CN108003398A - 母炼胶的制造方法 - Google Patents

母炼胶的制造方法 Download PDF

Info

Publication number
CN108003398A
CN108003398A CN201711061129.3A CN201711061129A CN108003398A CN 108003398 A CN108003398 A CN 108003398A CN 201711061129 A CN201711061129 A CN 201711061129A CN 108003398 A CN108003398 A CN 108003398A
Authority
CN
China
Prior art keywords
rubber
masterbatch
latex
filler
zeta potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711061129.3A
Other languages
English (en)
Other versions
CN108003398B (zh
Inventor
宫崎澄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Publication of CN108003398A publication Critical patent/CN108003398A/zh
Application granted granted Critical
Publication of CN108003398B publication Critical patent/CN108003398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • C08J2307/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2407/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Tires In General (AREA)

Abstract

本发明的目的在于提供使填料在橡胶中的分散性提高,断裂强度、刚性、低油耗性等橡胶物性得到改善的母炼胶的制造方法等。其解决手段在于一种母炼胶的制造方法,其包括将ζ电位为-100~-20mV的橡胶胶乳与ζ电位为10~90mV的填料分散体进行混合、调制ζ电位为-20~0mV的调配胶乳的工序。

Description

母炼胶的制造方法
技术领域
本发明涉及母炼胶的制造方法。
背景技术
以往,已知通过在橡胶组合物中添加芳族聚酰胺等短纤维、纤维素纤维等微原纤化植物纤维、间同立构聚丁二烯等结晶性聚合物等填料,可以补强橡胶组合物,并且提高模量(复数弹性模量)。然而,填料的自我凝聚力强,与橡胶成分的相溶性差的情况多,例如,即使在橡胶胶乳中投入并混合微原纤化植物纤维,所投入的微原纤化植物纤维的20%左右仍不会被混入(incorporate)橡胶成分中,而是残留在溶液中。
另外,将橡胶胶乳与填料混合而制作母炼胶的情况下,有母炼胶中容易产生填料的凝聚块的倾向。例如,在轮胎中使用这样的母炼胶的情况下,产生的凝聚块,具有引起早期磨耗、破裂、剥落(chipping)、层间剥离的可能性,进一步地,甚至有空气泄露、丧失操纵稳定性的可能性,故而希望提高填料在母炼胶中的橡胶中的分散性。
作为用以使填料在母炼胶中的橡胶中的分散性提高、改善橡胶物性的方法,以往实施了在将橡胶胶乳与填料混合之后调整pH而制作母炼胶的方法。除此之外,例如还公开了以下方法等:将含有具有规定的ζ电位的炭黑的浆料溶液、与橡胶胶乳溶液进行混合,凝固干燥,制造湿母炼胶的方法(例如,参见专利文献1);分解天然橡胶胶乳中的酰胺键,将分解后的胶乳与无机填料的浆料溶液进行混合,制造天然橡胶母炼胶的方法(例如,参见专利文献2);将无机粒子的浆料、与具有与该无机粒子的浆料相反的符号的表面电位的聚合物的胶乳进行混合,制造高分子复合体的方法(例如,参见专利文献3);将单一成分在水性分散液的状态下一起混合,该水性分散液中,粒子具有相同符号的表面电荷、规定的ζ电位、规定的各分散液的粒子的ζ电位之间的比,使所得的混合分散液凝固的方法(例如,参见专利文献4);从含有具有规定的平均纤维宽度的纤维素纳米纤维、与橡胶胶乳的规定的固体成分浓度的水分散液中,除去水分,制造橡胶母炼胶的方法(例如,参见专利文献5);以及,从含有具有规定的平均纤维宽度的微细纤维素纤维、与树脂乳液的具有规定的固体成分浓度的混合液体中,除去水分,制造复合材料的方法(例如,参见专利文献6)。
[现有技术文献]
[专利文献]
专利文献1:日本专利特开第2010-209175号公报
专利文献2:日本专利特开第2004-99625号公报
专利文献3:日本专利特开第2006-348216号公报
专利文献4:日本专利特开昭第62-104871号公报
专利文献5:日本专利特开第2014-141637号公报
专利文献6:日本专利特开第2015-93882号公报
发明内容
[发明所要解决的问题]
如上所述,虽然有各种各样的用于使填料在母炼胶中的橡胶中的分散性提高,改善橡胶物性的方法在得到研究,但是填料的分散性仍存在进一步改善的余地。
本发明的目的在于解决上述问题,提供一种制造填料在橡胶中的分散性提高,断裂强度、刚性、低油耗性等性能平衡得到改善的母炼胶的方法。
[解决问题的手段]
本发明涉及包括将ζ电位为-100~-20mV的橡胶胶乳与ζ电位为10~90mV的填料分散体进行混合、调制ζ电位为-20~0mV的调配胶乳的工序的母炼胶的制造方法。
所述填料优选为微原纤化天然纤维。
所述橡胶胶乳优选为二烯系橡胶胶乳。
此外,本发明还涉及通过所述制造方法而获得的母炼胶。
此外,本发明还涉及使用所述母炼胶制得的轮胎用橡胶组合物。
此外,本发明还涉及使用所述橡胶组合物制得的充气轮胎。
[发明的效果]
根据本发明,由于是包括将ζ电位为-100~-20mV的橡胶胶乳与ζ电位为10~90mV的填料分散体进行混合、调制ζ电位为-20~0mV的调配胶乳的工序的母炼胶的制造方法,故而填料在橡胶中的分散性进一步提高,可以获得填料微细地分散于橡胶中的母炼胶。而且,使用这样的母炼胶,可以获得断裂强度、刚性、低油耗性等性能平衡得到改善的轮胎用橡胶组合物和充气轮胎。
具体实施方式
(母炼胶的制造方法)
本发明的母炼胶的制造方法包括将ζ电位为-100~-20mV的橡胶胶乳与ζ电位为10~90mV的填料分散体进行混合、调制ζ电位为-20~0mV的调配胶乳的工序。另外,本发明的制造方法只要包括上述工序,就还可以包括其它工序,上述工序可以进行1次,也可以反复进行多次。
通常难以将填料均一分散在母炼胶中的橡胶中,但是本发明人发现了:通过采用包括所述工序的制法,调制ζ电位在-20~0mV的特定范围的调配胶乳,故而能够抑制填料的凝聚,并且将填料微细地高度分散在橡胶中的这样的母炼胶,从而可以改善断裂强度、刚性、低油耗性的性能平衡。
本发明中,进行将ζ电位为-100~-20mV的橡胶胶乳与ζ电位为10~90mV的填料分散体进行混合、调制ζ电位为-20~0mV的调配胶乳的工序。
作为上述橡胶胶乳,只要具有-100~-20mV的范围内的ζ电位就没有特别限定,例如可适宜地使用:天然橡胶胶乳、改性天然橡胶胶乳(皂化天然橡胶胶乳、环氧化天然橡胶胶乳等)、合成二烯系橡胶胶乳(丁二烯橡胶(BR)、苯乙烯丁二烯橡胶(SBR)、苯乙烯异戊二烯丁二烯橡胶(SIBR)、异戊二烯橡胶、丙烯腈丁二烯橡胶、乙烯-醋酸乙烯酯橡胶、氯丁二烯橡胶、乙烯基吡啶橡胶、丁基橡胶等胶乳)等二烯系橡胶胶乳。此外,如上所述,上述橡胶胶乳为二烯系橡胶胶乳这也是本发明的适宜的实施方式之一。这些橡胶胶乳既可以单独使用,也可以2种以上并用。其中,从进一步适宜地获得本发明的效果的角度考虑,更优选为天然橡胶胶乳、SBR胶乳、BR胶乳、异戊二烯橡胶胶乳,特别优选为天然橡胶胶乳。
上述橡胶胶乳的ζ电位可以通过浓度(橡胶固体成分浓度)进行调整。
作为上述橡胶胶乳的ζ电位,从更适宜地获得本发明的效果的角度考虑,优选在-90mV以上,更优选在-80mV以上,特别优选在-70mV以上。另外,还优选在-30mV以下,更优选在-40mV以下,进一步优选在-50mV以下,特别优选在-60mV以下。
本说明书中,ζ电位可以通过后述实施例中使用的测定装置、测量条件进行测定。
一般认为,天然橡胶胶乳是作为三叶胶树等天然橡胶的树木的树液而被采集,除了橡胶成分之外,还包含水、蛋白质、脂质、无机盐类等,橡胶中的凝胶分数(gel fraction)是基于各种杂质的复合存在的物质。本发明中,作为天然橡胶胶乳,可以使用通过割开三叶胶树而产生的生胶乳(鲜胶乳)、通过离心分离法或乳状液分层(creaming)法浓缩而得的浓缩胶乳(精制胶乳、根据常规方法添加氨而得的高氨胶乳、氧化锌与TMTD通过氨而被稳定化所得的LATZ胶乳等)等。
天然橡胶胶乳具有由蛋白质和磷脂质形成的蜂巢状的蜂窝(cell),由于该蜂窝而存在填料向天然橡胶的混入受到阻碍的倾向,故而有必要在将天然橡胶胶乳与填料进行混合时,进行预先通过皂化处理除去天然橡胶胶乳中的蜂窝等处理,但是本发明中,通过采用包括所述工序的制法(特别是,调制ζ电位在-20~0mV的特定范围的调配胶乳的工序),从而即使是使用未经皂化处理的天然橡胶胶乳的情况下,也可以使填料微细地分散于橡胶中。
上述橡胶胶乳可以通过以往公知的制法进行调制,也可使用各种市售品。另外,作为上述橡胶胶乳,优选使用橡胶固体成分(固体成分浓度)为5~80质量%者。更优选在7质量%以上,进一步优选在10质量%以上。另外,从上述填料的分散性的角度考虑,更优选在70质量%以下,进一步优选在60质量%以下,特别优选在20质量%以下。
上述填料分散体是使填料分散于溶剂中而得的填料分散体,只要是具有10~90mV范围内的ζ电位的填料分散体即可。作为该填料,例如可适宜地使用二氧化硅、木质素、废纸、核桃(胡桃)、微原纤化天然纤维等。这些填料既可以单独使用,也可以2种以上并用。其中,从进一步适宜地获得本发明的效果的角度考虑,特别优选为微原纤化天然纤维。另外,作为该溶剂,通常适宜使用水,除了使用水之外,还可以使用可溶于水的醇类、醚类、酮类等。
上述填料分散体的ζ电位可以通过浓度(填料的固体成分浓度)、溶剂种类进行调整。
作为上述填料分散体的ζ电位,从更适宜地获得本发明的效果的角度考虑,优选在15mV以上,更优选在20mV以上,进一步优选在25mV以上。另外,还优选在80mV以下,更优选在70mV以下,进一步优选在50mV以下,特别优选在40mV以下。
作为上述微原纤化天然纤维,只要是来自天然物的物质就没有特别限定,例如可列举出果实、谷物、根菜等资源性生物质、木材、竹、麻、黄麻、洋麻以及以它们作为原料而获得的纸浆和纸、布、农作物残废物、食品废弃物和下水污泥等废弃生物质、稻秸、麦秸、疏伐材等未利用生物质,除此之外,还可列举出来自于海鞘、醋酸菌等所生产的纤维素等的纤维素微原纤;来自于蟹和虾等甲壳类、昆虫、真菌类等的甲壳质纳米纤维;等。
作为上述微原纤化天然纤维的制造方法并无特别限定,例如可列举出如下方法:使用氢氧化钠等化学品,对该纤维素微原纤的原料进行化学处理之后,通过精炼机(refiner)、双轴混炼机(双轴挤出机)、双轴混炼挤出机、高压均质机、介质搅拌磨机、石臼、磨床(grinder)、振动式磨机、沙磨床等进行机械磨碎或叩解。该方法中,由于通过化学处理从原料中分离木质素,故而能获得实质上不含有木质素的纤维素微原纤。另外,作为其它的方法,可列举出对上述微原纤化天然纤维的原料进行超高压处理的方法等。
另外,作为上述微原纤化天然纤维,还可以使用对通过上述制造方法制得的物质进一步施加氧化处理、各种化学改性处理等的所得物。
从断裂强度的角度考虑,上述微原纤化天然纤维的平均纤维直径优选在1μm以下,更优选在0.5μm以下。进一步优选在200nm以下,更进一步优选在100nm以下,特别优选在80nm以下,最优选在50nm以下。该平均纤维直径的下限并无特别限定,但从操作性的角度考虑,优选在3nm以上,更优选在5nm以上,进一步优选在10nm以上。
从断裂强度的角度考虑,上述微原纤化天然纤维的平均纤维长度优选在5mm以下,更优选在1mm以下,进一步优选在100μm以下,更进一步优选在10μm以下,特别优选在1μm以下,另外,从操作性的角度考虑,优选在0.01μm以上,更优选在0.1μm以上,进一步优选在0.5μm以上。
上述微原纤化天然纤维的平均纤维直径及平均纤维长度可通过扫描型电子显微镜照片的图像解析、透过型显微镜照片的图像解析、X线散射数据的解析、细孔电阻法(库尔特(Coulter)原理法)等进行测定。
