CN107850335B - 利用液-气式膜能量交换器进行液体冷却 - Google Patents

利用液-气式膜能量交换器进行液体冷却 Download PDF

Info

Publication number
CN107850335B
CN107850335B CN201680038134.XA CN201680038134A CN107850335B CN 107850335 B CN107850335 B CN 107850335B CN 201680038134 A CN201680038134 A CN 201680038134A CN 107850335 B CN107850335 B CN 107850335B
Authority
CN
China
Prior art keywords
air
cooling
liquid
cooling fluid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680038134.XA
Other languages
English (en)
Other versions
CN107850335A (zh
Inventor
D·G·穆加达姆
P·P·莱普德拉
M·盖伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beidi Air Coping Canada
Original Assignee
Beidi Air Coping Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beidi Air Coping Canada filed Critical Beidi Air Coping Canada
Publication of CN107850335A publication Critical patent/CN107850335A/zh
Application granted granted Critical
Publication of CN107850335B publication Critical patent/CN107850335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/2079Liquid cooling without phase change within rooms for removing heat from cabinets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1435Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification comprising semi-permeable membrane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0006Control or safety arrangements for ventilation using low temperature external supply air to assist cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F2012/005Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/026Absorption - desorption cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了用于控制比如为数据中心的封闭空间中的状态或用于对装置提供冷却的系统和方法,可以包括将液‑气式膜能量交换器(LAMEE)用作蒸发冷却器。LAMEE或交换器可以将水冷却至布置在封闭空间或装置的外部的冷却系统中的室外空气湿球温度。降低温度的水可被递送至封闭空间或装置,或者可以冷却递送至封闭空间或装置的冷却剂。可以通过将降低温度的水或冷却剂递送至封闭空间,而非使来自封闭空间的供气运动至冷却系统,来冷却封闭空间中的空气或封闭空间中的一个或多个部件。在一个示例中,冷却系统可以包括LAMEE的上游或下游的一个或多个冷却盘管。

