1(Silicalite-1)。
所述MFI结构化的二氧化硅催化剂可以包括约1.5nm至3nm、或约1.5nm至2.5nm的孔径分布。此外,所述MFI结构化的二氧化硅催化剂可以具有约300m2/g至约425m2/g、或约340m2/g至约410m2/g的表面积。此外,所述MFI结构化的二氧化硅催化剂可以具有约0.001mmol/g至约0.1mmol/g、或约0.01mmol/g至约0.08mmol/g的总酸度。所述酸度维持在约0.1mmol/g或小于约0.1mmol/g以减少不期望的副产物,如芳族化合物的产生。增加酸度可以提高裂化的量;然而,该提高的裂化也可能会导致更小的选择性和芳族副产物的产生增加,这可能会导致催化剂结焦和失活。
在一些情况下,MFI结构化的二氧化硅催化剂可以用酸度调节剂改性以调节所述MFI结构化的二氧化硅催化剂中的酸度水平。举例来说,这些酸度调节剂可以包括稀土调节剂、磷调节剂、钾调节剂、或其组合。然而,由于本发明的实施方案集中在将酸度降低到等于或低于0.1mmol/g的水平,因此本发明的结构化的二氧化硅催化剂可以不含酸度调节剂,如选自稀土调节剂、磷调节剂、钾调节剂、或其组合的那些。如本文所用的“不含酸度调节剂”意指在所述MFI结构化的二氧化硅催化剂中的酸度调节剂少于0.001重量%。
此外,所述MFI结构化的二氧化硅催化剂可以具有约0.1cm3/g至约0.3cm3/g、或约0.15cm3/g至约0.25cm3/g的孔体积。此外,所述MFI结构化的二氧化硅催化剂可以具有以下范围内的单个晶体尺寸:约10nm至约40μm、或约15μm至约40μm、或约20μm至约30μm。在另一个实施方案中,所述MFI结构化的二氧化硅催化剂可以具有约1μm至约5μm范围内的单个晶体尺寸。
此外,各种量的每一种催化剂被考虑用于本发明的双重催化剂体系。举例来说,预期复分解催化剂与裂化催化剂的体积比可以在约5:1至约1:5、或约2:1至约1:2、或约1:1的范围内。
在操作中,通过使丁烯流与所述双重催化剂体系接触来经由复分解转化由含有丁烯的物流产生包含丙烯的产物流。所述丁烯流可以包含2-丁烯,并且任选地包含一种或多种异构体,如1-丁烯、反式-2-丁烯、以及顺式-2-丁烯。本发明的论述集中在基于丁烯的进料流;然而,已知的是,其它C1-C6组分也可能存在于进料流中。
所述介孔二氧化硅催化剂是一种复分解催化剂,它有助于2-丁烯异构化成1-丁烯,继而2-丁烯和1-丁烯进行交叉复分解,形成包含丙烯和其它烯烃/烷烃,如戊烯的复分解产物流。所述MFI结构化的二氧化硅催化剂位于所述复分解催化剂的下游,它是一种裂化催化剂,所述裂化催化剂从所述复分解产物流中的C4烯烃或C5烯烃产生丙烯,并且还可能产生乙烯。
预期所述复分解催化剂和所述裂化催化剂被设置在一个反应器或多个反应器中。举例来说,当所述复分解催化剂和所述裂化催化剂在不同的环境条件(包括温度和压力)下操作时,可能期望对于它们使用单独的反应器。不管是一个反应器还是多个反应器容纳所述双重催化剂,所述双重催化剂体系将具有复分解催化剂区或区段和下游的裂化催化剂区或区段。举例来说,假定反应物流进入反应器的顶部部分,所述介孔二氧化硅复分解催化剂可以位于所述反应器的顶部部分中,并且所述MFI结构化的二氧化硅裂化催化剂可以被设置在所述反应器的底部部分中。举例来说,每一种催化剂可以被定位为离散的催化剂床。此外,预期所述双重催化剂体系的两种催化剂可以彼此接触或分开。然而,如果复分解催化剂和裂化催化剂接触,那么期望所述复分解催化剂仍被设置在所述裂化催化剂的上游。可以将所述催化剂在同一个反应器中使用或使用串联布置的不同反应器使用。或者,预期所述复分解催化剂(介孔二氧化硅催化剂)被设置在第一反应器中并且所述裂化催化剂(MFI结构化的二氧化硅催化剂)被设置在所述第一反应器下游的单独的第二反应器中。在具体的实施方案中,在第一反应器与第二反应器之间存在直接的管道,以使得裂化催化剂可以直接将丁烯复分解反应的产物裂化。考虑了包括所述催化剂体系的各种系统。关于有关这样的系统的细节,名称为《生产丙烯的系统和方法(Systems and Methods of ProducingPropylene)》的共同未决的沙特阿拉伯国家石油公司的美国申请号62/188,052以引用的方式整体并入本文。
考虑了制备用于所述双重催化剂体系中的催化剂的各种方法。确切地说,可以利用湿式浸渍和水热合成的工艺;然而,也考虑了其它催化剂合成技术。
各种操作条件被考虑用于使丁烯流与所述双重催化剂体系接触。举例来说,所述丁烯流可以按约10h-1至约10,000h-1、或约300h-1至约1200h-1的时空速度接触所述双重催化剂体系。此外,所述丁烯流可以在约200℃至约600℃、或约300℃至约600℃的温度下接触所述催化剂体系。此外,所述丁烯流可以在约1巴至约30巴、或约1巴至约10巴的压力下接触所述催化剂体系。
任选地,在复分解和/或裂化之前可以将所述双重催化剂体系预处理。举例来说,可以在复分解之前在至少约400℃、或至少约500℃的温度下用N2将所述双重催化剂体系预处理约1小时至约5小时。
由所述双重催化剂体系产生的产物流可以具有至少80摩尔%的丁烯转化率和以摩尔%计至少40%的丙烯产率。在另一个实施方案中,所述产物流可以具有至少85摩尔%的丁烯转化率和以摩尔%计至少45%的丙烯产率。此外,所述产物流可以具有至少15摩尔%的乙烯产率、或至少20摩尔%的乙烯产率。在又另一个实施方案中,所述产物流可以具有至少45摩尔%的丙烯产率、或至少约50摩尔%的丙烯产率。
此外,所述产物流可以包含少于约1重量%的芳族化合物、或少于约5重量%的烷烃和芳族化合物。不受理论所束缚,在一些实施方案中,可能期望芳族化合物和烷烃的产率是低的,这是因为它表示焦炭形成,这可能会导致催化剂失活。
实施例
以下实施例显示了组合用于本发明的双重催化剂中的各种催化剂的制备。
实施例1:制备W-SBA-15(30)
使用钨酸钠作为钨离子源以用于通过直接水热法合成W-SBA-15。在W-SBA-15的典型合成中,根据Si/W的摩尔比,将钨并入介孔载体SBA-15的骨架中。将123(P123)溶解在HCl中并且在剧烈搅拌下添加原硅酸四乙酯(TEOS)。然后,将计算量的钨酸钠溶液添加到所述溶液中并且在水热条件下在95℃搅拌3天。将所得的固体过滤,干燥并且在550℃煅烧5小时。以这种方式获得的催化剂被鉴定为W-SBA-15(30),其中30表示硅与钨的摩尔比(Si/W)。凝胶组合物的摩尔比是1 SiO2:0.3-0.6 WO3:0.0167 P123:5.82 HCl:190H2O。
实施例2:制备硅沸石-1
在典型的合成中,将4.26克(g)的四丙基溴化铵(TPA)和0.7407g的氟化铵溶解在72ml的水中并且充分搅拌15分钟。然后,添加12g的煅制二氧化硅并且充分搅拌直到匀化为止。将所获得的凝胶高压消毒并且在200℃保持2天。凝胶的摩尔组成是1 SiO2:0.08(TPA)Br:0.10 NH4F:20 H2O。将所获得的固体产物用水洗涤并且在80℃干燥过夜。通过在空气中在750℃煅烧5小时来去除模板。
实施例3:制备MFI-2000
在典型的合成中,将4.26g的TPA和0.7407g的氟化铵溶解在72ml的水中并且充分搅拌15分钟。添加12g的煅制二氧化硅并且充分搅拌直到匀化为止。添加适量的硫酸铝并且将所获得的凝胶高压消毒并且在200℃保持2天。凝胶的摩尔组成是1 SiO2:0.0005 Al2O3:0.08(TPA)Br:0.10 NH4F:20H2O。将所获得的固体产物用水洗涤并且在80℃干燥过夜。通过在空气中在550℃煅烧5小时来去除模板。
实施例4:制备10WO3/Q10
通过湿式浸渍法制备10WO3/CARiACT Q10。将偏钨酸铵[(NH4)6H2W12O40·xH2O]的水溶液和商业二氧化硅载体混合在一起并且在烘箱中在110℃干燥12小时并且在550℃煅烧8小时。如下表1中所示,当与母体Q10材料相比时,负载型氧化钨催化剂(10WO3/Q10)具有更低的表面积,这表明在所述载体上氧化钨的存在。
CARiACT Q10载体和10WO3/Q10催化剂的SEM图像分别示于图1和图2中。CARiACTQ10载体和负载钨的10WO3/Q10这两者均具有75nm-125nm范围内的粒度。在10WO3/Q10中没有氧化钨颗粒的附聚表明在所述载体上氧化钨的高分散性。参考图2,MFI-2000的SEM图像显示均匀的粒度分布,晶体尺寸是约35μm-50μm。晶体的X轴、Y轴、以及Z轴分别是50μm、16μm、以及3μm。
Q10材料、10WO3/Q10材料以及MFI-2000材料的XRD图谱示于图3-图5中。参考图4,Q10载体在15°-20°处显示出宽峰,这表明所述材料中无定形二氧化硅的存在。进一步参考图4,10WO3/Q10催化剂在23.09、23.57、24.33以及34.01处显示出峰,这对应于WO3的结晶相。这表明所述催化剂中WO3物质的存在。如图5中所示,MFI-2000的XRD图谱在8°-9°和22°-25°范围内表现出MFI结构的特征峰。在2θ=8.8°处的峰的强度与在22°-25°范围内的峰是相当的,这表明沸石晶体沿b轴的形成。
实施例5:催化剂特性
表1包括在实施例1-实施例4中所制备的催化剂加上MFI 280的机械特性,所述MFI280是类似于如实施例3中所公开的MFI-2000来制备的。
表1
实施例6:W-SBA-15和裂化催化剂的催化剂性能
测试来自实施例1-实施例4的所制备的催化剂在固定床连续流动反应器(ID:0.25英寸,Autoclave Engineers有限公司)中在大气压下对丁烯复分解反应的活性和选择性。将固定量的催化剂样品(每一种催化剂类型1ml,总共2ml)填充到反应器管中,在所述反应器的顶部和底部上具有碳化硅。将所述催化剂在N2下在550℃预处理1小时。所有反应均是在550℃的温度、900h-1的GHSV(气体时空速度)、以及大气压下,使用2-丁烯(5毫升/分钟(ml/min))作为进料,使用氮气作为稀释剂(25ml/min)来进行的。使用配备有GasPro多孔层开口管柱的具有火焰离子化检测器(FID)的Varian气相色谱仪(Varian 450-GC)在线进行反应产物的定量分析。
表2表明了裂化催化剂MFI-280和MFI-2000单独和以与催化剂W-SBA-15(30)的组合(双重)模式在2-丁烯的复分解和裂化反应(反应温度:550℃;大气压;900h-1的GHSV)中的催化性能。可以看出的是,W-SBA-15复分解催化剂与下游的MFI-2000裂化催化剂的组合提供了最高的丙烯产率。
表2
表3显示了单独的催化剂W-SBA-15(30)和双重W-SBA-15(30)/硅沸石-1催化剂在2-丁烯的复分解和裂化反应(反应温度:550℃;大气压;900hr-1的GHSV)中的催化性能。
表3
产物组分 W-SBA-15(30) W-SBA-15(30)和硅沸石-1
转化率2-C<sub>4</sub>(%) 81.69 87.03
产率(摩尔%)
C<sub>2</sub>= 11.48 14.87
C<sub>3</sub>= 35.54 43.58
1-C<sub>4</sub>= 8.06 5.80
异丁烯 3.24 11.28
C<sub>5</sub>= 15.05 8.09
C<sub>6</sub>= 4.20 0.38
实施例7:CARiACT Q10和裂化催化剂的催化剂性能
还评价了如实施例4中所述的CARiACT Q10复分解催化剂的催化剂性能。在固定床管式反应器(316级不锈钢管,具有0.312英寸的ID、0.562英寸的OD以及8英寸的长度)中进行2-丁烯(反式-2-丁烯和顺式-2-丁烯的1:1混合物)的催化反应。在所述实验中,向反应器中加入2ml的催化剂(单床),所述催化剂先前被筛分到0.5mm-1.0mm直径的粒度。首先将催化剂样品在氮气流中在550℃活化1小时。在反应期间,将进料(2-丁烯)和N2的流速分别维持在5.0ml/min和25ml/min。所述反应是在550℃的温度下在大气压下以900h-1的GHSV(气体时空速度)和5小时的运行时间(TOS)进行的。在双重催化剂体系的情况下,使用以玻璃棉分开的1ml的每一种催化剂。
在单一催化剂体系和双重催化剂体系这两者中测试负载型氧化钨催化剂并且结果示于表4中。对于双重催化剂体系获得最高的丙烯选择性,其中10WO3/Q10处在反应器的顶部(T)处并且MFI-2000处在反应器的底部(B)处。当在单床催化剂体系中使用10WO3/Q10复分解催化剂时,获得31.97摩尔%的丙烯(C3=)产率和12.70摩尔%的戊烯(C5=)产率。这些结果表明在丁烯的复分解期间形成的戊烯没有完全被裂化成丙烯和乙烯。然而,10WO3/Q10(T)/MFI-2000(B)产生3.37摩尔%的戊烯,从而表明在复分解反应期间形成的大部分的戊烯被裂化成丙烯和乙烯。因此,使用在催化剂床的底部处使用裂化催化剂的双重催化剂体系具有明显的优势。此外,当比较10WO3/Q10(T)/MFI-2000(B)与裂化催化剂处在复分解催化剂的上游的相反排列时,与MFI-2000(T)/10WO3/Q10(B)相比,10WO3/Q10(T)/MFI-2000(B)使得丙烯增加约4.5摩尔%,而仅产生略微更少(约1.5摩尔%)的乙烯(C2=)。因此,通过使用在催化剂床的底部处使用裂化催化剂的双重催化剂体系明显地使丙烯产率达到最大。
表4
计算方法
使用AUTOSORB-1(康塔公司(Quanta Chrome))在77K通过氮吸附测量样品的表面积。在吸附测量之前,在氮气流下将样品(约0.1g)在220℃加热2小时。在液氮温度(77K)下测量催化剂的氮吸附等温线。分别通过布鲁诺尔-埃米特-特勒(Brunauer Emmett-Teller,BET)法和巴雷特-乔伊纳-汉伦达(Barrett-Joyner-Halenda,BJH)法计算表面积和孔径分布。从在P/P0=0.99下吸附的N2量估算总孔体积。Barret EP,Joyner LJ,Halenda PH,J.Am.Chem.Soc.73(1951)373-380。
通过使用Rigaku Mini-flex II系统,使用镍过滤的CuKα辐射(30kV以及15mA)进行XRD来对沸石样品进行表征。以静态扫描模式,从1.2°-50°(2θ),以2°min-1的检测器角速度,使用0.02°的步长记录XRD图谱。
使用JEOL JSM-5800扫描显微镜以7000的放大倍数测量SEM图像。在拍摄SEM照片之前,将样品装载在样品架上,用导电铝胶带固定,并且在真空中,使用Cressington溅射离子涂膜机,用15毫安(mA)电流涂覆金膜20秒。
现在应当了解的是,描述了使用双重催化剂制备丙烯的系统和方法的各个方面并且这些方面可以结合各个其它方面使用。
在第一个方面,本公开提供了一种用于生产丙烯的方法,所述方法包括提供双重催化剂体系,所述双重催化剂体系包含浸渍有金属氧化物的介孔二氧化硅催化剂、和所述介孔二氧化硅催化剂下游的丝光沸石骨架反转(MFI)结构化的二氧化硅催化剂。所述介孔二氧化硅催化剂包括约2.5nm至约40nm的孔径分布和至少约0.600cm3/g的总孔体积。所述MFI结构化的二氧化硅催化剂包括0.001mmol/g至0.1mmol/g的总酸度。所述方法还包括通过使包含丁烯的物流与所述双重催化剂体系接触来经由复分解和裂化从所述包含丁烯的物流生产丙烯,其中所述包含丁烯的物流先接触所述介孔二氧化硅催化剂,之后接触所述MFI结构化的二氧化硅催化剂。
在第二个方面,本公开提供了第一个方面的方法,其中所述介孔二氧化硅催化剂载体是经由湿式浸渍或水热合成制备的。
在第三个方面,本公开提供了第一个方面或第二个方面的方法,其中所述丁烯流包含2-丁烯、以及任选的1-丁烯、反式-2-丁烯、和顺式-2-丁烯中的一种或多种。
在第四个方面,本公开提供了第一个方面至第三个方面中的任一个的方法,其中所述介孔二氧化硅催化剂催化2-丁烯异构化成1-丁烯,继而2-丁烯和1-丁烯进行交叉复分解成包含丙烯的复分解产物流,并且所述MFI结构化的二氧化硅催化剂是裂化催化剂,所述裂化催化剂从所述复分解产物流中的C4烯烃和C5烯烃产生丙烯。
在第五个方面,本公开提供了第一个方面至第四个方面中的任一个的方法,其中所述介孔二氧化硅催化剂的金属氧化物包含钼、铼、钨、或其组合的一种或多种氧化物。
在第六个方面,本公开提供了第一个方面至第五个方面中的任一个的方法,其中所述介孔二氧化硅催化剂的金属氧化物是氧化钨(WO3)。
在第七个方面,本公开提供了第一个方面至第六个方面中的任一个的方法,其中所述介孔二氧化硅催化剂具有约5至约60的二氧化硅/氧化钨的摩尔比。
在第八个方面,本公开提供了第一个方面至第七个方面中的任一个的方法,其中所述介孔二氧化硅催化剂包括约2.5nm至20nm的孔径分布。
在第九个方面,本公开提供了第一个方面至第八个方面中的任一个的方法,其中所述介孔二氧化硅催化剂具有约250m2/g至约600m2/g的表面积。
在第十个方面,本公开提供了第一个方面至第九个方面中的任一个的方法,其中所述MFI结构化的二氧化硅催化剂不含选自由以下各项组成的组的酸度调节剂:稀土调节剂、磷调节剂、钾调节剂、以及其组合。
在第十一个方面,本公开提供了第一个方面至第十个方面中的任一个的方法,其中所述介孔二氧化硅催化剂具有约20nm至约200nm的粒度。
在第十二个方面,本公开提供了第一个方面至第十一个方面中的任一个的方法,其中所述介孔二氧化硅催化剂具有约10μm至约40μm范围内的单个晶体尺寸。
在第十三个方面,本公开提供了第一个方面至第十二个方面中的任一个的方法,其中所述MFI结构化的二氧化硅催化剂是不含氧化铝的。
在第十四个方面,本公开提供了第一个方面至第十三个方面中的任一个的方法,其中所述MFI结构化的二氧化硅催化剂是不含氧化铝的或含有氧化铝的。
在第十五个方面,本公开提供了第一个方面至第十四个方面中的任一个的方法,其中所述MFI结构化的二氧化硅催化剂具有约200至约3000的二氧化硅与氧化铝的摩尔比。
在第十六个方面,本公开提供了第一个方面至第十五个方面中的任一个的方法,其中所述MFI结构化的二氧化硅催化剂具有约200至约3000的二氧化硅与氧化铝的摩尔比。
在第十七个方面,本公开提供了第一个方面至第十六个方面中的任一个的方法,其中所述MFI结构化的二氧化硅催化剂具有约300m2/g至约425m2/g的表面积。
在第十八个方面,本公开提供了第一个方面至第十七个方面中的任一个的方法,其中所述MFI结构化的二氧化硅催化剂具有约1.5nm至3nm的孔径分布和约0.1cm3/g至约0.3cm3/g的孔体积。
在第十九个方面,本公开提供了第一个方面至第十八个方面中的任一个的方法,其中所述MFI结构化的二氧化硅催化剂具有约10μm至约40μm的晶体尺寸。
在第二十个方面,本公开提供了第一个方面至第二十个方面中的任一个的方法,其中所述丁烯与所述催化剂之间的接触以约300h-1至约1200h-1的时空速度发生。
在第二十一个方面,本公开提供了第一个方面至第二十个方面中的任一个的方法,其中所述丁烯与所述催化剂之间的接触是在约300℃至约600℃的温度下进行。
在第二十二个方面,本公开提供了第一个方面至第二十一个方面中的任一个的方法,其中所述丁烯与所述催化剂之间的接触是在约1巴至约10巴的压力下进行。
在第二十三个方面,本公开提供了第一个方面至第二十二个方面中的任一个的方法,其中所述方法实现了至少85摩尔%的丁烯转化率和以摩尔%计至少45%的丙烯产率。
在第二十四个方面,本公开提供了第一个方面至第二十三个方面中的任一个的方法,其中所述方法实现了至少85摩尔%的丁烯转化率和以摩尔%计至少45%的丙烯产率。
在第二十五个方面,本公开提供了第一个方面至第二十四个方面中的任一个的方法,其中所述方法实现了至少15摩尔%的乙烯产率。
在第二十六个方面,本公开提供了第一个方面至第二十五个方面中的任一个的方法,其中所述方法实现了至少20摩尔%的乙烯产率和以摩尔%计至少45%的丙烯产率。
在第二十七个方面,本公开提供了一种用于从丁烯生产丙烯的双重催化剂体系,所述双重催化剂体系可以用于第一个方面至第二十六个方面中的任一个的方法的过程中,其中所述双重催化剂体系包含复分解催化剂区和所述复分解催化剂区下游的裂化催化剂区。所述复分解催化剂区包含浸渍有金属氧化物的介孔二氧化硅催化剂,其中所述介孔二氧化硅催化剂包括至少约2.5nm至约40nm的孔径分布和至少约0.600cm3/g的总孔体积。所述裂化催化剂区包含丝光沸石骨架反转(MFI)结构化的二氧化硅催化剂,其中所述MFI结构化的二氧化硅催化剂包括至少1.5nm至3nm的孔径分布、和0.001mmol/g至0.1mmol/g的总酸度。
在第二十八个方面,本公开提供了第二十七个方面的双重催化剂体系,其中所述复分解催化剂区和所述裂化催化剂区被设置在一个反应器中。
在第二十九个方面,本公开提供了第二十七个方面或第二十八个方面中的任一个的双重催化剂体系,其中所述复分解催化剂区被设置在第一反应器中并且所述裂化催化剂区被设置在所述第一反应器下游的第二反应器中。
在第三十个方面,本公开提供了第三十个方面的双重催化剂体系,其中在所述第一反应器与所述第二反应器之间存在管道。
在第三十一个方面,本公开提供了第二十七个方面至第三十个方面中的任一个的双重催化剂体系,其中所述介孔二氧化硅催化剂具有约10至约50的二氧化硅/金属氧化物的摩尔比。
在第三十二个方面,本公开提供了第二十七个方面至第三十一个方面中的任一个的双重催化剂体系,其中所述介孔二氧化硅催化剂的金属氧化物是氧化钨(WO3)。
在第三十三个方面,本公开提供了第二十七个方面至第三十二个方面中的任一个的双重催化剂体系,其中所述MFI结构化的二氧化硅催化剂是不含氧化铝的或包含氧化铝。
在第三十四个方面,本公开提供了第二十七个方面至第三十三个方面中的任一个的双重催化剂体系,其中所述MFI结构化的二氧化硅催化剂具有约200至约3000的二氧化硅与氧化铝的摩尔比。
在第三十五个方面,本公开提供了第二十七个方面至第三十四个方面中的任一个的双重催化剂体系,其中所述MFI结构化的二氧化硅催化剂不含选自由以下各项组成的组的酸度调节剂:稀土调节剂、磷调节剂、钾调节剂、以及其组合。
对于本领域技术人员应当显而易见的是,可以对所述的实施方案作出各种修改和变化而不脱离要求保护的主题的精神和范围。因此,本说明书旨在涵盖各种所述的实施方案的修改和变化,前提条件是这样的修改和变化落入所附权利要求和它们的等同方案的范围内。

Claims (11)

1.一种用于从丁烯生产丙烯的双重催化剂体系,所述双重催化剂体系包含复分解催化剂区和所述复分解催化剂区下游的裂化催化剂区,其中:
所述复分解催化剂区包含浸渍有金属氧化物的介孔二氧化硅催化剂,其中所述介孔二氧化硅催化剂包括至少2.5nm至40nm的孔径分布和至少0.600cm3/g的总孔体积;并且
所述裂化催化剂区包含丝光沸石骨架反转(MFI)结构化的二氧化硅催化剂,其中所述MFI结构化的二氧化硅催化剂包括至少1.5nm至3nm的孔径分布、和0.001mmol/g至0.1mmol/g的总酸度。
2.如权利要求1所述的双重催化剂体系,其中所述复分解催化剂区和所述裂化催化剂区被设置在一个反应器中。
3.如权利要求1所述的双重催化剂体系,其中所述复分解催化剂区被设置在第一反应器中并且所述裂化催化剂区被设置在所述第一反应器下游的第二反应器中。
4.如权利要求3所述的双重催化剂体系,所述双重催化剂体系还包括在所述第一反应器与所述第二反应器之间的管道。
5.如权利要求1所述的双重催化剂体系,其中所述介孔二氧化硅催化剂的金属氧化物包含钼、铼、钨、或其组合的一种或多种氧化物。
6.如权利要求1所述的双重催化剂体系,其中所述介孔二氧化硅催化剂具有10至50的二氧化硅/金属氧化物的摩尔比。
7.如权利要求1所述的双重催化剂体系,其中所述介孔二氧化硅催化剂的金属氧化物是氧化钨(WO3)。
8.如权利要求1所述的双重催化剂体系,其中所述MFI结构化的二氧化硅催化剂是不含氧化铝的。
9.如权利要求1所述的双重催化剂体系,其中所述MFI结构化的二氧化硅催化剂包含氧化铝。
10.如权利要求9所述的双重催化剂体系,其中所述MFI结构化的二氧化硅催化剂具有200至3000的二氧化硅与氧化铝的摩尔比。
11.如权利要求1所述的双重催化剂体系,其中所述MFI结构化的二氧化硅催化剂不含选自由以下各项组成的组的酸度调节剂:稀土调节剂、磷调节剂、钾调节剂、以及其组合。
CN201811179717.1A 2015-07-02 2016-06-23 用于丙烯生产的双重催化剂体系 Pending CN109364983A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562188178P 2015-07-02 2015-07-02
US62/188,178 2015-07-02
CN201680039097.4A CN108137438A (zh) 2015-07-02 2016-06-23 用于丙烯生产的双重催化剂体系

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680039097.4A Division CN108137438A (zh) 2015-07-02 2016-06-23 用于丙烯生产的双重催化剂体系

Publications (1)

Publication Number Publication Date
CN109364983A true CN109364983A (zh) 2019-02-22

Family

ID=56345262

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680039097.4A Pending CN108137438A (zh) 2015-07-02 2016-06-23 用于丙烯生产的双重催化剂体系
CN201811179717.1A Pending CN109364983A (zh) 2015-07-02 2016-06-23 用于丙烯生产的双重催化剂体系

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680039097.4A Pending CN108137438A (zh) 2015-07-02 2016-06-23 用于丙烯生产的双重催化剂体系

Country Status (6)

Country Link
US (4) US9884794B2 (zh)
EP (2) EP3317239B1 (zh)
JP (1) JP6671399B2 (zh)
KR (3) KR102178406B1 (zh)
CN (2) CN108137438A (zh)
WO (1) WO2017003812A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005703B2 (en) 2015-07-02 2018-06-26 Saudi Arabian Oil Company Propylene production using a mesoporous silica foam metathesis catalyst
KR102063095B1 (ko) 2015-07-02 2020-01-08 사우디 아라비안 오일 컴퍼니 프로필렌을 생성하기 위한 시스템 및 방법
EP3317237A1 (en) 2015-07-02 2018-05-09 Saudi Arabian Oil Company Systems and methods for producing propylene
CN108137438A (zh) 2015-07-02 2018-06-08 沙特阿拉伯石油公司 用于丙烯生产的双重催化剂体系
US10550048B2 (en) * 2017-01-20 2020-02-04 Saudi Arabian Oil Company Multiple-stage catalyst system for self-metathesis with controlled isomerization and cracking
US10934231B2 (en) * 2017-01-20 2021-03-02 Saudi Arabian Oil Company Multiple-stage catalyst systems and processes for propene production
US10329225B2 (en) 2017-01-20 2019-06-25 Saudi Arabian Oil Company Dual catalyst processes and systems for propylene production
FR3068967B1 (fr) * 2017-07-13 2019-06-28 IFP Energies Nouvelles Methode et procede pour convertir l'ethylene present dans l'effluent de tete d'un fcc de maniere a augmenter la production de propylene
US11369950B2 (en) * 2018-02-21 2022-06-28 Saudi Arabian Oil Company Multi-functional composite catalyst materials and methods of synthesizing the catalyst materials
US11242299B2 (en) 2018-10-10 2022-02-08 Saudi Arabian Oil Company Catalyst systems that include metal oxide co-catalysts for the production of propylene
US10961171B2 (en) 2018-10-10 2021-03-30 Saudi Arabian Oil Company Catalysts systems that include metal co-catalysts for the production of propylene
CN111085207A (zh) * 2018-10-24 2020-05-01 中国石油化工股份有限公司 载体为球形三介孔复合材料的非贵金属系低碳烷烃脱氢催化剂及其制法和应用
US10975004B2 (en) 2019-01-03 2021-04-13 Saudi Arabian Oil Company Integrated process for production of ethylene from propylene
US20220143586A1 (en) 2019-03-18 2022-05-12 Exxonmobil Research And Engineering Company Mesoporous Catalyst Compounds and Uses Thereof
CN112387302B (zh) * 2019-08-13 2023-05-30 中国石油化工股份有限公司 催化裂化助剂及其制备方法和应用及烃油催化裂化的方法
US11185850B2 (en) * 2019-12-02 2021-11-30 Saudi Arabian Oil Company Dual functional composite catalyst for olefin metathesis and cracking
US11517892B2 (en) 2019-12-03 2022-12-06 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11311869B2 (en) 2019-12-03 2022-04-26 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11339332B2 (en) 2020-01-29 2022-05-24 Saudi Arabian Oil Company Systems and processes integrating fluidized catalytic cracking with metathesis for producing olefins
CN113304786B (zh) * 2020-02-27 2023-05-30 中国石油化工股份有限公司 含有二氯二甲基硅烷改性全硅介孔材料的催化裂化助剂及其制备方法和应用
US11572516B2 (en) 2020-03-26 2023-02-07 Saudi Arabian Oil Company Systems and processes integrating steam cracking with dual catalyst metathesis for producing olefins
CN115427378A (zh) 2020-04-22 2022-12-02 利安德化学技术有限公司 由丁烯生产专用丙烯
US11926587B2 (en) 2020-09-15 2024-03-12 Lyondell Chemical Technology, L.P. Process for converting raffinate butenes to propylene
US11679378B2 (en) 2021-02-25 2023-06-20 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11845705B2 (en) 2021-08-17 2023-12-19 Saudi Arabian Oil Company Processes integrating hydrocarbon cracking with metathesis for producing propene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102177223A (zh) * 2008-08-12 2011-09-07 鲁姆斯科技公司 结合的丙烯生产

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442821A (en) 1966-09-29 1969-05-06 Universal Oil Prod Co Manufacture of spheroidal silica-alumina particles
US3546313A (en) 1967-04-03 1970-12-08 Phillips Petroleum Co Conversion of olefins
NL135562C (zh) 1967-04-03
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
GB1489300A (en) 1974-08-26 1977-10-19 Agency Ind Science Techn Process for the selective disproportionation reaction of olefins
US4071471A (en) 1974-12-23 1978-01-31 Phillips Petroleum Company Catalysts for conversion of olefins
DE3775059D1 (de) 1983-03-10 1992-01-16 Dow Chemical Co Verfahren zur disproportionierung von alkenen.
US4609769A (en) * 1984-02-15 1986-09-02 Phillips Petroleum Company Olefin conversion
US4575575A (en) 1984-04-05 1986-03-11 Phillips Petroleum Company Catalysts and process for olefin conversion
US5191131A (en) 1988-12-05 1993-03-02 Research Association For Utilization Of Light Oil Process for preparation of lower aliphatic hydrocarbons
US5026936A (en) 1989-10-02 1991-06-25 Arco Chemical Technology, Inc. Enhanced production of propylene from higher hydrocarbons
US5026935A (en) 1989-10-02 1991-06-25 Arco Chemical Technology, Inc. Enhanced production of ethylene from higher hydrocarbons
FR2733986B1 (fr) 1995-05-11 1997-06-13 Inst Francais Du Petrole Procede et installation pour la conversion de coupes c4 olefiniques en polyisobutenes et en propylene
DE19746040A1 (de) 1997-10-17 1999-04-22 Basf Ag Verfahren zur Herstellung von Propen
EP0921181A1 (en) 1997-12-05 1999-06-09 Fina Research S.A. Production of propylene
EP0920911A1 (en) * 1997-12-05 1999-06-09 Fina Research S.A. Production of catalysts for olefin conversion
WO2000014038A1 (en) 1998-09-04 2000-03-16 Sasol Technology (Proprietary) Limited Production of propylene
MXPA01011829A (es) * 1999-05-20 2004-12-06 Exxon Chemical Patents Inc Macro-estructuras que contienen metal de oxido inorganico poroso, su preparacion y uso.
DE19932060A1 (de) 1999-07-12 2001-01-18 Basf Ag Verfahren zur Herstellung von C¶5¶-/C¶6¶-Olefinen
DE10013253A1 (de) 2000-03-17 2001-09-20 Basf Ag Verfahren zur flexiblen Herstellung von Propen und Hexen
EP1434752A2 (de) 2001-10-01 2004-07-07 Basf Aktiengesellschaft Verfahren zur herstellung von alkylarylverbindungen und sulfonaten davon
US6777582B2 (en) 2002-03-07 2004-08-17 Abb Lummus Global Inc. Process for producing propylene and hexene from C4 olefin streams
US20060293548A1 (en) 2002-08-16 2006-12-28 Alta Spamer Metathesis catalyst and process
DE10319439A1 (de) 2003-04-30 2004-11-18 Basf Ag Aktivierte Metathesekatalysatoren
US7214841B2 (en) 2003-07-15 2007-05-08 Abb Lummus Global Inc. Processing C4 olefin streams for the maximum production of propylene
ITMI20040855A1 (it) 2004-04-29 2004-07-29 Polimeri Europa Spa Catalizzatore di renio supportato su allimuna modificata e suo impiego nella reazione di metatesi delle olefine
JP4953817B2 (ja) 2004-07-16 2012-06-13 旭化成ケミカルズ株式会社 エチレン及びプロピレンの製造法
DE102005009596A1 (de) 2005-02-28 2006-08-31 Basf Ag Verfahren zur Metathese umfassend die Reinigung der Ausgangsstoffe
KR100912882B1 (ko) 2005-03-03 2009-08-20 미쓰이 가가쿠 가부시키가이샤 올레핀류의 제조 방법
US7692057B2 (en) 2005-08-15 2010-04-06 China Petroleum & Chemical Corporation Process for producing lower olefins by using multiple reaction zones
EP2010318B1 (en) 2006-04-11 2014-04-02 Agency for Science, Technology and Research Catalysts for ring closing metathesis
EP2029638A1 (de) 2006-06-06 2009-03-04 Basf Se Herstellung reaktiver, im wesentlichen halogenfreier polyisobutene aus isobuten-armen c4-kohlenwasserstoff-gemischen
EP2097167A2 (en) 2006-12-12 2009-09-09 Shell Internationale Research Maatschappij B.V. Process for preparing a catalyst
JP5235873B2 (ja) * 2007-04-27 2013-07-10 三井化学株式会社 オレフィンの製造方法
CN101531558B (zh) 2008-03-13 2013-04-24 中国石油化工股份有限公司 一种制取丙烯和芳烃的催化转化方法
US20090240010A1 (en) 2008-03-20 2009-09-24 Mcdaniel Max P Alumina-silica activator-supports for metallocene catalyst compositions
KR101258347B1 (ko) 2008-08-28 2013-04-30 미쓰이 가가쿠 가부시키가이샤 올레핀의 제조 방법
BRPI0918229A2 (pt) 2008-09-04 2016-03-01 Basf Corp E Basf Ag isomerizacao de olefina e catalisador de metatese
US8119849B2 (en) 2008-12-29 2012-02-21 Lyondell Chemical Technology, L.P. Propylene production
US8586813B2 (en) 2009-07-21 2013-11-19 Lummus Technology Inc. Catalyst for metathesis of ethylene and 2-butene and/or double bond isomerization
US8324440B2 (en) 2010-02-05 2012-12-04 Uop Llc Support properties of silica supported catalysts and their use in olefin metathesis
US8895795B2 (en) 2010-02-05 2014-11-25 Uop Llc Acid washed silica supported catalysts and their use in olefin metathesis
AR080682A1 (es) 2010-03-15 2012-05-02 Total Petrochemicals Res Feluy Produccion de propileno por deshidratacion e isomerizacion esqueletica simultaneas de isobutanol en catalizadores acidos seguido por metatesis
US8722950B2 (en) 2010-04-26 2014-05-13 Saudi Basic Industries Corporation Process for producing propylene and aromatics from butenes by metathesis and aromatization
US9079159B2 (en) 2011-04-14 2015-07-14 Uop Llc Olefin metathesis process using a treated tungsten oxide catalyst
US20120289617A1 (en) 2011-05-10 2012-11-15 Saudi Arabian Oil Company Hybrid Catalyst for Olefin Metathesis
US20130085311A1 (en) 2011-09-29 2013-04-04 Honam Petrochemical Corporation Zsm-5 catalyst with micropores and mesopores, preparation method thereof and production method of light olefins through catalytic cracking of hydrocarbons using the catalyst
KR101279691B1 (ko) * 2011-11-29 2013-06-28 롯데케미칼 주식회사 미세 및 중형기공성 zsm-5 촉매, 이의 제조방법 및 그 촉매를 이용한 탄화수소 혼합물의 촉매 접촉분해를 통한 경질 올레핀 제조방법
KR101262549B1 (ko) * 2011-09-29 2013-05-09 롯데케미칼 주식회사 중형기공성 zsm-5 촉매 제조방법 및 그 촉매를 이용한 경질 올레핀 제조방법
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
EP2862629A1 (en) 2013-10-15 2015-04-22 Borealis AG Catalyst and process for olefin metathesis reaction
CN105764875B (zh) 2013-11-20 2018-05-22 鲁姆斯科技公司 烯烃转化方法
CN104370676B (zh) 2014-11-11 2016-06-08 中国石油天然气集团公司 一种以碳四烯烃为原料生产丙烯副产乙烯的方法
KR102063095B1 (ko) 2015-07-02 2020-01-08 사우디 아라비안 오일 컴퍼니 프로필렌을 생성하기 위한 시스템 및 방법
US10005703B2 (en) 2015-07-02 2018-06-26 Saudi Arabian Oil Company Propylene production using a mesoporous silica foam metathesis catalyst
CN108137438A (zh) 2015-07-02 2018-06-08 沙特阿拉伯石油公司 用于丙烯生产的双重催化剂体系
EP3317237A1 (en) 2015-07-02 2018-05-09 Saudi Arabian Oil Company Systems and methods for producing propylene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102177223A (zh) * 2008-08-12 2011-09-07 鲁姆斯科技公司 结合的丙烯生产

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIN HU, ET AL.: "Highly active doped mesoporous KIT-6 catalysts for metathesis of 1-butene and ethene to propene: The influence of neighboring environment of W species", 《J. PHYS. CHEM. C》 *

Also Published As

Publication number Publication date
EP3317239B1 (en) 2019-09-04
KR20180050277A (ko) 2018-05-14
KR102178406B1 (ko) 2020-11-16
EP3536679A1 (en) 2019-09-11
KR20180126623A (ko) 2018-11-27
JP6671399B2 (ja) 2020-03-25
KR20190022925A (ko) 2019-03-06
US10052618B2 (en) 2018-08-21
EP3536679B1 (en) 2023-12-13
US10583423B2 (en) 2020-03-10
WO2017003812A1 (en) 2017-01-05
US20170113211A1 (en) 2017-04-27
US20180326408A1 (en) 2018-11-15
CN108137438A (zh) 2018-06-08
KR101921891B1 (ko) 2018-11-26
EP3317239A1 (en) 2018-05-09
US9884794B2 (en) 2018-02-06
JP2018527304A (ja) 2018-09-20
US20170001927A1 (en) 2017-01-05
US20180155256A1 (en) 2018-06-07
US10532347B2 (en) 2020-01-14
KR101955183B1 (ko) 2019-03-08

Similar Documents

Publication Publication Date Title
CN109364983A (zh) 用于丙烯生产的双重催化剂体系
Rostamizadeh et al. Bifunctional and bimetallic Fe/ZSM-5 nanocatalysts for methanol to olefin reaction
CN110267932B (zh) 用于自复分解连同受控异构化和裂化的多级催化剂系统
CN110191872A (zh) 用于丙烯生产的多级催化剂系统和方法
CN107921425A (zh) 使用介孔二氧化硅泡沫复分解催化剂生产丙烯
Salih et al. Catalytic enhancement of SAPO-34 for methanol conversion to light olefins using in situ metal incorporation
JP7124101B2 (ja) キシレンへの重質リフォーメート変換のための複合ゼオライト触媒の製造方法
CN113195098B (zh) 用于将重质重整产物转化为二甲苯的复合沸石催化剂的生产方法
CN110214053A (zh) 用于丙烯制造的双催化剂方法和系统
KR20210137375A (ko) 금속-함침 zsm-5+ 층상 모데나이트 제올라이트 복합 촉매 상에서 중질 개질유를 btx로 전환시키는 방법 및 복합 촉매
NL2021397B1 (en) A process for preparing a hierarchical zeolite catalyst for aromatization of C5-C9 alkane
KR20210045351A (ko) 금속 함침된 zsm-5와 메조다공성 모더나이트 제올라이트 복합체 촉매 위에서 btx로 중질 리포메이트를 전환시키는 방법
Zeng et al. Superior ZSM-5@ γ-Al2O3 composite catalyst for methanol and ethanol coconversion to light olefins
JP2009013095A (ja) オレフィンの製造方法
CN113164936A (zh) 通过金属浸渍的ZSM-5+纳米晶体β沸石复合催化剂;所述复合催化剂将重质重整产物转化为BTX的方法
Smili et al. CO Hydrogenation over functionalized AlMCM-41 materials and ZSM-11/5 zeolites as catalysts
CN114929652A (zh) 用于通过催化裂化具有4至7个碳原子的烃生产低碳烯烃的催化剂
Zhong et al. Methylation of Naphthalene with Methanol over the Al-Modified SiO2 Zeolite Catalysts
JP2023055086A (ja) 金属含有mfi型ゼオライト及びそれを含む炭化水素化合物製造用触媒
JP2014166973A (ja) 炭素原子数2〜4のオレフィンの製造方法、プロピレンの製造方法及びゼオライト

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190222

RJ01 Rejection of invention patent application after publication