上述填料分散体可以使用公知的方法进行制造,作为其制造方法并没有特别限定,例如可以通过使用高速均质机、超声波均质机、胶体磨、混合器磨机(blender mill)等而使所述填料分散于所述溶剂中从而进行调制。调制时的温度和时间也可以在能使得所述填料充分地分散于所述溶剂中的条件下,在通常进行的范围内适当设定。
上述填料分散体中的填料的含量(固体成分含量、固体成分浓度)并无特别限定,但从填料在该分散体中的分散性的角度考虑,填料分散体100质量%中,优选为0.2~20质量%,更优选为0.3~10质量%,进一步优选为0.4~3质量%,特别优选为0.5~1质量%。
上述工序中,所述橡胶胶乳与所述填料分散体的混合只要使所述橡胶胶乳与所述填料分散体混合就没有特别限定,还可以进一步添加除所述橡胶胶乳和所述填料分散体以外的粘合剂等其它添加剂。
上述工序中,作为将所述橡胶胶乳与所述填料分散体进行混合的方法,并无特别限定,可举例如下述方法:将所述橡胶胶乳放入高速均质机、超声波均质机、胶体磨、混合器磨机等公知的搅拌装置中,一边搅拌,一边滴下所述填料分散体的方法;和将所述填料分散体放入上述公知的搅拌装置中,一边搅拌,一边滴下所述橡胶胶乳的方法;将所述橡胶胶乳和所述填料分散体放入上述公知的搅拌装置中,进行搅拌、混合的方法等。可以如上所述地调制橡胶胶乳分散液。
上述工序中,混合所述橡胶胶乳与所述填料分散体,相对于所述橡胶胶乳的橡胶固体成分100质量份,优选所述填料的添加量为5~150质量份。通过调至5质量份以上,从而可以更适宜地获得本发明的效果。另外,通过调至150质量份以下,从而所述填料在橡胶中的分散性进一步提高,并且可以更适宜地获得本发明的效果。该填料的添加量更优选在10质量份以上,进一步优选在15质量份以上。另外,更优选在100质量份以下,进一步优选在70质量份以下,更进一步优选在50质量份以下,特别优选在30质量份以下。
上述工序中,从可以调制均一的橡胶胶乳分散液的角度考虑,所述橡胶胶乳与所述填料分散体混合时的、混合温度和混合时间优选在10~40℃下3~120分钟,更优选在15~35℃下5~90分钟。
上述工序中,由所述橡胶胶乳分散液,调制ζ电位为-20~0mV的调配胶乳。通过调制ζ电位为-20~0mV的调配胶乳,从而可以抑制填料的凝聚,使填料微细地高度分散于橡胶中。作为该ζ电位,优选在-2mV以下,更优选在-5mV以下,进一步优选在-10mV以下。
另外,本发明中,虽然将所述橡胶胶乳与所述填料分散体进行混合,调制ζ电位为-20~0mV的调配胶乳,但是在其调配胶乳调制过程中,调配胶乳的凝固反应自然而然地同时进行。此处,本发明中,在上述工序中调制ζ电位为-20~0mV的调配胶乳是指,经过了可以称得上在调配胶乳调制过程中并行进行的凝固反应充分地进行,并完成了这样的程度的长时间之后的调配胶乳的ζ电位在-20~0mV的范围内。
上述工序中,将所述橡胶胶乳与所述填料分散体进行混合,调制ζ电位为-20~0mV的调配胶乳。作为该调制方法,并无特别限定,但优选为以下方法:将所述橡胶胶乳与所述填料分散体混合而得到的橡胶胶乳分散液,放入搅拌装置中,一边搅拌,一边根据需要添加阴离子系的高分子凝聚剂、酸和/或盐(特别优选为酸)的方法。进一步地,在添加酸和/或盐的情况下,从填料的分散性的角度考虑,优选阶段性地进行(即,该酸和/或盐优选被阶段性投入(将总量分批投入))。特别优选为阶段性地投入酸的方式。
另外,关于上述阴离子系高分子凝聚剂、酸和/或盐的添加与否和添加量,可以一边连续或断续地测定橡胶胶乳分散液的ζ电位一边决定。
作为上述酸,可列举出例如蚁酸、硫酸、盐酸、醋酸等。另外,作为上述盐,可列举出例如氯化钠、氯化镁、硝酸钙、氯化钙等钙盐等1~3价的金属盐。其中,优选为氯化钙。
另外,通常,通过添加蚁酸、硫酸、盐酸、醋酸等酸、氯化钠、氯化镁、硝酸钙、氯化钙等钙盐等1~3价的金属盐等酸、盐,可以提高调配胶乳的ζ电位,另一方面,通过添加丙烯酸盐的聚合物等阴离子系的高分子凝聚剂等,可以降低调配胶乳的ζ电位。
作为上述搅拌装置,可列举出例如高速均质机、超声波均质机、胶体磨、混合器磨机、电子控制搅拌机等公知的搅拌装置,从填料的分散性的角度考虑,优选为电子控制搅拌机。另外,该搅拌的搅拌条件可以在通常进行的范围内进行适当设定,但从填料分散性的角度考虑,例如,搅拌速度优选为10~500rpm,更优选为50~200rpm。另外,搅拌温度和搅拌时间优选在10~40℃下3~120分钟,更优选在15~35℃下5~90分钟。
另外,调制ζ电位为一20~0mV的调配胶乳时,从填料的分散性的角度考虑,优选将调配胶乳的温度调至10~40℃。更优选调至35℃以下。
进一步地,上述工序中,将所述橡胶胶乳与所述填料分散体进行混合,调制ζ电位为-20~0mV的调配胶乳时,出于控制同时进行的凝固状态(凝固的凝聚粒子的大小)的目的,可以添加凝聚剂。作为该凝聚剂,可使用阳离子性高分子等。
通过上述工序,结果可以获得凝固物,但是如果根据需要,以公知的方法来过滤、干燥上述工序中获得的凝固物(包含凝聚橡胶和填料的凝聚物),进一步干燥后,使用2轴辊、班伯里混合机等进行橡胶混炼,则可获得填料微细地高度分散于橡胶基质中的母炼胶。另外,上述母炼胶还可以在不妨碍本发明的效果的范围内含有其他成分。
〔母炼胶〕
本发明的母炼胶的制造方法由于是包括将ζ电位为-100~-20mV的橡胶胶乳与ζ电位为10~90mV的填料分散体进行混合、调制ζ电位为-20~0mV的调配胶乳的工序的方法,故而填料在橡胶中的分散性进一步提高,可以制作填料微细地分散于橡胶中的母炼胶。因此,通过本发明的制造方法制得的母炼胶是填料微细地分散于橡胶中的母炼胶。如上所述,通过上述制造方法制得的母炼胶也是本发明之一。
〔轮胎用橡胶组合物〕
本发明的轮胎用橡胶组合物使用上述母炼胶制得。上述母炼胶由于填料微细地分散于橡胶中,故而即使在与其它成分混合的橡胶组合物中,也可微细地分散填料。结果,据此可以改善断裂强度、刚性、低油耗性的性能平衡。
本发明的轮胎用橡胶组合物中,橡胶成分100质量%中,来自上述母炼胶的橡胶成分的含量优选在5质量%以上,更优选在10质量%以上,进一步优选在15质量%以上。通过使含量在5质量%以上,从而可以更适宜地获得本发明的效果。另外,上限可为100质量%。
如上所述,本发明的轮胎用橡胶组合物还可含有不是来自上述母炼胶的橡胶成分。作为该橡胶成分,并未特别限定,可列举出例如天然橡胶(NR)、丁二烯橡胶(BR)、苯乙烯丁二烯橡胶(SBR)、乙烯丙烯二烯橡胶(EPDM)、氯丁二烯橡胶(CR)、丙烯腈丁二烯橡胶(NBR)、丁基橡胶(IIR)等,其中,优选添加NR、BR、SBR,更优选添加NR、BR,特别优选并用NR和BR。
作为上述天然橡胶(NR),并没有特别限定,例如可以使用SIR20、RSS#3、TSR20等橡胶工业中通常的物质。
本发明的轮胎用橡胶组合物包含天然橡胶,作为不是来自上述母炼胶的橡胶成分的情况下,本发明的轮胎用橡胶组合物中的橡胶成分100质量%中的天然橡胶的含量,优选在5质量%以上,更优选在10质量%以上,进一步优选在20质量%以上。通过使含量在5质量%以上,特别是,可获得优异的低油耗性。另外,该含量优选在60质量%以下,更优选在50质量%以下,进一步优选在45质量%以下。通过使含量在60质量%以下,特别是,可以进一步提高操纵稳定性。
作为上述丁二烯橡胶(BR),并没有特别限定,可使用轮胎工业中通常的物质,例如可使用日本瑞翁(株)制造的BR1220、宇部兴产(株)制造的BR130B、BR150B等高顺式含量的丁二烯橡胶、日本瑞翁(株)制造的BR1250H等改性丁二烯橡胶、宇部兴产(株)制造的VCR412、VCR617等含有间同立构聚丁二烯结晶的丁二烯橡胶、朗盛(LANXESS)(株)制造的BUNA-CB25等使用稀土类元素系催化剂合成的丁二烯橡胶等。这些BR既可以使用1种,也可以2种以上并用。
上述BR的顺式含量优选在70质量%以上,更优选在90质量%以上,进一步优选在97质量%以上。
另外,本说明书中,BR的顺式含量(顺式1,4键含有率)可以通过红外吸收光谱分析法进行测定。
本发明的轮胎用橡胶组合物中,作为不是来自上述母炼胶的橡胶成分而含有丁二烯橡胶的情况下,本发明的轮胎用橡胶组合物中的橡胶成分100质量%中的丁二烯橡胶的含量,优选在5质量%以上,更优选在10质量%以上,进一步优选在20质量%以上。通过使含量在5质量%以上,特别是,可获得优异的断裂强度。另外,该含量优选在50质量%以下,更优选在40质量%以下,进一步优选在30质量%以下。通过使含量在50质量%以下,特别是,可以进一步提高加工性、低油耗性。
本发明的轮胎用橡胶组合物中,以橡胶成分为100质量份计,所述填料的含量优选在1质量份以上,更优选在2质量份以上,进一步优选在3质量份以上。另外,该含量优选在50质量份以下,更优选在30质量份以下,进一步优选在20质量份以下,特别优选在10质量份以下。通过使含量在1质量份以上,从而可以更适宜地获得本发明的效果。另外,通过调至50质量份以下,从而所述填料的分散性进一步提高,并且更适宜地获得本发明的效果。
本发明的轮胎用橡胶组合物中,除了上述母炼胶以外,还可以适当添加上述母炼胶中使用的橡胶成分以外的轮胎工业中通常使用的橡胶成分、上述母炼胶中使用的填料以外的轮胎工业中通常使用的炭黑等填充剂、硅烷偶联剂、氧化锌、硬脂酸、防老化剂、软化剂、硫、硫化促进剂等轮胎工业中通常使用的各种材料。
特别是,在上述轮胎用橡胶组合物中添加炭黑时,则在获得补强效果的同时,还通过与所述填料的并用,从而可协同地显著地提高填料在轮胎用橡胶组合物中的分散性。因此,另外,上述轮胎用橡胶组合物含有炭黑这也是本发明的适宜的实施方式之一。
作为炭黑,并没有特别限定,可列举出GPF、FEF、HAF、ISAF、SAF等。这些炭黑既可以单独使用,也可以2种以上组合使用。
炭黑的氮吸附比表面积(N2SA)优选在20m2/g以上,更优选在25m2/g以上。另外,该N2SA优选在200m2/g以下,更优选在150m2/g以下,进一步优选在120m2/g以下。通过使其在20m2/g以上,从而可以获得更高的补强效果。另外,通过使其在200m2/g以下,从而进一步提高低油耗性。
另外,本发明中,炭黑的氮吸附比表面积通过JIS K6217的A法求出。
以橡胶成分为100质量份计,炭黑的含量优选在5质量份以上,更优选在10质量份以上。该含量优选在200质量份以下,更优选在150质量份以下,进一步优选在100质量份以下,特别优选在70质量份以下。如果在上述范围内,则可获得更加良好的低油耗性。
作为上述轮胎用橡胶组合物的制造方法,可以使用公知的方法,例如,可以通过将上述母炼胶、上述各种材料用开炼机、班伯里混合机等橡胶混炼装置进行混炼,随后进行硫化的方法等进行制造。
〔充气轮胎〕
本发明的轮胎用橡胶组合物可以适宜地在充气轮胎中使用。上述充气轮胎可以使用上述轮胎用橡胶组合物,通过通常的方法制得。即,可以将根据需要而添加有各种材料的轮胎用橡胶组合物,在未硫化阶段中,挤出加工为轮胎的各部件的形状,在轮胎成型机上用通常方法进行成形而形成未硫化轮胎后,在硫化机中加热加压,制造轮胎。
[实施例]
结合实施例,对本发明进行具体说明,但本发明并不仅限于这些实施例。
以下,对实施例以及比较例中使用的各种化学品进行概括地说明。
天然橡胶胶乳:使用购自野村贸易(株)社的Hytex Latex(高氨型,固体成分浓度:60质量%)
微原纤化天然纤维:(株)杉野机械(SUGINO MACHINE)制造的生物质纳米纤维(制品名“BiNFi-s chitin”〔甲壳质纳米纤维〕,固体成分:2质量%,水分:98质量%,平均纤维直径:10~50nm,聚合度:300,比表面积:200m2/g)
天然橡胶:TSR20
丁二烯橡胶:宇部兴产(株)制造的BR150B(顺式含量:97质量%,ML1+4(100℃):40)
炭黑:卡博特日本(CABOT JAPAN)(株)制造的SHOBLACKN550(N2SA:42m2/g)
防老化剂:大内新兴化学工业(株)制造的NOCRAC 6C(N-苯基-N’-(1,3-二甲基丁基)-对苯二胺)(6PPD)
氧化锌:三井金属矿业(株)制造的氧化锌#2
硬脂酸:日油(株)制造的珠状硬脂酸Tsubaki
硫:日本干馏工业(株)(NIPPON KANRYU INDUSTRY CO.,LTD.)制造的Seimi硫(油分:10%)
硫化促进剂:大内新兴化学工业(株)制造的Nocceler NS(N-叔丁基-2-苯并噻唑亚磺酰胺)(TBBS)
<母炼胶的制作>
(实施例1)
在500g微原纤化天然纤维中添加1000g纯水,制作微原纤化天然纤维的0.5质量%(固体成分浓度)悬浮液,使用高速均质机(IKA日本公司制造的“T50”,转速:8000rpm)搅拌约5分钟,调制均一的水分散液(粘度:7~8mPa·s)。
在将天然橡胶胶乳的固体成分浓度(DRC)调整至10质量%之后,添加上述调制而得的水分散液,并使得微原纤化天然纤维的干燥重量(固体成分)相对于天然橡胶胶乳的橡胶固体成分100质量份为20质量份,使用高速均质机(IKA日本公司制造的“T50”,转速:8000rpm)在25℃下搅拌5分钟,混合,调制橡胶胶乳分散液。接着,在25℃下慢慢搅拌(IKA日本公司制造的Eurostar〔电子控制搅拌机〕,转速:100rpm)5分钟的同时,添加1质量%蚁酸水溶液,将ζ电位调整至-20mV,调制调配胶乳,获得凝固物。过滤,在80℃下干燥6小时,获得母炼胶1。
上述ζ电位通过以下的装置、测定条件来进行测定。
测定装置:大塚电子公司制造的ζ电位测定装置“ELS-PT”
测定条件
使用pH滴定仪进行测定
PH滴定模式
溶剂:水
温度:25℃
介电常数:78.22
粘度:0.8663cp
折射率:1.3312
另外,通过上述方法测定上述天然橡胶胶乳(固体成分浓度:10质量%)以及上述微原纤化天然纤维的水分散液(固体成分浓度:0.5质量%)的ζ电位后,结果分别如下所示。
天然橡胶胶乳(固体成分浓度:10质量%):-65mV
微原纤化天然纤维的水分散液(固体成分浓度:0.5质量%):35mV
另外,通过扫描型电子显微镜(SEM)观察上述母炼胶1中的微原纤化天然纤维在橡胶中的分散性后,可以确认:微原纤化天然纤维的凝聚块未出现,微原纤化天然纤维微细地分散于橡胶中。
(实施例2)
除了在将橡胶胶乳分散液在25℃下慢慢地搅拌(IKA日本公司制造的Eurostar,转速:100rpm)5分钟的同时,添加1质量%蚁酸水溶液,将ζ电位调整至-10mV、调制调配胶乳,获得凝固物之外,其余与实施例1同样地,获得母炼胶2。
另外,通过扫描型电子显微镜(SEM)观察上述母炼胶2中的微原纤化天然纤维在橡胶中的分散性后,可以确认:未出现微原纤化天然纤维的凝聚块,微原纤化天然纤维微细地分散于橡胶中。
(比较例1)
在500g微原纤化天然纤维中添加1000g纯水,制作微原纤化天然纤维的0.5质量%(固体成分浓度)悬浮液,使用高速均质机(IKA日本公司制造的“T50”,转速:8000rpm)搅拌约5分钟,调制均一的水分散液(粘度:7~8mPa·s)。
在将天然橡胶胶乳的固体成分浓度(DRC)调整至10质量%之后,添加上述调制而得的水分散液,并使得微原纤化天然纤维的干燥重量(固体成分)相对于天然橡胶胶乳的固体成分100质量份为20质量份,使用高速均质机(IKA日本公司制造的“T50”,转速:8000rpm)在25℃下搅拌约5分钟,混合,调制橡胶胶乳分散液。然后,在25℃下慢慢地搅拌(IKA日本公司制造的Eurostar,转速:100rpm)5分钟的同时,添加1质量%蚁酸水溶液,将pH((株)堀场制作所制造的pH计量仪D51T)调整至7,调制调配胶乳,获得凝固物(同时,与实施例1同样地,也测定ζ电位后,ζ电位为-29mV。)。过滤,在80℃下干燥6小时,获得比较用母炼胶1。
另外,通过扫描型电子显微镜(SEM)观察上述比较用母炼胶1中的微原纤化天然纤维在橡胶中的分散性后,可以确认:稍微看到微原纤化天然纤维的凝聚块,微原纤化天然纤维没有充分微细地分散于橡胶中。
(比较例2)
除了在将橡胶胶乳分散液在25℃下慢慢地搅拌(IKA日本公司制造的Eurostar,转速:100rpm)5分钟的同时,添加1质量%蚁酸水溶液,将ζ电位调整至-30mV,获得凝固物之外,其余与实施例1同样地,获得比较用母炼胶2。
另外,通过扫描型电子显微镜(SEM)观察上述比较用母炼胶2中的微原纤化天然纤维在橡胶中的分散性后,可以确认:出现微原纤化天然纤维的凝聚块,微原纤化天然纤维没有微细地分散于橡胶中。
(比较例3)
除了在将橡胶胶乳分散液在25℃下慢慢地搅拌(IKA日本公司制造的Eurostar,转速:100rpm)5分钟的同时,添加1质量%蚁酸水溶液,将ζ电位调整至20mV,获得凝固物之外,其余与实施例1同样地,获得比较用母炼胶3。
另外,通过扫描型电子显微镜(SEM)观察上述比较用母炼胶3中的微原纤化天然纤维在橡胶中的分散性后,可以确认:出现微原纤化天然纤维的凝聚块,微原纤化天然纤维没有微细地分散于橡胶中。
<硫化橡胶组合物的制作>
(实施例11~12和比较例11~13)
按照表1所示的配方,使用1.7L班伯里混合机,将除了硫和硫化促进剂之外的化学品进行混炼。接着,使用开炼机,往得到的混炼物中添加硫及硫化促进剂进行捏合,得到未硫化橡胶组合物。将所得到的未硫化橡胶组合物在170℃下加压硫化15分钟,得到硫化橡胶组合物。如下所述对所得的硫化橡胶组合物进行评价,结果如表1所示。
(拉伸试验)
使用硫化橡胶组合物,制作3号哑铃(dumbbell)型橡胶试验片,按照JIS K6251“硫化橡胶和热塑性橡胶-拉伸特性的求法”进行拉伸试验,测定硫化橡胶组合物在断裂时的拉伸强度(拉伸断裂强度:TB〔MPa〕)。
以比较例11的TB为100,通过下述计算式,指数表示各配方的TB(断裂强度指数〔TB指数〕)。TB指数越大,则表示断裂强度越大,耐久性越优异。
(TB指数)=(各配方的TB)/(比较例11的TB)×100
(粘弹性试验)
使用粘弹性分光光度计VES((株)岩本制作所制造),在温度70℃、频率10Hz、初期应变10%和动态应变2%的条件下,测定切取自各配方(硫化橡胶组合物)的试验片的轮胎周向的复数弹性模量E*(MPa)和损耗角正切值(tanδ)。
分别以比较例11的E*、tanδ为100,根据下述计算式,指数表示各配方的E*、tanδ(E*指数、tanδ指数)。E*指数越大,则表示刚性越大,操纵稳定性越优异。另外,tanδ指数越大,则表示滚动阻力特性(低油耗性)越优异。
(E*指数)=(各配方的E*)/(比较例11的E*)×100
(tanδ指数)=(比较例11的tanδ)/(各配方的tanδ)×100
此处,轮胎周向是指硫化橡胶组合物的挤出方向。
(平衡指数)
基于上述各指数,根据下述计算式,算出轮胎性能的平衡指数。平衡指数越大,则表示断裂强度、刚性和低油耗性的平衡越优异。
(平衡指数)=(TB指数×E*指数×tanδ指数)/10000
由表1可知,与比较例11相比,实施例11和12中使用了通过包括将ζ电位为-100~-20mV的橡胶胶乳与ζ电位为10~90mV的填料分散体进行混合、调制ζ电位为-20~0mV的调配胶乳的工序的制造方法而制得的母炼胶,其断裂强度、刚性、低油耗性的性能平衡得到改善。另一方面,在使用了将调配胶乳的ζ电位调整至-20~0mV范围外的母炼胶的比较例12和比较例13中,观察到断裂强度、刚性、低油耗性的性能平衡的恶化。

Claims (10)

1.一种母炼胶的制造方法,其包括将ζ电位为-100~-20mV的橡胶胶乳与ζ电位为10~90mV的填料分散体进行混合、调制ζ电位为-20~0mV的调配胶乳的工序。
2.根据权利要求1所述的母炼胶的制造方法,其特征在于,所述填料为微原纤化天然纤维。
3.根据权利要求2所述的母炼胶的制造方法,其特征在于,所述微原纤化天然纤维的平均纤维直径在3nm以上、1μm以下。
4.根据权利要求2或3所述的母炼胶的制造方法,其特征在于,所述微原纤化天然纤维的平均纤维长度在0.01μm以上、5mm以下。
5.根据权利要求1或2所述的母炼胶的制造方法,其特征在于,所述橡胶胶乳为二烯系橡胶胶乳。
6.根据权利要求1或2所述的母炼胶的制造方法,其特征在于,所述橡胶胶乳的ζ电位为-90mV~-30mV。
7.根据权利要求1或2所述的母炼胶的制造方法,其特征在于,所述填料分散体的ζ电位在15mV~80mV。
8.一种母炼胶,其通过权利要求1~7中任一项所述的制造方法制得。
9.一种轮胎用橡胶组合物,其使用权利要求8所述的母炼胶制得。
10.一种充气轮胎,其使用权利要求9所述的橡胶组合物制得。
CN201711061129.3A 2016-11-01 2017-11-01 母炼胶的制造方法 Active CN108003398B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016214349A JP6878836B2 (ja) 2016-11-01 2016-11-01 マスターバッチの製造方法
JP2016-214349 2016-11-01

Publications (2)

Publication Number Publication Date
CN108003398A true CN108003398A (zh) 2018-05-08
CN108003398B CN108003398B (zh) 2021-08-06

Family

ID=60201812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711061129.3A Active CN108003398B (zh) 2016-11-01 2017-11-01 母炼胶的制造方法

Country Status (4)

Country Link
US (1) US10414882B2 (zh)
EP (1) EP3315539B1 (zh)
JP (1) JP6878836B2 (zh)
CN (1) CN108003398B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009753B2 (ja) 2017-03-16 2022-01-26 住友ゴム工業株式会社 空気入りタイヤ
CN113087983B (zh) * 2021-05-25 2023-04-25 黄河三角洲京博化工研究院有限公司 一种增强型hnbr材料、其制备方法及应用
JP7346692B1 (ja) 2022-10-21 2023-09-19 株式会社スギノマシン ゴム複合物

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202012A2 (en) * 1985-04-05 1986-11-20 AUSIMONT S.p.A. Process for the production of composite material based on a polymer matrix
US6355207B1 (en) * 2000-05-25 2002-03-12 Windfall Products Enhanced flow in agglomerated and bound materials and process therefor
WO2002020655A1 (fr) * 2000-09-06 2002-03-14 Jsr Corporation Composite a base de caoutchouc dienique et de matiere minerale, procede de production de ce composite et composition de caoutchouc
JP2006348216A (ja) * 2005-06-17 2006-12-28 Doshisha 高分子複合体の製造方法および熱可塑性樹脂組成物
JP2010209175A (ja) * 2009-03-09 2010-09-24 Toyo Tire & Rubber Co Ltd ウエットマスターバッチの製造方法、および該ウエットマスターバッチを用いて得られた加硫ゴム
CN102061015A (zh) * 2009-11-18 2011-05-18 东台百地医用制品有限公司 一种导热感触性乳胶制品和其制备方法
CN102543323A (zh) * 2011-11-29 2012-07-04 河南电力试验研究院 一种阶变介电常数复合绝缘子
JP2014118462A (ja) * 2012-12-14 2014-06-30 Yokohama Rubber Co Ltd:The カチオン性天然ゴムラテックス及びこれを用いるタイヤパンクシール材
CN104053707A (zh) * 2011-12-14 2014-09-17 米其林集团总公司 在液相中制备母料的方法
CN104558724A (zh) * 2015-01-26 2015-04-29 北京化工大学 一种高性能水滑石/二氧化硅/橡胶纳米复合材料的制备方法
WO2016163253A1 (ja) * 2015-04-06 2016-10-13 伸一 中出 エラストマー組成物
WO2016166483A1 (fr) * 2015-04-15 2016-10-20 Compagnie Generale Des Etablissements Michelin Méthode de préparation d'un mélange maître d'élastomère dienique synthetique et de charge carbonée

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723700B2 (ja) * 1999-03-18 2011-07-13 Jsr株式会社 水系分散体
TWI251606B (en) * 2000-10-26 2006-03-21 Ind Tech Res Inst Polymer nanocomposites and the process of preparing the same
JP4838967B2 (ja) 2001-07-27 2011-12-14 株式会社ブリヂストン 天然ゴムマスターバッチ及びその製造方法
JP2008244326A (ja) * 2007-03-28 2008-10-09 Nobuyuki Koura 分極性電極およびその製造方法
JP5023368B2 (ja) * 2007-06-21 2012-09-12 住友ゴム工業株式会社 空気入りタイヤ
JP2014098073A (ja) * 2012-11-14 2014-05-29 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物の製造方法およびタイヤ用ゴム組成物
JP6143187B2 (ja) 2012-12-25 2017-06-07 三菱ケミカル株式会社 セルロースナノファイバー含有ゴムマスターバッチ
JP6143186B2 (ja) 2013-11-08 2017-06-07 三菱ケミカル株式会社 複合材の製造方法
RU2685310C1 (ru) * 2015-07-15 2019-04-17 Кабот Корпорейшн Способы получения эластомерного композита, армированного диоксидом кремния, и продукты, содержащие эластомерный композит

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202012A2 (en) * 1985-04-05 1986-11-20 AUSIMONT S.p.A. Process for the production of composite material based on a polymer matrix
US6355207B1 (en) * 2000-05-25 2002-03-12 Windfall Products Enhanced flow in agglomerated and bound materials and process therefor
WO2002020655A1 (fr) * 2000-09-06 2002-03-14 Jsr Corporation Composite a base de caoutchouc dienique et de matiere minerale, procede de production de ce composite et composition de caoutchouc
JP2006348216A (ja) * 2005-06-17 2006-12-28 Doshisha 高分子複合体の製造方法および熱可塑性樹脂組成物
JP2010209175A (ja) * 2009-03-09 2010-09-24 Toyo Tire & Rubber Co Ltd ウエットマスターバッチの製造方法、および該ウエットマスターバッチを用いて得られた加硫ゴム
CN102061015A (zh) * 2009-11-18 2011-05-18 东台百地医用制品有限公司 一种导热感触性乳胶制品和其制备方法
CN102543323A (zh) * 2011-11-29 2012-07-04 河南电力试验研究院 一种阶变介电常数复合绝缘子
CN104053707A (zh) * 2011-12-14 2014-09-17 米其林集团总公司 在液相中制备母料的方法
JP2014118462A (ja) * 2012-12-14 2014-06-30 Yokohama Rubber Co Ltd:The カチオン性天然ゴムラテックス及びこれを用いるタイヤパンクシール材
CN104558724A (zh) * 2015-01-26 2015-04-29 北京化工大学 一种高性能水滑石/二氧化硅/橡胶纳米复合材料的制备方法
WO2016163253A1 (ja) * 2015-04-06 2016-10-13 伸一 中出 エラストマー組成物
WO2016166483A1 (fr) * 2015-04-15 2016-10-20 Compagnie Generale Des Etablissements Michelin Méthode de préparation d'un mélange maître d'élastomère dienique synthetique et de charge carbonée

Also Published As

Publication number Publication date
EP3315539B1 (en) 2021-06-02
JP6878836B2 (ja) 2021-06-02
JP2018070812A (ja) 2018-05-10
US10414882B2 (en) 2019-09-17
EP3315539A1 (en) 2018-05-02
US20180118898A1 (en) 2018-05-03
CN108003398B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
JP5618878B2 (ja) 未加硫ゴム組成物およびその製造方法、ならびに空気入りタイヤ
CN108623856A (zh) 充气轮胎
CN103205039A (zh) 母料、橡胶组合物以及充气轮胎
CN108003398A (zh) 母炼胶的制造方法
CN103965527A (zh) 橡胶组合物及充气轮胎
CN108003397A (zh) 母炼胶的制造方法
JP6271332B2 (ja) ウェットマスターバッチの製造方法及びその方法により製造されたウェットマスターバッチ
US20190338084A1 (en) Master batch production method
JP6353169B2 (ja) ゴム組成物及び空気入りタイヤ
CN108250453A (zh) 橡胶湿法母炼胶的制造方法
JP2016160315A (ja) ウェットマスターバッチの製造方法及びその方法により製造されたウェットマスターバッチ
CN107406596A (zh) 混合物的制造方法
JP2019163414A (ja) ゴム/フィラー複合体の製造方法
JP2019104860A (ja) 空気入りタイヤ用ゴム部材の製造方法および空気入りタイヤの製造方法
JP7125883B2 (ja) ゴムウエットマスターバッチの製造方法
JP2012207088A (ja) ゴムウエットマスターバッチおよびその製造方法、ゴム組成物ならびに空気入りタイヤ
CN106479006A (zh) 弹性复合体
JP2019112542A (ja) タイヤ用ゴム組成物の製造方法
JP2019104859A (ja) ゴムウエットマスターバッチの製造方法
JP2019112543A (ja) プライトッピング用ゴム組成物の製造方法
CN106479005A (zh) 弹性复合体的制备方法
JP2020084030A (ja) マスターバッチの製造方法およびタイヤの製造方法
WO2019116752A1 (ja) ゴムウエットマスターバッチの製造方法、空気入りタイヤ用ゴム部材の製造方法および空気入りタイヤの製造方法
JP2022111145A (ja) ゴムウエットマスターバッチの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant