JP6728130B2 - 液体乾燥剤を使用した段階的プロセスを使用する空調方法 - Google Patents

液体乾燥剤を使用した段階的プロセスを使用する空調方法 Download PDF

Info

Publication number
JP6728130B2
JP6728130B2 JP2017506252A JP2017506252A JP6728130B2 JP 6728130 B2 JP6728130 B2 JP 6728130B2 JP 2017506252 A JP2017506252 A JP 2017506252A JP 2017506252 A JP2017506252 A JP 2017506252A JP 6728130 B2 JP6728130 B2 JP 6728130B2
Authority
JP
Japan
Prior art keywords
desiccant
air
air stream
flow
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017506252A
Other languages
English (en)
Other versions
JP2017517395A5 (ja
JP2017517395A (ja
Inventor
アンドリュー・モンガー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2017517395A publication Critical patent/JP2017517395A/ja
Publication of JP2017517395A5 publication Critical patent/JP2017517395A5/ja
Application granted granted Critical
Publication of JP6728130B2 publication Critical patent/JP6728130B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Description

発明の分野
本発明は、空調、加湿及び除湿に関する。
背景
多くの既存の空気調節システムの大きな欠点は、健康上の理由のため、アメリカ暖房冷凍空調学会(ASHRAE)規格(米国では必須)が要求する、かなりの量の外気に関連する高レベルの湿気などの高レベルの湿気を除去することができないことである。この問題を経済的に解決するために多数の乾燥剤系が試みられてきたが、いずれも高い市場参入度には至っていない。
暖房及び冷房のために建物で使用されるエネルギーは、米国で使用される全エネルギーの30%超を占める。このエネルギーの多くは化石燃料源由来であり、化石燃料の使用量のレベルは、現在、多くの懸念をもたらしている。特に、空調はほぼ完全に電気によって動力供給されており、そのほとんどが化石燃料由来である。また、空調のために使用される電力は、高レベルの高価なピーク発電プラント能力を必要とする消費電力の大きなピークにも寄与する。したがって、空調が電力使用に極めて効率的である又は非電気的若しくは非化石燃料源によって電力供給される場合に望ましいと考えられる。
コンプレッサによる空調は、湿度の高い気候では空気から湿気の一部しか除去することができない。これにより、過剰設備能力を設けることになり、除湿のための冷却温度が低くなり、建物に供給された空気を再加熱する必要性が生じることになる。これらの要因の両方は、かなりの電力使用量及びエネルギー浪費を必要とする。米国エネルギー省は、これが空調に使用されるエネルギーの60%程度に高くなる可能性があることを示唆している。供給される大量の一次エネルギー(全体的に約31%)は廃熱を生じるが、これは以下に説明するエアコンなどの低温エネルギー用途のために収集及び使用できる。
乾燥剤ベースの除湿機及びエアコンは、過去75年間にわたって何度も市場に導入されているが、これらのものは、多くの理由のため十分には受け入れられていない。第一に、これらのものは、購入するには高価であり、これらの使用によるエネルギー節約は、多くの建物の所有者及び事業者に経済的と考えられる時間スケールで資本コストを返済するのに十分なものではなかった。第二に、いくつかの液体乾燥剤システムは、液体乾燥剤の液滴を空調スペースに持ち越す傾向があった(これは極めて望ましくない)。
米国特許第5123481号(Albers外)には、空冷及び除湿のプロセスについて記載されている。米国特許第5123481号において、Albers外は、空気流中にセクター及びパーティション又は熱交換器を使用して、水がヒートシンクとして蒸発する第2チャンバー内において熱を空気流に伝達することが記載されている。
米国特許第4982782号、同5020335号及び同5020588号(Albers外)は、熱接続パーティション及び複数のガス流を使用する。
Lowensteinの米国特許第5351497号は、乱流熱交換も複数のセクターも使用しない低流量デシカントシステムを使用する。
Hargisの米国特許第8268060B2号には、液体乾燥剤とコンプレッサと熱交換器とを使用する装置が記載されている。Hargisは、乾燥剤流れを2つの構成要素に分割しており、そのうちの1つのみが熱交換器に通されている。したがって、Hargisは、空気流れを、異なる相対湿度ではなく異なる温度である2つ(又はそれ以上)の乾燥区間に暴露している。また、Hargisは、建物からの乾燥機の排気ではなく外部の空気流を使用して乾燥剤を再生している。
Forkoshは、液体乾燥剤と、通常ヒートシンク及び熱源を与えるためのコンプレッサとを使用する米国特許第6487872号、同6494053号、同6575228号及び同6976365号を保有する。Forkoshは、除湿器又は再生器のいずれかにおいて単一のサンプを使用するため、乾燥剤は、単一濃度にまで混合する。したがって、Forkoshが記載する「区間(stages)」は、乾燥剤を異なる濃度に分離することを可能にするものではない。
Albers及びYuanは、コンプレッサ及び液体乾燥剤を使用する装置についての米国特許出願US2005/0109052A1号を出願した。この装置は異なるセクターを有するが、これらのセクターのそれぞれには別個の熱入力及び熱出力が配置されていない。熱源(コンプレッサ)から熱及び質量移動物質(乾燥剤)への熱伝達はセクターの1つでしか生じず、この方法の目的は、セクター間に乾燥剤の濃度勾配ではなく「温度勾配」を誘導することであることが記載されている。
米国特許第5123481号明細書 米国特許第4982782号明細書 米国特許第5020335号明細書 米国特許第5020588号明細書 米国特許第5351497号明細書 米国特許第8268060号明細書 米国特許第6487872号明細書 米国特許第6494053号明細書 米国特許第6575228号明細書 米国特許第6976365号明細書 米国特許出願公開第2005/0109052号明細書
低温再生熱源及びそれほど冷たくない冷却源の使用を可能にする除湿及び/又は空調装置の要望がある。
概要
空調装置の実施形態では、100%外気とすることができる空気流は、多数のセクターにおいて濃度を徐々に変化させる液体乾燥剤と接触させることによって湿度制御される。空気が所望よりも高い湿度の場合には、多数のセクターにおいて大きな濡れ表面積を有する媒体上に分配された濃縮液体乾燥剤との接触によって除湿される。空気が所望よりも低い湿度の場合(冬季モード)には、水を空調装置内の乾燥剤に添加する。このデバイスに供給される乾燥剤の濃度は、空調空間に供給される空気の湿度含有量を決める。熱交換器に冷却流体を通すと、冷却乾燥剤との接触により空気が冷却される。したがって、全ての季節において、空気の湿度及び温度を、空調装置に好適な加熱又は冷却流体及び好適な乾燥剤濃度を供給することによって制御できる。
冷却用流体を、空調装置の各セクター内の各熱交換器に並列に実質的に同じ温度で供給して、乾燥剤から、すなわち処理した空気からの熱伝達を最大化する。これは、各セクターにおけるエンタルピー変化を最大化し、かつ、冷却流体が各熱交換器に直列に供給されている場合よりも低い熱源温度を使用することを可能にする。図1の湿り空気線図から明らかなように、各セクターに必要なエンタルピーは、一様でない潜熱負荷による異なる負荷のため相違してもよい。負荷が高いと、そのセクター内の乾燥剤の温度が上昇するため、熱交換器を介したそのセクター内の冷却流体への熱伝達率が増加する。同様の議論が、乾燥剤再生器内の各セクターのために共通の加熱源を使用する有効性にも当てはまる。
記載した装置及び方法の一定の有効性に寄与する特徴は、空気が最初に最も希薄な乾燥剤によって処理される複数のセクターへの集中による乾燥剤の分離である。これは、そのセクター内の温度上昇を引き起こす。そのセクター内における空気の除湿量は、湿り空気線図の図1から分かるように、乾燥剤の濃度と、冷却流体によって除去できる熱の量とによって制限される。この空気は、乾燥剤がさらに濃縮される次のセクターに移動し、そして空気は乾燥剤濃度までさらに乾燥し、熱除去が可能になる。複数のセクターは、例えば0.004絶対湿度という低い空気湿度を達成することが要求され、達成できる絶対湿度は、再生器から流出する乾燥剤の濃度(したがって、それに接触している空気の相対湿度)によって制限される。再生器内又は冬期に空気を加熱及び加湿するために使用される装置内では正反対のプロセスが生じる。再生器の動作を以下で検討し、そして乾燥剤の最大濃度が加熱流体の温度によって制限されることを示す。
以前に提案された上記空調装置のいくつかは、完全な乱流(少なくとも300、好ましくは500以上のレイノルズ数)を生じさせない熱伝達仕切り又は他の熱交換器を使用するため、流体間の熱伝達の速度を制限する。熱交換器を本発明の装置及び方法で使用する場合に、流体を設計速度で圧送して乱流を生じさせることで高い熱伝達係数が得られるため、熱交換器のサイズ及びコストが最小限に抑えられる。
提案された方法は、一般に、装置のコストを高くするであろう高度に専門化した部品を必要とするのではなく、合理的なコストで得るのが比較的容易な部品を使用することができる。
提案された方法を使用する装置の性能を含む特許請求の範囲の意義は、他の方法では、比較的高温の冷却源を使用しながら、冷却供給空気におけるこのような低湿度条件が達成されない点にある。例えば、本発明の装置の実施形態を50度F(10℃)以下の冷却流体が従来の空調装置で必要とされるであろう条件(例えば43度F(6℃)が冷却システムにおいて典型的である)で、62度F(17℃)の冷却液で動作させることが可能であると考えられる。同様に、再生器の性能に関する特許請求の範囲の意義は、他の方法では、比較的低温度の熱源を使用しながらこのような濃縮乾燥剤溶液が達成されない点にある。これらの高い性能を達成する方法は、湿り空気線図の図1を参照することによって実証できる。
提案された方法は、温度が供給空気にかなり近い冷却流体を使用しながら(例えば9度F(5℃)クーラー)、濃縮された液体乾燥剤と接触している空気の均衡水準に近い相対湿度を有する空気流を空調空間に供給するのを可能にする。
また、この方法は、同じ結果を達成するために大型で高価な装置又は高温のいずれかを必要とする多くの他の方法と比較して、周囲温度よりも最小限に高く加熱される(例えば、30度F(17℃)暖かい)気流によって液体乾燥剤を再濃縮するのを可能にする。
実施形態では、乾燥剤の濃度を制御するために単純な制御装置が設けられる。
また、提案された方法は、乾燥剤を希釈することにより冬期モードでの供給空気の加湿も可能にする。乾燥剤を希釈するとその体積が増加するため、乾燥剤サンプの1以上において余剰量の供給が必要となるであろう。しかしながら、多くの実施形態では、装置内において大型のサンプ又は大量の乾燥剤を具備することは望ましくないため、別個の安価なリザーバを設けることができる。これには、3つの目的がある:1.乾燥剤体積の変更に対応する能力;2.単一又は複数の容器内での濃縮及び希釈乾燥剤の分離;3.加熱源が利用できないときに空調装置を一定期間動作させることができるような乾燥剤の保管(ポンプ及びファンを動作させるための補助電源が依然として利用可能な場合に限る)。
実施形態では、必要な場合又は望ましい場合には、乾燥剤の濃度の適切な増加は、空調装置と同様に構成されるが、ただし乾燥剤から水を蒸発させるために使用される再生器で実施できる。再生器は、空気流を使用して乾燥剤を再濃縮し、その際、空気は、好ましくは空調空間又は外気よりも乾燥している別の供給源から得られる。建物の排気は、典型的には浴室における漏れ及び取り出しファンによる損失のため供給空気よりも体積が低く、例えば、そこから空気を経済的に集めることができないため、再生器は、乾燥剤からの水分の必要な量を除去するためにより大きな加熱を適用することにより、空調装置の空気流よりも低い流れを使用できるように設計できる。建物の排気は、まず、廃熱を回収するために熱交換器を通過した加熱流体(排気など)を使用して再生器で加熱される。その後、空気を、各区間で熱交換器内において加熱された乾燥剤との接触により各区間で加熱し、それによって排気の相対湿度を低下させ、各段階で徐々に低下する相対湿度の空気を用いて段階的に乾燥剤から水を蒸発させることが可能である。得られた乾燥剤の最大濃度は、空気の最小相対湿度に直接関連しており、乾燥剤の平衡相対湿度は、空気の相対湿度の2〜5%の範囲内であるべきであり、好ましい実施形態では、空気の相対湿度の2%以内であるべきである。液体乾燥剤は、再濃縮されると、外気から湿気を除去するために空調装置で再利用される。冬期には、建物を出る空気中のエネルギー及び水分の一部を、乾燥剤を使用して再生器に回収して熱及び湿気を吸収し、その後これを入ってくる空気に加えるように空調装置で再利用する。
実施形態では、空調装置及び再生器は、モジュラー構成であり、空調装置及び再生器内のモジュールは同一でも類似でもよいが、ただし、各デバイスにおいて空気流に合わせるように変更された寸法を有していてよい。セクター及び収容される乾燥剤パッドを含むモジュールの数は、気候及び装置全体を構築する動作要件に適合するように変更できる。空調装置に複数のモジュールを設けると、空気の相対湿度を、空調装置に供給される乾燥剤の相対湿度にさらに密接に合致させることができる。再生器に複数のモジュールを設けると、液体乾燥剤によって得られた相対湿度を、再生のために使用される空気の最小相対湿度により密接に近づけることができる。
完全な空調装置の実施形態は、次のものを備えるシステムを含む:空調装置;乾燥剤再生器:任意に、加湿モードで動作したとき及びシステムがシステムを必要なレベルに満たすのに十分な液体乾燥剤を使用するときにシステムに添加された水の量を収容するための予備容量を有する乾燥剤貯蔵装置。
装置の外部では、システムの実施形態は次のものも備える:冷房の季節ではシステムからかなりの潜在エネルギーを除去するための冷却流体源;暖房の季節では外気を加熱及び加湿するための加熱流体源;乾燥剤から水分を蒸発させるための加熱流体源;ポンプ及びファンを駆動し、コントロールを動作させるための電気その他の動力の供給;適宜加湿を与えるように塩の大部分を除去するために処理される水供給源。
実施形態では、外部空気流を冷却及び除湿する方法であって、少なくとも2個の区間のそれぞれにおいて空気流と液体乾燥剤吸収体とを接触させ;該区間のそれぞれについて、各区間で共通の冷却流体が供給される外部冷却源を使用して、該吸収体に対して外部で乾燥剤を冷却し;区間と区間の間において乾燥剤を空気流の流れに対して逆流させ、それによって、各区間で、空気の湿度が該乾燥剤との接触により低下し、各区間での濃度が前の区間における乾燥剤の濃度よりも明らかに高いことを含む方法を提供する。
実施形態では、外部空気流を加熱及び加湿する方法であって、少なくとも2つの別個の接触用区間で空気流と希釈液体乾燥剤蒸発器とを接触させ;該区間のそれぞれの間に、各区間で共通の外部加熱源を使用して該蒸発器に対して外部で該乾燥剤を加熱し;区間と区間の間において乾燥剤を空気流の流れに対して逆流させ、それによって、各区間で、空気の湿度が該希釈乾燥剤との接触よって増加することを含む方法を提供する。
実施形態では、液体乾燥剤を再濃縮する方法であって、少なくとも2個の区間のそれぞれにおいて空気流と液体乾燥剤蒸発剤とを接触させ;該区間のそれぞれにおいて、各区間で共通の加熱用流体が供給された外部加熱源を使用して、吸収体の外部で該乾燥剤を加熱し;及び区間と区間の間において該乾燥剤を空気流に対して逆流させ、それによって、各区間で、該乾燥剤の濃度が他の区間における乾燥剤の濃度よりも明らかに高くなることを含む方法を提供する。
実施形態では、装置に通される気流と、外部エネルギー流体源と、液体乾燥剤流れとの間での熱及び湿気の交換のための装置であって、本質的に同一である少なくとも2個の別個の接続されたモジュールを備え、各モジュールは、液体乾燥剤と空気とを接触させるための吸収器/蒸発器と、該吸収器/蒸発器にわたって液体乾燥剤を分配するための液体乾燥剤ディストリビュータと、外部エネルギー流体源からの流体により液体乾燥剤を冷却/加熱するための、該吸収器/蒸発器の外部にある熱交換器と、吸収器/蒸発器と熱交換器との間に液体乾燥剤を再循環するように動作するポンプと、空気流を吸収器/蒸発器に導くための外部シェルと、吸収器/蒸発器にわたって分配される液体乾燥剤を収集するための、吸収器/蒸発器の下にあるサンプとを備える装置を提供する。
開示された実施形態の上記及び他の態様、特徴、利点は、次の図面と併せて提供されるその実施形態の以下の次の詳細な説明からさらに明らかになると思われる。図面は次のとおりである:
図1は湿り空気線図である。 図2は空調装置の概略側面図である。 図3は乾燥剤再生装置の概略側面立面図である。 図4は図2又は図3の装置の1個のセクターの平面図である。 図5は図3の別の実施形態と同様の図である。 図6は図4の別の実施形態と同様の図である。 図7は乾燥剤リザーバの概略側面立面図である。 図8は、別の乾燥剤リザーバの概略側面立面図である。
例示実施形態の詳細な説明
本発明の方法及び装置の様々な特徴及び利点は、例示実施形態及び添付の図面に関する次の詳細な説明を参照することによってさらに良く理解できる。これらの図面は意図した方法及び装置の実施形態を示すが、これらは、当業者にとって明らかな代替又は均等の実施形態を排除するものと解釈すべきではない。
ここで、図面、最初に図2及び図3を参照すると、符号1によって一般的に示され、かつ、「デバイス1」と呼ばれる第1デバイスを使用して、入ってくる空気流3を状態調整する。夏期では、デバイス1を使用して、入ってくる空気流を冷却し除湿することができる。冬期では、デバイス1を使用して入ってくる空気流を温め加湿することができる。符号2により一般的に示され、かつ、「デバイス2」と呼ばれる第2デバイスを使用して、空気流4を用いて液体乾燥剤を濃縮させることができる。各デバイスの構造はモジュール式であり、ここで、1個のモジュール54、55、56、58、59又は60は、媒体パッド21を有する空気筐体20と、乾燥剤ディストリビュータ23と、乾燥剤溜まり又はサンプ30とを備え、これらのものは一緒になって1個のセクターを構成し、さらに、熱交換器22及びポンプ24を備え、これらによりモジュールが完成する。デバイス1及び2は図2及び3に示されており、3個のモジュールが詳細に描かれている。デバイス1は、空気流れの方向の順に、第1モジュール54、中間モジュール55及び最後のモジュール56を備える。デバイス2は、空気流れ方向の順に、第1モジュール58、中間モジュール59及び最後のモジュール60を備える。いずれのデバイスも、互いに独立して、中間モジュール55、59又は複数の中間モジュールを有しなくてもよいため、デバイス1及びデバイス2のそれぞれに合計2個のみ又は3個超のモジュールが存在していてもよい。モジュール間の乾燥剤の流れは、図2に示される管27によって達成できる。管27は、隣接するモジュールのサンプ30間に絞られた流れを与える。管27の代わりに、モジュール間の乾燥剤の流れは、図3に示すように、乾燥剤ポンプ24から次のセクターまでの側流などの他の手段によって達成でき、その際、各セクター内の乾燥剤のレベルは、デバイス28によって制御され、このデバイス28は、トイレフロート弁と類似していてもよいが、ただし、その製造に使用される材料がほとんどのプラスチックなどの乾燥剤に抵抗性であることを条件とする。
図5及び図6を参照すると、装置のさらなる実施形態は、以下で説明することを除き、図3及び図4に示されたのと同じである。同じ符合が同一の構成要素のために使用されており、簡潔にするために、これらの構成要素の説明は繰り返さない。図5及び図6に示す装置では、次のセクターに供給される側流は、熱交換器22から出口で採取され、図5に示す別の管を介して上流のパッド21のトレーリング側に供給される。各セクター内におけるフロート28は、前述したようにサンプ30内の液体のレベルを感知し、別の管においてそのセクターに入る流れを制御するバルブ29を動作させる。同じセクターにおいてポンプ24から乾燥剤をパッド21上に分配する乾燥剤ディストリビュータ23のノズルは、隣接するセクターからの側方流が供給されるパッド21のトレーリング側には延在しないように配置できる。これにより、空調装置(デバイス1)では、さらに濃縮された乾燥剤を使用して空気を除湿してから、隣接するセクター内における低濃度の乾燥剤と混合させる。性能のさらなる改善が、図5及び図6においてパッド21に割線で示すように、パッド21を2つの部分、すなわち主要部とトレーリング側に分離することにより得られ、さらに高濃度の乾燥剤がサンプ30に到達する前のいかなる希釈も回避することができる。
図7は、容器40を備える単一の容器リザーバを示す。中密度フロート41は、撹拌を低減させ、かつ、より濃縮された乾燥剤からより希薄なものを分離するのに役立つ。液状体の表面上にあるフロート42は、希薄な乾燥剤9を、液状体の頂部でリザーバに供給するのを可能にし、かつ、希薄な乾燥剤10を、液状体の頂部でポンプ43によってリザーバから引き出すのを可能にする。可撓性管49は、フロート42を制限なく上昇及び降下させる。管は、リザーバの底に濃縮乾燥剤11を供給する。ポンプ44は、容器の底から濃縮乾燥剤を流れ8として取り出す。中密度フロート41に取り付けられた任意の較正ワンド47が容器内の濃縮乾燥剤の量を示す。
図8は、一方の容器内における希薄乾燥剤を他方の容器内における濃縮乾燥剤からさらに完全に分離させ、かつ、図7に示すような同様の部品と、さらに希釈乾燥剤容器と濃縮乾燥剤容器とを接続する管45とを備える2個の容器リザーバを示す。管45は、希薄乾燥剤容器の底部に接続され、かつ、可撓性管49によって濃縮乾燥剤容器内の中密度フロート41に取り付けられ、そして示されるように中密度フロート41の頂部を介して開き、それによって、希薄乾燥剤は、適宜濃縮乾燥剤容器に、ただしフロート41上のみで流れることができる。逆に、フロート41の密度によって設定されたしきい値よりも希薄な乾燥剤のみを希薄乾燥剤容器に流し戻すことができる。というのは、フロート41は、その容器内の全ての乾燥剤が濃縮されたときに濃縮乾燥剤容器内の液体の頂部にまで上昇するからである。
したがって、単一のリザーバ又は2個のリザーバ又は他の同様の実施形態のいずれかを使用して、それぞれデバイス1又は2から流れ9又は11を受け取ることができ、そしてそれぞれデバイス1又は2に流れ8又は10を返すことができる。このようにして、デバイス1及び2のいずれかは、所定時間にわたって独立に動作できるが、ただし、リザーバ内には利用可能な十分な濃縮又は希薄乾燥剤が存在するものとする。
図1は、それぞれが4個のセクターを有するデバイスに対して高い水分除去での冷房季節動作モードで空気流3及び4に生じる温度及び湿度の変化の例を湿り空気線図で示すものである。断熱除湿及び顕冷却ラインは、全体的な集合のプロセスの例示であり、プロセスを正確かつ詳細にモデル化することを意図するものではない。
図2に示すように、デバイス1では、ファン又は他の空気移動デバイス34によって周囲空気流3を生じさせて、まず凝縮により空気流3から水分を部分的に除去する任意の冷却コイル36に流し、その後それぞれが空気入口25から任意にデミスタ26を備えることができる出口39まで気密的に互いに連結される装置のセクターを備える多数のモジュールに流す。ここで、入口25に最も近いセクターをセクター1といい、図2においてモジュール54内に示す。空気移動デバイスは、デバイス内の任意の便利で効果的な位置に配置でき、又はいずれかの端部でそれに連結でき、かつ、空気流3をデバイスから空調空間に出す。デバイスの各モジュールは、空気を過度の抵抗なしに通すことを可能にする媒体パッド21を備える(パッド当たり約0.1インチの水位又は25パスカルの最大値)。各パッドを、供給空気流3の所望の温度に応じて、すなわち、装置が冷房モードか又は暖房モードかどうかに応じて乾燥剤を冷却又は加熱する熱交換器22を介して溜め30からポンプ24によってパッド21に圧送される乾燥剤で分配装置23により均一に湿らせる。好ましい実施形態では、ポンプ24からの流れ7は、デバイスで使用される熱交換器22の性能データ及び次の段落の一般的なガイドラインに関連して決定すべきである。
冷却流体5は、外部源51からデバイス1に供給され、再冷却のための又は他の目的のために使用される流れ6を介してその供給源に戻されることができる。任意のコイル36への冷却流体は、同じ供給源からのものであってもよく、熱交換器への流れに従って並列に又は直列に流れることができる。好ましい実施形態では、熱交換器22は、乾燥剤に抵抗性のある材料から作製されたプレート式熱交換器であるが、プレート式熱交換器以外のデバイスを、乾燥剤を冷却するために使用してもよい。例えば、装置を冷却源51として熱ポンプと組み合わせて使用するときに例えば冷媒又は吸収性流体のために使用される地理交換ループ又は熱交換器の他の形態を使用することができる。熱交換器に行く流体5の典型的な冷却源は、例えば、地理交換ループ、冷却装置からの戻り冷水流れ又は混プレ沙からの冷媒であることができるが、ただし、供給源流体が空調空間に対する所望の供給空気流3よりも例えば9度F(5℃)冷たいものとする。
デバイス1を通した乾燥剤の流れは、セクター1におけるポンプ24の出力の一部である流れ9の除去によって生じる。乾燥剤の流れ9は、デバイス1内における乾燥剤のレベルの低下を引き起こす。デバイス1内のレベルが予め設定されたレベルにまで低下すると、1個以上のフロートスイッチ28は、モジュール56として図2に示すセクター1から遠いセクターにおけるデバイス1への乾燥剤8の流れを作動させる。濃縮された乾燥剤8は、任意に、図5及び6の説明において上記したように、モジュール56内のパッドのトレーリング側に供給できる。その後、乾燥剤は、管27を介して又は隣接するセクター若しくは上記他の選択肢におけるレベルコントローラ28によって制御される各ポンプ24からの部分的な流れによって、上記セクターのそれぞれにデバイスを通って流れる。第1セクター、モジュール54から出る流れ9の速度は、機構37及び弁48によって決定され、これらのものは、乾燥剤の濃度を測定及び制御し、流れを増加又は減少させるため、乾燥剤の希釈は、再生器、すなわちデバイス2に適している。機構37を使用する代わりに、弁48を通した所望の流れは、デバイス1を通した空気流3の湿度の変化から計算できる。
デバイス2の好ましい実施形態では、空気流4をファン又は他の空気移動デバイス32によって生じさせて、空気流4として空気入口29から出口33まで互いに気密に連結される多数のモジュラーセクターに流れさせ、そこで、空気流3の入口から大気中に排出させる。空気移動デバイスは、装置内の任意の便利で効果的な位置に設置でき、又は空気流4がデバイスに流れるようにこれをいずれかの端部に連結できる。ほとんどの用途では、空気流4は、建物排気から得られる。というのは、これは、利用できる最も低い絶対湿度の空気であるため、乾燥剤をさらに良好に濃縮することになるからである。空気流4は、熱回収コイルの手段又は空気対空気プレート熱交換器(ここでは図示されず、標準的なHVAC慣行である)によってデバイス2を出る空気流4からの顕熱を使用して任意に予備加熱できる。
デバイス2は、任意の部材26及び36が省略される場合には、基本的にデバイス1と同じである。デバイス2におけるセクターの動作は、基本的にデバイス1と同じであるが、ただし、デバイス1では、空気に及ぼす液体乾燥剤の作用が一般に冷却及び除湿することであり、デバイス2では、空気を加熱及び加湿し、それによって液体乾燥剤を再濃縮することであるものとする。
デバイス1及び2において、ポンプ24は、水平表面積1平方フィート当たり毎分約1.5〜2ガロン(平方メートル当たり毎分60〜80リットル)の速度で媒体パッドにわたって液体乾燥剤7の流れを生じさせる。これは、1秒当たり約6フィート(2メートル)の水平方向空気流3及び4について十分な流量である。より高い空気流速度が望ましいが依然として毎秒10フィート(3メートル)未満の場合には、液体流量7を減少させて、空気流に持ち越される可能性のある乾燥剤の液滴の形成を防止しなければならない。最高の性能のために、空気流速度は、局所的なキャリーオーバーを防止するために、パッドの面にわたって可能な限り均一とすべきである。媒体パッド21の上面における乾燥剤の分布は均一であるべきであり、これは、媒体パッドの水平表面にわたって均等に間隔を置いて配置される平方フィート当たり20〜30個(平方メートル当たり200〜300個)の孔が存在するような間隔で孔を有する管の配列からなるディストリビュータ23によって行うことができる。このようなデバイス23を単一のセクターについて図4に示しているが、パッド23上に液体乾燥剤を均一に分配する他の手段を使用してもよい。
デバイス1又は2のいずれかにおける媒体パッド21の材料は、乾燥剤に対して抵抗性であり、しかもパッドが使用できる温度では変形しないようなものである。このような媒体は、揮発性冷却器媒体、適宜、例えばスウェーデン国KistaのMunters ABが商標CELDEKとして販売するもの、このような媒体のさらに高温度バージョン、例えば、Munters ABが商標GLASDEKとして販売するもの、及び化学塔で使用されるもの、例えば、米国カリフォルニア州アゴーラヒルズのLantec Products社が販売するものであることができる。
デバイス2内の熱交換器は、図3に示される加熱流体15の流れを受け入れ、これは、デバイス1及び流れ5について記載したのと同様の方法で各セクター内の液体乾燥剤を加熱する。加熱流体を、再加熱又は他の目的のために流れ16を介して外部加熱源52に戻すことができる。
セクター筐体20及び熱交換器22の外面は、ほとんどの空調機器でよく行われているように、大気への熱損失を低減するために断熱されるべきである。断熱材は従来のものとすることができ、簡潔かつ明確にするために、さらに例示又は記載しない。
液体乾燥剤は、臭化リチウム若しくは塩化リチウム又はこれら2種の混合物或いは空気流と接触したときに低い相対湿度を生じさせることができる他の液体乾燥剤のいずれかの濃縮水溶液であることができる。臭化リチウムを使用すると、塩化リチウムよりも低い相対湿度を空気流3で達成することが可能になるが、両方とも平衡状態のときに12%の空気中の相対湿度を生じさせることができる。液体乾燥剤は、特定の用途のために必要なレベルまで空気流3から水分を除去するのに適したものでなければならない。他の液体乾燥剤としては塩化カルシウムなどが可能であるが、他のものは、毒性及び/又は不十分な温度及び湿度範囲という欠点を有する。好ましい乾燥剤として選択されたリチウム塩の溶液は、通常の濃度/温度範囲では凍結せず、重症急性呼吸器症候群(SARS)ウイルスを含めた試験を受けた全ての細菌及びウイルスに対して有益な殺生作用を有する。また、デバイス1は、通常のエアフィルタを回避する場合がある微粒子、花粉及び胞子のための空気清浄装置としても機能する。空気から除去された物質は洗浄されて乾燥剤になり、ポンプ24から熱交換器22への再循環ライン(流れ7)内にあるカートリッジフィルタ31によって収集される。
装置全体の好ましい実施形態では、図7に示すようにデバイス2からの濃縮乾燥剤流れ11はリザーバに流れ、そこから、流れ8として必要なときにデバイス1に圧送される。デバイス1からの乾燥剤流れ9は、貯蔵デバイスの異なる部分に流れ、そしてデバイス2に必要なときに流れ10として圧送される。説明したように、夏期動作では、デバイス1は除湿器として動作し、デバイス2は再生器として機能し、デバイス1からの流れ9は希釈乾燥剤溶液であり、リザーバの頂部に送られる。デバイス2から11の流れは濃縮乾燥剤溶液であり、リザーバの底部に送られる。デバイス1への流れ8は濃縮乾燥剤溶液であり、リザーバの底部から取り出される。デバイス2への流れ10は、希釈乾燥剤溶液であり、リザーバの頂部から取り出される。冬期では、デバイス1が加湿器として動作しているときに、通常は流れ9は存在しない。というのは、流れ12として添加された全ての水は蒸発して空気流3になり、そこから適宜空調空間に通るからである。デバイス2は、冬期にはエンタルピー回収装置として使用でき、その場合には、流れ11は流れ13としてデバイス1に直接向かうように切り替えられ、そして流れ9が流れ10としてデバイス2に直接向かう。切り替えは、動作モードを変更したときに作動される配管T−弁を使用して標準的な手順によって達成されるが、ここでは図示しない。
さらに濃縮された乾燥剤は、乾燥剤リザーバ内において希薄乾燥剤とは別に保持される。しかし、別の実施形態では、乾燥剤リザーバを省略することができ、乾燥剤の流れ9は流れ10としてデバイス2に直接向かうことができ、しかも乾燥剤の流れ11は流れ8としてデバイス1に直接移動することができるが、ただし、熱交換器22を介してかつ各セクターにおけるパッド21にわたって乾燥剤の流れを維持するのに必要とされるように、各デバイスの各セクターのサンプ30において乾燥剤の最小及び最大作業レベルが維持されることを条件とする。
流れ11の増加又は減少は、デバイス2からの乾燥剤濃度をセンサ35によって又はデバイス2に出入りする空気流4の湿度の差からの計算によって制御する。このようなセンサ35の一実施形態では、デバイス2のセクター1における濃縮乾燥剤の一部がパッド21から小さな溜めに流れ、これがサンプ30に溢れ出る。したがって、センサ溜めにおける乾燥剤は、デバイス2によって生成される最も濃縮された乾燥剤のサンプルである。センサ35は、乾燥剤の比重、すなわちその濃度を測定するよう較正された圧力感知装置に接続されたフロートなどの機構を備える。弁50は、乾燥剤の濃度を空気流3に必要な相対湿度及び加熱源15の温度と一致するレベルに維持するために、センサ35又は計算によって動作する。
デバイス1において、同様のセンサ37又は説明した計算方法を弁48と共に使用して、乾燥剤流れ9が十分に希釈されていることを確保する。というのは、リザーバ及びデバイス2への乾燥剤の流れは、再生器の適切かつ経済的な動作のために希薄であるべきだからである。
装置は次のように作用する:
空気流3をデバイス1によって除湿する必要がある場合として定義される冷房/除湿モードでは、熱源流体5は冷たく、そしてシステムが動作中のとき、すなわち、ポンプ及び空気移動デバイスが上記のように機能しているときに、空気流3は冷却されかつ任意の冷コイル36との接触により部分的に除湿され、その後デバイス1の乾燥剤モジュール54、55及び56の通過により除湿及び冷却され、空間を状態調整するその必要な用途に流れる。乾燥剤流れ8は、通常、デバイス1が空気の冷却及び除湿を同時に行うために濃縮する必要がある。このプロセスは、上記のようにセクター内において乾燥剤を徐々に希釈し、希乾燥剤は流れ9を介してデバイス1を出る。
デバイス2は、リザーバから又はデバイス1から直接流れ10を介して希釈乾燥剤を受け取り、流れ10は、モジュール60の一部として図3に示される空気流出口33に最も近いデバイス2のセクターに流入する。デバイス1について説明したように、乾燥剤は、重力によって接続管27を介して又は隣接するセクター内のポンプ24からの部分流により流れる。乾燥剤がセクター1(モジュール58として示される)に到達すると、濃縮乾燥剤の部分流11は、ポンプ24によって貯蔵デバイス又はデバイス1に直接圧送され、そしてセンサ35又は計算及び弁50によって制御される。
各デバイスのセクターのそれぞれにおける空気の温度及び湿度の変化を、各デバイスが4個のセクターを備える例のために図1の湿り空気線図で示す。デバイス1のセクター1では、外部の空気流3は、冷却乾燥剤によって、2つのプロセス、すなわち断熱除湿及び冷却の組み合わせを受ける。図1における各セクターのための2つの線(一定のエンタルピーで斜めの線で表される断熱除湿及び一定の湿度で水平線で表される冷却)は、これらの2つのプロセスを別々に示すものであるが、これらは、乾燥剤が次のセクターに流れる速度の数倍の速度でポンプ24により圧送されるため多かれ少なかれ同時に生じる。
空気流の除湿及び冷却の量は、そのセクターにおける乾燥剤の蒸気圧(これはその濃度に応じる)及びそのモジュールにおける熱交換器22を介して乾燥剤に伝達される熱の量によって制限される。空気がセクター1において接触する乾燥剤は既に他のセクターを通過したものであるため比較的希薄であるが、セクター間における乾燥剤の流量は、乾燥剤が空気流3中における湿気の一部を除去するのに十分に濃縮されるようなものである。空気は、セクター2に入り、かつ、セクター2に入る乾燥剤によって同じように処理され、セクター1よりもさらに濃縮される。
図1には、外気3を95F(35℃)及び0.025絶対湿度(HR=空気の質量当たりの水分の質量)から65度F(18℃)及び0.004HRの空気流3の供給条件にまで処理する4個のセクターが示されている。この例における冷却流体5は約60度F(15.5℃)であり、熱交換器にわたって約5度F(3℃)の温度差が存在する。入ってくる乾燥剤流れ8は、供給空気流3の所望の相対湿度を生じさせるのに十分に濃縮すべきである。装置を設計する際には、冷却流体5の温度及びデバイス1における熱交換器22のサイズが外部空気流3から必要な供給空気流の条件までの最大エンタルピーを除去するのに十分なものであることを確保する必要がある。
また、デバイス2における乾燥剤の再濃縮も、図1において湿り空気線図の高温部に示されている。空気流4は、前述のように任意に予熱でき、その後デバイス2のセクター1に入り、そこで熱交換器22によって加熱された乾燥剤を濃縮させるために湿気を除去する。加熱についての水平線及び断熱加湿についての均等のエンタルピー線は、図1においてこれを表すが、両方のプロセスは、実際には多かれ少なかれ同時に生じる。その後、空気は、モジュール59として図3に示される、空気の流れ方向に下流にあるデバイス2のセクター2を通過し、そこでさらに加熱され、乾燥剤は空気への蒸発により濃縮される。
図1では、4個のセクターがデバイス1及び2のそれぞれについて示されており、空気は、数値順に通過する(図2のモジュール54、55、55、56及び図3の58、59、59、60に相当するセクター1、その後セクター2、その後セクター3、その後セクター4)。乾燥剤は、既に説明したように空気とは反対方向に流れる。上記のように動作条件に応じて2個以上のセクターが存在する。より希薄な乾燥剤が必要な最大除湿にとって十分な場合には、それよりも少ないセクターが必要とされるのに対し、非常に濃縮された乾燥剤については、より多くのセクターが必要となる。また、各セクター内の熱交換器22において乾燥剤を加熱するために使用される加熱流体15の温度も必要とされるセクターの数に影響を与える。記載された複数セクタープロセスの大きな利点は、廃熱、太陽エネルギーで加熱された水及び冷凍機から利用可能な湯(これらの全ては約130〜140度F(54〜60℃)で安価に入手可能である)などの低コストの熱源から容易に入手可能である比較的低い温度を使用することができることである。
冬期モードでの動作(これは、建物制御が入ってくる空気の加熱を求めている場合である)は、乾燥剤の濃度を変化させるためにデバイス2の使用を伴う必要はないが、デバイス2を使用して建物排気から熱及び湿気を回復することができる。冬期には、入ってくる空気は低湿度を有しているため加湿が望ましいが、これは、水12のデバイス1への流れによって達成できる。これは、空気流3を加湿するポイントにまで最後のセクターにおいて(モジュール56において)乾燥剤を希釈する。水がこれらの状況下で希釈乾燥剤から蒸発するため、水流12は、適宜、希釈乾燥剤レベルを維持するために、モジュール56におけるレベルセンサ28により動作する。デバイス1のセクター1内の乾燥剤は、部分的に希釈された状態になるにもかかわらず、依然として殺生物剤として十分に活性なままである。標準的な水処理プラント(図示せず)を使用して、適宜、乾燥剤の作用に影響を与える又は残留物の蓄積を生じさせる可能性がある不純物を除去するように水12の流れを処理する。
デバイス2を使用した冬期モードでの熱及び水分の回復は、エンタルピー実行アラウンドループの2つの部分としてデバイス2及びデバイス1のセクター1を使用することによって達成できる。したがって、デバイス2は夏期モードと同様に動作するが、ただし流れ15からの追加の熱なしで動作し、これを遮断する。乾燥剤の流れ10は夏期モードと同様に入り、乾燥剤は建物からの排気から熱及び湿気をピックアップする。乾燥剤流れ11はデバイス2を出て、弁50は全開である。夏期モード動作との違いは、流れ11が流れ13としてデバイス1のセクター1に迂回し、パッド21にわたって圧送され、外気流3を予熱及び予め加湿するように作用することである。
夏期モードと冬期モードとの切り替えは、上記のようにかつデバイス1への流れを乾燥剤(流れ8)から水(流れ12)に変化させることによって達成され、逆の切り替えは、乾燥剤に戻すように変更し、デバイス2を再動作させることを含む。冬期モードの動作後及び乾燥剤を希釈した後に、流れ11は、貯蔵デバイスに向かわせる代わりに、流れ13と接続するように切り替えられる。
デバイス1又は2のいずれかにおいて、重力供給管27が使用される場合には、乾燥剤レベルは、溜め30の1以上の便利な場所に設置できるレベルセンサ28に従って乾燥剤の流入8又は10をオン又はオフにすることによって制御できる。流れの作動は、ポンプ43又は44をオンにすることによって、或いは流れ10又は8を生じさせるのに十分な圧力が存在する場合にはポンプの代わりに流量弁(図示せず)を開くことによって達成できる。
いずれかのデバイスでは、圧送された乾燥剤流れをセクター間で使用する場合には、レベル制御28は、28がリザーバ内のポンプ43又は44を制御する最後のセクターを除き、乾燥剤の流入を直接制御するのに役立つフロート起動制御弁である。
当業者であれば、空気流の冷却又は加熱及び除湿又は加湿を達成するように上記装置を構築及び操作して、建物内に制御された条件を与えることができることが分かる。
上記説明は、当業者が今のところそのベストモードであるとみなすものを製造し使用することを可能にするが、当業者であれば、特定の実施形態の変形例、組み合わせ及び均等、方法及び実施例が存在することが分かるであろう。したがって、本発明は、上記実施形態、方法及び実施例に限定されるものではなく、本開示の範囲及び精神内において全ての実施形態及び方法に拡大される。
したがって、本発明の範囲を示すものとして、上記明細書よりも特許請求の範囲を参照すべきである。本発明の態様は、請求項のいずれか2つ以上の特徴の組合せを含む。
1 デバイス1
2 デバイス2
3 周囲空気流
20 空気筐体
21 媒体パッド
22 熱交換器
24 ポンプ
25 空気入口
27 管
30 サンプ
34 空気移動デバイス
39 出口
40 容器
41 中密度フロート
42 フロート
44 ポンプ
45 管
49 可撓性管
54 第1モジュール
55 中間モジュール
56 最後のモジュール
58 第1モジュール
59 中間モジュール
60 最後のモジュール

Claims (18)

  1. 熱及び湿気の交換方法であって、
    空気流が通過するように直列する少なくとも2個の区間のそれぞれにおいて空気流と交換体中の液体乾燥剤とを接触させ;
    該区間のそれぞれについて、各区間で共通の熱伝達流体が供給される外部熱伝達源を使用して、該交換体に対して外部で乾燥剤の温度を調節し、前記外部熱伝達源への前記共通の熱伝達流体を各区間にて同じ温度で与え;
    区間と区間の間において、区間と区間を接続する管もしくは側流を介して該乾燥剤を該空気流の流れに対して逆流させ、それによって、各区間で空気の湿度を該乾燥剤との接触によって変化させ、各区間での濃度が前の区間における乾燥剤の濃度とは明らかに異なること
    を含む方法。
  2. 前記交換体が吸収体であり;前記熱及び湿気の交換が空気流を冷却及び除湿することを含み;前記外部熱伝達源は、共通の熱伝達流体が冷却流体である冷却源であり;前記乾燥剤の温度を調節することが該乾燥剤を冷却することを含む、請求項1に記載の方法。
  3. 前記乾燥剤の流れを、前記空気流の到達温度とは9度F(5℃)以下異なる温度で冷却源から熱を伝達し、該空気流が22Btu/lb(51kJ/kg)未満の最終エンタルピーを有するように熱交換器を介して圧送することをさらに含む、請求項1に記載の方法。
  4. 前記乾燥剤の流れを、最終空気流の相対湿度が該乾燥剤の濃度と平衡状態での空気流の相対湿度とは2%以下異なるように調節することをさらに含む、請求項1に記載の方法。
  5. 前記乾燥剤の流れを、前記空気流が30%未満の最終相対湿度を有する程度に十分に濃縮するように再生器を介して調節することをさらに含む、請求項2に記載の方法。
  6. 前記交換体が蒸発器であり、前記熱及び湿気交換が前記乾燥剤の水分含有量を減少させることを含む、請求項1に記載の方法。
  7. 前記乾燥剤が該乾燥剤についての飽和濃度の3%以内の最終相対湿度を有する、請求項6に記載の方法。
  8. 前記加熱源が周囲空気温度とは40度F(22℃)以下異なる、請求項6に記載の方法。
  9. 前記方法により生成された濃縮乾燥剤と接触する空気流の平衡相対湿度が、入ってくる空気流の相対湿度の2%を超えない、請求項6に記載の方法。
  10. 前記交換体が蒸発器であり;前記熱及び湿気交換が前記空気流を暖めかつ加湿すること含み;前記外部熱伝達源は、共通の熱伝達流体が加熱流体である加熱源であり;前記乾燥剤の温度を調節することが該乾燥剤を加熱することを含む、請求項1に記載の方法。
  11. 前記外部加熱源の温度が前記空気流の最高温度よりも上の20度F(11℃)を超えない、請求項10に記載の方法。
  12. 前記加熱及び加湿空気流を空調空間に供給し、該加熱及び加湿方法における再利用のために該空調空間からの排気空気流から熱及び湿気を回収することをさらに含む、請求項10に記載の方法。
  13. 前記空気流が少なくとも25%の最終相対湿度を有する、請求項10に記載の方法。
  14. 前記空気流を接触させることと前記乾燥剤を冷却することとの間において、各区間内において前記乾燥剤を再循環させることをさらに含み、交換体を通る流量は、各流体流れのレイノルズ数が300よりも大きいようなものである、請求項1に記載の方法。
  15. 装置に通される空気流と、外部エネルギー流体源と、液体乾燥剤流れとの間での熱及び湿気の交換のための装置であって、
    なくとも2個の別個の、空気流が通過するように直列に配列され接続されたモジュールを備え、各モジュールは、液体乾燥剤を通す管もしくは側流を介して互いに接続されており、
    各モジュールは、
    液体乾燥剤と空気とを接触させるための吸収器又は蒸発器と、
    該吸収器又は蒸発器にわたって液体乾燥剤を分配するための液体乾燥剤ディストリビュータと、
    該外部エネルギー流体源からの流体により該液体乾燥剤を冷却又は加熱するための、該吸収器又は蒸発器の外部にある熱交換器であって、前記外部エネルギー流体源から前記熱交換器へと与えられる前記流体の温度が各モジュールにおいて同じ温度である熱交換器と、
    該吸収器又は蒸発器と該熱交換器との間に液体乾燥剤を再循環するように動作するポンプと、
    該空気流を該吸収器又は蒸発器に導くための外部シェルと、
    該吸収器又は蒸発器にわたって分配される該液体乾燥剤を収集するための、該吸収器又は蒸発器の下にあるサンプと
    を備える装置。
  16. 液体乾燥剤を隣接するモジュール間に流すダクト又はポンプと、液体乾燥剤を第1モジュールから除去するように動作できるポンプと、液体乾燥剤を最後のモジュールに供給するように動作できるポンプと、該第1モジュールから該最後のモジュールまでの方向に空気流を流すように動作できるインペラとをさらに備える、請求項15に記載の装置。
  17. 前記装置の第2のものをさらに備え、前記ポンプが、前記液体乾燥剤を前記装置の第1のものの第1モジュールから該装置の第2のものの最後のモジュールに流し、該装置の第2のものの第1モジュールから該装置の第1のものの最後のモジュールに流すように動作できる、請求項15に記載の装置。
  18. 前記モジュールが、該モジュールの数を、異なる外部設計条件と異なる外部加熱及び冷却流体温度とに適応するように増加又は減少させることができるように多数のモジュールを介して気密流れ及び液密乾燥剤流れを与えるように連結されている、請求項15に記載の装置。
JP2017506252A 2014-04-15 2015-04-08 液体乾燥剤を使用した段階的プロセスを使用する空調方法 Active JP6728130B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461979882P 2014-04-15 2014-04-15
US61/979,882 2014-04-15
PCT/US2015/024831 WO2015160580A1 (en) 2014-04-15 2015-04-08 An air conditioning method using a staged process using a liquid desiccant

Publications (3)

Publication Number Publication Date
JP2017517395A JP2017517395A (ja) 2017-06-29
JP2017517395A5 JP2017517395A5 (ja) 2019-08-15
JP6728130B2 true JP6728130B2 (ja) 2020-07-22

Family

ID=54264795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017506252A Active JP6728130B2 (ja) 2014-04-15 2015-04-08 液体乾燥剤を使用した段階的プロセスを使用する空調方法

Country Status (8)

Country Link
US (2) US9982901B2 (ja)
EP (1) EP3132206A4 (ja)
JP (1) JP6728130B2 (ja)
KR (1) KR102396679B1 (ja)
CN (1) CN106461245B (ja)
CA (1) CA2945998C (ja)
MX (1) MX2016013587A (ja)
WO (1) WO2015160580A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10260761B2 (en) * 2010-05-18 2019-04-16 Energy & Environmental Research Center Foundation Heat dissipation systems with hygroscopic working fluid
US10845067B2 (en) 2010-05-18 2020-11-24 Energy & Enviornmental Research Center Hygroscopic cooling tower for waste water disposal
US10808948B2 (en) 2010-05-18 2020-10-20 Energy & Environmental Research Center Heat dissipation systems with hygroscopic working fluid
WO2011161547A2 (en) 2010-06-24 2011-12-29 Venmar, Ces Inc. Liquid-to-air membrane energy exchanger
US8915092B2 (en) 2011-01-19 2014-12-23 Venmar Ces, Inc. Heat pump system having a pre-processing module
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US9109808B2 (en) 2013-03-13 2015-08-18 Venmar Ces, Inc. Variable desiccant control energy exchange system and method
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
DK3183051T3 (da) 2014-08-19 2020-06-02 Nortek Air Solutions Canada Inc Væske-til-luftmembranenergivekslere
US10767561B2 (en) * 2014-10-10 2020-09-08 Stellar Energy Americas, Inc. Method and apparatus for cooling the ambient air at the inlet of gas combustion turbine generators
AU2016265882A1 (en) 2015-05-15 2018-01-18 Nortek Air Solutions Canada, Inc. Using liquid to air membrane energy exchanger for liquid cooling
US11092349B2 (en) 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
AU2016281963A1 (en) 2015-06-26 2018-02-15 Nortek Air Solutions Canada, Inc. Three-fluid liquid to air membrane energy exchanger
KR101754129B1 (ko) 2015-12-17 2017-07-06 (주)가교테크 증발냉각식 배기열 회수장치의 성능 예측 방법
AU2017228937A1 (en) 2016-03-08 2018-10-25 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
SE541002C2 (en) * 2016-07-06 2019-02-26 Airwatergreen Group Ab Device for continuous water absorption and an air cooler
WO2018191806A1 (en) 2017-04-18 2018-10-25 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
US10845109B2 (en) * 2017-06-22 2020-11-24 CoVAP LLC Modular adiabatic pre-cooling cassette with method of retrofit for horizontal air-cooled commercial refrigeration condensers
US10527303B2 (en) * 2017-11-16 2020-01-07 Grahame Ernest Maisey Load follower and load anticipator for a liquid desiccant air conditioning system
US10760797B2 (en) * 2017-11-30 2020-09-01 Grahame Ernest Maisey Air or spray washer for air conditioning units
CN109999622A (zh) * 2019-02-24 2019-07-12 无锡山宁机械有限公司 一种湿帘溶液脱水器
CN110779110B (zh) * 2019-11-18 2021-02-05 珠海格力电器股份有限公司 空调装置及其控制方法
US20220243932A1 (en) * 2021-01-29 2022-08-04 Palo Alto Research Center Incorporated Electrochemical dehumidifier with multiple air contactors
US20220299223A1 (en) * 2021-03-17 2022-09-22 Palo Alto Research Center Incorporated Staged regenerated liquid desiccant dehumidification systems
WO2022231536A1 (en) * 2021-04-30 2022-11-03 Enerama Çevre Teknoloji̇leri̇ Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Liquid desiccant dehumidification system with multiple regeneration towers and multiple absorbers
US11944934B2 (en) 2021-12-22 2024-04-02 Mojave Energy Systems, Inc. Electrochemically regenerated liquid desiccant dehumidification system using a secondary heat pump

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164125A (en) 1977-10-17 1979-08-14 Midland-Ross Corporation Solar energy assisted air-conditioning apparatus and method
SE440275B (sv) 1979-03-21 1985-07-22 Svante Thunberg Vermevexlare till anleggningar for ventilering av lokaler
US5123481A (en) 1986-07-09 1992-06-23 Walter F. Albers Method and apparatus for simultaneous heat and mass transfer
US4982782A (en) 1986-07-09 1991-01-08 Walter F. Albers Method and apparatus for simultaneous heat and mass transfer
US5020335A (en) 1986-07-09 1991-06-04 Walter F. Albers Method and apparatus for simultaneous heat and mass transfer
SE464853B (sv) * 1988-08-01 1991-06-24 Ahlstroem Foeretagen Foerfarande foer avfuktning av en gas, speciellt luft
US5020588A (en) 1989-05-03 1991-06-04 Walter F. Albers Method and apparatus for simultaneous heat and mass transfer utilizing a plurality of gas streams
US4941324A (en) * 1989-09-12 1990-07-17 Peterson John L Hybrid vapor-compression/liquid desiccant air conditioner
US5146978A (en) 1990-10-30 1992-09-15 Walter F. Albers Method and apparatus for monochannel simultaneous heat and mass transfer
US5351497A (en) 1992-12-17 1994-10-04 Gas Research Institute Low-flow internally-cooled liquid-desiccant absorber
US5426953A (en) * 1993-02-05 1995-06-27 Meckler; Milton Co-sorption air dehumidifying and pollutant removal system
US5460004A (en) 1993-04-09 1995-10-24 Ari-Tec Marketing, Inc. Desiccant cooling system with evaporative cooling
US6138470A (en) 1997-12-04 2000-10-31 Fedders Corporation Portable liquid desiccant dehumidifier
US6216489B1 (en) 1997-12-04 2001-04-17 Fedders Corporation Liquid desiccant air conditioner
US6513339B1 (en) 1999-04-16 2003-02-04 Work Smart Energy Enterprises, Inc. Solar air conditioner
MXPA03009675A (es) * 2001-04-23 2004-05-24 Drykor Ltd Aparato para acondicionamiento de aire.
WO2003056249A1 (en) 2001-12-27 2003-07-10 Drykor Ltd. High efficiency dehumidifiers and combined dehumidifying/air-conditioning systems
KR20040026242A (ko) * 2002-09-23 2004-03-31 주식회사 에어필 열펌프를 이용한 액체 제습식 냉방장치
CN1200228C (zh) * 2002-12-09 2005-05-04 清华大学 一种利用吸湿溶液为循环工质的全热交换方法及其装置
AU2003303998A1 (en) 2003-03-12 2004-09-30 Milind V. Rane Air conditioning method using liquid desiccant
US6854279B1 (en) 2003-06-09 2005-02-15 The United States Of America As Represented By The Secretary Of The Navy Dynamic desiccation cooling system for ships
WO2004111557A1 (en) 2003-06-12 2004-12-23 Rane Milind V Multiutility vapor compression system
US20050109052A1 (en) * 2003-09-30 2005-05-26 Albers Walter F. Systems and methods for conditioning air and transferring heat and mass between airflows
TWI404897B (zh) * 2006-08-25 2013-08-11 Ducool Ltd 用以管理流體中之水含量的系統及方法
US8268060B2 (en) 2007-10-15 2012-09-18 Green Comfort Systems, Inc. Dehumidifier system
US8241399B2 (en) * 2008-05-16 2012-08-14 Walter Albers Thermo-chemical heat pump and methods of generating heat from a gas stream
US20100000247A1 (en) 2008-07-07 2010-01-07 Bhatti Mohinder S Solar-assisted climate control system
US8887523B2 (en) 2008-08-08 2014-11-18 Khaled Gommed Liquid desiccant dehumidification system and heat/mass exchanger therefor
US20100175394A1 (en) * 2009-01-09 2010-07-15 Albers Walter F Air energy reduction method and apparatus using waste heat from condensers or other low grade heat
US8196907B2 (en) 2009-08-18 2012-06-12 General Electric Company System for conditioning the airflow entering a turbomachine
US10260761B2 (en) * 2010-05-18 2019-04-16 Energy & Environmental Research Center Foundation Heat dissipation systems with hygroscopic working fluid
CN110220254A (zh) * 2010-05-25 2019-09-10 7Ac技术公司 使用液体干燥剂进行空气调节及其它处理的方法和系统
WO2011161547A2 (en) * 2010-06-24 2011-12-29 Venmar, Ces Inc. Liquid-to-air membrane energy exchanger
AP2013006932A0 (en) * 2010-11-23 2013-06-30 Ducool Ltd Air conditioning system
US8141379B2 (en) 2010-12-02 2012-03-27 King Fahd University Of Petroleum & Minerals Hybrid solar air-conditioning system
AU2010365411A1 (en) 2010-12-13 2013-08-01 Ducool Ltd. Method and apparatus for conditioning air
SG11201400114VA (en) 2011-08-26 2014-03-28 Ducool Ltd Desiccant-based cooling system
WO2013172789A1 (en) 2012-05-16 2013-11-21 Nanyang Technological University A dehumidifying system, a method of dehumidifying and a cooling system
US8920546B2 (en) 2012-06-04 2014-12-30 Z124 Water recovery system and method
US20130340449A1 (en) 2012-06-20 2013-12-26 Alliance For Sustainable Energy, Llc Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow
CN203132011U (zh) 2012-12-14 2013-08-14 东南大学常州研究院 溶液除湿再生热湿独立处理空调装置

Also Published As

Publication number Publication date
CN106461245A (zh) 2017-02-22
WO2015160580A1 (en) 2015-10-22
KR20160143806A (ko) 2016-12-14
US20150292754A1 (en) 2015-10-15
CA2945998A1 (en) 2015-10-22
EP3132206A4 (en) 2018-01-03
US20180238568A1 (en) 2018-08-23
KR102396679B1 (ko) 2022-05-11
MX2016013587A (es) 2017-06-07
CN106461245B (zh) 2020-08-18
US9982901B2 (en) 2018-05-29
CA2945998C (en) 2021-03-02
JP2017517395A (ja) 2017-06-29
EP3132206A1 (en) 2017-02-22
US10823436B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
JP6728130B2 (ja) 液体乾燥剤を使用した段階的プロセスを使用する空調方法
CN103370579B (zh) 用于调节空气的方法和设备
US9511322B2 (en) Dehumidification system for air conditioning
JP6506266B2 (ja) 天井内液体乾燥剤空調システム
EP2770266B1 (en) Regeneration air mixing for a membrane based hygroscopic material dehumidification system
US9631824B1 (en) Liquid desiccant HVAC system
JP2017517395A5 (ja)
CA3019410A1 (en) Air conditioning via multi-phase plate heat exchanger
CN103075770B (zh) 一种利用室内排风蒸发冷却的转轮除湿装置及其使用方法
US20080276640A1 (en) Evaporative cooler and desiccant assisted vapor compression AC system
CN104676782B (zh) 一种多级叉流的溶液调湿空气处理装置
JP2001317795A (ja) 空気調和機及び湿度制御方法
CN205747186U (zh) 空气处理系统
CN103115402A (zh) 一种叉流式内冷型溶液除湿器及其方法
WO1997017586A1 (fr) Procede et systeme pour le refroidissement d'un fluide et l'assechement et le refroidissement d'un gaz
CN106369722B (zh) 一种双模式溶液调湿新风空调机组及空气湿度调控方法
US9557093B2 (en) Industrial dehumidifier system
CN105571020B (zh) 一种适用湿热地区的多级中空纤维膜液体除湿装置
WO2004081462A1 (en) Air conditioning method using liquid desiccant
CN205216234U (zh) 一种溶液组分分离系统
CN105413213B (zh) 一种溶液组分分离方法及系统
CN116734347A (zh) 一种溶液除湿蒸发冷水机及溶液除湿空调
TW202314167A (zh) 空氣處理系統

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190404

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200701

R150 Certificate of patent or registration of utility model

Ref document number: 6728130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250