Description

利用液-气式膜能量交换器进行液体冷却
要求优先权
本申请要求于2015年5月15日提交的美国临时专利申请序列No.62/162,487的受益权,在此要求其优先权并且其全部内容通过参引结合到本文中。
背景技术
存在其中比如为例如数据中心的冷却非常关键的许多应用。数据中心通常由连续地工作(每天24小时,每周7天)的计算机和相关部件构成。数据中心中的电器部件可能产生大量热,需要从空间中去除大量热。数据中心中的空气调节系统可能通常消耗总能量的超过40%。
根据当前数据中心的空气调节系统和技术以及IT部件操作条件和处理能力的显著改进,服务器可以大致以其负荷量的50%操作。该负荷量限制部分地由于冷却系统不能有效地冷却服务器,服务器在达到其最大负荷量之前达到其高温极限。高密度数据中心冷却寻求更加有效地冷却服务器并且提高数据中心的密度。因此,这将引起数据中心运行成本的节省并且将提高数据中心整体负荷量。
高密度数据中心冷却可以通过利用液体冷却技术以抑制服务器处的热来实现。数据中心液体冷却以以下两种方式影响数据中心能量消耗:(1)利用最大服务器处理负荷量和数据中心处理密度,这将引起数据中心的每kW处理功率的更低冷却功率消耗,以及(2)一般液体冷却系统比数据中心空气冷却系统更加能量有效。液体冷却技术可以捕获服务器处的达到100%的热,这将消除对数据中心空气冷却系统的需要。数据中心液体冷却可以节省达90%的数据中心冷却成本以及达50%的数据中心运行成本。此外,数据中心液体冷却可以提高服务器处理密度达100%,这可以引起数据中心白空间的显著节省。
用于数据中心的高密度冷却可以包括可以使用专用冷却剂和液体回路的液体冷却技术。冷却剂可能是昂贵的,并且因此冷却剂的更换也可能是昂贵的。冷却剂可以从服务器吸收热,并且热然后可以被限制通向另一个液体循环或冷却气流。冷却塔或户外干燥冷却器可被用于抑制来自冷却剂的热,但是这些可能是无效的。冷却塔中的应该流入液体回路内以吸收来自冷却剂的热的水质应该保持在一定水平并且可能变成一个问题。循环冷却水中的溶解矿物质的累积可能引起沉积物并且在交换表面上剥落,这降低了性能。通常所关注的是冷却塔中的金属部件和管道的腐蚀。
发明内容
本发明人认识到尤其是用于利用液-气式膜能量交换器(LAMEE)作为蒸发冷却器以及利用来自LAMEE的降低温度的水以对封闭空间或装置提供液体冷却来冷却封闭空间或装置的改进性能的机会。在一个示例中,封闭空间可以是数据中心。
根据本申请的示例可以包括液体冷却系统,与传统空气冷却数据中心技术相比,该液体冷却系统可以降低数据中心冷却能量消耗达95%。与包括空气冷却直接蒸发冷却器(DEC)的其他DEC相比,液体冷却系统的尺寸可以显著地减小。如本文中说明的液体冷却系统与其他蒸发冷却系统相比可以降低用水量并且可以使数据中心的运行成本降低达60%。
由于比如为水的典型液体在与空气相同体积流量的情况下具有是空气几乎350倍高的热容量,因此数据中心液体冷却可以比数据中心空气冷却更加高效。这样,抑制来自IT部件的一定量热量所需的水流量可以是所需的空气流量几乎350倍低。液体(主要为水)可以在本文中还称为交换器的液-气式膜能量交换器(LAMEE)中冷却。在一些清除剂空气状态下,LAMEE或交换器可以将户外(清除剂)空气和液态水两者冷却至室外空气湿球温度。来自LAMEE的降低温度的水输出可以供给至比如为例如具有IT部件的数据中心的封闭空间。降低温度的水可以在提供液体冷却之前存储在水箱中。
根据本申请的示例可以包括在蒸发冷却和数据中心液体冷却应用中利用LAMEE、利用膜交换器中的水用于蒸发冷却和数据中心冷却以及利用蒸发LAMEE的下游的液体预冷却器来提高系统效率和以节约器模式操作系统。可以采用各种系统构造,各种系统构造可以包括但不限于用于高效冷却应用的LAMEE的上游或下游的液体冷却盘管。根据本申请的示例可以包括使LAMEE与市场上可用的比如为液体冷却浸没技术的当前液体冷却技术集成以及在服务器处利用冷板以抑制热。
根据本申请的示例可以包括在LAMEE的下游的液体冷却盘管的集成,其可以在热水进入LAMEE之前冷却热水并且可以提高系统性能。此外,液体冷却盘管可以作用为用于冷却系统的节约器。每当室外空气足够冷以将水冷却至设定点温度时,水可以绕过交换器并且仅穿过冷却盘管。由于系统中没有水以节约器模式蒸发,因此节约器模式可以延长LAMEE的寿命并且可以节省水。
根据本申请的示例可以包括用于控制封闭空间中的状态的调节系统。调节系统可以包括布置在封闭空间的外部并且具有清除剂空气室的冷却系统,清除剂空气室构造成将流动路径中的清除剂空气从空气进口引导至空气出口。LAMEE可以布置在气室的内部并且可以包括通过膜与空气流动路径分离的冷却流体流动路径。LAMEE可以构造成利用清除剂空气来蒸发地冷却冷却流体流动路径中的冷却流体并且降低LAMEE中的冷却流体的温度。调节系统可以包括冷却流体回路,冷却流体回路连接至LAMEE的冷却流体流动路径并且从气室延伸到封闭空间内。冷却流体回路可被用于将来自LAMEE的降低温度的水或降低温度的冷却剂递送至封闭空间,以在不使来自封闭空间的空气运动通过冷却系统的情况下对封闭空间提供冷却。
根据本申请的示例可以包括用于控制封闭空间中的状态的调节系统,调节系统具有布置在封闭空间的外部的第一冷却系统和布置在封闭空间内部的第二冷却系统。第一冷却系统可以包括清除剂空气室和布置在气室内部的LAMEE,清除剂空气室构造成将空气流动路径中的清除剂空气从空气进口引导至空气出口。LAMEE可以包括通过膜与空气流动路径分离的水流动路径。LAMEE可以构造成利用清除剂空气来降低水流动路径中的水的温度。调节系统可以包括连接至LAMEE的水流动路径并且连接至第二冷却系统的冷却流体回路。冷却流体回路可以在不使来自封闭空间的空气运动通过第一冷却系统的情况下对封闭空间提供冷却。第二冷却系统可以包括利用水或冷却流体回路中的冷却剂对封闭空间中的一个或多个部件进行直接冷却。一个或多个部件可以包括但不限于电气部件。第二冷却系统可以包括利用水或冷却流体回路中的冷却剂明显地冷却封闭空间中的空气。
根据本申请的示例可以包括用于控制封闭空间中的状态的调节系统,调节系统具有布置在封闭空间的外部的冷却系统。冷却系统可以包括清除剂空气室和在气室内部布置在空气流动路径中的LAMEE,清除剂空气室构造成将空气流动路径中的清除剂空气从空气进口引导至空气出口。LAMEE可以包括通过膜与空气流动路径分离的冷却流体流动路径。LAMEE可被构造成利用清除剂空气来蒸发地冷却冷却流体流动路径中的冷却流体,使得LAMEE的流体出口处的冷却流体的温度低于LAMEE的流体进口处的冷却流体的温度。冷却系统还可以包括第一冷却单元,第一冷却单元在气室内部布置在空气进口与LAMEE之间并且构造成在清除剂空气进入LAMEE之前调节清除剂空气。冷却系统还可以包括第二冷却单元,第二冷却单元在气室内部布置在LAMEE与空气出口之间并且构造成在冷却流体在流体进口处进入LAMEE之前降低冷却流体的温度。冷却系统还可以包括一个或多个旁通闸门,一个或多个旁通闸门构造成允许清除剂空气在空气进口与空气出口之间的一个或多个位置处进入或排出空气流动路径。调节系统的冷却流体回路可以连接至LAMEE的冷却流体流动路径并且从气室延伸到封闭空间内。冷却流体回路可以在不使来自封闭空间的空气运动通过冷却系统的情况下对封闭空间提供冷却。
根据本申请的示例可以包括用于对可以位于封闭空间中或者位于通向大气的位置处的装置提供冷却的调节系统。调节系统可以包括结合有冷却系统的待冷却的装置,冷却系统与待冷却的装置分离并且远离待冷却的装置。冷却系统可以包括用于提供降低温度的水的LAMEE,降低温度的水或由降低温度的水冷却的冷却剂可被递送至装置。降低温度的水或冷却剂可被用于对装置提供冷却,水或冷却剂可以再循环回到冷却系统。装置可以是产生热或利用液体抑制热的任意类型的设备或部件。
该概述旨在提供本专利申请的主题的概要。非旨在提供本发明的排他性或穷举性的说明。包括详细说明以提供关于本专利申请的进一步的信息。
附图说明
在不一定按比例绘制的附图中,相同的附图标记可以在不同的附图中描述相似的部件。具有不同字母后缀的相同附图标记可以表示相似部件的不同示例。附图一般通过举例而非通过限制说明本文献中论述的各个实施例。
图1是根据本专利申请的用于控制封闭空间中的状态的示例性调节系统的示意图。
图2是根据本专利申请的示例性调节系统的示意图。
图3是根据本专利申请的示例性调节系统的示意图。
图4是根据本专利申请的示例性调节系统的示意图。
图5是根据本专利申请的示例性调节系统的示意图。
图6是根据本专利申请的示例性调节系统的示意图。
图7是根据本专利申请的示例性调节系统的示意图。
图8是根据本专利申请的示例性冷却系统的示意图。
图9是根据本专利申请的示例性冷却系统的示意图。
图10是根据本专利申请的示例性冷却系统的示意图。
图11是根据本专利申请的示例性调节系统的示意图。
具体实施方式
本申请涉及用于利用作为用于液体冷却的蒸发冷却器的液-气式膜能量交换器(LAMEE)控制封闭空间内部的状态或者向装置提供冷却的系统和方法。LAMEE或交换器可以部分地根据空气状态将水或者室外(清除剂)空气和水冷却至室外空气湿球温度。来自交换器的降低温度的水可以对封闭空间或装置提供冷却。在示例中,可以在交换器之后包括冷却盘管以在水再循环至交换器之前冷却来自封闭空间或装置的热回流水。冷却盘管可以利用从交换器排出的冷清除剂空气以冷却回流水。冷却盘管可以提高系统的性能并且可以提供节约器操作模式。在室外空气寒冷的冬季,清除剂空气可以绕过交换器并且直接穿过冷却盘管。节约器模式可以为液体冷却系统带来更大的能量和水节省。在示例中,冷却盘管可以包括在交换器之前,以在使清除剂空气穿过交换器之前冷却清除剂空气。来自交换器的降低温度的水可被递送至封闭空间或装置以对封闭空间或装置提供直接冷却。可替代地,降低温度的水可以对液-液式热交换器(LLHX)中的冷却剂提供冷却,降低温度的冷却剂可被递送至封闭空间或装置。
如本文所述,干燥盘管或冷却盘管可以用于LAMEE的上游或LAMEE的下游,或者上游和下游。在一些示例中,在冷却盘管定位在LAMEE的上游的情况下,冷却盘管在本文中可以指代预冷却盘管或预冷却器。预冷却器可被用于在清除剂空气进入LAMEE内之前冷却清除剂空气。在一些示例中,如果冷却盘管可被构造成用于在其中绕过LAMEE并且冷却盘管向回流水提供冷却的节约器模式中冷却水,则冷却盘管在本文中可以指代节约器盘管。在一些示例中,认识到本文中说明的冷却盘管可以为相同类型的冷却盘管并且具有相同的总体设计,与冷却盘管是在LAMEE的上游还是下游或者被描述为预冷却器、节约器盘管还是干燥盘管无关。如以下进一步说明的,在一些示例中,冷却盘管可以在一些模式(例如,在夏季)中作用为清除剂空气的预冷却器,并且在其他模式(例如在冬季)中同一冷却盘管可以将其功能切换至用于冷却返回至系统的升高温度的水。
图1描绘了用于向数据中心(或其他封闭空间)102提供冷却的示例性调节系统100。调节系统100可以包括清除剂空气室104,清除剂空气室104可以包括清除剂空气流可以流过的空气进口106和空气出口108。气室104还可以称为壳体、箱体或结构,并且可被构造成容纳用于调节空气或水的一个或多个部件。气室104可以布置在数据中心102的外部。调节系统100可以包括液-气式膜能量交换器(LAMEE)110、干燥盘管(或冷却盘管)112以及风机114。LAMEE 110在本文中还可以指代交换器110。
液-气式膜能量交换器(LAMEE)可被用作加热和冷却系统(或能量交换系统)的一部分,以在液体干燥剂与气流之间传递热和水分,以调节流过LAMEE的空气的温度和湿度。在示例中,LAMEE中的膜可以是对于水具有选择性渗透性但对于形成液体干燥剂的其他组成成分不具有渗透性的非多孔薄膜。许多不同类型的液体干燥剂可以与非多孔膜结合使用,包括例如乙二醇。非多孔膜可以使得使用之前已被确定为在这些类型的应用中不可接受或不受欢迎的比如为乙二醇的干燥剂是可行的。在示例中,LAMEE中的膜可以是半渗透或蒸汽可渗透的,一般气相的任何东西可以穿过膜并且一般液相的任何东西不能穿过膜。在示例中,LAMEE中的膜可以为微多孔的,使得一种或多种气体可以穿过膜。在示例中,膜可以是选择性渗透膜,使得一些组成成分而非其他组成成分能够穿过膜。认识到包括在本文中公开的调节系统中的LAMEE可以利用适于与蒸发冷却器LAMEE一起使用的任何类型的膜。
调节系统100中的LAMEE或交换器110(以及图2-7的示例中公开的其他交换器)能够使可以为蒸发流体的冷却流体通过LAMEE或交换器110循环以降低冷却流体的温度。LAMEE或交换器110可以利用空气和冷却流体(例如水)中的冷却潜能以抑制热来操作为蒸发冷却器。在示例中,LAMEE或交换器110可以利用可渗透蒸汽的柔性聚合物膜以分离空气和水。与其他调节系统相比,通过LAMEE 110的水流量可以不受限制,LAMEE 110可以在水以更高温度进入LAMEE 110内的情况下操作。
通过LAMEE或交换器110循环的冷却流体可以包括水、液体干燥剂、乙二醇、其他吸湿性流体、其他蒸发流体和/或其组合。在一个示例中,冷却流体是低浓度盐溶液的液体干燥剂。盐的存在可以使冷却流体消毒以防止微生物生长。另外,干燥剂盐可以影响溶液的蒸汽压力并且允许冷却流体释放水分或从空气吸收水分。液体干燥剂的浓度可被调整用于控制目的以控制LAMEE或交换器110内的清除剂空气或冷却流体的冷却量。
在一个示例中,LAMEE或交换器110中的冷却流体可以是水或主要为水。在图1的调节系统100以及图2-7的调节系统中,冷却流体被描述为水,LAMEE或交换器110可以包括用于使水穿过交换器110的水进口116和水出口118。由于除水之外或作为水的替代物的流体可以通过交换器110循环,因此进口116和出口118可以被描述为冷却流体进口和冷却流体出口。认识到包括以上所列流体的其他类型的蒸发冷却流体可以与水结合使用或者用作图1-7的调节系统中的水的替代物。
LAMEE或交换器110在本文中可以指代蒸发冷却器和/或蒸发冷却器LAMEE。当清除剂空气流动通过交换器110时,水或者清除剂空气和水两者可被冷却至外界空气湿球(WB)温度。排出交换器110的清除剂空气可以穿过干燥盘管112和风机114,并且在出口108处作为排气排出气室104。以下进一步论述干燥盘管112。
由于交换器110中的蒸发冷却过程,交换器110的出口118处的水的温度可以低于进口116处的水的温度。来自交换器110的降低温度的水可被用于为数据中心102提供冷却。交换器110以及气室104内部的比如为干燥盘管112的其他部件在本文中可以指代冷却系统101。冷却系统101可以定位或布置在数据中心102的外部。
在排出交换器110之后,降低温度的水可以经由水管线120流入水箱122内。尽管在图1中未示出,但是水箱122可以包括补给水阀和排泄阀以保持水箱122内部的水位和硬度等级。水箱122可以包括位于水箱122中或围绕水箱122的一个或多个温度传感器,以监控水箱122中的水的温度。在一个示例中,调节系统100的控制可以部分地基于水箱122中的水的与设定点水温相比的测量温度。在一个示例中,设定点水温可以基于数据中心102的估算冷却负荷预先确定。在一个示例中,设定点水温在调节系统100的操作期间可以部分地基于数据中心102的操作而变化。
来自水箱122的水可以利用泵124经由水管线126泵送至数据中心102。如以下进一步说明的,降低温度的水可以通过将水输送至数据中心102对数据中心102提供冷却,从而消除了使热供气从数据中心102运动通过冷却系统101以及然后回到数据中心102的步骤。降低温度的水可以利用任何已知方法冷却数据中心102,以抑制来自数据中心102的热,包括但不限于液体浸没技术、冷板技术、后门热交换器、冷却分配单元(CDU)和冷却盘管。在一个示例中,水可以直接冷却数据中心102中的一个或多个部件。一个或多个部件可以包括但不限于电气部件。在一个示例中,水可以穿过设置在数据中心102中的供气的路径中的一个或多个冷却盘管,冷却盘管中的水可以明显地冷却供气。见如下所述的图8-10。
在水向数据中心102提供冷却之后,水可以再循环回到交换器110。由于从数据中心102排出的热已被水带走,因此当水排出数据中心102时水可以处于升高温度下。水可以从数据中心102通过水管线128穿行至干燥盘管112,干燥盘管112可以在水返回至交换器110之前冷却水。干燥盘管112可以利用清除剂空气的冷却潜能冷却水。排出交换器110的清除剂空气可以相对较冷,来自水的另外的显热可被抑制进入清除剂空气内。在其他示例中,水可以直接穿行回到交换器110,而非首先穿过干燥盘管112。
水可以通过水管线130排出干燥盘管112,水管线130可以利用旁通阀132分成通向交换器110的水管线130a和通向水箱122的水管线130b。旁通阀132可以控制排出干燥盘管112的水有多少被输送至交换器110以及有多少被输送至水箱122。
在节约器模式中,可以打开旁通阀132,使得来自干燥盘管112的全部水可以绕过交换器110并且直达水箱122。节约器模式或冬季模式可以使得冷却系统101能够利用清除剂空气和干燥盘管112冷却水,而无需使交换器110运转。在这种情况下,由于冷的室外空气(清除剂空气)可以穿过干燥盘管112并且冷却水,因此可能不需要交换器110内部的蒸发作用。干燥盘管112在本文中还可以指代节约器盘管,因为其可以是在节约器模式中用于水的主要冷却源。
气室104可以包括位于交换器110与干燥盘管112之间的一个或多个旁通闸门134。在节约器模式中,清除剂空气还可以通过进入气室104内、穿过在交换器110的下游的旁通闸门134而绕过交换器110。这可以保护交换器110并且在不需要它时避免使交换器110运转。冷却系统101可以在正常模式与节约器模式之间调节以限制功率消耗并且以室外空气状态为依据进行调节。
来自交换器110的降低温度的水可以是可以从气室104延伸的冷却流体回路的一部分并且被递送至数据中心102。在水向数据中心102提供冷却之后,水可以再循环通过冷却系统101。水箱122和泵124可被视为冷却流体回路或冷却系统101的部分。水箱122和泵124中的一者或两者可以物理地定位在气室104中,或者水箱122和泵124中的一者或两者可以物理地定位在数据中心102中。可替代地,水箱122和泵124中的一者或两者可以位于与气室104或数据中心102分离的结构中。
在冷却系统101中使用LAMEE相对于比如为例如冷却塔的传统冷却系统可以提供优势。LAMEE中的膜分离层可以减少维护,可以消除对化学处理的需求以及可以降低污染物传递至液体循环的可能性。LAMEE与上游或下游冷却盘管的一起使用可以导致离开LAMEE的水的更低温度以及更高的冷却潜能。具有LAMEE的冷却系统的各个结构在本文中说明并且可以在多种气候中提高性能。更高的冷却潜能和性能可以引起冷却系统中的更低的空气流和风机功率消耗(这是液体冷却系统中的主要能量消耗源),并且可以提高整体的数据中心冷却系统效率。
冷却系统101可以使交换器110中的冷却潜能最大化,并且基于室外空气状态调节通过气室104的清除剂空气。例如在冬季的节约器模式与传统冷却系统相比可以提供耗水量和功率消耗的降低。冷却系统101的尺寸相对于比如为具有相似冷却能力的冷却塔的传统冷却系统可以更小。冷却系统101与传统冷却系统相比可以需要更少的水处理和水过滤,因为交换器110中的水和清除剂空气彼此不直接接触。
冷却系统101可以利用降低温度的水以对数据中心或其他封闭空间提供冷却。可以从布置在数据中心102的外部的冷却系统101向数据中心102或其他封闭空间输送降低温度的水。相比之下,对于现有空气冷却设计而言,来自数据中心的过程空气可被递送至冷却系统,冷却系统可被构造为用于两个空气流动路径(过程空气和清除剂空气)的较大单元。因此更多能量被用于这些设计以使过程空气从数据中心运动至冷却系统,并且然后调节过程空气。在本文中说明的系统中,比较起来更少的能量可被用于将来自冷却系统的降低温度的水递送至数据中心。此外,水比空气具有更高的热容量;因此与空气相比可以使用更低流量的水,以抑制直接来自数据中心中的一个或多个电气部件(或需要冷却的其他部件)或来自数据中心中的空气的一定量的热。
如本文中所使用的术语“向封闭空间提供冷却”指的是利用来自LAMEE或交换器的降低温度的水来冷却封闭空间中的空气或冷却封闭空间中的一个或多个部件。空间内的部件可以直接利用降低温度的水或冷却剂冷却(见图8和图9),部件周围的空气可被冷却(见图10),或者可以采用两者的组合。尽管当前应用聚焦在作为封闭空间的数据中心上,但是本文中公开的用于冷却的系统和方法可被用于封闭空间的其他示例,包括例如通讯机房、工业应用和商业空间。本文中公开的系统和方法可被用于利用水以进行冷却以及然后的冷却塔的任何应用,或者利用与用于高清除剂空气干球温度的辅助散热系统结合的干燥冷却器的任何应用。
图2-7示出与图1的调节系统100相比可以与LAMEE结合具有可替代或另外的部件的调节系统的各种结构。可以部分地基于封闭空间的冷却负荷以及待递送至封闭空间的水(或冷却剂)的预先确定的温度来选择具体结构,以满足冷却负荷。例如,在需要该非常冷的水或冷却剂提供至封闭空间以满足冷却负荷的应用中,可以在调节系统中包括预冷却器。在其中可以足够地向封闭空间提供更高温度的水或冷却剂(相对于紧上方所说明的应用)的其他示例中,可以不需要满足封闭空间的冷却负荷的预冷却器。
以下参照图5的系统500进一步说明用于调节系统的控制系统。认识到相似的控制系统可被用于本文中说明以及图1-4和图6-7中示出的其他调节系统。调节系统的目标是利用更少的水和更少的能量向数据中心或其他封闭空间提供足够的冷却。LAMEE用作蒸发冷却器以在封闭空间的外部产生冷水以及将冷水(或冷却剂)递送至封闭空间与其他液体冷却技术相比可以提供水节约以及与其他现有空气冷却技术相比提供能量节约。
图2描绘了可以与图1的系统100相似的示例调节系统200。系统200可以包括位于清除剂空气室204中的可以一起形成冷却系统201的交换器210和冷却单元或干燥盘管212。冷却系统201可以如上参照冷却系统101所述地以正常模式或节约器模式操作,以对数据中心202提供冷却。替代将来自水箱222的水递送至数据中心202的是,可以利用泵224通过水管线240将水泵送至液-液式热交换器(LLHX)242。
冷却剂可以通过输入管线244进入LLHX 242并且通过输出管线246排出LLHX 242。冷却剂可以是用于向数据中心202中的一个或多个部件提供直接冷却或向数据中心202中的供气或数据中心空气提供明显冷却的任何适当的冷却剂。在一个示例中,冷却剂可以包括防冻剂以最小化冬季冷却剂冷冻的风险。
管线244和246可以流体地连接至数据中心202,使得排出管线246中的LLHX 242的冷却剂可被递送至数据中心202。在向数据中心202提供冷却之后,更高温度的冷却剂可以经由管线244向回再循环通过LLHX242。来自水箱222的降低温度的水可以冷却LLHX 242中的更高温度的冷却剂,使得冷却剂可以以更低温度排出LLHX 242并且返回数据中心202。排出LLHX 242的更高温度的水可被通过水管线248递送至干燥盘管212。水可以在干燥盘管212中被冷却并且返回至交换器210或水箱222,如上参照图1的系统201所述。
在调节系统200中,来自交换器210的降低温度的水可以冷却冷却剂,并且冷却剂可以对数据中心202提供冷却。通过LLHX 242的该第二冷却剂回路可以保护数据中心202中的部件免受由水硬度引起的沉积。所选择的冷却剂可以具有防腐蚀添加剂以保护金属部件免受腐蚀。在利用水为数据中心提供直接冷却(图1)的冷却系统与具有第二冷却回路(图2)的冷却系统之间的选择可以部分地取决于数据中心(或其他封闭空间)的要求、数据中心中的设备的类型以及用于数据中心202内的冷却系统的类型。各种方法可以利用水或冷却剂而被用于从数据中心202排出热。这在以下参照图8-10做进一步说明。
LLHX 242可以物理上位于气室204中,或者LLHX 242可以位于数据中心202中。如果LLHX 242位于数据中心202中并且水箱222位于数据中心202外部,则泵224可以通过管线240将水泵送至数据中心202。可替代地,LLHX 242可以处于与气室204或数据中心202分离的结构中,并且在这种情况下,水箱222可以与LLHX 242位于相同或不同的位置中。
图3描绘了具有用于为数据中心(或其他封闭空间)302提供冷却的冷却系统301的示例调节系统300。冷却系统301可以与图2的系统201相似并且可以包括具有LLHX 342的第二冷却剂回路。系统300可以另外包括位于水箱322中的直接膨胀(DX)冷却盘管350。
DX盘管350可被用于为水箱322中的水提供额外冷却,使得可以向LLHX 342提供更低温度的水。在一个示例中,DX盘管350可被用于在冷却系统301的启动之前或期间预冷却水箱322中的水。制冷剂回路352可以包括在冷却系统301中以冷却排出DX盘管350的制冷剂。制冷剂回路352可以包括压缩机354、冷凝盘管356和膨胀阀358。冷凝盘管356可以位于清除剂空气室304内部。穿过冷凝盘管356的清除剂空气可以冷却制冷剂。冷却的制冷剂则可以向回再循环通过水箱322中的DX盘管350。如图3所示,清除剂空气穿过风机314,然后穿过冷凝盘管356。在其他示例中,风机314和冷凝盘管356在气室304中的顺序可以相反。
认识到DX盘管可被用于本文中说明的其他冷却系统(包括图1和图4-7的冷却系统)中任一者的水箱中。除DX盘管350之外或作为DX盘管350的替代物可以采用其他类型的机械冷却装置来冷却水箱322中的水,这些冷却装置可以位于水箱322的内部或外部。例如,位于水箱322的外部的液体-制冷剂式热交换器可以在水被引导至LLHX 342之前利用制冷剂冷却来自水箱322的水。在这种情况下,升高温度的制冷剂可以穿过压缩机354、冷凝盘管356和膨胀阀358,如图3所示。在一个示例中,冷冻水盘管可被用于水箱中,冷冻水可以利用冷冻机提供,在这种情况下,将不需要用于制冷剂的压缩机、冷凝盘管和膨胀阀。如果数据中心302或封闭空间具有现场冷冻机,这可以是用于对水箱322中的水提供额外冷却的有效方案。
在一个示例中,蓄热水箱可被用于与水箱322结合的冷却系统301(或本文中说明的任何调节系统)中。蓄热水箱可以例如在系统301的关闭期间提供用于来自水箱322的水的独立冷却方案。来自水箱322的水可以排放到蓄热水箱内。
图4描绘了具有用于为数据中心(或其他封闭空间)402提供冷却的冷却系统401的示例调节系统400。冷却系统401可以与图2的系统201相似并且可以包括交换器410和具有LLHX 442的第二冷却剂回路。替代具有位于交换器410的下游的干燥盘管(见图2的干燥盘管212)的是,冷却系统401可以包括位于交换器410的上游的干燥盘管或预冷却器盘管460(也称为预冷却盘管或预冷却器)。过滤器409可以靠近空气进口406布置在气室404内部。认识到过滤器可以类似地包括在图1-3、图5和图6的其他调节系统的气室中。
在图4所示的设计中,通向预冷却器460的输入管线462可以承载来自LLHX 442的水。当进入预冷却器460的水的温度低于室外空气干球温度时,预冷却器460可以有效。冷却系统401可被用于典型夏季状态以及当室外空气可能非常热和潮湿的极端夏季状态。预冷却器460可以抑制室外空气干球温度,因此预冷却穿过预冷却器460的清除剂空气并且加热预冷却器460中的水。清除剂空气和水然后可以如上所述地穿过交换器410,在这种情况下发生蒸发并且水或空气和水两者可被冷却至室外空气湿球温度。当清除剂空气和水穿过预冷却器460和交换器410时,上述情况可被称为夏季模式或正常操作模式。
如果室外空气冷,比如在冬季,冷却系统401可以如如上参照图1所述地以节约器模式或冬季模式操作。由于清除剂空气冷,因此清除剂空气可以在清除剂空气穿过预冷却器460时冷却水。在该示例中,预冷却器460并非如上所述地为清除剂空气提供冷却,而是预冷却器460可以利用冷的清除剂空气来冷却来自管线462的水,使得水可以以降低的温度排出预冷却器460并且再循环回到水箱422,而无需在交换器410中冷却。
水可以通过可以如上参照图1所述地利用阀466分流的水管线464排出预冷却器460。阀466可以控制通过管线464a通向交换器410以及通过管线464b通向水箱422的水流。在节约器模式期间,由于水可以在预冷却器460中被冷却并且可以不需要交换器410,因此管线464中的水的全部或大部分可被输送至水箱422。在温暖的室外空气状态期间,由于这种情况下的预冷却器460作用为用于清除剂空气的冷却盘管,因此管线464中的水的全部或大部分可被输送至交换器410。
气室404可以包括具有闸门470的空气旁路468。旁路468可以允许清除剂空气在不使用交换器410时的节约器模式中绕过交换器410。清除剂空气然后可以穿过风机414,并且然后在清除剂空气出口408处作为排气排出。可替代地,可以使用类似于图1所示闸门134的闸门,使得清除剂空气可以在预冷却器460与交换器410之间的位置处排出气室404。
在夏季模式和冬季模式中,清除剂空气可以调节为控制功率消耗。清除剂空气流量可以部分地取决于室外空气状态和安装气室404的位置。
在其他示例中,冷却系统401可以排除LLHX 442,来自水箱422的水可以如参照图1的冷却系统101所述地被直接递送至数据中心402。
在其他示例中,冷却系统401可以包括水箱422内部的DX盘管,以及用于DX盘管的制冷剂回路的其他部件(见图3)。具有与水箱422内部的DX盘管结合的如图4所示的预冷却器460的冷却系统可被用于极端室外空气状态。如果水箱422中的温度高于设定点温度(以覆盖负荷的100%),则水箱422中的DX盘管可以将水箱422中的水冷却至设定点温度。因此,DX盘管可以对离开水箱422的水提供额外冷却,使得水422可以充分地冷却以覆盖用于数据中心402的负荷。在其他室外空气状态期间,可以不需要水箱422中的DX盘管覆盖负荷。在冬季或在节约器模式期间,该冷却系统(在水箱422内部具有DX盘管的冷却系统401)可以具有类似于图4中所示空气旁路468的空气旁路,并且该旁路可以延伸经过用于制冷剂回路的冷凝器,使得清除剂空气可以绕过交换器和冷凝器、穿过风机并且排出气室。可替代地,如上所述,旁通闸门可被用于在预冷却器460与交换器410之间的位置处将清除剂空气导出气室。
图5描绘了具有类似于图1的冷却系统101的冷却系统501的示例调节系统500,用于为数据中心502或其他封闭空间提供冷却。冷却系统501还可以包括位于气室504内部的预冷却器或干燥盘管560(也称为预冷却盘管或预冷却器盘管),使得系统501包括位于交换器510的上游的第一冷却单元(预冷却器560)和位于交换器510的下游的第二冷却单元(干燥盘管512)。干燥盘管512可以分别类似于图1、图2和图3的干燥盘管112、212和312。预冷却器560可以类似于图4的预冷却器460。
如上参照其他冷却系统示例所述,干燥盘管512可以利用排出交换器510的相对冷的清除剂空气有效地冷却更高温度的水。预冷却器560可被用于潮湿或极端的室外空气状态,以在使清除剂空气穿过交换器510之前调节清除剂空气。预冷却器560可以抑制室外空气湿球温度以在交换器510中提供更多冷却潜能。
从交换器510和干燥盘管512至水箱522的降低温度的水的流动路径可以类似于以上参照图1的说明。从数据中心502至干燥盘管512的升高温度的水的流动路径可以类似于以上参照图1的说明。降低温度的水可以通过两个不同的水管线离开水箱522。第一泵524可以通过水管线526将水从水箱122泵送至数据中心502。第二泵572可以通过水管线574将水从水箱122泵送至预冷却器560。在其他示例中,一个水管线和一个泵可被用于将水从水箱522中递送出来,分流阀可被用于控制水向数据中心502和预冷却器560的递送(见图6)。
气室504可以包括两组旁通闸门——位于预冷却器560与交换器510之间的第一闸门576以及位于交换器510与干燥盘管512之间的第二闸门534。将清除剂空气流引导到气室504内的旁通闸门576和534的使用可以取决于室外空气状态。尽管第一旁通闸门576和第二旁通闸门534各自示出为具有位于气室504的相对侧上的一对闸门,认识到第一旁通闸门576和第二旁通闸门534中的一者或两者可以为在气室504的一侧上的单个闸门。
冷却系统501可以以三种模式操作,模式的选择可以部分地取决于室外空气状态和数据中心502的冷却负荷。当室外空气冷时,冷却系统501可以以第一模式即节约器模式操作,可以绕过预冷却器560和交换器510。清除剂空气可以通过闸门534进入气室504并且穿过干燥盘管512。在还可被称为正常模式或蒸发模式的第二操作模式中,可以绕过预冷却器560。蒸发模式可以在比如为当温度或湿度中等的春季或秋季的温和状态以及一些夏季状态期间操作。清除剂空气可以能够绕过预冷却器560,同时仍然满足冷却负荷。清除剂空气可以通过闸门576进入气室504,然后可以穿过交换器510和干燥盘管512。在还可被称为增强模式或超级蒸发模式的第三操作模式中,冷却系统501可以利用预冷却器560和干燥盘管512两者运行。在极端状态下,或者当室外空气热或潮湿时,冷却系统501可以在清除剂空气进入交换器510之前利用预冷却器560对清除剂空气提供预冷却。预冷却器560可被用于提高系统501的冷却功率,从而允许交换器501在交换器510的出口518处实现更低的排放温度。预冷却器560可以减小或消除对辅助机械冷却的需求。
通过水进口516进入交换器510内的水流还可以取决于冷却系统501的操作模式。类似于如上所述的冷却系统,通过水管线530排出干燥盘管512的水可以根据冷却系统501是否以节约器模式操作而分到通向交换器510的水管线530a和通向水箱522的水管线530b内。旁通阀532可以控制从干燥盘管512到水箱522和交换器510的水流。排出预冷却器560的水可以通过水管线578被引导至交换器510的进口516。图5中示出水管线578和530a的接头580。认识到水管线578和530a在进口516和两个分离的水管线可以与进口516流体连接之前不必合并或联结在一起。
调节系统500可以包括控制冷却系统501的操作以及控制从冷却系统501向数据中心502提供的冷却量的控制系统。该控制系统可以是手动或自动的,或者两者的组合。调节系统500可以操作为使得水箱522中的水的温度可以等于可以恒定或可变的设定点温度。在包括LLHX和第二冷却剂回路的调节系统500中,调节系统500可以操作为使得离开LLHX(见,例如图4的管线446)的冷却剂的温度可以等于可以恒定或可变的设定点温度。除控制水箱522中的水或离开水箱522的水的温度之外或作为其替代方案,可以控制冷却剂的温度。可以部分地基于数据中心502的冷却要求确定设定点温度。数据中心502中的冷却系统可以使用从冷却系统501递送至数据中心502的水或冷却剂,以冷却数据中心502中的空气或冷却数据中心502中的一个或多个电气部件。调节系统500可被控制为减小整体耗水量和功率消耗,并且增加数据中心502的散热。
调节系统500的操作可以目的在于增加水与清除剂空气之间的显热部分以及减小水与清除剂空气之间的潜热部分。可以通过利用交换器510之前或之后的冷却盘管和调节通过系统501的清除剂空气流量中的至少一者来优化LAMEE或交换器510内部的水蒸发以最小化冷却系统501中的耗水量。如果返回至系统501的水处于高温,则可以在交换器510的下游的干燥盘管512中抑制热负荷的更大部分。因此,干燥盘管512的出口处的清除剂空气温度可以更高。当在LAMEE中执行的功的潜式部分减小时,LAMEE 510可以消耗更少的水。
在一个示例中,冷却系统501可以以节约器模式操作,在节约器模式中,只要递送至水箱的水的设定点温度可以利用干燥盘管512达到,则断开并且绕过LAMEE 510。然而,如果水箱中的水处于设定点以上的温度,则冷却系统501可以以包括利用LAMEE 510来冷却水的正常模式操作。类似地,如果不能在正常模式中实现设定点温度,则增强模式可以包括利用预冷却器560以在清除剂空气进入LAMEE 510之前调节清除剂空气。
本文中说明以及图1-4和图6-7中示出的其他调节系统可以类似地包括用于操作冷却系统的控制系统。
在其他示例中,冷却系统501可以包括作为第二冷却剂回路的一部分的LLHX,使得冷却剂对数据中心502提供冷却。在其他示例中,冷却系统501可以包括水箱522内部的DX盘管。
在一个示例中,调节系统可以包括可以类似于冷却系统501或本文中说明以及在图1-4和图6-7中示出的其他冷却系统中的任一者的多个冷却系统。多个冷却系统可以产生降低温度的水流,降低温度的水流可被递送至主存储水箱。多个冷却系统的操作可以部分地取决于主水箱中的水的温度。在一个示例中,冷却系统可被构造成在当室外空气较冷的夜晚期间更多地操作或者基于数据中心502或其他封闭空间的冷却负荷在白天以某些周期更多地操作。本文中说明以及图1-7中示出的调节系统可以良好地适用于具有连续冷却负荷或可变冷却负荷的封闭空间。
图6描绘了具有用于为数据中心(或其他封闭空间)602提供冷却的冷却系统601的示例调节系统600。冷却系统601可以类似于图4的冷却系统401,其中干燥盘管/预冷却器660可以在气室604内部布置在交换器610的上游。然而,与其中预冷却盘管460可以接收来自LLHX 442(或来自数据中心402)的升高温度的水的冷却系统401相比,预冷却器660可以接收来自水箱622的降低温度的水。水可以利用泵624通过水管线682排出水箱622。旁通阀684可以将来自水管线682的水分到通向预冷却器660的水管线682a和通向数据中心602的水管线682b内。在其他示例中,水管线682b可以穿行至作为第二冷却剂回路的一部分的LLHX,使得可以利用水冷却冷却剂,并且冷却剂然后可以被递送至数据中心602。
排出预冷却器660的水可以经由水管线688向回穿过交换器610。阀690可以控制来自预冷却器660和来自数据中心602的水流在进口616处进入交换器610内。来自数据中心602的水可以通过水管线686直接返回到交换器610。这样,升高温度的水可以返回至交换器610,而无需对升高温度的水执行任何预冷却。进入交换器610的升高温度的水可以产生高蒸发率(大量热可以作为潜热被抑制)。系统601的相对耗水量与其他冷却系统设计相比可以更高。与其他冷却系统设计相比,系统601的尺寸可以更加紧凑并且对于相同的散热量需要更少的清除剂空气流。
在其中来自水箱的水被分到管线682a和682b内的冷却系统601的设计中,旁通阀684可被用于控制水的什么部分通向预冷却盘管660以及什么部分通向数据中心602。分流比可以改变以控制预冷却器660和数据中心602中的每一个的质量流量。这能够使得系统601中的最冷温度的水(来自水箱622)通向预冷却盘管660,从而使其降低清除剂空气的湿球温度以及尽可能地抑制交换器610中的水的可达到的冷却温度的能力最大。如果更冷的水被输送至预冷却器660,则预冷却器660可以进一步冷却进入气室604的清除剂空气,从而对交换器610内部的蒸发提供更大潜能。如果不需要为了使水箱622中的水满足设定点温度(以及由此满足数据中心602的冷却负荷)的预冷却器660,则基本上排出水箱622的全部水可以通过管线682b被递送至数据中心602。
认识到在两个或更多个水管线之间的水分配的这种控制还可以用于其他冷却系统设计中的任一者,包括其中示出排出水箱522的两个水管线(520和574)的图5的系统500。
气室604可以包括可被用于在预冷却盘管660的下游的位置处将清除剂空气导入气室604内的一个或多个旁通闸门634。
在其他示例中,冷却系统601可以包括水箱622内部的DX盘管,以对水箱622中的水提供额外冷却。
图7描绘了具有用于对数据中心(或其他封闭空间)702提供冷却的冷却系统701的示例调节系统700。冷却系统701可以类似于图4的冷却系统401并且可以包括交换器710和位于交换器710的上游的预冷却盘管或预冷却器760。系统701还可以包括空气-空气式热交换器(AAHX)707,空气-空气式热交换器707可以包括但不限于热轮、热管、交叉流平板AAHX或逆流平板AAHX。
清除剂空气可以在清除剂空气进口706处进入气室704,穿过过滤器709,然后穿过AAHX 707。清除剂空气可以利用排出交换器710的清除剂空气在AAHX 707中进行间接和明显地冷却。图7的冷却系统设计可被用于热或潮湿的室外空气状态,以消除或减小对预冷进入气室704的清除剂空气的额外DX冷却的需求。
在清除剂空气排出AAHX 707之后,清除剂空气可以在冷却清除剂空气的第二阶段中穿过预冷却器760,空气的湿球温度在冷却清除剂空气的第二阶段中可以进一步降低,由此增大交换器710中的冷却潜能。在清除剂空气以降低的温度排出交换器710之后,冷空气可以穿过风机714和AAHX 707以冷却在清除剂空气进口706处进入气室704的外界空气。清除剂空气然后可以作为排气在清除剂空气出口708处排出气室704。
通过系统701的水的流动路径可以类似于图4的冷却系统401中的结构。旁通阀766可被用于部分地取决于室外空气状态和系统701的操作模式控制从预冷却器760到水箱722(经由管线464a)以及到交换器710(经由管线464b)的水流。
在温和状态或在冬季,排出预冷却器760的水的一些或基本全部可被引导回到水箱722,水可以不穿过交换器710。在这些状态下,也可以改变AAHX 707,在这种情况下清除剂空气仍然可以在进口706处进入气室704,或者可以通过AAHX 707与预冷却器760之间的旁通闸门792将清除剂空气导入气室704内而绕过AAHX 707。在一些情况下,即使水不循环通过交换器710,清除剂空气仍然可以穿过交换器710,清除剂空气可以通过位于风机714的下游并且在AAHX 707之前的旁通闸门794排出气室。在其他设计中,风机714可以位于气室704内的不同位置。在一个示例中,风机714可以在预冷却器760和交换器710的上游运动,并且可以在风机714之后包括用于将清除剂空气导出气室714的旁路。
在一个示例中,室外空气状态可以使得AAHX 707可被用于冷却进入气室704的清除剂空气,并且预冷却器盘管760可以由空气和水中的一者或两者绕过。认识到闸门和旁路的各自结构可以包括在冷却系统701中以根据室外空气状态提高系统701的能量效率和操作。
在其他示例中,冷却系统701可以消除LLHX 742,降低温度的水可以从水箱722直接递送至数据中心702。
以上说明并且在图1-7中示出了具有LAMEE和布置在清除剂空气室内部的其他部件的冷却系统的各种结构。如上所述的结构中的任一者可以利用水来对数据中心提供冷却,或者如上所述的结构中的任一者可以包括第二冷却剂回路,以利用冷水来冷却可被递送至数据中心的冷却剂。认识到冷却系统中的部件中一些不必以附图中示出的具体方式布置,替代结构包括在本申请的范围内。例如,风机可以位于交换器的上游或下游,风机可以位于作为制冷剂回路的一部分的冷凝盘管的上游或下游。过滤器分别包括在图4和图7的冷却系统401和701中(见过滤器409和709)。认识到可以包括靠近图1-3、图5和图6的其他冷却系统的气室中的任一者的进口的过滤器。认识到另外的部件可以包括在如上所述以及在图1-7中示出的冷却系统中。在一个示例中,图1-7的调节系统中的任一者可以包括水处理装置,水处理装置可以控制通过调节系统循环的水的品质。
如上所述,来自LAMEE的降低温度的水可被用于对数据中心或其他封闭空间提供冷却。降低温度的水可被递送至封闭空间,或者降低温度的水可以冷却第二冷却剂回路中的冷却剂,使得冷却剂可被递送至封闭空间。水或冷却剂可以利用任何已知方法冷却封闭空间,以便利用液体(水或冷却剂)抑制来自空间的热。图8-10示出了可被用于冷却封闭空间的冷却系统的示例。认识到冷却系统的组合可被用于封闭空间内部。
图8描绘了可以位于数据中心802或其他封闭空间内部的示例性冷却系统800。冷却系统800可以利用浸没技术以对可以浸没在液浴806中的IT设备或电气部件804提供液体冷却。液浴806可以由来自具有LLHX的第二冷却剂回路的冷却剂形成,其中冷却剂可以利用来自如上利用LAMEE所述的图1-7中的冷却系统中的任一者的降低温度的水进行冷却。冷却剂可以在进口808处进入液浴806,以对浸没在冷却剂中的部件804提供冷却并且可以基本100%抑制来自部件804的热。冷却剂可以相对于进口808处的温度以升高的温度在出口810处排出液浴806。冷却剂可以在第二冷却剂回路中循环回到LLHX,使得穿过LLHX的降低温度的水可以冷却用于递送回到冷却系统800的冷却剂。
图8中示出具有四个电气部件804的冷却系统800。认识到可以在冷却系统800中冷却更多或更少的电气部件804。在一个示例中,数据中心802可以包含多个冷却系统800,每个冷却系统800可以冷却多个电气部件804。递送至数据中心802的冷却剂可以来自如上所述和图1-7中所示的单个冷却系统,该冷却系统可以具有足够的冷却能力以提供跨越多个冷却系统800的冷却。可替代地,通向数据中心802的冷却剂可以来自从如上所述和图1-7中所示的设计中的任一者中选择的多个冷却系统,每个冷却系统具有结合有其他部件的LAMEE以产生冷水。
在一个示例中,液浴806中的冷却剂可以是具有高热容量的特定非导电液体并且具有足以满足液体浸没技术的要求的性能。
图9描绘了可以位于数据中心902或其他封闭空间内部的示例性冷却系统900。冷却系统900可以利用冷板技术以对数据中心902的内部的IT设备或电气部件904提供液体冷却。
在一个示例中,来自如上所述以及在图1-7中所示的冷却系统的冷水可以从存储水箱递送至数据中心902并且分配至电气部件904中的每一个。水可以穿过附连并且直接接触电气部件904中的每一个的冷板912中的微通道。水可以吸收来自电气部件904的热的一部分,使得每个板912的出口916处的水的温度高于每个板912的进口914处的水的温度。升高温度的水然后可以返回至冷却系统并且再循环向回通过如上所述以及图1-7中所示的冷却系统。
在一个示例中,冷却剂可被递送至数据中心902并且被分配至电气部件904中的每一个。冷却剂可以是用于通过冷板912循环的任何适当的冷却剂。可以在如上所述地递送至数据中心902之前在第二冷却剂回路中冷却冷却剂。在冷却剂穿过冷板912之后,抑制来自部件904的热,升高温度的冷却剂可以返回至在第二冷却剂回路中的LLHX,使得冷却剂可被重新冷却以便再循环回到冷却系统900。
如果水用于冷却系统900中,在一个示例中,可以需要在使水通过冷板912之前对水进行处理以确保水充分清洁。由于冷却系统900不能100%抑制来自电气部件904的热,因此空气冷却系统还可被用于对数据中心902提供冷却。
图9示出具有各自包括冷板912的三个电气部件904的冷却系统900。认识到可以在冷却系统900中冷却更多或更少的电气部件904。在一个示例中,数据中心902可以包含多个冷却系统900,每个冷却系统900可以冷却多个电气部件904。递送至数据中心902的水或冷却剂可以来自如上所述和图1-7中所示的单个冷却系统,该冷却系统可以具有足够的冷却能力以提供跨越多个冷却系统900的冷却。可替代地,水或冷却剂可以来自从如上所述和图1-7中所示的设计中的任一者中选择的多个冷却系统,每个冷却系统具有结合有其他部件的LAMEE以产生冷水或冷却剂。
图10描绘了可以位于数据中心1002或其他封闭空间内部的示例性冷却系统1000。冷却系统1000可以利用冷却盘管1018来对数据中心1002中的空气提供冷却。来自图1-7的冷却系统中的任一者的冷水或冷却剂可以流过冷却盘管1018。当数据中心空气流过冷却盘管1018时,数据中心空气可以被盘管1018中的水或冷却剂明显地冷却。这样,冷却盘管1018的下游的数据中心空气的温度可以低于冷却盘管1018的上游的数据中心空气的温度。盘管1018的出口1020处的水或冷却剂的温度可以大于盘管1018的进口1022处的水或冷却剂的温度。排出盘管1018的升高温度的水或冷却剂可以返回至冷却系统并且再循环向回通过如上所述和图1-7中所示的冷却系统。
冷却盘管1018可被以任何数量的方式在数据中心1002中构造。数据中心1002可以根据盘管1018的冷却能力和数据中心1002中的冷却负荷包括一个或多个冷却盘管1018。在一个示例中,冷却盘管1018可被构造为后门热交换器并且附连至包括例如为数据中心1002中的电气部件的部件的背面。数据中心空气可以穿过箱体中的一个或多个部件,数据中心空气可以吸收来自部件的热。升高温度的空气然后可以穿过可以发生空气的冷却的后门热交换器,并且然后排出箱体。在一个示例中,冷却盘管1018可以定位在一个或多个电气部件以上,数据中心空气可被引导至冷却盘管1018。
在示例中,数据中心或封闭空间可以具有多个冷却系统,包括图8-10中所示冷却系统的任何组合。供给到数据中心的水或冷却剂可以来自包括图1-7中示出的冷却系统的任何组合的多个冷却系统,或者从图1-7中示出的冷却系统中的任一者选择的单个冷却系统可被用于对数据中心提供冷却。
图11描绘了用于对装置1102提供冷却的示例性调节系统1100。调节系统1100可以包括可以类似于图1-7的冷却系统101、201、301、401、501、601和701中的任一者并且可以包括LAMEE的冷却系统1101,还可以包括如上所述与LAMEE结合的其他部件和特征中的任一者,以形成冷却系统1101。
冷却系统1101可以利用蒸发冷却器LAMEE产生降低温度的水或冷却剂,降低温度的水或冷却剂可被递送至待冷却的装置1102。冷却系统1101可以与装置1102分离并且远离装置1102地定位,降低温度的水或冷却剂可被输送或递送至装置1102。在一个示例中,装置1102不在封闭空间中,使得装置1102可以对环境开放,装置1102的外部可以暴露于室外空气。图11的示例调节系统因此与前述示例的不同在于冷却系统1101的调节产品(水或其他流体冷却剂)可被递送至未布置在封闭空间内的装置或者其他件的设备或系统。
调节系统1100可被构造成使得来自冷却系统1101的降低温度的水或冷却剂可被以进口温度递送至装置1102的进口1104。冷却液可以抑制来自装置1102的热,使得在出口1106处离开装置的水或冷却剂可以处于高于进口温度的出口温度。排出装置1102的升高温度的液体可以再循环回到水或冷却剂可被再次冷却的冷却系统1101,如上所述。
装置1102可以包括产生热的任何类型的设备或部件或者利用用于散热的流体的任何类型的设备或部件。来自冷却系统1101的降低温度的水或冷却剂可以利用任何已知方法抑制来自装置1102的热,包括如上所述以及本文中示出的那些方法。在一个示例中,降低温度的水或冷却剂可以直接冷却装置1102。与参照图9的冷却系统900的冷板912所述相似地,来自冷却系统1101的降低温度的水或冷却剂可以循环通过形成在装置1102中的通道。在一个示例中,降低温度的水或冷却剂可以循环通过装置1102内部的液-液式热交换器(LLHX),水或冷却剂可以吸收来自循环通过LLHX的第二流体的热以降低第二流体的温度。装置1102可以包括但不限于工业设备、商业设备、冷冻机、冷凝盘管或利用用于散热的冷却塔的任何设备(或在任何过程中)。装置1102可以包括可以利用水或另一种冷却流体来抑制来自设备/部件或者来自设备/部件中的或与设备/部件相关的液体的热的任何类型的设备或部件。
认识到冷却系统1101可被用于根据装置中的每一个的冷却负荷和系统1101的冷却能力对一个以上的装置提供冷却。在一个示例中,图11的装置1102可以包括多件工业设备;每件设备可以接收可以来自中央冷却系统1101或来自专用于每件设备的单独的冷却系统1101的降低温度的水或冷却剂。
本申请包括操作具有至少一个冷却系统的调节系统的方法,以控制比如为例如数据中心的封闭空间中的状态。该方法可以包括引导清除剂空气通过布置在清除剂空气室内部的液-气式膜能量交换器(LAMEE),清除剂空气室布置在封闭空间的外部。清除剂空气可以在空气进口处进入气室并且在空气出口处排出气室。清除剂空气室和LAMEE可以形成布置在封闭空间的外部的冷却系统。该方法可以还包括引导水通过LAMEE,使得LAMEE具有与空气流动路径分离的水流动路径,根据空气状态发生将清除剂空气和水的温度降低至室外空气湿球温度的蒸发冷却。该方法可以包括将冷却流体回路中的冷却流体递送至封闭空间,其中,冷却流体回路可以连接至LAMEE的水流动路径,并且利用冷却流体对封闭空间提供冷却,而非使来自封闭空间的空气运动通过冷却系统。冷却流体回路中的冷却流体可以是来自LAMEE的降低温度的水或利用降低温度的水冷却的冷却剂。冷却封闭空间可以包括空气冷却封闭空间中的空气或冷却流体与封闭空间中的一个或多个电气部件的直接接触。
本申请包括操作具有至少一个冷却系统的调节系统以对未包含在封闭空间中的一个或多个装置提供冷却的方法,而且一个或多个装置可以对环境开放。如上所述,该方法可以包括利用LAMEE产生降低温度的水,并且将降低温度的水或冷却剂递送至待被冷却的一个或多个装置。该方法可以包括利用降低温度的水或冷却剂直接冷却一个或多个装置,或者使降低温度的水或冷却剂循环通过装置内部的热交换器,以冷却循环通过热交换器的第二流体。
上述操作调节系统的方法可以包括在水排出LAMEE之后将降低温度的水存储在水箱中。该方法可以包括在利用水来通过利用例如水箱内部的DX盘管对封闭空间或装置提供冷却之前对水箱中的水提供额外冷却。该方法可以包括引导来自LAMEE的降低温度的水通过液-液式热交换器(LLHX)以降低冷却流体回路中的冷却剂的温度,以及将降低温度的冷却剂递送至封闭空间或装置。
该方法可以包括根据室外空气状态和被递送至封闭空间或装置的水或冷却剂的设定点温度中的至少一者以不同模式操作调节系统的冷却系统。该方法可以包括以节约器模式操作冷却系统,在节约器模式中,清除剂空气和水可以绕过LAMEE,水的冷却可以通过布置在清除剂空气室内部的干燥盘管执行。该方法可以包括以增强模式操作冷却系统,以及引导清除剂空气通过布置在LAMEE的上游的清除剂空气室中的预冷却单元,以在引导清除剂空气通过LAMEE之前调节清除剂空气。
上述说明书旨在说明而非限制。例如,上述示例(或其一个或多个方面)可以彼此组合使用。比如本领域普通技术人员可以在审阅上述说明书的情况下采用其他实施例。
上述详细说明包括对形成详细说明的一部分的附图的参照。附图通过例示示出其中可以实施本发明的具体实施例。这些实施例在本文中还称为“示例”。这种示例可以包括除所示出或说明的元件之外的元件。然而,本发明人还预期其中仅提供所示出或所说明的这些元件的示例。此外,本发明人还预期利用关于特定示例(或其一个或多个方面)或关于本文所示出或说明的其他示例(或其一个或多个方面)的所示出或说明的这些元件(或其一个或多个方面)的任何组合或置换的示例。
在本文献与因此通过参引结合的任何文献之间的不一致用途的情况下,以本文献中的用途为准。在本文献中,如专利文献中所通用的术语“一个”或“一种”用于包括独立于“至少一个”或“一个或多个”的任何其他实例或用途的一个或超过一个。在本文献中,除非另有陈述,术语“或”用于指代非排他性的,或者使得“A或B”包括“A而非B”、“B而非A”以及“A和B”。在本文献中,术语“包括”和“在其中”被用作相应术语“包含”和“其中”的通俗英语等同术语。此外,在以下权利要求书中,术语“包括”和“包含”是开放式的,即,包括除在权利要求中的该术语之后列出的术语之外的元素的系统、装置、制品、组成、配方或过程仍然被视为落在该权利要求的范围内。此外,在以下权利要求中,术语“第一”、“第二”和“第三”等等仅用作标记,而非旨在对其目标施加数字要求。
本文中说明的方法示例可以至少部分地机器或计算机实施。一些示例可以包括利用可操作为将电子装置配置成执行如在以上示例中描述的方法的指令编码的计算机可读介质或机器可读介质。这些方法的实施可以包括代码,比如微编码、汇编语言代码、高级语言代码等。这种代码可以包括用于执行各个方法的计算机可读指令。代码可以形成计算机程序产品的部分。进一步地,代码可以比如在执行期间或在其他时刻可触地存储在一个或多个易失或非易失的有形计算机可读介质上。这些有形计算机可读介质的示例可以包括但不限于硬盘、可移动磁盘、可移动光盘(例如,高密度磁盘和数字视频光盘)、磁带、存储卡或存储棒、随机存取存储器(RAM)、只读存储器(ROM)等。
本文中说明的示例可以包括逻辑或多个部件、模块或机构,或者可以在逻辑或多个部件、模块或机构上操作。模块可以是通信地联接至一个或多个处理器以便执行本文中说明的操作的硬件、软件或固件。模块可以是硬件模块,这些模块可被视为能够执行特定操作并且可以以一定方式构造或布置的有形实体。在一个示例中,回路可以以特定方式(例如,内部地或相对于比如为其他回路的外部实体)布置为模块。在一个示例中,一个或多个计算机系统(例如独立计算机系统、客户计算机系统或服务器计算机系统)或者一个或多个硬件处理器的整体或部分可以通过固件或软件(例如,指令、应用部分或应用)构造为操作以执行特定操作的模块。在一个示例中,软件可以保存在机器可读介质上。在一个示例中,当软件由模块的底层硬件执行时,软件使得硬件执行特定操作。因此,术语硬件模块被理解为包括有形实体,即被物理地构造、特定地构造(例如硬接线)或临时地(例如暂时)构造(例如编程)以便以特定方式操作或者执行本文中说明的任何操作的部分或全部的实体。考虑到其中临时地构造模块的示例,模块中的每一个不必在时间上的任一时刻实例化。例如,在模块包括构造成利用软件的通用硬件处理器的情况下,通用硬件处理器可以在不同的时间构造为相应的不同模块。因此软件可以配置硬件处理器,例如,以在一个时间情况下构成特定模块以及在不同的时间情况下构成不同的模块。模块还可以是操作为执行本文中说明的方法的软件或固件模块。
上述说明书旨在说明而非限制。例如,上述示例(或其一个或多个方面)可以彼此组合使用。比如本领域普通技术人员可以在审阅上述说明书的情况下采用其他实施例。此外,在上述详细说明中,各个特征可以分组在一起以使本公开合理化。这不应该理解为意指未要求保护的公开特征对任何权利要求是必要的。相反地,创造性主题可以在于少于特定公开实施例的全部特征。因此,以下权利要求在此结合到详细说明中,其中每个权利要求以其自身独立为单独的实施例,可预期这些实施例可以以各种组合或置换彼此组合。应该参照随附权利要求书与这些权利要求所赋予的等同方案的全部范围一起来确定本发明的范围。
本申请提供以下示例性实施例或示例,实施例或示例的序号并非解释为表示重要程度:
示例1提供用于控制封闭空间中的状态的调节系统并且可以包括冷却系统和冷却流体回路。冷却系统可以布置在封闭空间的外部并且包括清除剂空气室和布置在气室内部的液-气式膜能量交换器(LAMEE)。气室可被构造成将空气流动路径中的清除剂空气从空气进口引导至气室的空气出口。LAMEE可以包括通过膜与空气流动路径分离的冷却流体流动路径。LAMEE可以利用清除剂空气来蒸发地冷却冷却流体流动路径中的冷却流体,使得冷却流体在LAMEE的流体出口处的温度低于冷却流体在LAMEE的流体进口处的温度。冷却流体回路可以连接至LAMEE的冷却流体流动路径并且从气室延伸到封闭空间内。冷却流体回路可以构造成在不使空气从封闭空间运动通过冷却系统的情况下对封闭空间提供冷却。
示例2提供示例1的可选择地进一步包括布置在LAMEE的上游的气室内部的冷却单元的系统,冷却单元构造成在清除剂空气进入LAMEE之前调节清除剂空气。
示例3提供示例2的可选择地构造成使得冷却单元被构造成接收来自LAMEE的降低温度的水以调节清除剂空气的系统。
示例4提供示例1-3中的任一者的可选择地构造成使得冷却流体回路被构造成将冷却流体从LAMEE输送至封闭空间以对封闭空间提供冷却的系统。
示例5提供示例1-4中的任一者的可选择地构造成使得LAMEE的冷却流体流动路径中的冷却流体是水的系统。
示例6提供示例1-5中的任一者的可选择地构造成使得冷却流体回路包括第一冷却流体和第二冷却流体的系统,以及其中,第一冷却流体是来自LAMEE的冷却流体。
示例7提供示例6的可选择地构造成使得冷却流体回路包括构造成接收第一冷却流体和第二冷却流体以降低第二冷却流体的温度的液-液式热交换器的系统。
示例8提供示例6或7中的任一者的可选择地构造成使得第二冷却流体被递送至封闭空间并且对封闭空间提供冷却的系统。
示例9提供示例1-8中的任一者的可选择地进一步包括存储水箱以存储来自LAMEE的冷却流体的系统。
示例10提供示例9的可选择地进一步包括机械冷却系统以冷却存储水箱中的冷却流体的系统。
示例11提供示例1-10中的任一者的可选择地进一步包括冷却盘管的系统,冷却盘管布置在LAMEE的下游的气室内部并且构造成利用清除剂空气来冷却冷却流体。
示例12提供示例11的可选择地进一步包括旁通阀的系统,旁通阀构造成控制排出冷却盘管到达LAMEE和构造成存储冷却流体的水箱中的至少一者的冷却流体的流。
示例13提供示例12的可选择地进一步包括第一操作模式和第二操作模式的系统,在第一操作模式中,排出冷却盘管的冷却流体的至少一部分再循环回到LAMEE,在第二操作模式中,排出冷却盘管的冷却流体的基本全部再循环回到存储水箱。
示例14提供用于控制封闭空间中的状态的调节系统并且可以包括布置在封闭空间的外部的第一冷却系统、布置在封闭空间的内部的第二冷却系统以及冷却流体回路。第一冷却系统可以包括具有空气进口和空气出口的清除剂空气室以及布置在气室内部的液-气式膜能量交换器(LAMEE),气室构造成将空气流动路径中的清除剂空气从空气进口引导至空气出口。LAMEE可以包括通过膜与空气流动路径分离的水流动路径,LAMEE构造成利用清除剂空气以降低水流动路径中的水温。冷却流体回路可以连接至LAMEE的水流动路径以及第二冷却系统。冷却流体回路可以在不使空气从封闭空间运动通过第一冷却系统的情况下对封闭空间提供冷却。
示例15提供示例14的可选择地构造成使得冷却流体回路包括液-液式热交换器(LLHX)的系统。来自LAMEE的水可以穿过LLHX以降低用于第二冷却系统的第二冷却流体的温度。
示例16提供示例15的可选择地构造成使得第二冷却系统包括从第二冷却流体至封闭空间中的一个或多个部件的直接冷却的系统。
示例17提供示例15或16中的任一者的可选择地构造成使得第二冷却系统包括利用第二冷却流体冷却封闭空间中的空气的系统。
示例18提供示例14的可选择地构造成使得第二冷却系统利用来自LAMEE的降低温度的水以及降低温度的水被递送至封闭空间的系统。
示例19提供示例18的可选择地构造成使得降低温度的水直接冷却封闭空间中的一个或多个部件的系统。
示例20提供示例18或19中的任一者的可选择地构造成使得第二冷却系统包括冷却盘管的系统,冷却盘管构造成接收降低温度的水并且冷却穿过冷却盘管的封闭空间中的空气。
示例21提供示例14-20中的任一者的可选择地构造成使得第二冷却系统包括冷却盘管、后门热交换器、冷却分配单元(CDU)、冷板和液体冷却浴中的至少一者的系统。
示例22提供用于控制封闭空间中的状态的调节系统并且可以包括布置在封闭空间的外部的冷却系统和冷却流体回路。冷却系统可以包括具有空气进口和空气出口并且构造成将空气流动路径中的清除剂空气从空气进口引导至空气出口的清除剂空气室。冷却系统可以包括在气室内部布置在空气流动路径中的液-气式膜能量交换器(LAMEE)。LAMEE可以包括通过膜与空气流动路径分离的冷却流体流动路径。LAMEE可被构造成利用清除剂空气来蒸发地冷却冷却流体流动路径中的冷却流体,使得冷却流体在LAMEE的流体出口处的温度低于冷却流体在LAMEE的流体进口处的温度。冷却系统可以包括在气室内部布置在空气进口与LAMEE之间的第一冷却单元和在气室内部布置在LAMEE与空气出口之间的第二冷却单元。第一冷却单元可以构造成在清除剂空气进入LAMEE之前调节清除剂空气,第二冷却单元可以构造成在冷却流体在流体进口处进入LAMEE之前降低冷却流体的温度。冷却系统可以包括构造成允许清除剂空气在空气进口与出口之间的一个或多个位置处进入或排出空气流动路径的一个或多个旁通闸门。调节系统的冷却流体回路可以连接至LAMEE的冷却流体流动路径并且从气室延伸到封闭空间内。冷却流体回路可以在不使空气从封闭空间运动通过冷却系统的情况下对封闭空间提供冷却。
示例23提供示例22的可选择地构造成使得冷却流体回路包括水箱和泵的系统,水箱用于存储来自LAMEE的冷却流体,泵将冷却流体递送至封闭空间。
示例24提供示例23的可选择地进一步包括辅助冷却系统的系统,辅助冷却系统构造成对水箱中的冷却流体提供额外冷却。
示例25提供示例24的可选择地构造成使得辅助冷却系统是位于水箱内部的DX盘管的系统。
示例26提供示例22-25中的任一者的可选择地构造成使得冷却系统包括旁通阀以控制通向LAMEE的冷却流体的流的系统。
示例27提供示例22-26中的任一者的可选择地构造成使得LAMEE中的冷却流体是水的系统。
示例28提供示例22-27中的任一者的可选择地构造成使得水被递送至封闭空间以直接冷却封闭空间中的一个或多个部件或者封闭空间中的空气的系统。
示例29提供示例22-27中的任一者的可选择地构造成使得冷却流体回路包括来自LAMEE的冷却流体、第二冷却流体和液-液式热交换器(LLHX)的系统。来自LAMEE的冷却流体和第二冷却流体可以穿过LLHX以降低第二冷却流体的温度。
示例30提供示例29的可选择地构造成使得第二冷却流体被递送至封闭空间以直接冷却封闭空间中的一个或多个部件或者封闭空间中的空气的系统。
示例31提供示例22-30中的任一者的可选择地构造成使得一个或多个旁通闸门包括第一组旁通闸门的系统,第一组旁通闸门构造成在第一冷却单元与LAMEE之间的位置处将清除剂空气引入空气流动路径内。
示例32提供示例22-31中的任一者的可选择地构造成使得一个或多个旁通闸门包括第二组旁通闸门的系统,第二组旁通闸门构造成在LAMEE与第二冷却单元之间的位置处将清除剂空气导入空气流动路径内。
示例33提供示例22-32中的任一者的可选择地构造成使得封闭空间是数据中心的系统。
示例34提供控制封闭空间中的状态的方法。该方法可以包括引导清除剂空气通过布置在清除剂空气室内部的液-气式膜能量交换器(LAMEE)并且引导水通过LAMEE,清除剂空气室布置在封闭空间的外部。清除剂空气可以在空气进口处进入气室并且在空气出口处排出气室。清除剂空气室和LAMEE可以形成布置在封闭空间的外部的冷却系统。LAMEE可以包括与空气流动路径分离的水流动路径。LAMEE可以构造成利用清除剂空气蒸发地冷却水并且降低水的温度。该方法可以包括将冷却流体回路中的冷却流体递送至封闭空间并且利用冷却流体而且在不使来自封闭空间的空气运动通过冷却系统的情况下对封闭空间提供冷却。冷却流体回路可以连接至LAMEE的水流动路径。
示例35提供示例34的可选择地进一步包括在使水再循环回到LAMEE之前引导水通过冷却单元的方法,冷却单元在清除剂空气室内部布置在LAMEE的下游或上游。
示例36提供示例34或35中的任一者的可选择地构造成使得向封闭空间递送冷却流体包括将来自LAMEE的降低温度的水递送至封闭空间的方法。
示例37提供示例36的可选择地进一步包括在将降低温度的水递送至封闭空间之前将来自LAMEE的降低温度的水递送至存储水箱的方法。
示例38提供示例34或35中的任一者的可选择地进一步包括在将冷却流体递送至封闭空间之前引导来自LAMEE的降低温度的水通过液-液式热交换器(LLHX)以降低冷却流体回路中的冷却流体的温度的方法。
示例39提供示例34-38中的任一者的进一步包括以下的方法:将来自LAMEE的降低温度的水递送至存储水箱,引导清除剂空气通过位于LAMEE的下游的冷却盘管,以及在冷却流体已被递送至封闭空间之后并且在水再循环向回通过LAMEE或回到存储水箱之前引导水通过冷却盘管。
示例40提供示例34-39中的任一者的可选择地构造成使得利用冷却流体对封闭空间提供冷却包括利用冷却流体直接冷却封闭空间中的一个或多个部件或者利用冷却流体冷却封闭空间中的空气中的至少一者的方法。
示例41提供示例34-40中的任一者的可选择地进一步包括以下的方法:引导来自LAMEE的降低温度的水通过在气室内部布置在LAMEE的上游的冷却盘管以及在清除剂空气被引导通过LAMEE之前引导清除剂空气通过冷却盘管以调节清除剂空气。
示例42提供控制封闭空间中的状态的方法并且可以包括引导清除剂空气通过布置在清除剂空气室中的预冷却单元,清除剂空气室布置在封闭空间的外部。清除剂空气可以在空气进口处进入气室并且在空气出口处排出气室。预冷却单元可以构造成调节进入气室的清除剂空气。该方法可以包括引导排出预冷却器的水和清除剂空气通过布置在清除剂空气室内部的液-气式膜能量交换器(LAMEE)。LAMEE可以包括通过膜与水流动路径分离的清除剂空气流动路径。LAMEE可以蒸发地冷却水流动路径中的水,使得LAMEE的水出口处的水的温度低于水进口处的水的温度。该方法可以包括将排出LAMEE的冷却水存储在水箱中并且将冷却流体回路中的冷却流体递送至封闭空间。冷却流体回路可以连接至LAMEE的水流动路径,冷却流体可以是来自水箱的冷却水或由冷却水冷却的在液-液式热交换器(LLHX)中的冷却剂。该方法可以包括通过执行空气冷却封闭空间中的空气以及使冷却流体与封闭空间中的一个或多个部件直接接触中的至少一者来利用冷却流体冷却封闭空间。该方法可以包括将来自封闭空间或来自LLHX的升高温度的水引导通过在清除剂空气室内部布置在LAMEE的下游的干燥盘管,降低温度的清除剂空气对水进行冷却。该方法可以包括以第一操作模式使排出干燥盘管的水再循环向回通过LAMEE并且以第二操作模式绕过LAMEE和预冷却单元。可以通过引导排出干燥盘管的水回到水箱以及在LAMEE的下游和干燥盘管的上游的位置处将清除剂空气导入气室内来绕过LAMEE。
示例43提供示例42的可选择地进一步包括当室外空气状态温和时以第三操作模式绕过预冷却单元的方法。
示例44提供示例43的可选择地构造成使得以第三操作模式绕过预冷却单元包括在预冷却单元的下游和LAMEE的上游的位置处将清除剂空气导入气室内的方法。
示例45提供示例43或44中的任一者的可选择地构造成使得以第三操作模式绕过预冷却单元包括将排出水箱的全部水引导至封闭空间或将全部水引导至LLHX中的一者的方法。
示例46提供示例42-45中的任一者的可选择地构造成使得预冷却单元利用来自水箱的冷却水以调节穿过预冷却单元的清除剂空气的方法。
示例47提供用于对装置提供冷却的调节系统并且可以包括与装置分离并且远离装置定位的冷却系统和冷却流体回路。冷却系统可以包括具有空气进口和空气出口的清除剂空气室和布置在气室内部的液-气式膜能量交换器(LAMEE),气室构造成将空气流动路径中的清除剂空气从空气进口引导至空气出口。LAMEE可以包括通过膜与空气流动路径分离的冷却流体流动路径。LAMEE可以构造成利用清除剂空气来蒸发地冷却冷却流体流动路径中的冷却流体,使得LAMEE的流体出口处的冷却流体的温度低于LAMEE的流体进口处的冷却流体的温度。冷却流体回路可以连接至LAMEE的冷却流体流动路径并且从气室延伸至装置。冷却流体回路可以构造成对装置提供冷却。
示例48提供示例47的可选择地构造成使得冷却流体回路构造成将冷却流体从LAMEE输送至装置以对装置提供冷却的系统。
示例49提供示例47的可选择地构造成使得冷却流体回路包括第一冷却流体和第二冷却流体的系统,第一冷却流体是来自LAMEE的冷却流体。
示例50提供示例49的可选择地构造成使得冷却流体回路包括液-液式热交换器的系统,液-液式热交换器构造成接收第一冷却流体和第二冷却流体以降低第二冷却流体的温度,其中,第二冷却流体被输送至装置以提供冷却。
示例51提供示例47-50中的任一者的可选择地构造成使得装置包含在封闭空间内的系统。
示例52提供示例47-50中的任一者的可选择地构造成使得装置对大气开放并且装置的外部暴露于室外空气的系统。
示例53提供一种对装置提供冷却的方法并且可以包括引导清除剂空气通过布置在清除剂空气室内部的液-气式膜能量交换器(LAMEE)。清除剂空气可以在空气进口处进入气室并且在空气出口处排出气室。清除剂空气室和LAMEE可以形成与装置分离并且远离装置的冷却系统。该方法可以包括引导水通过LAMEE,LAMEE包括与空气流动路径分离的水流动路径,LAMEE构造成利用清除剂空气蒸发地冷却水并且降低水的温度。该方法可以包括将排出LAMEE的降低温度的水存储在水箱中。该方法可以包括将冷却流体回路中的冷却流体递送至装置,冷却流体回路连接到LAMEE的水流动路径。冷却流体可以是来自水箱的降低温度的水或由降低温度的水冷却的在液-液式热交换器(LLHX)中的冷却剂。该方法可以包括利用冷却流体冷却装置以及使冷却流体再循环回到冷却系统或LLHX。
示例54提供示例53的可选择地构造成使得利用冷却流体冷却装置包括引导冷却流体通过形成在装置的内部中的通道以抑制来自装置的热的方法。
示例55提供示例1-54中的任一者或任意组合的系统或方法,其可以可选择地构造成使得所记载的全部步骤或元素可用于应用或从其进行选择。
已经说明了本公开的各个方面。这些以及其他方面在以下权利要求的范围内。

Claims (44)

1.一种用于控制封闭空间中的状态的调节系统,所述调节系统包括:
冷却系统,所述冷却系统布置在所述封闭空间的外部,所述冷却系统包括:
清除剂空气室,所述清除剂空气室具有空气进口和空气出口,所述气室构造成将空气流动路径中的清除剂空气从所述空气进口引导至所述空气出口;以及
液-气式膜能量交换器,所述液-气式膜能量交换器布置在所述气室内部,所述液-气式膜能量交换器包括通过膜与所述空气流动路径分离的冷却流体流动路径,所述液-气式膜能量交换器构造成利用所述清除剂空气来蒸发地冷却所述冷却流体流动路径中的冷却流体,所述液-气式膜能量交换器的流体出口处的所述冷却流体的温度低于所述液-气式膜能量交换器的流体进口处的所述冷却流体的温度;以及
冷却盘管,所述冷却盘管在所述清除剂空气室内部布置在所述液-气式膜能量交换器的下游并且构造成利用所述清除剂空气以冷却所述冷却流体;以及
冷却流体回路,所述冷却流体回路连接至所述液-气式膜能量交换器的所述冷却流体流动路径并且从所述气室延伸到所述封闭空间内,所述冷却流体回路构造成在不使空气从所述封闭空间运动通过所述冷却系统的情况下对所述封闭空间提供冷却。
2.根据权利要求1所述的调节系统,还包括在所述气室内部布置在所述液-气式膜能量交换器的上游的冷却单元,所述冷却单元构造成在所述清除剂空气进入所述液-气式膜能量交换器之前调节所述清除剂空气。
3.根据权利要求2所述的调节系统,其中,所述冷却单元构造成接收来自所述液-气式膜能量交换器的降低温度的水以调节所述清除剂空气。
4.根据权利要求1所述的调节系统,其中,所述冷却流体回路构造成将来自所述液-气式膜能量交换器的所述冷却流体输送至所述封闭空间,以对所述封闭空间提供冷却。
5.根据权利要求1所述的调节系统,其中,所述液-气式膜能量交换器的所述冷却流体流动路径中的所述冷却流体是水。
6.根据权利要求1所述的调节系统,其中,所述冷却流体回路包括第一冷却流体和第二冷却流体,以及其中,所述第一冷却流体是来自所述液-气式膜能量交换器的所述冷却流体。
7.根据权利要求6所述的调节系统,其中,所述冷却流体回路包括液-液式热交换器,所述液-液式热交换器构造成接收所述第一冷却流体和所述第二冷却流体以降低所述第二冷却流体的温度。
8.根据权利要求7所述的调节系统,其中,所述第二冷却流体被递送至所述封闭空间并且对所述封闭空间提供冷却。
9.根据权利要求1所述的调节系统,还包括存储水箱,以存储来自所述液-气式膜能量交换器的所述冷却流体。
10.根据权利要求9所述的调节系统,还包括机械冷却系统以冷却所述存储水箱中的所述冷却流体。
11.根据权利要求1所述的调节系统,还包括旁通阀,所述旁通阀构造成控制排出所述冷却盘管到达所述液-气式膜能量交换器和构造成存储所述冷却流体的水箱中的至少一个的所述冷却流体的流。
12.根据权利要求11所述的调节系统,包括第一操作模式和第二操作模式,在所述第一操作模式中,排出所述冷却盘管的所述冷却流体的至少一部分再循环回到所述液-气式膜能量交换器,在所述第二操作模式中,排出所述冷却盘管的所述冷却流体的基本全部再循环回到所述存储水箱。
13.一种用于控制封闭空间中的状态的调节系统,所述调节系统包括:
冷却系统,所述冷却系统布置在所述封闭空间的外部,所述冷却系统包括:
清除剂空气室,所述清除剂空气室具有空气进口和空气出口,所述气室构造成将空气流动路径中的清除剂空气从所述空气进口引导至所述空气出口;
液-气式膜能量交换器,所述液-气式膜能量交换器在所述气室内部布置在所述空气流动路径中,所述液-气式膜能量交换器包括通过膜与所述空气流动路径分离的冷却流体流动路径,所述液-气式膜能量交换器构造成利用所述清除剂空气来蒸发地冷却所述冷却流体流动路径中的冷却流体,所述液-气式膜能量交换器的流体出口处的所述冷却流体的温度低于所述液-气式膜能量交换器的流体进口处的所述冷却流体的温度;
第一冷却单元,所述第一冷却单元在所述气室内部布置在所述空气进口与所述液-气式膜能量交换器之间,所述第一冷却单元构造成在所述清除剂空气进入所述液-气式膜能量交换器之前调节所述清除剂空气;
第二冷却单元,所述第二冷却单元在所述气室内部布置在所述液-气式膜能量交换器与所述空气出口之间,所述第二冷却单元构造成在所述冷却流体在所述流体进口处进入所述液-气式膜能量交换器之前降低所述冷却流体的温度;以及
一个或多个旁通闸门,所述一个或多个旁通闸门构造成允许清除剂空气在所述空气进口与所述空气出口之间的一个或多个位置处进入或排出所述空气流动路径;以及
冷却流体回路,所述冷却流体回路连接至所述液-气式膜能量交换器的所述冷却流体流动路径并且从所述气室延伸到所述封闭空间内,所述冷却流体回路构造成在不使空气从所述封闭空间运动通过所述冷却系统的情况下对所述封闭空间提供冷却。
14.根据权利要求13所述的调节系统,其中,所述冷却流体回路包括水箱和泵,所述水箱用于存储来自所述液-气式膜能量交换器的所述冷却流体,所述泵将所述冷却流体递送至所述封闭空间。
15.根据权利要求14所述的调节系统,还包括构造成对所述水箱中的所述冷却流体提供额外冷却的辅助冷却系统。
16.根据权利要求15所述的调节系统,其中,所述辅助冷却系统是位于所述水箱内部的DX盘管。
17.根据权利要求13所述的调节系统,其中,所述冷却系统包括旁通阀以控制通向所述液-气式膜能量交换器的所述冷却流体的流。
18.根据权利要求13所述的调节系统,其中,所述液-气式膜能量交换器中的所述冷却流体是水。
19.根据权利要求18所述的调节系统,其中,所述水被递送至所述封闭空间,以直接冷却所述封闭空间中的一个或多个部件或明显地冷却所述封闭空间中的空气。
20.根据权利要求13所述的调节系统,其中,所述冷却流体回路包括来自所述液-气式膜能量交换器的所述冷却流体、第二冷却流体以及液-液式热交换器,以及其中,来自所述液-气式膜能量交换器的所述冷却流体和所述第二冷却流体穿过所述液-液式热交换器以降低所述第二冷却流体的温度。
21.根据权利要求20所述的调节系统,其中,所述第二冷却流体被递送至所述封闭空间,以直接冷却所述封闭空间中的一个或多个部件或明显地冷却所述封闭空间中的空气。
22.根据权利要求13所述的调节系统,其中,所述一个或多个旁通闸门包括第一组旁通闸门,所述第一组旁通闸门构造成在所述第一冷却单元与所述液-气式膜能量交换器之间的位置处将清除剂空气导入所述空气流动路径内。
23.根据权利要求13所述的调节系统,其中,所述一个或多个旁通闸门包括第二组旁通闸门,所述第二组旁通闸门构造成在所述液-气式膜能量交换器与所述第二冷却单元之间的位置处将清除剂空气导入所述空气流动路径内。
24.根据权利要求13所述的调节系统,其中,所述封闭空间是数据中心。
25.一种控制封闭空间中的状态的方法,所述方法包括:
引导清除剂空气通过布置在清除剂空气室内部的液-气式膜能量交换器,所述清除剂空气室布置在所述封闭空间的外部,所述清除剂空气在空气进口处进入所述气室并且在空气出口处排出所述气室,所述清除剂空气室和所述液-气式膜能量交换器形成布置在所述封闭空间的外部的冷却系统;
引导水通过所述液-气式膜能量交换器,所述液-气式膜能量交换器包括与空气流动路径分离的水流动路径,所述液-气式膜能量交换器构造成利用所述清除剂空气蒸发地冷却所述水并且降低所述水的温度;以及
将冷却流体回路中的冷却流体递送至所述封闭空间,所述冷却流体回路连接至所述液-气式膜能量交换器的所述水流动路径;
在不使来自所述封闭空间的空气运动通过所述冷却系统的情况下利用所述冷却流体对所述封闭空间提供冷却;
引导清除剂空气通过位于所述液-气式膜能量交换器的下游的冷却盘管;以及
在所述冷却流体已被递送至所述封闭空间之后引导水通过所述冷却盘管以利用所述清除剂空气冷却所述冷却流体。
26.根据权利要求25所述的方法,其中,将所述冷却流体递送至所述封闭空间包括将来自所述液-气式膜能量交换器的所述降低温度的水递送至所述封闭空间。
27.根据权利要求26所述的方法,还包括:
在将所述降低温度的水递送至所述封闭空间之前将来自所述液-气式膜能量交换器的所述降低温度的水递送至存储水箱。
28.根据权利要求25所述的方法,还包括:
在将所述冷却流体递送至所述封闭空间之前,引导来自所述液-气式膜能量交换器的所述降低温度的水通过液-液式热交换器以降低所述冷却流体回路中的所述冷却流体的温度。
29.根据权利要求25所述的方法,还包括:
将来自所述液-气式膜能量交换器的所述降低温度的水递送至存储水箱,其中
在所述冷却流体已被递送至所述封闭空间之后以及在所述水再循环向回通过所述液-气式膜能量交换器或再循环回到所述存储水箱之前,引导水通过所述冷却盘管。
30.根据权利要求25所述的方法,其中,利用所述冷却流体对所述封闭空间提供冷却包括利用所述冷却流体直接冷却所述封闭空间中的一个或多个部件或者利用所述冷却流体明显地冷却所述封闭空间中的空气中的至少一者。
31.根据权利要求25所述的方法,还包括:
引导来自所述液-气式膜能量交换器的所述降低温度的水通过在所述气室内部布置在所述液-气式膜能量交换器的上游的第二冷却盘管;以及
在所述清除剂空气被引导通过所述液-气式膜能量交换器之前引导所述清除剂空气通过所述第二冷却盘管以调节所述清除剂空气。
32.一种控制封闭空间中的状态的方法,所述方法包括:
引导清除剂空气通过布置在清除剂空气室中的预冷却单元,所述清除剂空气室布置在所述封闭空间的外部,所述清除剂空气在空气进口处进入所述气室并且在空气出口处排出所述气室,所述预冷却单元构造成调节进入所述气室的所述清除剂空气;
引导水和排出所述预冷却单元的所述清除剂空气通过布置在所述清除剂空气室内部的液-气式膜能量交换器,所述液-气式膜能量交换器包括通过膜与水流动路径分离的清除剂空气流动路径,所述液-气式膜能量交换器构造成蒸发地冷却所述水流动路径中的所述水,所述液-气式膜能量交换器的水出口处的所述水的温度低于水进口处的所述水的温度;
将排出所述液-气式膜能量交换器的所述冷却水存储在水箱中;
将冷却流体回路中的冷却流体递送至所述封闭空间,所述冷却流体回路连接至所述液-气式膜能量交换器的所述水流动路径,所述冷却流体是来自所述水箱的冷却水或由所述冷却水冷却的在液-液式热交换器中的冷却剂;
通过执行空气冷却所述封闭空间中的所述空气和使所述冷却流体与所述封闭空间中的一个或多个部件直接接触中的至少一者利用所述冷却流体冷却所述封闭空间;
引导来自所述封闭空间或来自所述液-液式热交换器的升高温度的水通过在所述清除剂空气室内部布置在所述液-气式膜能量交换器的下游的干燥盘管,所述清除剂空气冷却所述水;
以第一操作模式使排出所述干燥盘管的所述水再循环向回通过所述液-气式膜能量交换器;以及
通过引导排出所述干燥盘管的所述水回到所述水箱以及在所述液-气式膜能量交换器的下游和所述干燥盘管的上游的位置处将所述清除剂空气导入所述气室内而以第二操作模式绕过所述液-气式膜能量交换器和所述预冷却单元。
33.根据权利要求32所述的方法,还包括:
当室外空气状态温和时,以第三操作模式绕过所述预冷却单元,其中所述清除剂空气是室外空气。
34.根据权利要求33所述的方法,其中,以第三操作模式绕过所述预冷却单元包括在所述预冷却单元的下游和所述液-气式膜能量交换器的上游的位置处将所述清除剂空气导入所述气室内。
35.根据权利要求34所述的方法,其中,以第三操作模式绕过所述预冷却单元包括将排出所述水箱的全部水引导至所述封闭空间或将全部水引导至所述液-液式热交换器中的一者。
36.根据权利要求32所述的方法,其中,所述预冷却单元利用来自所述水箱的冷却水,以调节穿过所述预冷却单元的所述清除剂空气。
37.一种用于对装置提供冷却的调节系统,所述调节系统包括:
冷却系统,所述冷却系统与所述装置分离并且远离所述装置地定位,所述冷却系统包括:
清除剂空气室,所述清除剂空气室具有空气进口和空气出口,所述气室构造成将空气流动路径中的清除剂空气从所述空气进口引导至所述空气出口;以及
液-气式膜能量交换器,所述液-气式膜能量交换器布置在所述气室内部,所述液-气式膜能量交换器包括通过膜与所述空气流动路径分离的冷却流体流动路径,所述液-气式膜能量交换器构造成利用所述清除剂空气来蒸发地冷却所述冷却流体流动路径中的冷却流体,所述液-气式膜能量交换器的流体出口处的所述冷却流体的温度低于所述液-气式膜能量交换器的流体进口处的所述冷却流体的温度;以及
冷却盘管,所述冷却盘管在所述清除剂空气室内部布置在所述液-气式膜能量交换器的下游并且构造成利用所述清除剂空气以冷却所述冷却流体;以及
冷却流体回路,所述冷却流体回路连接至所述液-气式膜能量交换器的所述冷却流体流动路径并且从所述气室延伸至所述装置,所述冷却流体回路构造成对所述装置提供冷却。
38.根据权利要求37所述的调节系统,其中,所述冷却流体回路构造成将来自所述液-气式膜能量交换器的所述冷却流体输送至所述装置,以对所述装置提供冷却。
39.根据权利要求37所述的调节系统,其中,所述冷却流体回路包括第一冷却流体和第二冷却流体,以及其中,所述第一冷却流体是来自所述液-气式膜能量交换器的所述冷却流体。
40.根据权利要求39所述的调节系统,其中,所述冷却流体回路包括液-液式热交换器,所述液-液式热交换器构造成接收所述第一冷却流体和所述第二冷却流体以降低所述第二冷却流体的温度,以及其中,所述第二冷却流体被输送至所述装置以提供冷却。
41.根据权利要求37所述的调节系统,其中,所述装置包含在封闭空间内。
42.根据权利要求37所述的调节系统,其中,所述装置对大气开放,所述装置的外部暴露于室外空气。
43.一种对装置提供冷却的方法,所述方法包括:
引导清除剂空气通过布置在清除剂空气室内部的液-气式膜能量交换器,所述清除剂空气在空气进口处进入所述气室并且在空气出口处排出所述气室,所述清除剂空气室和所述液-气式膜能量交换器形成与所述装置分离并且远离所述装置的冷却系统;
引导水通过所述液-气式膜能量交换器,所述液-气式膜能量交换器包括与空气流动路径分离的水流动路径,所述液-气式膜能量交换器构造成利用所述清除剂空气蒸发地冷却所述水并且降低所述水的温度;
将排出所述液-气式膜能量交换器的所述降低温度的水存储在水箱中;
将冷却流体回路中的冷却流体递送至所述装置,所述冷却流体回路连接至所述液-气式膜能量交换器的所述水流动路径,所述冷却流体是来自所述水箱的所述降低温度的水或由所述降低温度的水冷却的在液-液式热交换器中的冷却剂;
利用所述冷却流体冷却所述装置;以及
在利用所述冷却流体冷却所述装置之后,引导水通过在所述清除剂空气室内部布置在所述液-气式膜能量交换器的下游的冷却盘管以利用所述清除剂空气冷却所述水。
44.根据权利要求43所述的方法,其中,利用所述冷却流体冷却所述装置包括引导所述冷却流体通过形成在所述装置的内部的通道,以抑制来自所述装置的热。
CN201680038134.XA 2015-05-15 2016-03-08 利用液-气式膜能量交换器进行液体冷却 Active CN107850335B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562162487P 2015-05-15 2015-05-15
US62/162,487 2015-05-15
PCT/CA2016/050252 WO2016183667A1 (en) 2015-05-15 2016-03-08 Using liquid to air membrane energy exchanger for liquid cooling

Publications (2)

Publication Number Publication Date
CN107850335A CN107850335A (zh) 2018-03-27
CN107850335B true CN107850335B (zh) 2021-02-19

Family

ID=57319057

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680038134.XA Active CN107850335B (zh) 2015-05-15 2016-03-08 利用液-气式膜能量交换器进行液体冷却
CN201680038135.4A Active CN107923647B (zh) 2015-05-15 2016-05-02 用于管理封闭空间中的条件的系统和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201680038135.4A Active CN107923647B (zh) 2015-05-15 2016-05-02 用于管理封闭空间中的条件的系统和方法

Country Status (7)

Country Link
US (4) US11143430B2 (zh)
EP (3) EP3985322A3 (zh)
CN (2) CN107850335B (zh)
AU (2) AU2016265882A1 (zh)
CA (2) CA2986055A1 (zh)
SG (2) SG10201913923WA (zh)
WO (1) WO2016183667A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069246B (zh) 2010-06-24 2016-02-03 北狄空气应对加拿大公司 液体-空气膜能量交换器
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US9109808B2 (en) 2013-03-13 2015-08-18 Venmar Ces, Inc. Variable desiccant control energy exchange system and method
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
DK3183051T3 (da) 2014-08-19 2020-06-02 Nortek Air Solutions Canada Inc Væske-til-luftmembranenergivekslere
US11092349B2 (en) * 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
CN107850335B (zh) 2015-05-15 2021-02-19 北狄空气应对加拿大公司 利用液-气式膜能量交换器进行液体冷却
EP3314188B1 (en) 2015-06-26 2021-05-12 Nortek Air Solutions Canada, Inc. Three-fluid liquid to air membrane energy exchanger
US10677536B2 (en) 2015-12-04 2020-06-09 Teledyne Scientific & Imaging, Llc Osmotic transport system for evaporative cooling
SG10201913897RA (en) 2016-03-08 2020-03-30 Nortek Air Solutions Canada Inc Systems and methods for providing cooling to a heat load
SE540118C2 (sv) * 2016-06-16 2018-04-03 Flaekt Woods Ab Sätt och anordning för att minska eller eliminera sänkningenav tilluftstemperaturen under avfrostning av en förångare v id ett luftbehandlingsaggregat
CN107014198B (zh) * 2016-12-29 2019-08-09 石曾矿 可调温的四效除湿干燥系统
JP6219549B1 (ja) * 2017-05-09 2017-10-25 伸和コントロールズ株式会社 空気調和装置
US11892193B2 (en) 2017-04-18 2024-02-06 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
EP4194763A1 (en) * 2017-04-18 2023-06-14 Nortek Air Solutions Canada, Inc. Systems and methods for managing conditions in enclosed space
US10948223B2 (en) * 2017-08-01 2021-03-16 Maryam Tolouei Asbforoushani Evaporative fluid-cooler with integrated mechanical cooling system
EP3679306B1 (en) * 2017-09-08 2023-08-02 Nortek Air Solutions Canada, Inc. Hybrid direct and indirect air cooling system
US10613600B2 (en) * 2017-11-02 2020-04-07 Microsoft Technology Licensing, Llc Advanced power based thermal control systems
SG10202110166SA (en) 2017-11-17 2021-10-28 Nortek Air Solutions Canada Inc Blended operation mode for providing cooling to a heat load
US11375641B2 (en) 2017-11-17 2022-06-28 Nortek Air Solutions Canada, Inc. Blended operation mode for providing cooling to a heat load
SE542405C2 (en) * 2017-11-22 2020-04-21 Munters Europe Ab Dehumidification system and method
US10667427B2 (en) * 2018-07-05 2020-05-26 Baidu Usa Llc Immersion cooling system for data centers
BR112021024448A2 (pt) 2019-06-04 2022-01-18 Baltimore Aircoil Co Inc Trocador de calor de membrana tubular
CN114340763A (zh) * 2019-08-30 2022-04-12 艾登有限责任公司 致冷器系统
WO2021116730A1 (en) * 2019-12-10 2021-06-17 Dehumidified Air Solutions, Inc. Cooling system
CN111295087B (zh) * 2020-05-09 2020-08-14 南京诚朴无人机有限公司 一种高速服务器散热机柜及其散热方法
US11477919B2 (en) * 2020-05-12 2022-10-18 Verizon Patent And Licensing Inc. Systems and methods for controlling a hybrid air/liquid cooling system of a building
DK4098964T3 (da) * 2021-05-31 2023-06-06 Ovh Køleanordning med en lukket kreds, en halvåben kreds og mindst en ventilator
CA3240092A1 (en) * 2021-11-24 2023-06-01 Nortek Air Solutions Canada, Inc. Parallel heat exchanger for data center cooling
WO2024086914A1 (en) * 2022-10-28 2024-05-02 Nortek Air Solutions Canada, Inc. Systems and methods for modulating temperature and humidity of an enclosed space

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245018A (zh) * 2013-04-16 2013-08-14 西安工程大学 带有遮阳、发电和消声的分体式蒸发空调机组
WO2014138851A1 (en) * 2013-03-15 2014-09-18 Venmar Ces, Inc. Evaporative cooling system with liquid-to-air membrane energy exchanger

Family Cites Families (449)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2946201A (en) 1960-07-26 Method for avoiding frost deposits on cooling members
US1015831A (en) 1911-02-27 1912-01-30 Eduard Pielock Heat-exchanging device.
US1746598A (en) 1924-11-28 1930-02-11 Ljungstroms Angturbin Ab Regenerative-heat-transmission apparatus
US2186844A (en) 1935-05-31 1940-01-09 Gen Motors Corp Refrigerating apparatus
CH193732A (de) 1935-07-10 1937-10-31 Hans Dr Behringer Vorrichtung, in welcher strömende Medien zur Durchführung einer isobaren thermodynamischen Zustandsänderung in Berührung mit Wänden gebracht werden.
US2290465A (en) 1939-04-20 1942-07-21 Robert B P Crawford Air conditioning system
US2562811A (en) 1945-09-15 1951-07-31 Muffly Glenn Refrigerator
US3009684A (en) 1954-10-26 1961-11-21 Munters Carl Georg Apparatus and method of conditioning the stream of incoming air by the thermodynamic exchange with separate streams of other air
US2968165A (en) 1955-12-22 1961-01-17 Norback Per Gunnar Air conditioning method and apparatus
US3018231A (en) 1957-10-22 1962-01-23 Midland Ross Corp Air conditioning for remote spaces
US2964298A (en) 1958-03-25 1960-12-13 Mcintosh Air conditioning system
US3144901A (en) 1960-05-13 1964-08-18 Lizenzia A G Movable air conditioning apparatus
US3247679A (en) 1964-10-08 1966-04-26 Lithonia Lighting Inc Integrated comfort conditioning system
US3291206A (en) 1965-09-13 1966-12-13 Nicholson Terence Peter Heat exchanger plate
US3467072A (en) 1966-08-31 1969-09-16 Energy Transform Combustion optimizing devices and methods
US3401530A (en) 1966-12-19 1968-09-17 Lithonia Lighting Inc Comfort conditioning system
GB1354502A (en) 1970-08-28 1974-06-05 Ici Ltd Heat exchangers
US3789916A (en) 1971-04-06 1974-02-05 Munters Ab Carl Rotor for exchangers of the thermodynamic characteristics of two gas currents
US3807493A (en) 1971-09-28 1974-04-30 Kooltronic Fan Co Heat exchanger using u-tube heat pipes
US3735559A (en) 1972-02-02 1973-05-29 Gen Electric Sulfonated polyxylylene oxide as a permselective membrane for water vapor transport
US4113004A (en) 1974-11-04 1978-09-12 Gas Developments Corporation Air conditioning process
JPS5157282A (en) 1974-11-15 1976-05-19 Hitachi Ltd Sosadenshikenbikyo mataha sonoruijisochi
US4011731A (en) 1974-11-15 1977-03-15 Gershon Meckler Air conditioning apparatus utilizing solar energy and method
US3965695A (en) 1975-06-12 1976-06-29 Gas Developments Corporation Metallic sensible heat exchanger
US4180985A (en) 1977-12-01 1980-01-01 Northrup, Incorporated Air conditioning system with regeneratable desiccant bed
US4173924A (en) 1978-03-01 1979-11-13 Schweitzer Industrial Corporation Paint spray booth with air supply system
US4235081A (en) 1978-10-31 1980-11-25 Kellogg-American, Inc. Compressed air dryer
US4233796A (en) 1978-11-22 1980-11-18 Ppg Industries, Inc. Desiccated spandrel panels
US4257169A (en) 1978-12-11 1981-03-24 Jack Pierce Commodity dryer
US4259849A (en) 1979-02-15 1981-04-07 Midland-Ross Corporation Chemical dehumidification system which utilizes a refrigeration unit for supplying energy to the system
US4287661A (en) 1980-03-26 1981-09-08 International Business Machines Corporation Method for making an improved polysilicon conductor structure utilizing reactive-ion etching and thermal oxidation
JPS57124637A (en) 1981-01-26 1982-08-03 Toshiba Corp Air-conditioning apparatus
US4373347A (en) 1981-04-02 1983-02-15 Board Of Regents, University Of Texas System Hybrid double-absorption cooling system
US4380910A (en) 1981-08-13 1983-04-26 Aztech International, Ltd. Multi-stage indirect-direct evaporative cooling process and apparatus
US4430864A (en) 1981-12-31 1984-02-14 Midwest Research Institute Hybrid vapor compression and desiccant air conditioning system
IL64915A (en) 1982-02-02 1985-04-30 Joel Harband Apparatus and method for temperature and humidity control
US4538426A (en) 1983-09-12 1985-09-03 Bock Sumner D Air cooling system
DE3521914A1 (de) 1984-06-20 1986-01-02 Showa Aluminum Corp., Sakai, Osaka Waermetauscher in fluegelplattenbauweise
JPH0610587B2 (ja) 1984-08-22 1994-02-09 三菱電機株式会社 熱交換器
US4594860A (en) 1984-09-24 1986-06-17 American Solar King Corporation Open cycle desiccant air-conditioning system and components thereof
US5131238A (en) 1985-04-03 1992-07-21 Gershon Meckler Air conditioning apparatus
US5181387A (en) 1985-04-03 1993-01-26 Gershon Meckler Air conditioning apparatus
US4723417A (en) 1985-08-05 1988-02-09 Camp Dresser And Mckee Inc. Dehumidification apparatus
US4700550A (en) 1986-03-10 1987-10-20 Rhodes Barry V Enthalpic heat pump desiccant air conditioning system
US4729774A (en) 1986-03-10 1988-03-08 Gas Research Institute Nonuniform regeneration system for desiccant bed
US4719761A (en) 1986-05-30 1988-01-19 Cromer Charles J Cooling system
US5020335A (en) 1986-07-09 1991-06-04 Walter F. Albers Method and apparatus for simultaneous heat and mass transfer
US4691530A (en) 1986-09-05 1987-09-08 Milton Meckler Cogeneration and central regeneration multi-contactor air conditioning system
US4827733A (en) 1987-10-20 1989-05-09 Dinh Company Inc. Indirect evaporative cooling system
JPH068703B2 (ja) 1987-11-13 1994-02-02 株式会社東芝 空気調和装置
US4841733A (en) 1988-01-07 1989-06-27 Dussault David R Dri-Pc humidity and temperature controller
EP0326083B1 (en) 1988-01-26 1994-06-01 Asahi Glass Company Ltd. Vapor permselective membrane
US5003961A (en) 1988-02-05 1991-04-02 Besik Ferdinand K Apparatus for ultra high energy efficient heating, cooling and dehumidifying of air
US4982575A (en) 1988-02-05 1991-01-08 Besik Ferdinand K Apparatus and a method for ultra high energy efficient dehumidification and cooling of air
US4900448A (en) 1988-03-29 1990-02-13 Honeywell Inc. Membrane dehumidification
GB8817793D0 (en) 1988-07-26 1988-09-01 British Petroleum Co Plc Mixing apparatus
US4905479A (en) 1989-01-27 1990-03-06 Gas Research Institute Hybrid air conditioning system
US4887438A (en) 1989-02-27 1989-12-19 Milton Meckler Desiccant assisted air conditioner
US4939906A (en) 1989-06-09 1990-07-10 Gas Research Institute Multi-stage boiler/regenerator for liquid desiccant dehumidifiers
US5238052A (en) 1989-08-17 1993-08-24 Stirling Technology, Inc. Air to air recouperator
US4930322A (en) 1989-09-11 1990-06-05 The United States Of America As Represented By The Secretary Of The Navy Advanced heat pump
US4941324A (en) 1989-09-12 1990-07-17 Peterson John L Hybrid vapor-compression/liquid desiccant air conditioner
US5020334A (en) 1990-02-23 1991-06-04 Gas Research Institute Localized air dehumidification system
DE4009556C2 (de) 1990-03-24 1994-07-07 Schmid Christoph Wärmeübertrager
US5373704A (en) 1990-04-17 1994-12-20 Arthur D. Little, Inc. Desiccant dehumidifier
US5022241A (en) 1990-05-04 1991-06-11 Gas Research Institute Residential hybrid air conditioning system
US5148374A (en) 1990-06-19 1992-09-15 Icc Technologies, Inc. Desiccant space conditioning control system and method
AU8098891A (en) 1990-07-20 1992-02-18 Alberni Thermodynamics Ltd. Heating and cooling system for air space in a building
CH682721A5 (de) 1991-01-17 1993-11-15 Galipag Verfahren für den Stoffaustausch zwischen flüssigen und gasförmigen Medien.
US5749230A (en) 1991-01-18 1998-05-12 Engelhard/Icc Method for creating a humidity gradient within an air conditioned zone
US5170633A (en) 1991-06-24 1992-12-15 Amsted Industries Incorporated Desiccant based air conditioning system
US5176005A (en) 1991-06-24 1993-01-05 Baltimore Aircoil Company Method of conditioning air with a multiple staged desiccant based system
US5297398A (en) 1991-07-05 1994-03-29 Milton Meckler Polymer desiccant and system for dehumidified air conditioning
US5191771A (en) 1991-07-05 1993-03-09 Milton Meckler Polymer desiccant and system for dehumidified air conditioning
US5471852A (en) 1991-07-05 1995-12-05 Meckler; Milton Polymer enhanced glycol desiccant heat-pipe air dehumidifier preconditioning system
US5353606A (en) 1991-10-15 1994-10-11 Yoho Robert W Desiccant multi-fuel hot air/water air conditioning unit
US5758511A (en) 1991-10-15 1998-06-02 Yoho; Robert W. Desiccant multi-duel hot air/water air conditioning system
JPH05157282A (ja) 1991-12-05 1993-06-22 Fujita Corp 建築物用空調外気処理システム
US5239834A (en) 1992-07-13 1993-08-31 Travers Richard H Auxiliary outside air refrigeration system
US5325676A (en) 1992-08-24 1994-07-05 Milton Meckler Desiccant assisted multi-use air pre-conditioner unit with system heat recovery capability
US5351497A (en) 1992-12-17 1994-10-04 Gas Research Institute Low-flow internally-cooled liquid-desiccant absorber
US5401706A (en) 1993-01-06 1995-03-28 Semco Incorporated Desiccant-coated substrate and method of manufacture
US5579647A (en) 1993-01-08 1996-12-03 Engelhard/Icc Desiccant assisted dehumidification and cooling system
US5564281A (en) 1993-01-08 1996-10-15 Engelhard/Icc Method of operating hybrid air-conditioning system with fast condensing start-up
US5448895A (en) 1993-01-08 1995-09-12 Engelhard/Icc Hybrid heat pump and desiccant space conditioning system and control method
US5649428A (en) 1993-01-08 1997-07-22 Engelhard/Icc Hybrid air-conditioning system with improved recovery evaporator and subcool condenser coils
US5551245A (en) 1995-01-25 1996-09-03 Engelhard/Icc Hybrid air-conditioning system and method of operating the same
CA2100734C (en) 1993-07-16 1998-05-26 Normand Verret Heat exchanger for dusty environment
JPH07133994A (ja) 1993-11-09 1995-05-23 Japan Gore Tex Inc 熱交換膜
TW255835B (en) 1994-01-07 1995-09-01 Kubota Kk Filtration membrane module
US7231967B2 (en) 1994-01-31 2007-06-19 Building Performance Equipment, Inc. Ventilator system and method
US5528905A (en) 1994-03-25 1996-06-25 Essex Invention S.A. Contactor, particularly a vapour exchanger for the control of the air hygrometric content, and a device for air handling
US5502975A (en) 1994-06-01 1996-04-02 Munters Corporation Air conditioning system
TW245768B (en) 1994-06-20 1995-04-21 Engelhard Icc Method for killing microorganisms
US5526651A (en) 1994-07-15 1996-06-18 Gas Research Institute Open cycle desiccant cooling systems
US5826641A (en) 1994-10-27 1998-10-27 Aaon, Inc. Air conditioner with heat wheel
US5542968A (en) 1995-01-24 1996-08-06 Laroche Industries, Inc. Enthalphy Wheel
US5517828A (en) 1995-01-25 1996-05-21 Engelhard/Icc Hybrid air-conditioning system and method of operating the same
US5638900A (en) 1995-01-27 1997-06-17 Ail Research, Inc. Heat exchange assembly
US5580369A (en) 1995-01-30 1996-12-03 Laroche Industries, Inc. Adsorption air conditioning system
US5653115A (en) 1995-04-12 1997-08-05 Munters Corporation Air-conditioning system using a desiccant core
US6018954A (en) 1995-04-20 2000-02-01 Assaf; Gad Heat pump system and method for air-conditioning
US5661983A (en) 1995-06-02 1997-09-02 Energy International, Inc. Fluidized bed desiccant cooling system
SE504430C2 (sv) 1995-06-20 1997-02-10 Ericsson Telefon Ab L M Magasin
US5685897A (en) 1995-07-06 1997-11-11 Laroche Industries, Inc. High strength, low pressure drop adsorbent wheel
US5650221A (en) 1995-07-06 1997-07-22 Laroche Industries, Inc. High strength, low pressure drop sensible and latent heat exchange wheel
DE19528117B4 (de) 1995-08-01 2004-04-29 Behr Gmbh & Co. Wärmeübertrager mit Plattenstapelaufbau
US5911273A (en) 1995-08-01 1999-06-15 Behr Gmbh & Co. Heat transfer device of a stacked plate construction
US5791153A (en) 1995-11-09 1998-08-11 La Roche Industries Inc. High efficiency air conditioning system with humidity control
US5826434A (en) 1995-11-09 1998-10-27 Novelaire Technologies, L.L.C. High efficiency outdoor air conditioning system
JPH09173758A (ja) 1995-12-21 1997-07-08 Toho Kako Kensetsu Kk 高沸点溶剤回収装置
JP3585308B2 (ja) 1996-01-12 2004-11-04 株式会社荏原製作所 デシカント空調装置
US5816065A (en) 1996-01-12 1998-10-06 Ebara Corporation Desiccant assisted air conditioning system
US5761923A (en) 1996-01-12 1998-06-09 Ebara Corporation Air conditioning system
CN1110682C (zh) 1996-01-16 2003-06-04 奥里恩机械株式会社 热交换器
US5832736A (en) 1996-01-16 1998-11-10 Orion Machinery Co., Ltd. Disk heat exchanger , and a refrigeration system including the same
US5791157A (en) 1996-01-16 1998-08-11 Ebara Corporation Heat pump device and desiccant assisted air conditioning system
US5758508A (en) 1996-02-05 1998-06-02 Larouche Industries Inc. Method and apparatus for cooling warm moisture-laden air
US5727394A (en) 1996-02-12 1998-03-17 Laroche Industries, Inc. Air conditioning system having improved indirect evaporative cooler
US6018953A (en) 1996-02-12 2000-02-01 Novelaire Technologies, L.L.C. Air conditioning system having indirect evaporative cooler
US5660048A (en) 1996-02-16 1997-08-26 Laroche Industries, Inc. Air conditioning system for cooling warm moisture-laden air
JPH09318127A (ja) 1996-05-24 1997-12-12 Ebara Corp 空調システム
US5777846A (en) 1996-05-30 1998-07-07 Northern Telecom Limited Circuit packs and circuit pack and shelf assemblies
US5957194A (en) 1996-06-27 1999-09-28 Advanced Thermal Solutions, Inc. Plate fin heat exchanger having fluid control means
US5860284A (en) 1996-07-19 1999-01-19 Novel Aire Technologies, L.L.C. Thermally regenerated desiccant air conditioner with indirect evaporative cooler
US5732562A (en) 1996-08-13 1998-03-31 Moratalla; Jose M. Method and apparatus for regenerating desiccants in a closed cycle
US6029467A (en) 1996-08-13 2000-02-29 Moratalla; Jose M. Apparatus for regenerating desiccants in a closed cycle
JPH10170177A (ja) 1996-08-31 1998-06-26 Behr Gmbh & Co プレートパイル構造を有する熱交換器とその製造方法
JPH1096542A (ja) 1996-09-24 1998-04-14 Ebara Corp 空調システム
CA2195282C (en) 1997-01-16 2004-05-11 Frederic Lagace Unitary heat exchanger for the air-to-air transfer of water vapor and sensible heat
US6079481A (en) 1997-01-23 2000-06-27 Ail Research, Inc Thermal storage system
DE19802604A1 (de) 1997-01-27 1998-08-06 Int Rectifier Corp Motor-Steuergeräteschaltung
US5761915A (en) 1997-03-12 1998-06-09 Fedders Corporation Method and apparatus for supplying conditioned fresh air to an indoor area
WO1998043024A1 (en) 1997-03-25 1998-10-01 Ebara Corporation Air conditioning system
US6405543B2 (en) 1997-05-16 2002-06-18 Work Smart Energy Enterprises Inc. High-efficiency air-conditioning system with high-volume air distribution
AU8374098A (en) 1997-06-18 1999-01-04 Gas Research Institute Flat-plate absorbers and evaporators for absorption coolers
AUPO783697A0 (en) 1997-07-10 1997-07-31 Shaw, Allan A low energy high performance variable coolant temperature air conditioning system
US5832988A (en) 1997-08-06 1998-11-10 Lucent Technologies, Inc. Heat exchanger for outdoor equipment enclosures
US6029462A (en) 1997-09-09 2000-02-29 Denniston; James G. T. Desiccant air conditioning for a motorized vehicle
JP2971843B2 (ja) 1997-10-09 1999-11-08 株式会社荏原製作所 除湿空調装置
US5931016A (en) 1997-10-13 1999-08-03 Advanced Thermal Technologies, Llc Air conditioning system having multiple energy regeneration capabilities
JP2968241B2 (ja) 1997-10-24 1999-10-25 株式会社荏原製作所 除湿空調システム及びその運転方法
IL141579A0 (en) 2001-02-21 2002-03-10 Drykor Ltd Dehumidifier/air-conditioning system
WO1999026025A1 (en) 1997-11-16 1999-05-27 Drykor Ltd. Dehumidifier system
US6138470A (en) 1997-12-04 2000-10-31 Fedders Corporation Portable liquid desiccant dehumidifier
SE9802463D0 (sv) 1997-12-22 1998-07-08 Munters Ab Air treatment unit
US5946931A (en) 1998-02-25 1999-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Evaporative cooling membrane device
US6055157A (en) 1998-04-06 2000-04-25 Cray Research, Inc. Large area, multi-device heat pipe for stacked MCM-based systems
US5992160A (en) 1998-05-11 1999-11-30 Carrier Corporation Make-up air energy recovery ventilator
US6034873A (en) 1998-06-02 2000-03-07 Ericsson Inc System and method for separating air flows in a cooling system
US6004384A (en) 1998-06-03 1999-12-21 Bry-Air, Inc. Rotary adsorption apparatus
US6442951B1 (en) 1998-06-30 2002-09-03 Ebara Corporation Heat exchanger, heat pump, dehumidifier, and dehumidifying method
US6145588A (en) 1998-08-03 2000-11-14 Xetex, Inc. Air-to-air heat and moisture exchanger incorporating a composite material for separating moisture from air technical field
JP2000062446A (ja) 1998-08-20 2000-02-29 Zexel Corp 車両用空調装置
JP3470612B2 (ja) 1998-09-18 2003-11-25 株式会社日立製作所 電子機器
US6127663A (en) 1998-10-09 2000-10-03 Ericsson Inc. Electronics cabinet cooling system
US6156102A (en) 1998-11-10 2000-12-05 Fantom Technologies Inc. Method and apparatus for recovering water from air
US6094835A (en) 1998-12-14 2000-08-01 University Of Central Florida Heat pump dryer with desciccant enhanced moisture removal
US6720990B1 (en) 1998-12-28 2004-04-13 Walker Digital, Llc Internet surveillance system and method
US6178762B1 (en) 1998-12-29 2001-01-30 Ethicool Air Conditioners, Inc. Desiccant/evaporative cooling system
US6363218B1 (en) 1999-01-15 2002-03-26 Ail Research, Inc. Liquid heater load control
US6199388B1 (en) 1999-03-10 2001-03-13 Semco Incorporated System and method for controlling temperature and humidity
BR0008997A (pt) 1999-03-14 2002-01-08 Drykor Ltd Sistema de condicionamento de ar e desumidificador para controlar o ambiente de uma área controlada e sistema desumidificador
US6119768A (en) 1999-04-20 2000-09-19 Marconi Communications, Inc. Outdoor equipment cabinet
CA2283089C (en) 1999-05-10 2004-05-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and method for preparing it
US6164369A (en) 1999-07-13 2000-12-26 Lucent Technologies Inc. Door mounted heat exchanger for outdoor equipment enclosure
FI108962B (fi) 1999-08-20 2002-04-30 Nokia Corp Laitekaapin jäähdytysjärjestelmä
JP2001077570A (ja) 1999-09-06 2001-03-23 Fujitsu Ltd ロータ型除湿機およびロータ型除湿機の始動方法ならびに電子機器への取付け構造
GB2354062A (en) 1999-09-13 2001-03-14 British Broadcasting Corp Cooling system for use in cooling electronic equipment
US6612365B1 (en) 1999-09-17 2003-09-02 Matsushita Electric Industrial Co., Ltd. Heating-element accommodating-box cooling apparatus and method of controlling the same
US6237354B1 (en) 1999-10-27 2001-05-29 Charles J. Cromer Cooling system
US6684649B1 (en) 1999-11-05 2004-02-03 David A. Thompson Enthalpy pump
CA2390682C (en) 1999-11-05 2007-05-01 David A. Thompson Enthalpy pump
US6141979A (en) 1999-11-19 2000-11-07 American Standard Inc. Dual heat exchanger wheels with variable speed
US6430044B2 (en) 2000-02-10 2002-08-06 Special Product Company Telecommunications enclosure with individual, separated card holders
US6494050B2 (en) 2000-02-18 2002-12-17 Toc Technology, Llc Computer rack heat extraction device
US6574970B2 (en) 2000-02-18 2003-06-10 Toc Technology, Llc Computer room air flow method and apparatus
US6575228B1 (en) 2000-03-06 2003-06-10 Mississippi State Research And Technology Corporation Ventilating dehumidifying system
US6864005B2 (en) 2000-03-08 2005-03-08 Ballard Power Systems Inc. Membrane exchange humidifier for a fuel cell
JP4141613B2 (ja) 2000-03-09 2008-08-27 富士通株式会社 密閉サイクル冷凍装置および密閉サイクル冷凍装置用乾式蒸発器
AU2001249286A1 (en) 2000-03-21 2001-10-03 Liebert Corporation Method and apparatus for cooling electronic enclosures
SE516900C2 (sv) 2000-04-18 2002-03-19 Munters Europ Ab Förfarande och anordning för värme- och fuktutbyte mellan två luftströmmar samt förfarande för styrning av nämnda anordning
US6875247B2 (en) 2000-06-06 2005-04-05 Battelle Memorial Institute Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids
DE10028030A1 (de) 2000-06-09 2001-12-13 Zeolith Tech Sorptionsvorrichtung zum Heizen und Kühlen von Gasströmen
US6568466B2 (en) 2000-06-23 2003-05-27 Andrew Lowenstein Heat exchange assembly
US6705389B1 (en) 2000-07-17 2004-03-16 Emerson Electric Co. Reconfigurable system and method for cooling heat generating objects
US6497107B2 (en) 2000-07-27 2002-12-24 Idalex Technologies, Inc. Method and apparatus of indirect-evaporation cooling
US6507494B1 (en) 2000-07-27 2003-01-14 Adc Telecommunications, Inc. Electronic equipment enclosure
US6557624B1 (en) 2000-08-09 2003-05-06 Liebert Corporation Configurable system and method for cooling a room
WO2002038257A2 (en) 2000-11-13 2002-05-16 Mcmaster University Gas separation device
US6739142B2 (en) 2000-12-04 2004-05-25 Amos Korin Membrane desiccation heat pump
EP1347260B1 (en) 2000-12-25 2009-06-10 Honda Giken Kogyo Kabushiki Kaisha Heat exchanger
US6625017B1 (en) 2001-02-12 2003-09-23 Special Products Company Telecommunications enclosure with individual, separated card holders
US6711907B2 (en) 2001-02-28 2004-03-30 Munters Corporation Desiccant refrigerant dehumidifier systems
US6557365B2 (en) 2001-02-28 2003-05-06 Munters Corporation Desiccant refrigerant dehumidifier
US6841601B2 (en) 2001-03-13 2005-01-11 Dais-Analytic Corporation Crosslinked polymer electrolyte membranes for heat and moisture exchange devices
CN1180205C (zh) 2001-05-16 2004-12-15 株式会社荏原制作所 除湿装置
US6598862B2 (en) 2001-06-20 2003-07-29 Evapco International, Inc. Evaporative cooler
IL144119A (en) 2001-07-03 2006-07-05 Gad Assaf Air conditioning system
US6800118B2 (en) 2001-07-17 2004-10-05 Gore Enterprise Holdings, Inc. Gas/liquid separation devices
US6719038B2 (en) 2001-08-09 2004-04-13 Celestica International Inc. Heat removal system
US6854278B2 (en) 2001-08-20 2005-02-15 Valeriy Maisotsenko Method of evaporative cooling of a fluid and apparatus therefor
US20030037905A1 (en) * 2001-08-22 2003-02-27 Kuo-Liang Weng Air conditioning system performing composite heat transfer through change of water two phases (liquid vapor)
DE10143092A1 (de) 2001-09-03 2003-03-20 Att Automotivethermotech Gmbh Gegenstromwärmetauscher mit thermischer Schichtung zur Kabinenbeheizung von Kraftfahrzeugen
US6672955B2 (en) 2001-09-07 2004-01-06 International Business Machines Corporation Air flow management system for an internet data center
US7150314B2 (en) 2001-09-17 2006-12-19 American Standard International Inc. Dual exhaust energy recovery system
US6574104B2 (en) 2001-10-05 2003-06-03 Hewlett-Packard Development Company L.P. Smart cooling of data centers
US6684653B2 (en) 2001-11-21 2004-02-03 Nicholas H. Des Champs Air-conditioner and air-to-air heat exchange for closed loop cooling
US6628520B2 (en) 2002-02-06 2003-09-30 Hewlett-Packard Development Company, L.P. Method, apparatus, and system for cooling electronic components
US6668565B1 (en) 2002-04-12 2003-12-30 American Power Conversion Rack-mounted equipment cooling
US6848265B2 (en) 2002-04-24 2005-02-01 Ail Research, Inc. Air conditioning system
US6532763B1 (en) 2002-05-06 2003-03-18 Carrier Corporation Evaporator with mist eliminator
KR20040106511A (ko) 2002-05-10 2004-12-17 조지 샌더 빅제나 공기 조화용 냉각 코일 또는 가열 코일의 제어
US6591898B1 (en) 2002-06-20 2003-07-15 International Business Machines Corporation Integrated heat sink system for a closed electronics container
US6751964B2 (en) 2002-06-28 2004-06-22 John C. Fischer Desiccant-based dehumidification system and method
US6877551B2 (en) 2002-07-11 2005-04-12 Avaya Technology Corp. Systems and methods for weatherproof cabinets with variably cooled compartments
US6786056B2 (en) 2002-08-02 2004-09-07 Hewlett-Packard Development Company, L.P. Cooling system with evaporators distributed in parallel
US20040061245A1 (en) 2002-08-05 2004-04-01 Valeriy Maisotsenko Indirect evaporative cooling mechanism
US6611428B1 (en) 2002-08-12 2003-08-26 Motorola, Inc. Cabinet for cooling electronic modules
US6622519B1 (en) 2002-08-15 2003-09-23 Velocys, Inc. Process for cooling a product in a heat exchanger employing microchannels for the flow of refrigerant and product
TWI271499B (en) 2002-08-15 2007-01-21 Velocys Inc Process for cooling a product in a heat exchanger employing microchannels
US20060032258A1 (en) 2002-08-23 2006-02-16 Roger Pruitt Cooling assembly
US6714412B1 (en) 2002-09-13 2004-03-30 International Business Machines Corporation Scalable coolant conditioning unit with integral plate heat exchanger/expansion tank and method of use
US6744632B2 (en) 2002-09-20 2004-06-01 Hewlett-Packard Development Company, L.P. Composite construction baffle for modular electronic systems
JP2004116419A (ja) 2002-09-26 2004-04-15 Toshiba Corp 排気ガス熱利用システム
US6775997B2 (en) 2002-10-03 2004-08-17 Hewlett-Packard Development Company, L.P. Cooling of data centers
US8464781B2 (en) 2002-11-01 2013-06-18 Cooligy Inc. Cooling systems incorporating heat exchangers and thermoelectric layers
IL152885A0 (en) 2002-11-17 2003-06-24 Agam Energy Systems Ltd Air conditioning systems and methods
DE10255530B3 (de) 2002-11-27 2004-07-01 Hovalwerk Ag Verfahren und Vorrichtung zum Kühlen von Umluft
US6867967B2 (en) 2002-12-16 2005-03-15 International Business Machines Corporation Method of constructing a multicomputer system
KR100463550B1 (ko) 2003-01-14 2004-12-29 엘지전자 주식회사 냉난방시스템
KR100504503B1 (ko) 2003-01-14 2005-08-01 엘지전자 주식회사 공기조화시스템
CA2416508C (en) 2003-01-17 2008-11-18 Martin Gagnon A stackable energy transfer core spacer
US6694759B1 (en) 2003-01-27 2004-02-24 Hewlett-Packard Development Company, L.P. Pressure control of cooling fluid within a plenum using automatically adjustable vents
JP2004239544A (ja) 2003-02-07 2004-08-26 Yazaki Corp 吸収式冷温水機
EP1606564B1 (de) 2003-02-14 2011-05-18 Heinz-Dieter Hombücher Verfahren und vorrichtung zur energierückgewinnung
JP3835413B2 (ja) 2003-02-24 2006-10-18 株式会社日立プラントテクノロジー 除湿空調装置
US6747872B1 (en) 2003-02-28 2004-06-08 Hewlett-Packard Development Company, L.P. Pressure control of cooling fluid within a plenum
US7306650B2 (en) 2003-02-28 2007-12-11 Midwest Research Institute Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants
US6859366B2 (en) 2003-03-19 2005-02-22 American Power Conversion Data center cooling system
US6709492B1 (en) 2003-04-04 2004-03-23 United Technologies Corporation Planar membrane deoxygenator
JP4360859B2 (ja) 2003-05-29 2009-11-11 株式会社日立製作所 電子機器
DE112004000908T5 (de) 2003-05-30 2006-04-13 Asahi Kasei Kabushiki Kaisha Befeuchtungsvorrichtung
JP4311538B2 (ja) 2003-06-27 2009-08-12 株式会社日立製作所 ディスク記憶装置の冷却構造
US6819563B1 (en) 2003-07-02 2004-11-16 International Business Machines Corporation Method and system for cooling electronics racks using pre-cooled air
NZ527368A (en) 2003-08-04 2004-02-27 Dennis Hill Top mounted ventilation unit for equipment cabinet
US6987673B1 (en) 2003-09-09 2006-01-17 Emc Corporation Techniques for cooling a set of circuit boards within a rack mount cabinet
US7322205B2 (en) 2003-09-12 2008-01-29 Davis Energy Group, Inc. Hydronic rooftop cooling systems
ES2278132T3 (es) 2003-10-01 2007-08-01 Imes Management Ag Dispositivo para la deshumidificacion del aire ambiental.
US7591868B2 (en) 2003-10-07 2009-09-22 Donaldson Company, Inc. Filter for electronic enclosure
US6936767B2 (en) 2003-10-14 2005-08-30 Toshiba International Corporation Apparatus for continuous cooling of electrical powered equipment
US7139169B2 (en) 2003-12-11 2006-11-21 Dell Products L.P. System and method for information handling system cooling fan operating parameter selection
US7017655B2 (en) 2003-12-18 2006-03-28 Modine Manufacturing Co. Forced fluid heat sink
US6917522B1 (en) 2003-12-29 2005-07-12 Intel Corporation Apparatus and method for cooling integrated circuit devices
US7278273B1 (en) 2003-12-30 2007-10-09 Google Inc. Modular data center
US7418995B2 (en) 2004-01-14 2008-09-02 Vanner, Inc. System for cooling environmentally sealed enclosures
US7086603B2 (en) 2004-02-06 2006-08-08 Hewlett-Packard Development Company, L.P. Data collection system having a data collector
US7093649B2 (en) 2004-02-10 2006-08-22 Peter Dawson Flat heat exchanger plate and bulk material heat exchanger using the same
GB2411050A (en) 2004-02-16 2005-08-17 E2V Tech Uk Ltd Electrical apparatus cooling system
JP3850413B2 (ja) 2004-02-16 2006-11-29 株式会社ソニー・コンピュータエンタテインメント 電子デバイス冷却装置、電子デバイス冷却方法、電子デバイス冷却制御プログラム及びそれを格納した記録媒体
US7093452B2 (en) 2004-03-24 2006-08-22 Acma Limited Air conditioner
US7181918B2 (en) 2004-03-25 2007-02-27 Oxycell Holding B.V. Vehicle cooler
US7864527B1 (en) 2004-03-31 2011-01-04 Google Inc. Systems and methods for close coupled cooling
JP2007532855A (ja) 2004-04-09 2007-11-15 エイアイエル リサーチ インク 熱物質交換機
US7559356B2 (en) 2004-04-19 2009-07-14 Eksident Technologies, Inc. Electrokinetic pump driven heat transfer system
US7647787B2 (en) 2004-04-22 2010-01-19 Hewlett-Packard Development Company, L.P. Upgradeable, modular data center cooling apparatus
US7781034B2 (en) 2004-05-04 2010-08-24 Sigma Laboratories Of Arizona, Llc Composite modular barrier structures and packages
US7180742B1 (en) 2004-05-24 2007-02-20 Nvidia Corporation Apparatus and method for cooling semiconductor devices
US7128138B2 (en) 2004-05-26 2006-10-31 Entrodyne Corporation Indirect evaporative cooling heat exchanger
US6973795B1 (en) 2004-05-27 2005-12-13 American Standard International Inc. HVAC desiccant wheel system and method
KR100607204B1 (ko) 2004-06-18 2006-08-01 (주) 위젠글로벌 냉각유체의 증발 냉각방법 및 그 장치
IL163015A (en) 2004-07-14 2009-07-20 Gad Assaf Systems and methods for dehumidification
US7753991B2 (en) 2004-07-30 2010-07-13 Kertzman Systems, Inc. Water transport method and assembly including a thin film membrane for the addition or removal of water from gases or liquids
JP4321413B2 (ja) 2004-09-02 2009-08-26 株式会社日立製作所 ディスクアレイ装置
US7362571B2 (en) 2004-09-16 2008-04-22 Cray Inc. Inlet flow conditioners for computer cabinet air conditioning systems
US7222660B2 (en) 2004-10-04 2007-05-29 Tellabs Petaluma, Inc. Cabinet with an environmentally-sealed air-to-air heat exchanger
US7313924B2 (en) 2004-10-08 2008-01-01 Hewlett-Packard Development Company, L.P. Correlation of vent tiles and racks
US7347058B2 (en) 2004-10-21 2008-03-25 Hewlett-Packard Development Company, L.P. Vent for a data center cooling system
US7995339B2 (en) 2004-11-01 2011-08-09 Hewlett-Packard Development Company, L.P. Control of vent tiles correlated with a rack
US6973801B1 (en) 2004-12-09 2005-12-13 International Business Machines Corporation Cooling system and method employing a closed loop coolant path and micro-scaled cooling structure within an electronics subsystem of an electronics rack
US7180737B2 (en) 2004-12-20 2007-02-20 Harris Corporation Heat exchanger system for circuit card assemblies
JP2006215882A (ja) 2005-02-04 2006-08-17 Hitachi Ltd ディスクアレイ装置及びその液冷装置
US20060205301A1 (en) 2005-03-11 2006-09-14 Bha Technologies, Inc. Composite membrane having hydrophilic properties and method of manufacture
JP3879763B2 (ja) 2005-03-31 2007-02-14 ダイキン工業株式会社 調湿装置
US7385810B2 (en) 2005-04-18 2008-06-10 International Business Machines Corporation Apparatus and method for facilitating cooling of an electronics rack employing a heat exchange assembly mounted to an outlet door cover of the electronics rack
US7262964B1 (en) 2005-04-27 2007-08-28 Hewlett-Packard Development Company, L.P. Airflow control baffle
US7596476B2 (en) 2005-05-02 2009-09-29 American Power Conversion Corporation Methods and systems for managing facility power and cooling
US7885795B2 (en) 2005-05-02 2011-02-08 American Power Conversion Corporation Methods and systems for managing facility power and cooling
US7841199B2 (en) 2005-05-17 2010-11-30 American Power Conversion Corporation Cold aisle isolation
US7895854B2 (en) 2005-06-01 2011-03-01 Hewlett-Packard Development Company, L.P. Refrigeration system with parallel evaporators and variable speed compressor
US7315448B1 (en) 2005-06-01 2008-01-01 Hewlett-Packard Development Company, L.P. Air-cooled heat generating device airflow control system
NL1029280C1 (nl) 2005-06-17 2006-12-19 Fiwihex B V Behuizing met een koeling.
TWI269147B (en) 2005-06-27 2006-12-21 Quanta Comp Inc Cooling module and control method of cooling wind thereof
TWI326691B (en) 2005-07-22 2010-07-01 Kraton Polymers Res Bv Sulfonated block copolymers, method for making same, and various uses for such block copolymers
US7309062B2 (en) 2005-08-05 2007-12-18 Wen-Feng Lin Fixed wet type dehumidification and energy recovery device
US20070125110A1 (en) 2005-08-17 2007-06-07 Bjorn Gudmundsson Device for transfer of heat
US7798892B2 (en) 2005-08-31 2010-09-21 Siemens Industry, Inc. Packaging method for modular power cells
JP2007066480A (ja) 2005-09-02 2007-03-15 Hitachi Ltd ディスクアレイ装置
EP2266682A3 (en) 2005-09-09 2014-08-20 Tangenx Technology Corporation Laminated cassette device and method for making same
US7573713B2 (en) 2005-09-13 2009-08-11 Pacific Star Communications High velocity air cooling for electronic equipment
TWI285251B (en) 2005-09-15 2007-08-11 Univ Tsinghua Flat-plate heat pipe containing channels
JP4816231B2 (ja) 2005-10-07 2011-11-16 日本エクスラン工業株式会社 デシカント空調システム
US7438638B2 (en) 2005-10-10 2008-10-21 Chatsworth Products, Inc. Ratio of open area to closed area in panels for electronic equipment enclosures
US7682234B1 (en) 2005-11-01 2010-03-23 Hewlett-Packard Development Company, L.P. Correlation of airflow delivery devices and air movers
EP1949004A4 (en) 2005-11-02 2010-06-02 Air Tech Equipment Ltd SYSTEM FOR ENERGY RECOVERY AND MOISTURE REGULATION
US7312993B2 (en) 2005-12-22 2007-12-25 Alcatel Lucent Electronics equipment cabinet
US8978741B2 (en) 2006-02-17 2015-03-17 Hewlett-Packard Development Company, L.P. Device for reducing temperature variations in plenums
US7586745B1 (en) 2006-03-01 2009-09-08 Network Appliance, Inc. Unique airflow path using fungible chassis components
US7379299B2 (en) 2006-03-17 2008-05-27 Kell Systems Noiseproofed and ventilated enclosure for electronics equipment
US8002023B2 (en) 2006-03-22 2011-08-23 Panasonic Corporation Heat exchanger and its manufacturing method
JP4770534B2 (ja) 2006-03-22 2011-09-14 パナソニック株式会社 熱交換器
US7319596B2 (en) 2006-03-24 2008-01-15 Fujitsu Limited Electronic apparatus
US7365976B2 (en) 2006-03-24 2008-04-29 Fujitsu Limited Electronic apparatus
US7870893B2 (en) 2006-04-06 2011-01-18 Oracle America, Inc. Multichannel cooling system with magnetohydrodynamic pump
JP2007285598A (ja) 2006-04-17 2007-11-01 Matsushita Electric Ind Co Ltd 熱交換器
US7604535B2 (en) 2006-04-27 2009-10-20 Wright Line, Llc Assembly for extracting heat from a housing for electronic equipment
US7403392B2 (en) 2006-05-16 2008-07-22 Hardcore Computer, Inc. Liquid submersion cooling system
US7411785B2 (en) 2006-06-05 2008-08-12 Cray Inc. Heat-spreading devices for cooling computer systems and associated methods of use
US7595985B2 (en) 2006-06-19 2009-09-29 Panduit Corp. Network cabinet with thermal air flow management
US7679909B2 (en) 2006-07-18 2010-03-16 Liebert Corporation Integral swivel hydraulic connectors, door hinges, and methods and systems for their use
US20080023182A1 (en) 2006-07-25 2008-01-31 Henry Earl Beamer Dual mode heat exchanger assembly
KR100743268B1 (ko) 2006-08-10 2007-07-27 한국과학기술원 방열핀과 방열핀의 배치구조 및 고정된 핀 사이의 공간에 움직이는 핀을 삽입한 히트싱크
US8327656B2 (en) 2006-08-15 2012-12-11 American Power Conversion Corporation Method and apparatus for cooling
JP4776472B2 (ja) 2006-08-18 2011-09-21 株式会社日立製作所 ストレージ装置
TWI404897B (zh) 2006-08-25 2013-08-11 Ducool Ltd 用以管理流體中之水含量的系統及方法
NL1032450C2 (nl) 2006-09-06 2008-03-07 Uptime Technology B V Inrichting en werkwijze voor het met behulp van recirculatielucht koelen van een ruimte in een datacentrum.
US20080066888A1 (en) 2006-09-08 2008-03-20 Danaher Motion Stockholm Ab Heat sink
US7717406B2 (en) 2006-09-12 2010-05-18 Munters Corporation Algae resistant edge coating and method of forming same
JP2008070046A (ja) 2006-09-14 2008-03-27 Matsushita Electric Ind Co Ltd 熱交換素子
WO2008037079A1 (en) 2006-09-29 2008-04-03 Dpoint Technologies Inc. Pleated heat and humidity exchanger with flow field elements
EP1921702A1 (en) 2006-11-10 2008-05-14 DSMIP Assets B.V. Humidifier membrane
CN200958820Y (zh) 2006-10-12 2007-10-10 广东省吉荣空调设备公司 动态高温蓄冷空调机
US7389652B1 (en) 2006-10-21 2008-06-24 Shields Fair Heat transfer apparatus
KR101180041B1 (ko) 2006-10-31 2012-09-05 한라공조주식회사 히터코어 및 상기 히터코어가 장착된 자동차용 공조장치
US20080162198A1 (en) 2007-01-03 2008-07-03 Cisco Technology, Inc. Method and System for Conference Room Scheduling
CN103203185B (zh) 2007-01-20 2016-01-13 戴斯分析公司 具有包含经加热空气的干燥腔室的干燥器
KR100773435B1 (ko) 2007-02-01 2007-11-05 한국지역난방공사 지역난방용 제습냉방장치
BRPI0810346A2 (pt) 2007-05-09 2014-10-14 Mcnnnac Energy Services Inc "sistema de resfriamento"
AU2008260212B2 (en) 2007-05-30 2012-06-07 Munters Corporation Humidity control system using a desiccant device
US8469782B1 (en) 2007-06-14 2013-06-25 Switch Communications Group, LLC Data center air handling unit
FI20075595A0 (fi) 2007-06-27 2007-08-30 Enervent Oy Ab Ilmanvaihtokojeyksikkö
EP2174975A4 (en) 2007-07-27 2011-11-02 Asahi Kasei Chemicals Corp SINTERED BODY OF HYDROPHILIC POLYOLEFIN
CA122381S (en) 2007-09-19 2009-05-28 Venmar Ventillation Inc Louvered air ventilation grille
US8268060B2 (en) 2007-10-15 2012-09-18 Green Comfort Systems, Inc. Dehumidifier system
US20090126913A1 (en) 2007-11-16 2009-05-21 Davis Energy Group, Inc. Vertical counterflow evaporative cooler
US7963119B2 (en) 2007-11-26 2011-06-21 International Business Machines Corporation Hybrid air and liquid coolant conditioning unit for facilitating cooling of one or more electronics racks of a data center
CN101469090B (zh) 2007-12-27 2011-06-08 Tcl集团股份有限公司 高分子改性膜材料及使用此材料的空调器
EP2304326B1 (en) 2008-01-14 2018-09-19 Core Energy Recovery Solutions Inc. Cross-pleated membrane cartridges, and method for making cross-pleated membrane cartridges
EP2250446B1 (en) 2008-01-25 2020-02-19 Alliance for Sustainable Energy, LLC Indirect evaporative cooler
CN101918777B (zh) 2008-02-14 2013-01-16 蒙特斯公司 能量回收增强冷凝器再生干燥剂的制冷除湿器
CN201203217Y (zh) 2008-04-14 2009-03-04 西安工程大学 一种四级蒸发冷却组合式空调机组
WO2009129517A1 (en) 2008-04-18 2009-10-22 Jarrell Wenger Evaporative cooling tower enhancement through cooling recovery
JP2009275955A (ja) 2008-05-13 2009-11-26 Sanwa System Kk デシカント空調装置
US8079508B2 (en) 2008-05-30 2011-12-20 Foust Harry D Spaced plate heat exchanger
JP5156504B2 (ja) 2008-06-25 2013-03-06 日本ゴア株式会社 複合膜及びそれを用いた水分量調整モジュール
CH699192A1 (de) 2008-07-18 2010-01-29 Mentus Holding Ag Verfahren und Vorrichtung für die Aufbereitung der einem Raum zuzuführenden Luft auf eine gewünschte Temperatur und eine gewünschte Feuchtigkeit.
CN102149980B (zh) 2008-08-08 2015-08-19 技术研究及发展基金有限公司 液体干燥剂除湿系统及用于其的热/质量的交换器
US20100058778A1 (en) 2008-09-05 2010-03-11 Bhatti Mohinder S Thermoelectrically powered indirect evaporative cooling system with desiccant dehumidification
WO2010042827A1 (en) 2008-10-10 2010-04-15 Ldworks, Llc Liquid desiccant dehumidifier
CN101368754B (zh) * 2008-10-15 2011-06-29 东南大学 利用膜式再生器的溶液除湿空调设备
JP5568231B2 (ja) 2008-11-07 2014-08-06 日本ゴア株式会社 成形品の製造方法
US8490427B2 (en) 2008-11-25 2013-07-23 Donald Charles Erickson Liquid desiccant chiller
US8584733B2 (en) 2009-02-06 2013-11-19 Thermotech Enterprises, Inc. Dynamic purge system for a heat recovery wheel
CA2752644A1 (en) 2009-03-03 2010-09-30 Harold Dean Curtis Direct forced draft fluid cooler/cooling tower and liquid collector therefor
JP2010214298A (ja) 2009-03-17 2010-09-30 Japan Gore Tex Inc 透湿性隔膜材料
SI2435171T1 (sl) 2009-05-18 2021-10-29 Zehnder Group Int Ag Obložene membrane za izmenjavo entalpije in druge uporabe
KR100943285B1 (ko) 2009-06-01 2010-02-23 (주)에이티이엔지 하이브리드 데시칸트 제습 장치 및 그 제어방법
US9631054B2 (en) 2010-07-23 2017-04-25 E I Du Pont De Nemours And Company Matte finish polyimide films and methods relating thereto
EP2464924B1 (en) 2009-08-14 2018-10-24 Johnson Controls Technology Company Free cooling refrigeration system
WO2011019278A1 (en) 2009-08-14 2011-02-17 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Planar membrane module preparation
US9033030B2 (en) 2009-08-26 2015-05-19 Munters Corporation Apparatus and method for equalizing hot fluid exit plane plate temperatures in heat exchangers
JP5397107B2 (ja) 2009-09-09 2014-01-22 株式会社デンソー 調湿換気装置
EP2497346A1 (en) 2009-11-02 2012-09-12 Telefonaktiebolaget L M Ericsson (PUBL) Passive cabinet cooling
US8966924B2 (en) 2009-11-13 2015-03-03 Equinix, Inc. Pre-cooling chamber for a cooling tower
WO2011062808A1 (en) 2009-11-23 2011-05-26 Carrier Corporation Method and device for air conditioning with humidity control
US20110232633A1 (en) 2009-12-11 2011-09-29 Lima Daniel D De Solar energy integrated building and solar collector system thereof
JP5506441B2 (ja) 2010-02-09 2014-05-28 三菱電機株式会社 全熱交換素子および全熱交換器
US20110223486A1 (en) 2010-03-12 2011-09-15 Xiaomin Zhang Biaxially oriented porous membranes, composites, and methods of manufacture and use
AU2011230503B2 (en) 2010-03-26 2015-01-22 Joseph Ellsworth Composite desiccant and air-to-water system and method
US8974274B2 (en) 2010-04-16 2015-03-10 Google Inc. Evaporative induction cooling
US9377207B2 (en) 2010-05-25 2016-06-28 7Ac Technologies, Inc. Water recovery methods and systems
US8943848B2 (en) 2010-06-16 2015-02-03 Reznor Llc Integrated ventilation unit
US20110317636A1 (en) 2010-06-24 2011-12-29 John Diachina Channel requests for machine-type devices
CN103069246B (zh) * 2010-06-24 2016-02-03 北狄空气应对加拿大公司 液体-空气膜能量交换器
JP5471896B2 (ja) 2010-06-30 2014-04-16 株式会社富士通ゼネラル 空気調和機の冷媒分岐ユニット
GB2503965B (en) 2010-07-12 2014-08-13 Hewlett Packard Development Co Flexible data center and methods for deployment
JP2012026700A (ja) 2010-07-27 2012-02-09 Mitsubishi Heavy Ind Ltd デシカント空調システム
JP2012037120A (ja) 2010-08-05 2012-02-23 Nihon Gore Kk 隔膜およびこれを用いた熱交換器
US8584479B2 (en) 2010-08-05 2013-11-19 Sanyo Electric Co., Ltd. Air conditioner having a desiccant rotor with moisture adsorbing area
US9885486B2 (en) 2010-08-27 2018-02-06 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method
US9429366B2 (en) 2010-09-29 2016-08-30 Kraton Polymers U.S. Llc Energy recovery ventilation sulfonated block copolymer laminate membrane
IT1402147B1 (it) 2010-09-30 2013-08-28 Univ Degli Studi Genova Modulo contattore con membrane capillari idrofobiche integrato in uno scambiatore di calore ed impianto ibrido per la deumidificazione/condizionamento dell aria.
TWI422318B (zh) 2010-10-29 2014-01-01 Ind Tech Res Inst 數據機房
BR112013009954B1 (pt) 2010-11-22 2022-02-15 Munters Corporation Sistema desumidificador e método de desumidificação de um fluxo de ar
CN201906567U (zh) 2010-12-15 2011-07-27 厦门征成膜清洗科技有限公司 卷式膜隔网结构
WO2012087273A1 (en) 2010-12-20 2012-06-28 Carrier Corporation Heat pump enabled desiccant dehumidification system
CN103261801B (zh) 2010-12-28 2015-11-25 富士电机株式会社 利用外气的空调系统、其内气单元、外气单元、层积体
US9032742B2 (en) 2010-12-30 2015-05-19 Munters Corporation Methods for removing heat from enclosed spaces with high internal heat generation
US20120167610A1 (en) 2010-12-30 2012-07-05 Munters Corporation Indirect air-side economizer for removing heat from enclosed spaces with high internal heat generation
US9021821B2 (en) 2010-12-30 2015-05-05 Munters Corporation Ventilation device for use in systems and methods for removing heat from enclosed spaces with high internal heat generation
US9055696B2 (en) 2010-12-30 2015-06-09 Munters Corporation Systems for removing heat from enclosed spaces with high internal heat generation
US8915092B2 (en) 2011-01-19 2014-12-23 Venmar Ces, Inc. Heat pump system having a pre-processing module
BR112013020176A2 (pt) 2011-02-11 2016-11-08 Munters Corp aparelho e método para remoção de co2 de uma descarga de instalação de produção
US8689580B2 (en) 2011-03-30 2014-04-08 Ness Lakdawala Air conditioning/dehumidifying unit
US9605913B2 (en) 2011-05-25 2017-03-28 Saudi Arabian Oil Company Turbulence-inducing devices for tubular heat exchangers
US20120298334A1 (en) 2011-05-27 2012-11-29 Stephen Madaffari Air Cooling Unit For Data Centers
US8936668B2 (en) 2011-06-07 2015-01-20 Dpoint Technologies Inc. Selective water vapour transport membranes comprising a nanofibrous layer and methods for making the same
KR20140053210A (ko) 2011-07-22 2014-05-07 문터스 코포레이션 재순환 공기 취급 시스템을 통합하기 위해 설계된 유일한 실외 전용 공기 시스템
US9810439B2 (en) * 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US8899061B2 (en) 2011-09-23 2014-12-02 R4 Ventures, Llc Advanced multi-purpose, multi-stage evaporative cold water/cold air generating and supply system
US20170010029A9 (en) 2011-09-23 2017-01-12 R4 Ventures Llc Multi Purpose Multistage Evaporative Cold Water and Cold Air Generating and Supply System
EP2774015A2 (en) * 2011-11-03 2014-09-10 CommScope, Inc. of North Carolina Cooling module for modular data center and system comprising the cooling module and at least one server module
WO2013074973A1 (en) 2011-11-17 2013-05-23 Enverid Systems, Inc. Method and system for conditioning air in an enclosed environment with distributed air circuilatioin systems
GB2497789A (en) 2011-12-21 2013-06-26 Sharp Kk Heat and mass exchanger for liquid desiccant air conditioners
ES2527826T3 (es) 2012-01-20 2015-01-30 Zehnder Verkaufs- Und Verwaltungs Ag Elemento de intercambiador de calor y procedimiento para la producción
RU2609477C2 (ru) 2012-03-15 2017-02-02 КРЭЙТОН ПОЛИМЕРС Ю.Эс. ЭлЭлСи Смеси сульфированных блок-сополимеров и дисперсного углерода, и содержащие их мембраны, пленки и покрытия
US9976822B2 (en) * 2012-03-22 2018-05-22 Nortek Air Solutions Canada, Inc. System and method for conditioning air in an enclosed structure
US20130340449A1 (en) 2012-06-20 2013-12-26 Alliance For Sustainable Energy, Llc Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US20140054004A1 (en) 2012-08-24 2014-02-27 Venmar Ces, Inc. Membrane support assembly for an energy exchanger
NL2009415C2 (en) 2012-09-04 2014-03-05 Aquaver B V Air-conditioning system and use thereof.
US20140083648A1 (en) 2012-09-25 2014-03-27 Venmar Ces, Inc. Dedicated outdoor air system with pre-heating and method for same
KR102043369B1 (ko) 2012-11-21 2019-11-11 삼성전자주식회사 반도체 메모리 칩 및 이를 포함하는 적층형 반도체 패키지
US20140190037A1 (en) 2013-01-09 2014-07-10 Venmar Ces, Inc. System and method for providing conditioned air to an enclosed structure
US9237681B2 (en) 2013-01-09 2016-01-12 Io Data Centers, Llc Modular data center
US20140235157A1 (en) 2013-02-15 2014-08-21 Venmar Ces, Inc. Dedicated outdoor air system with pre-heating and method for same
KR20150122167A (ko) 2013-03-01 2015-10-30 7에이씨 테크놀로지스, 아이엔씨. 흡습제 공기 조화 방법 및 시스템
US9109808B2 (en) 2013-03-13 2015-08-18 Venmar Ces, Inc. Variable desiccant control energy exchange system and method
JP5706478B2 (ja) 2013-03-14 2015-04-22 株式会社オーケー社鹿児島 バイオマスボイラー
KR102099693B1 (ko) 2013-03-14 2020-05-15 7에이씨 테크놀로지스, 아이엔씨. 소형-분할형 액체 흡수제 공조 방법 및 시스템
US20140262125A1 (en) 2013-03-14 2014-09-18 Venmar Ces, Inc. Energy exchange assembly with microporous membrane
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US9581364B2 (en) 2013-03-15 2017-02-28 Johnson Controls Technology Company Refrigeration system with free-cooling
CN203116208U (zh) 2013-03-19 2013-08-07 西安工程大学 数据机房用外冷式蒸发冷却与机械制冷复合空调系统
US9459668B2 (en) 2013-05-16 2016-10-04 Amazon Technologies, Inc. Cooling system with desiccant dehumidification
WO2015054303A1 (en) 2013-10-08 2015-04-16 Johnson Controls Technology Company Systems and methods for air conditioning a building using an energy recovery wheel
WO2015109113A2 (en) 2014-01-16 2015-07-23 Ail Research Inc. Dewpoint indirect evaporative cooler
JP6152594B2 (ja) 2014-03-27 2017-06-28 株式会社中央製作所 繊維めっき装置
JP6728130B2 (ja) 2014-04-15 2020-07-22 アンドリュー・モンガーMONGAR, Andrew 液体乾燥剤を使用した段階的プロセスを使用する空調方法
CN203893703U (zh) 2014-06-11 2014-10-22 内蒙古京能盛乐热电有限公司 用于火电厂的蒸发冷却器闭式循环冷却水装置
AU2015278221A1 (en) 2014-06-20 2017-02-02 Nortek Air Solutions Canada, Inc. Systems and methods for managing conditions in enclosed space
DK3183051T3 (da) 2014-08-19 2020-06-02 Nortek Air Solutions Canada Inc Væske-til-luftmembranenergivekslere
CN204268654U (zh) * 2014-11-17 2015-04-15 深圳市腾讯计算机系统有限公司 一种热能回收系统及包括该热能回收系统的数据中心
WO2016183668A1 (en) 2015-05-15 2016-11-24 Nortek Air Solutions Canada, Inc. Systems and methods for managing conditions in enclosed space
CN107850335B (zh) 2015-05-15 2021-02-19 北狄空气应对加拿大公司 利用液-气式膜能量交换器进行液体冷却
US11092349B2 (en) 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
EP3314188B1 (en) 2015-06-26 2021-05-12 Nortek Air Solutions Canada, Inc. Three-fluid liquid to air membrane energy exchanger
SG10201913897RA (en) 2016-03-08 2020-03-30 Nortek Air Solutions Canada Inc Systems and methods for providing cooling to a heat load

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014138851A1 (en) * 2013-03-15 2014-09-18 Venmar Ces, Inc. Evaporative cooling system with liquid-to-air membrane energy exchanger
CN103245018A (zh) * 2013-04-16 2013-08-14 西安工程大学 带有遮阳、发电和消声的分体式蒸发空调机组

Also Published As

Publication number Publication date
EP3985322A3 (en) 2022-08-31
CN107850335A (zh) 2018-03-27
US20210396422A1 (en) 2021-12-23
US11143430B2 (en) 2021-10-12
EP3985322A2 (en) 2022-04-20
US20240027094A1 (en) 2024-01-25
SG10201809840VA (en) 2018-12-28
US20180135880A1 (en) 2018-05-17
WO2016183667A1 (en) 2016-11-24
US10782045B2 (en) 2020-09-22
EP3295089B1 (en) 2021-10-20
CN107923647B (zh) 2021-12-07
EP3295088A4 (en) 2019-03-13
EP3295089A1 (en) 2018-03-21
US20180128510A1 (en) 2018-05-10
EP3295088B1 (en) 2022-01-12
SG10201913923WA (en) 2020-03-30
CN107923647A (zh) 2018-04-17
AU2016265883A1 (en) 2018-01-18
CA2986055A1 (en) 2016-11-24
EP3295088A1 (en) 2018-03-21
CA2986058A1 (en) 2016-11-24
AU2016265882A1 (en) 2018-01-18
CA2986058C (en) 2023-10-03
EP3295089A4 (en) 2018-12-19
US11815283B2 (en) 2023-11-14

Similar Documents

Publication Publication Date Title
CN107850335B (zh) 利用液-气式膜能量交换器进行液体冷却
US20220003437A1 (en) Systems and methods for providing cooling to a heat load
US10808951B2 (en) Systems and methods for providing cooling to a heat load
US10948223B2 (en) Evaporative fluid-cooler with integrated mechanical cooling system
EP3158271B1 (en) Systems and methods for managing conditions in enclosed space
WO2016183668A1 (en) Systems and methods for managing conditions in enclosed space
US11737239B2 (en) Blended operation mode for providing cooling to a heat load
BEATY et al. Part 3: Heat Rejection Alternatives Designing Data Center Waterside Economizers.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant