CN107785488A - 钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用 - Google Patents

钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用 Download PDF

Info

Publication number
CN107785488A
CN107785488A CN201610722840.8A CN201610722840A CN107785488A CN 107785488 A CN107785488 A CN 107785488A CN 201610722840 A CN201610722840 A CN 201610722840A CN 107785488 A CN107785488 A CN 107785488A
Authority
CN
China
Prior art keywords
substrate
solvent
main chamber
predecessor
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610722840.8A
Other languages
English (en)
Inventor
姚冀众
颜步
颜步一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Qianna Optoelectronics Technology Co Ltd
Original Assignee
Hangzhou Qianna Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Qianna Optoelectronics Technology Co Ltd filed Critical Hangzhou Qianna Optoelectronics Technology Co Ltd
Priority to CN201610722840.8A priority Critical patent/CN107785488A/zh
Priority to KR1020187010174A priority patent/KR101942696B1/ko
Priority to PCT/CN2017/082794 priority patent/WO2018036193A1/zh
Priority to AU2017314804A priority patent/AU2017314804B2/en
Priority to JP2018514438A priority patent/JP6550534B2/ja
Priority to EP17842618.5A priority patent/EP3333282B1/en
Publication of CN107785488A publication Critical patent/CN107785488A/zh
Priority to US15/944,694 priority patent/US10319534B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/204Light-sensitive devices comprising an oxide semiconductor electrode comprising zinc oxides, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用,包括主腔体,在主腔体内分别设置有两个前驱物加热台以及基底固定槽,在前驱物加热台上分别设置有前驱物储存盒,在基底固定槽上放置有若干组待沉积薄膜的基底,每组基底背靠背紧贴地放置有两片基底,两片基底的待沉积薄膜的表面各自朝向主腔体的一端;在主腔体的左右两端分别连通带有载气进气控制阀的载气管道,在主腔体上还连通有抽真空装置,在主腔体上还设置有给基底加热的主腔体加热装置;在两端的载气管道上分别连通有溶剂蒸发装置。本发明采用从主腔室的两端同时进气以及基底“背靠背”的排布方式使得使用该方法制备钙钛矿薄膜的速率提高至了现有方法的两倍。

Description

钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用
技术领域
本发明属于半导体技术领域,特别涉及一种钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用。
背景技术
太阳能电池是一种利用半导体的光伏效应将太阳能转化为电能的能量转换器件。发展至今,太阳能发电已经成为除水力发电之外最重要的可再生能源。现用于商业化的太阳能电池组件材料包括单晶硅、多晶硅、非晶硅、碲化镉、铜铟镓硒等等,但大多能耗大、成本高。
近年来,一种钙钛矿太阳能电池受到广泛关注,这种钙钛矿太阳能电池以有机金属卤化物为光吸收层。以此种材料制备薄膜太阳能电池的工艺简便、生产成本低、稳定且转化率高,自2009年至今,光电转换效率从3.8%提升至22%以上,已高于商业化的晶硅太阳能电池且具有较大的成本优势。
现有钙钛矿太阳能电池制备中的核心部分,钙钛矿层的制备,可以通过两种途径实现:溶液途径和气相途径。其中溶液途径对生产环境和设备要求低,操作简便,在常温常压下就可制备成膜,但所形成的钙钛矿薄均一性差,在膜微观结构中孔洞太多,漏电流大,严重影响太阳能电池的效率,且重复性差。因此此途径不适合大规模、大尺寸生产。气相途径通过对环境和生产过程参数更精确的控制,可以克服上述困难,并且可以通过简单的设备扩张实现大规模生产。气相途径的一种方法涉及用类似化学气相沉积(CVD)的方法和设备制备钙钛矿层。在现有技术中,使用的CVD设备中的反应物蒸气均是随着载气(carriergas)单向流通到基底一侧的表面再沉积、扩散并反应,基底的另一侧为了确保透明,使用挡板遮掩,这样就降低了钙钛矿层的制备效率,因为基底有挡板的那侧完全没有利用到,而更为重要的一点在于在光伏组件的实际生产应用中,组件的最终成本与产量密切相关,产量越高,组件成本越低。
发明内容
本发明所要解决的技术问题在于,提供一种钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用,将现有的基底有挡板的那侧换成另一片基底,两片基底按照“背靠背”的模式直立在工位上时,同时改进了载气和反应物蒸气的流通形式,使得载气和反应物蒸气从CVD管的两端同时向中间区域流动,中间区域为基底存放和反应区域,从而使得背靠背的两片基底可以同时均匀地接受反应物蒸气发生反应,则在同一个工位上可以同时对两片基底进行制备,从而使制备钙钛矿层的效率加倍,也极大提升大规模生产时的产量。
本发明是这样实现的,提供一种钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用,包括主腔体,在主腔体内分别设置有两个前驱物加热台以及基底固定槽,两个前驱物加热台分别靠近主腔体的左右两端部,基底固定槽设置在两个前驱物加热台之间,在前驱物加热台上分别设置有前驱物储存盒,在基底固定槽上放置有若干组待沉积薄膜的基底,每组基底背靠背紧贴地放置有两片基底,两片基底的待沉积薄膜的表面各自朝向主腔体的一端;在主腔体的左右两端分别连通带有载气进气控制阀的载气管道,在主腔体上还连通有抽真空装置,在主腔体上还设置有给基底加热的主腔体加热装置;在两端的载气管道上分别连通有溶剂蒸发装置。
进一步地,主腔体加热装置用于对放置在基底固定槽上的若干组基底进行加热,在前驱物加热台分别对放置其上的前驱物储存盒进行加热。把两片待沉积薄膜的基底背靠背做为一组紧贴地放置在基底固定槽上,其待沉积薄膜的表面各自朝向主腔体的一端,同时从主腔体的两端通过载气管道通入反应气体,反应气体与溶剂蒸发装置产生的溶剂蒸汽作用,然后一起沉积在基底的待沉积薄膜的表面,在主腔体内真空和加热的环境条件下发生化学反应。采用该设计结构使得每组基底的两侧面同时进行沉积,提高钙钛矿层的制备效率。
进一步地,在主腔体内还设置有分流隔板,分流隔板分别设置在前驱物储存盒与主腔体两端部的载气管道口之间,分流隔板分别通过分流隔板固定槽可拆卸地设置在主腔体的内壁上;在分流隔板上设置有多个通孔。
由载气管道通入主腔体经过分流隔板的分流后可以有序且均匀地进入到后部的分流隔板固定槽区域,载气携带的溶剂蒸汽的有机小分子均匀地沉积到基底表面上,提高基底表面沉积物资的化学反应效果得到更大粒径晶体的钙钛矿层。通孔的形状可以多种多样,可以是圆形、三角形及其他多边形中的至少任意一种。
进一步地,抽真空装置包括真空泵和真空控制阀,抽真空装置通过真空管路与主腔体相连通,真空泵和真空控制阀依次设置在真空管路上,真空控制阀更靠近主腔体。
抽真空装置保证给主腔体提供适合的真空环境,便于沉积物质的化学反应。
进一步地,溶剂蒸发装置通过溶剂管路与载气管道相连通,溶剂蒸发装置包括溶剂容器、溶剂加热台以及溶剂蒸汽控制阀,溶剂加热台分别给溶剂容器加热,溶剂的蒸汽分别通过溶剂蒸汽控制阀和溶剂管路进入载气管道。
溶剂蒸发装置设置在主腔体的外侧,更准确地控制溶剂蒸发温度和蒸汽流量,提高基底薄膜的沉积效果。
进一步地,在载气管道上还分别连通有预留功能气装置,预留功能气装置包括预留功能气管路和预留功能气进气阀。功能气的进气种类包括但不限于氢气、氧气、甲烷等,用以在反应中调整最终反应物的元素比例与电学性质。
本发明还公开了一种使用如前述的钙钛矿薄膜的低压化学沉积设备的使用方法,包括以下步骤:
(i)清洗基底
将基底依次用表面活性剂、去离子水、丙酮和异丙醇分别超声波清洗20分钟,用氮气吹干后,再经紫外-臭氧杀菌处理5分钟;
(ii)制备BX2
在(i)步骤处理完成的基底上,用溶液法或真空蒸镀法在其一侧表面沉积一层BX2层,厚度在100nm~1000nm之间,其中B为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中至少一种的阳离子;X为碘、溴、氯、砹中的至少一种的阴离子;
(iii)制备钙钛矿层
将(ii)步骤沉积有BX2的基底放入主腔室的基底固定槽上,其中两片基底没有沉积任何薄膜的一面背靠背地紧贴在一起,沉积有薄膜的一面各自面向主腔室的一端;
在前驱物储存盒中加入反应物AX,其中A为胺基、脒基或者碱族中的至少一种;
开启抽真空装置,使得主腔室内的真空度在1Pa~105Pa之间;
开启主腔体加热装置预热主腔室,使主腔室的温度在50~250摄氏度范围内;
待主腔室内温度稳定后,接通前驱物加热台,控制前驱物加热台的温度使前驱物加热台温区的温度比基底固定槽所在的基底温区的温度高10~100摄氏度,保持反应过程持续5min~120min;
待前驱物加热台的温度稳定后,打开载气进气控制阀,调节进入主腔室内的进气量,基底的表面薄膜开始发生化学反应,载气的种类是氮气、氦气、氩气中的至少一种;
化学反应开始后3min~100min,利用溶剂蒸发装置向主腔体内通入溶剂蒸气,溶剂的选择包括但不限于甲醇、乙醇、异丙醇、乙二醇,以及二甲基亚矾、N,N-二甲基甲酰胺、γ-丁内酯、N-甲基-2-吡咯烷酮,溶剂的蒸发温度控制在50~150摄氏度;持续时间:5~100分钟
(iv)退火处理
化学反应结束后,移除前驱物储存盒内剩余的反应物AX,然后再在气压10-5Pa~105Pa的状态下,把主腔室内的基底加热至50~250摄氏度,加热时间5~60分钟,加热完成后,通过载气管道向主腔室内缓慢通入氮气、氦气、氩气中的至少一种,然后等待主腔室自然冷却。
进一步地,可拆卸的分流隔板可以处于安装状态或拆卸状态,如需安装,则将分流隔板分别固定在分流隔板固定槽上。
本发明还公开了一种如前述的钙钛矿薄膜的低压化学沉积设备的使用方法的应用,其应用在生产制造钙钛矿太阳能电池上。
进一步地,在生产制造钙钛矿太阳能电池时,包括以下步骤:
(a)选择合适的透明基底层,基底层包括但不限于玻璃基底和聚对苯二甲酸乙二醇酯(PET)基底,并在基底层上沉积透明导电层,透明导电层包括但不限于掺铟氧化锡(ITO)、掺氟氧化锡(FTO)和石墨烯;
(b)在透明导电层上沉积空穴传输层或电子传输层,其材料包括但不限于石墨烯、PEDOT:PSS、 PTAA、 CuSCN、CuI、 MoOx、WO3、 V2O5、 NiO、PEI、ZrO2、ZnO、TiO2、SnO2 、BCP、碳60及其衍生物,其沉积方法包括但不限于真空蒸发法、电子束蒸发法、磁控溅射法、原子层沉积法、光刻法、化学气相沉积法、丝网印刷法、水热法、电化学沉积法、旋涂(spin-coating)、刀片刮涂(blade-coating)、棒式涂布(bar coating)、夹缝式挤压型涂布(slot-die coating)、喷涂(spray coating)、喷墨印刷(ink-jet printing);
(c)在空穴传输层或电子传输层上沉积钙钛矿层,其操作过程为:在步骤(b)处理完成的基底上,用溶液法或真空蒸镀法沉积一层BX2层,厚度在100nm~1000nm之间,B为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中至少一种的阳离子;X为碘、溴、氯、砹中的至少一种的阴离子;将沉积有BX2的基底放入主腔室的基底固定槽上,其中两片基底没有沉积任何薄膜的一面紧贴在一起,沉积有薄膜的一面各自面向主腔室的一端;在前驱物储存盒中加入反应物AX,其中A是胺基、脒基或者碱族中的至少一种;开启抽真空装置,使得主腔室内的气压在10-5Pa~105Pa之间;预热主腔室,使主腔室温度在50~250摄氏度范围内;待主腔室内温度稳定后,接通前驱物加热台,控制前驱物加热台的温度使前驱物加热台温区的温度比基底固定槽所在的基底温区的温度高10~100摄氏度,保持反应过程持续5min~120min;待前驱物加热台的温度稳定后,打开载气进气控制阀,调节进入主腔室内的进气量,基底的表面薄膜开始发生化学反应,载气的种类是氮气、氦气、氩气中的至少一种;化学反应开始后3min~100min,利用溶剂蒸发装置向主腔体内通入溶剂蒸气,溶剂的选择包括但不限于甲醇、乙醇、异丙醇、乙二醇,以及二甲基亚矾、N,N-二甲基甲酰胺、γ-丁内酯、N-甲基-2-吡咯烷酮,溶剂的蒸发温度控制在50~150摄氏度,反应时间在5~100分钟;化学反应结束后,移除前驱物储存盒内剩余的反应物AX,然后再在气压10-5Pa ~105Pa的状态下,把主腔室内的基底加热至50~250摄氏度,加热时间5min~60min,加热完成后,通过载气管道向主腔室内缓慢通入氮气、氦气、氩气中的至少一种,然后等待自然冷却,形成半导体吸光层;
(d)在半导体吸光层上沉积电子传输层或空穴传输层,其材料包括但不限于石墨烯、PEDOT:PSS、 PTAA、 CuSCN、CuI、 MoOx、WO3、 V2O5、 NiO、PEI、ZrO2、ZnO、TiO2、SnO2 、BCP、碳60及其衍生物,其沉积方法包括但不限于真空蒸发法、电子束蒸发法、磁控溅射法、原子层沉积法、光刻法、化学气相沉积法、丝网印刷法、水热法、电化学沉积法、旋涂(spin-coating)、刀片刮涂(blade-coating)、棒式涂布(bar coating)、夹缝式挤压型涂布(slot-die coating)、喷涂(spray coating)、喷墨印刷(ink-jet printing);
(e)在步骤(d)所形成的结构上沉积金属导电层。
与现有技术相比,本发明的钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用,采用从主腔室的两端同时进气以及基底“背靠背”的排布方式使得使用该方法制备钙钛矿薄膜的速率提高至了现有方法的两倍。此外,通过引入溶剂蒸气和调整气压至恰当值,得到的钙钛矿薄膜的晶粒粒径也增大到了1微米以上,较原有方法的200nm~300nm有大幅提升。
附图说明
图1为本发明的钙钛矿薄膜的低压化学沉积的设备一较佳实施例的平面示意图;
图2为图1中A部放大示意图;
图3为应用本发明的设备和方法制备的钙钛矿薄膜层薄膜的示意图;
图4为图3的钙钛矿薄膜层薄膜的X光衍射示意图;
图5为应用本发明设备和方法制备的钙钛矿太阳能电池的J-V测试曲线示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参照图1所示,本发明的钙钛矿薄膜的低压化学沉积的设备,包括主腔体26、载气管道、抽真空装置、主腔体加热装置以及溶剂蒸发装置。
载气管道设置在主腔体26的左右两端并分别通过载气进气控制阀1和 22与主腔体26连通。2和21的箭头标明载气流动方向。抽真空装置与主腔体26连通。主腔体加热装置设置在主腔体26并给其加热。溶剂蒸发装置设置在两端的载气管道上并分别与载气管道连通。
在主腔体26内分别设置有两个前驱物加热台9和13以及基底固定槽10,两个前驱物加热台9和13分别靠近主腔体26的左右两端部,基底固定槽10设置在两个前驱物加热台9和13之间。在前驱物加热台9和13上分别设置有前驱物储存盒8和12,在基底固定槽10上放置有若干组待沉积薄膜的基底11。每组基底11背靠背紧贴地放置有两片基底11,两片基底11的待沉积薄膜的表面各自朝向主腔体26的一端。主腔体加热装置给基底11加热的。
在主腔体26内还设置有分流隔板27和28,分流隔板27和28分别设置在前驱物储存盒8和12与主腔体26两端部的载气管道口之间。分流隔板27和28分别通过分流隔板固定槽29和30设置在主腔体26的内壁上。如图2所示,分流隔板27和28分别可拆卸地设置在分流隔板固定槽29和30上,根据需要拆除或安装分流隔板27和28。在分流隔板27和28上设置有多个通孔。
抽真空装置包括真空泵15和真空控制阀14。抽真空装置通过真空管路与主腔体26相连通,真空泵15和真空控制阀14依次设置在真空管路上,真空控制阀14更靠近主腔体26。设置抽真空装置的目的是控制主腔体26内的气体压力,给薄膜沉积提供适当的反应压力。
溶剂蒸发装置通过溶剂管路与载气管道相连通。溶剂蒸发装置包括溶剂容器6和17、溶剂加热台5和18以及溶剂蒸汽控制阀7和16,溶剂加热台5和18分别给溶剂容器6和17加热,溶剂的蒸汽分别通过溶剂蒸汽控制阀7和16和溶剂管路进入载气管道。
在载气管道上还分别连通有预留功能气装置,预留功能气装置包括预留功能气管路和预留功能气进气阀3和20。4和19的箭头标明预留功能气流动的方向。
本发明还公开了一种使用如前述的钙钛矿薄膜的低压化学沉积设备的使用方法,包括以下步骤:
(i)清洗基底
将基底11依次用表面活性剂、去离子水、丙酮和异丙醇分别超声波清洗20分钟,用氮气吹干后,再经紫外-臭氧杀菌处理5分钟。
(ii)制备BX2
在(i)步骤处理完成的基底11上,用溶液法或真空蒸镀法在其一侧表面沉积一层PbX2层,厚度在100nm~1000nm之间,B为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中至少一种的阳离子;X为碘、溴、氯、砹中的至少一种的阴离子。
(iii)制备钙钛矿层
将(ii)步骤沉积有BX2的基底11放入主腔室26的基底固定槽10上,其中两片基底11没有沉积任何薄膜的一面背靠背地紧贴在一起,沉积有薄膜的一面各自面向主腔室26的一端;在前驱物储存盒8和12中加入反应物AX,其中A是胺基、脒基或者碱族中的至少一种;开启抽真空装置,使得主腔室26内的气压在10-5Pa~105Pa之间;开启主腔体加热装置预热主腔室26,使主腔室26的温度在50~250摄氏度范围内;待主腔室26内温度稳定后,接通前驱物加热台9和13,控制前驱物加热台9和13的温度使前驱物加热台温区23和25的温度比基底固定槽10所在的基底温区24的温度高10~100摄氏度,保持反应过程持续5min~120min;待前驱物加热台9和13的温度稳定后,打开载气进气控制阀1和22,调节进入主腔室26内的进气量,基底11的表面薄膜开始发生化学反应,载气的种类是氮气、氦气、氩气中的至少一种;化学反应开始后3min~100min,利用溶剂蒸发装置向主腔体26内通入溶剂蒸气,溶剂的选择包括但不限于甲醇、乙醇、异丙醇、乙二醇,以及二甲基亚矾、N,N-二甲基甲酰胺、γ-丁内酯、N-甲基-2-吡咯烷酮,溶剂的蒸发温度控制在50~150摄氏度;持续时间:5~100分钟。
(iv)退火处理
化学反应结束后,移除前驱物储存盒8和12内剩余的反应物AX,然后再在真空度1Pa~105Pa的状态下,把主腔室26内的基底11加热至50~250摄氏度,加热时间5min~60min,加热完成后,通过载气管道向主腔室26内缓慢通入氮气、氦气、氩气中的至少一种,然后等待主腔室26自然冷却。
可拆卸的分流隔板27和28可以处于安装状态或拆卸状态,如需安装,则将分流隔板27和28分别固定在分流隔板固定槽29和30上。
本发明还公开了一种如前述的钙钛矿薄膜的低压化学沉积设备的使用方法的应用,其应用在生产制造钙钛矿太阳能电池上。以下结合实施例做进一步说明。
一. 实施例1:
一种钙钛矿太阳能电池的生产制造,包括以下步骤:
(a)选择玻璃基底作为透明基底层,在基底层上沉积透明导电层,透明导电层为掺铟氧化锡。
(b)在透明导电层上沉积空穴传输层,其材料为PEDOT:PSS,其沉积方法为刀片刮涂法。
(c)在空穴传输层上沉积钙钛矿层,其操作过程为:在步骤(b)处理完成的基底上,用溶液法沉积一层PbCl2层,厚度在100nm~200nm之间;将沉积有PbCl2的基底放入主腔室26的基底固定槽10上,其中两片基底没有沉积任何薄膜的一面紧贴在一起,沉积有薄膜的一面各自面向主腔室26的一端;在前驱物储存盒8和12中加入反应物CH3NH3I;开启抽真空装置,使得主腔室26内的气压在1Pa~100Pa之间;预热主腔室26,使主腔室26温度在50~100摄氏度范围内;待主腔室26内温度稳定后,接通前驱物加热台9和13,控制前驱物加热台9和13的温度使前驱物加热台温区23和25的温度比基底固定槽10所在的基底温区24的温度高10~100摄氏度,保持反应过程持续5min~120min;待前驱物加热台9和13的温度稳定后,打开载气进气控制阀1和22,调节进入主腔室26内的进气量,基底11的表面薄膜开始发生化学反应,载气的种类是氮气;化学反应开始后3min~100min,利用溶剂蒸发装置向主腔体26内通入溶剂蒸气,溶剂为甲醇,溶剂的蒸发温度控制在50~100摄氏度,蒸发时间在1~10分钟;化学反应结束后,移除前驱物储存盒8和12内剩余的反应物CH3NH3Cl,然后再在气压1Pa~100Pa的状态下,把主腔室26内的基底11加热至50~100摄氏度,加热时间5min~60min,加热完成后,通过载气管道向主腔室26内缓慢通入氮气,然后等待自然冷却,形成半导体吸光层。
(d)在半导体吸光层上沉积电子传输层,其材料为二氧化钛,其沉积方法为磁控溅射法。
(e)在步骤(d)所形成的结构上沉积金属导电层。
二. 实施例2:
另一种钙钛矿太阳能电池的生产制造,包括以下步骤:
(a)选择玻璃基底作为透明基底层,在基底层上沉积透明导电层,透明导电层为掺氟氧化锡。
(b)在透明导电层上沉积空穴传输层,其材料为NiO,其沉积方法为真空蒸发法;
(c)在空穴传输层上沉积钙钛矿层,其操作过程为:在步骤(b)处理完成的基底上,用真空蒸镀法沉积一层PbBr2层,厚度在400nm~600nm之间;将沉积有PbBr2的基底放入主腔室26的基底固定槽10上,其中两片基底没有沉积任何薄膜的一面紧贴在一起,沉积有薄膜的一面各自面向主腔室26的一端;在前驱物储存盒8和12中加入反应物CH3NH3Br;开启抽真空装置,使得主腔室26内的真空度在100Pa~1000Pa之间;预热主腔室26,使主腔室26温度在100~200摄氏度范围内;待主腔室26内温度稳定后,接通前驱物加热台9和13,控制前驱物加热台9和13的温度使前驱物加热台温区23和25的温度比基底固定槽10所在的基底温区24的温度高10~100摄氏度,保持反应过程持续5min~120min;待前驱物加热台9和13的温度稳定后,打开载气进气控制阀1和22,调节进入主腔室26内的进气量,基底11的表面薄膜开始发生化学反应,载气的种类是氦气;化学反应开始后3min~100min,利用溶剂蒸发装置向主腔体26内通入溶剂蒸气,溶剂为二甲基亚矾,溶剂的蒸发温度控制在100~150摄氏度,加热时间在30~50分钟;化学反应结束后,移除前驱物储存盒8和12内剩余的反应物CH3NH3Br,然后再在真空度10-3Pa~1Pa的状态下,把主腔室26内的基底11加热至100~200摄氏度,加热时间5min~60min,加热完成后,通过载气管道向主腔室26内缓慢通入氦气,然后等待自然冷却,形成半导体吸光层。
(d)在半导体吸光层上沉积电子传输层,其材料为SnO2,其沉积方法为夹缝式挤压型涂布。
(e)在步骤(d)所形成的结构上沉积金属导电层。
三. 实施例3:
另一种钙钛矿太阳能电池的生产制造,包括以下步骤:
(a)选择聚对苯二甲酸乙二醇酯基底作为透明基底层,在基底层上沉积透明导电层,透明导电层为石墨烯。
(b)在透明导电层上沉积电子传输层,其材料为PCBM,其沉积方法为刀片刮涂。
(c)在电子传输层上沉积钙钛矿层,其操作过程为:在步骤(b)处理完成的基底上,用溶液法或真空蒸镀法沉积一层PbI2层,厚度在800nm~1000nm之间;将沉积有PbI2的基底放入主腔室26的基底固定槽10上,其中两片基底没有沉积任何薄膜的一面紧贴在一起,沉积有薄膜的一面各自面向主腔室26的一端;在前驱物储存盒8和12中加入反应物HC(NH2)2I;开启抽真空装置,使得主腔室26内的真空度在104Pa~105Pa之间;预热主腔室26,使主腔室26温度在200~250摄氏度范围内;待主腔室26内温度稳定后,接通前驱物加热台9和13,控制前驱物加热台9和13的温度使前驱物加热台温区23和25的温度比基底固定槽10所在的基底温区24的温度高10~100摄氏度,保持反应过程持续5min~120min;待前驱物加热台9和13的温度稳定后,打开载气进气控制阀1和22,调节进入主腔室26内的进气量,基底11的表面薄膜开始发生化学反应,载气的种类是氩气;化学反应开始后3min~100min,利用溶剂蒸发装置向主腔体26内通入溶剂蒸气,溶剂为N-甲基-2-吡咯烷酮,溶剂的蒸发温度控制在50~150摄氏度,反应时间60~80分钟;化学反应结束后,移除前驱物储存盒8和12内剩余的反应物HC(NH2)2I,然后再在真空度104Pa~105Pa的状态下,把主腔室26内的基底11加热至200~250摄氏度,加热时间5min~60min,加热完成后,通过载气管道向主腔室26内缓慢通入氩气,然后等待自然冷却,形成半导体吸光层。
(d)在半导体吸光层上沉积空穴传输层,其材料为WO3,其沉积方法为真空蒸发法。
(e)在步骤(d)所形成的结构上沉积金属导电层。
四. 实施例4:
另一种钙钛矿太阳能电池的生产制造,包括以下步骤:
(a)选择聚对苯二甲酸乙二醇酯作为透明基底层,在基底层上沉积透明导电层,透明导电层为掺铟氧化锡。
(b)在透明导电层上沉积空穴传输层,其材料为CuSCN,其沉积方法为喷涂法。
(c)在电子传输层上沉积钙钛矿层,其操作过程为:在步骤(b)处理完成的基底上,用溶液法沉积一层PbCl2层,厚度在200nm~800nm之间;将沉积有PbCl2的基底放入主腔室26的基底固定槽10上,其中两片基底没有沉积任何薄膜的一面紧贴在一起,沉积有薄膜的一面各自面向主腔室26的一端;在前驱物储存盒8和12中加入反应物CH3NH3I;开启抽真空装置,使得主腔室26内的真空度在1Pa~105Pa之间;预热主腔室26,使主腔室26温度在50~250摄氏度范围内;待主腔室26内温度稳定后,接通前驱物加热台9和13,控制前驱物加热台9和13的温度使前驱物加热台温区23和25的温度比基底固定槽10所在的基底温区24的温度高10~100摄氏度,保持反应过程持续5min~120min;待前驱物加热台9和13的温度稳定后,打开载气进气控制阀1和22,调节进入主腔室26内的进气量,基底11的表面薄膜开始发生化学反应,载气的种类是氮气;化学反应开始后3min~100min,利用溶剂蒸发装置向主腔体26内通入溶剂蒸气,溶剂为乙二醇,溶剂的蒸发温度控制在50~100摄氏度;化学反应结束后,移除前驱物储存盒8和12内剩余的反应物CH3NH3Cl,然后再在真空度1Pa~105Pa的状态下,把主腔室26内的基底11加热至50~250摄氏度,加热时间5min~60min,加热完成后,通过载气管道向主腔室26内缓慢通入氮气,然后等待自然冷却,形成半导体吸光层。
(d)在半导体吸光层上沉积电子传输层,其材料为碳60,其沉积方法为真空蒸发法。
(e)在步骤(d)所形成的结构上沉积金属导电层。
综上所述,利用本发明的设备和方法制备钙钛矿薄膜的流程如下:
(1)清洗基片;
(2)沉积BX2薄膜100-1000nm;
(3)放置基底于设备的主腔体中,预热主腔体;
(4)主腔体抽真空;
(5)前驱体温区加热;
(6)打开载气阀门,开始反应;
(7)反应结束,移除剩余前驱体,继续加热主腔体,对基底进行退火。
请参看图3所示,采用本发明的设备和方法制备的钙钛矿薄膜层在扫描电镜观察下的示意影像。图中可见钙钛矿薄膜表面平整,晶粒粒径大小1微米左右。
请参看图4和图5所示,应用本发明的设备和方法制成的钙钛矿薄膜的光电转换性能示意图。从图中可以看出钙钛矿薄膜的光电转换性能优秀:图4为钙钛矿薄膜的X光衍射示意图,图中可见2θ=14.87°位置的峰信号最强,根据Sheng, J. Phys. Chem. C, 2015,119, 3545-3549等文献的报道, 该峰位对应[100]面钙钛矿晶型,没有残留PbX2造成的峰位。图5为钙钛矿薄膜作为吸光层制备的钙钛矿太阳能电池的J-V测试曲线,图中可见,通过这种适用于大批量工业化生产的方法制备的钙钛矿太阳能电池的光电转化性能达16%以上,与已经商业化的太阳能电池组件性能相当。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1. 一种钙钛矿薄膜的低压化学沉积的设备,包括主腔体(26),其特征在于,在所述主腔体(26)内分别设置有两个前驱物加热台(9)和(13)以及基底固定槽(10),所述两个前驱物加热台(9)和(13)分别靠近主腔体(26)的左右两端部,所述基底固定槽(10)设置在两个前驱物加热台(9)和(13)之间,在所述前驱物加热台(9)和(13)上分别设置有前驱物储存盒(8)和(12),在所述基底固定槽(10)上放置有若干组待沉积薄膜的基底(11),每组基底(11)背靠背紧贴地放置有两片基底(11),所述两片基底(11)的待沉积薄膜的表面各自朝向主腔体(26)的一端;在所述主腔体(26)的左右两端分别连通带有载气进气控制阀(1)和 (22)的载气管道,在所述主腔体(26)上还连通有抽真空装置,在所述主腔体(26)上还设置有给基底(11)加热的主腔体加热装置;在两端的载气管道上分别连通有溶剂蒸发装置。
2.如权利要求1所述的钙钛矿薄膜的低压化学沉积的设备,其特征在于,在所述主腔体(26)内还设置有分流隔板(27)和(28),所述分流隔板(27)和(28)分别设置在前驱物储存盒(8)和(12)与主腔体(26)两端部的载气管道口之间,所述分流隔板(27)和(28)分别通过分流隔板固定槽(29)和(30)可拆卸地设置在主腔体(26)的内壁上。
3.如权利要求1或2所述的钙钛矿薄膜的低压化学沉积的设备,其特征在于,所述抽真空装置包括真空泵(15)和真空控制阀(14),所述抽真空装置通过真空管路与主腔体(26)相连通,所述真空泵(15)和真空控制阀(14)依次设置在真空管路上,所述真空控制阀(14)更靠近主腔体(26)。
4.如权利要求1或2所述的钙钛矿薄膜的低压化学沉积的设备,其特征在于,所述溶剂蒸发装置通过溶剂管路与载气管道相连通,所述溶剂蒸发装置包括溶剂容器(6)和(17)、溶剂加热台(5)和(18)以及溶剂蒸汽控制阀(7)和(16),所述溶剂加热台(5)和(18)分别给溶剂容器(6)和(17)加热,溶剂的蒸汽分别通过溶剂蒸汽控制阀(7)和(16)和溶剂管路进入载气管道。
5.如权利要求1或2所述的钙钛矿薄膜的低压化学沉积的设备,其特征在于,在所述载气管道上还分别连通有预留功能气装置,所述预留功能气装置包括预留功能气管路和预留功能气进气阀(3)和(20)。
6. 如权利要求1或2所述的钙钛矿薄膜的低压化学沉积的设备,其特征在于,所述的钙钛矿半导体材料为ABX3 结构,其中A为胺基、脒基或者碱族中的至少一种,B为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中至少一种的阳离子,X为碘、溴、氯、砹中的至少一种的阴离子;所述退火腔载物台中的溶剂可为酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃溶剂中的任意一种。
7. 一种使用如权利要求2所述的钙钛矿薄膜的低压化学沉积设备的使用方法,其特征在于,包括以下步骤:
(i)清洗基底
将基底(11)依次用表面活性剂、去离子水、丙酮和异丙醇分别超声波清洗20分钟,用氮气吹干后,再经紫外-臭氧杀菌处理5分钟;
(ii)制备BX2
在(i)步骤处理完成的基底(11)上,用溶液法或真空蒸镀法在其一侧表面沉积一层BX2层,厚度在100nm~1000nm之间,B为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋、钋中至少一种的阳离子;X为碘、溴、氯、砹中的至少一种的阴离子;
(iii)制备钙钛矿层
将(ii)步骤沉积有BX2的基底(11)放入主腔室(26)的基底固定槽(10)上,其中两片基底(11)没有沉积任何薄膜的一面背靠背地紧贴在一起,沉积有薄膜的一面各自面向主腔室(26)的一端;
在前驱物储存盒(8)和(12)中加入反应物AX,其中A是为胺基、脒基或者碱族中的至少一种;
开启抽真空装置,使得主腔室(26)内的气压在10-5Pa~105Pa之间;
开启主腔体加热装置预热主腔室(26),使主腔室(26)的温度在50~250摄氏度范围之间;
待主腔室(26)内温度稳定后,接通前驱物加热台(9)和(13),控制前驱物加热台(9)和(13)的温度使前驱物加热台温区(23)和(25)的温度比基底固定槽(10)所在的基底温区(24)的温度高10~100摄氏度,保持反应过程持续5min~120min;
待前驱物加热台(9)和(13)的温度稳定后,打开载气进气控制阀(1)和(22),调节进入主腔室(26)内的进气量,基底(11)的表面薄膜开始发生化学反应,载气的种类是氮气、氦气、氩气中的至少一种;
化学反应开始后3~100分钟,利用溶剂蒸发装置(5)(6)和(17)(18)向主腔体(26)内通入溶剂蒸气,溶剂的选择包括但不限于甲醇、乙醇、异丙醇、乙二醇,以及二甲基亚矾、N,N-二甲基甲酰胺、γ-丁内酯、N-甲基-2-吡咯烷酮,溶剂的蒸发温度控制在50~150摄氏度;持续时间:5~100分钟
(iv)退火处理
化学反应结束后,移除前驱物储存盒(8)和(12)内剩余的反应物AX,然后再在真空度1Pa~10-5Pa的状态下,把主腔室(26)内的基底(11)加热至50~250摄氏度,加热时间5~60分钟,加热完成后,通过载气管道向主腔室(26)内缓慢通入氮气、氦气、氩气中的至少一种,然后等待主腔室(26)自然冷却。
8.如权利要求7所述的钙钛矿薄膜的低压化学沉积设备的使用方法,其特征在于,所述可拆卸的分流隔板(27)和(28)可以处于安装状态或拆卸状态,如需安装,则将分流隔板(27)和(28)分别固定在分流隔板固定槽(29)和(30)上。
9.一种如权利要求7所述的钙钛矿薄膜的低压化学沉积设备的使用方法的应用,其特征在于,其应用在生产制造钙钛矿太阳能电池上。
10.如权利要求9所述的钙钛矿薄膜的低压化学沉积设备的使用方法的应用,其特征在于,在生产制造钙钛矿太阳能电池时,包括以下步骤:
(a)选择合适的透明基底层,基底层包括但不限于玻璃基底和聚对苯二甲酸乙二醇酯基底,并在基底层上沉积透明导电层,透明导电层包括但不限于掺铟氧化锡、掺氟氧化锡和石墨烯;
(b)在透明导电层上沉积空穴传输层或电子传输层,其材料包括但不限于石墨烯、聚二氧乙基噻吩 聚苯乙烯磺酸(PEDOT:PSS)、 聚三芳胺(PTAA)、 硫氰化亚铜(CuSCN)、碘化亚铜(CuI)、氧化钼(MoOx)、 氧化钨(WO3)、五氧化二钒(V2O5)、氧化镍(NiO)、聚乙烯亚胺(PEI)、氧化锆(ZrO3)、氧化锌(ZnO)、二氧化钛(TiO2)、氧化锡(SnO2)、浴铜灵(BCP)碳60及其衍生物,其沉积方法包括但不限于真空蒸发法、电子束蒸发法、磁控溅射法、原子层沉积法、光刻法、化学气相沉积法、丝网印刷法、水热法、电化学沉积法、旋涂、刀片刮涂、棒式涂布、夹缝式挤压型涂布、喷涂、喷墨印刷;
(c)在空穴传输层或电子传输层上沉积钙钛矿层,其操作过程为:在步骤(b)处理完成的基底上,用溶液法或真空蒸镀法沉积一层BX2层,厚度在100nm~1000nm之间;将沉积有BX2的基底放入主腔室(26)的基底固定槽(10)上,其中两片基底没有沉积任何薄膜的一面紧贴在一起,沉积有薄膜的一面各自面向主腔室(26)的一端;在前驱物储存盒(8)和(12)中加入反应物AX;开启抽真空装置,使得主腔室(26)内的气压在10-5Pa~105Pa之间;预热主腔室(26),使主腔室(26)温度在50~250摄氏度范围内;待主腔室(26)内温度稳定后,接通前驱物加热台(9)和(13),控制前驱物加热台(9)和(13)的温度使前驱物加热台温区(23)和(25)的温度比基底固定槽(10)所在的基底温区(24)的温度高10~100摄氏度,保持反应过程持续5min~120min;待前驱物加热台(9)和(13)的温度稳定后,打开载气进气控制阀(1)和(22),调节进入主腔室(26)内的进气量,基底(11)的表面薄膜开始发生化学反应,载气的种类是氮气、氦气、氩气中的至少一种;化学反应开始后3min~100min,利用溶剂蒸发装置(5)(6)和(17)(18)向主腔体(26)内通入溶剂蒸气,溶剂的选择包括但不限于甲醇、乙醇、异丙醇、乙二醇,以及二甲基亚矾、N,N-二甲基甲酰胺、γ-丁内酯、N-甲基-2-吡咯烷酮,溶剂的蒸发温度控制在50~150摄氏度;化学反应结束后,移除前驱物储存盒(8)和(12)内剩余的反应物AX,然后再在气压10-5Pa~105Pa的状态下,把主腔室(26)内的基底(11)加热至50~250摄氏度,加热时间5~60分钟,加热完成后,通过载气管道向主腔室(26)内缓慢通入氮气、氦气、氩气中的至少一种,然后等待自然冷却,形成半导体吸光层;
(d)在半导体吸光层上沉积电子传输层或空穴传输层,其材料包括但不限于石墨烯、PEDOT:PSS、 PTAA、 CuSCN、CuI、 MoOx、WO3、 V2O5、 NiO、PEI、ZrO3、ZnO、TiO2、SnO2、BCP 以及碳60及其衍生物,其沉积方法包括但不限于真空蒸发法、电子束蒸发法、磁控溅射法、原子层沉积法、光刻法、化学气相沉积法、丝网印刷法、水热法、电化学沉积法、旋涂、刀片刮涂、棒式涂布、夹缝式挤压型涂布、喷涂、喷墨印刷;
(e)在步骤(d)所形成的结构上沉积金属导电层。
CN201610722840.8A 2016-08-25 2016-08-25 钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用 Pending CN107785488A (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201610722840.8A CN107785488A (zh) 2016-08-25 2016-08-25 钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用
KR1020187010174A KR101942696B1 (ko) 2016-08-25 2017-05-03 페로브스카이트 박막의 저압 화학 증착 장비 및 그의 사용 방법과 응용
PCT/CN2017/082794 WO2018036193A1 (zh) 2016-08-25 2017-05-03 钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用
AU2017314804A AU2017314804B2 (en) 2016-08-25 2017-05-03 Perovskite thin film low-pressure chemical deposition equipment and using method thereof, and application
JP2018514438A JP6550534B2 (ja) 2016-08-25 2017-05-03 ペロブスカイト薄膜用の低圧化学蒸着装置の使用方法と応用
EP17842618.5A EP3333282B1 (en) 2016-08-25 2017-05-03 Perovskite thin film low-pressure chemical deposition method
US15/944,694 US10319534B2 (en) 2016-08-25 2018-04-03 Perovskite thin film low-pressure chemical deposition equipment and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610722840.8A CN107785488A (zh) 2016-08-25 2016-08-25 钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用

Publications (1)

Publication Number Publication Date
CN107785488A true CN107785488A (zh) 2018-03-09

Family

ID=61245295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610722840.8A Pending CN107785488A (zh) 2016-08-25 2016-08-25 钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用

Country Status (7)

Country Link
US (1) US10319534B2 (zh)
EP (1) EP3333282B1 (zh)
JP (1) JP6550534B2 (zh)
KR (1) KR101942696B1 (zh)
CN (1) CN107785488A (zh)
AU (1) AU2017314804B2 (zh)
WO (1) WO2018036193A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449295A (zh) * 2018-10-30 2019-03-08 暨南大学 一种基于两步法印刷制备钙钛矿薄膜的方法
CN109841740A (zh) * 2019-03-22 2019-06-04 上海交通大学 一种基于氧化镍空穴传输层的钙钛矿太阳电池的制备方法
CN109950409A (zh) * 2019-02-28 2019-06-28 深圳市先进清洁电力技术研究有限公司 一种钙钛矿气氛处理装置
CN110880550A (zh) * 2018-09-05 2020-03-13 杭州纤纳光电科技有限公司 含有表面活性剂的前驱体溶液的涂布设备及其方法
CN110880554A (zh) * 2018-09-05 2020-03-13 杭州纤纳光电科技有限公司 前驱体溶液与表面活性剂分步涂布的设备及其方法
CN110880555A (zh) * 2018-09-05 2020-03-13 杭州纤纳光电科技有限公司 前驱体与表面活性剂的混合溶液的涂布设备及其方法
CN111435707A (zh) * 2019-07-10 2020-07-21 杭州纤纳光电科技有限公司 提高钙钛矿薄膜成膜质量的方法以及钙钛矿太阳能电池
CN111979527A (zh) * 2020-08-31 2020-11-24 王丽 一种制备半导体材料的金属有机源喷雾装置及其工艺
CN112382728A (zh) * 2020-11-13 2021-02-19 中国科学院大连化学物理研究所 一种修饰钙钛矿电池电子传输层的电池方法
CN112467032A (zh) * 2020-10-27 2021-03-09 南昌大学 一种利用废弃原料制备高质量有机无机钙钛矿薄膜的方法
CN112490372A (zh) * 2020-10-30 2021-03-12 西安交通大学 一种太阳电池基体绒面蒸气预涂与涂膜一体化方法及设备
CN112993080A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种钙钛矿太阳电池制备方法及制备装置
CN113561305A (zh) * 2021-07-04 2021-10-29 内蒙古建能兴辉陶瓷有限公司 基于发泡陶瓷基体的装饰面墙板装置、制备装置和方法
CN115572946A (zh) * 2022-09-16 2023-01-06 华为数字能源技术有限公司 一种钙钛矿的制备方法、制备设备及光电转换器
CN115768917A (zh) * 2020-06-08 2023-03-07 学校法人冲绳科学技术大学院大学学园 用于钙钛矿太阳能模块的快速混合化学气相沉积

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799575B (zh) * 2017-10-31 2020-04-24 京东方科技集团股份有限公司 显示器基板、其制造方法、显示器及补偿构件贴片
CN109103337A (zh) * 2018-07-13 2018-12-28 华中科技大学 一种以碘铅甲脒作为太阳能电池吸光层的工艺及其应用
EP3824492A4 (en) 2018-07-18 2022-04-20 Massachusetts Institute of Technology ALTERNATE MULTI-SOURCE VAPOR TRANSPORT DEPOSITION
KR102080748B1 (ko) * 2018-08-24 2020-04-23 한국전력공사 고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지
KR20200033569A (ko) 2018-09-20 2020-03-30 한국전력공사 CuI 이중 박막 증착 방법 및 이를 이용한 태양전지
KR102109001B1 (ko) * 2018-11-13 2020-05-11 단국대학교 천안캠퍼스 산학협력단 순차적 기상 공정을 이용한 혼합 유기물 동시 기화방식의 페로브스카이트 박막 제조방법 및 이를 이용한 태양전지
KR102121413B1 (ko) * 2019-01-16 2020-06-10 인하대학교 산학협력단 광활성층과 정공전달층 사이 계면층 도입으로 인해 광전변환 효율이 개선된 페로브스카이트 태양전지, 및 이의 제조방법
KR102239478B1 (ko) * 2019-07-31 2021-04-12 인하대학교 산학협력단 패턴화된 페로브스카이트 층의 형성방법 및 이에 의하여 제조되는 패턴을 포함하는 페로브스카이트 층
KR102271160B1 (ko) * 2019-12-18 2021-07-01 한국전력공사 광활성층의 제조방법 및 이를 포함하는 페로브스카이트 태양전지
KR102566015B1 (ko) * 2020-03-06 2023-08-11 주식회사 메카로에너지 페로브스카이트 태양전지의 정공 수송층 제조 방법
KR102402711B1 (ko) * 2020-08-11 2022-05-27 주식회사 메카로에너지 페로브스카이트 박막태양전지 제조방법
WO2022138429A1 (ja) * 2020-12-25 2022-06-30 株式会社カネカ ペロブスカイト薄膜系太陽電池の製造方法
DE102021116272A1 (de) 2021-03-18 2022-09-22 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer kristallisierten Perowskitschicht
CN114725240B (zh) * 2022-04-02 2023-04-28 高景太阳能股份有限公司 一种硅晶体材料的厚片处理装置及处理方法
CN116676584A (zh) * 2023-06-01 2023-09-01 北京理工大学 一种高q值微壳体谐振子石墨烯薄膜的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936044A (ja) * 1995-07-19 1997-02-07 Hitachi Ltd 半導体製造装置および半導体ウエハの処理方法
CN101438391A (zh) * 2006-05-05 2009-05-20 应用材料股份有限公司 用于介电薄膜的原子层沉积的化学品的光激发的方法和装置
CN102317500A (zh) * 2009-02-12 2012-01-11 格里菲斯大学 化学气相沉积系统和工艺
US20120108002A1 (en) * 2010-10-28 2012-05-03 Korea Institute Of Energy Research Apparatus, method and system for depositing layer of solar cell
CN104485425A (zh) * 2014-12-08 2015-04-01 清华大学 钙钛矿型材料制备方法和设备及其光伏器件的加工方法
WO2016027450A1 (en) * 2014-08-21 2016-02-25 Okinawa Institute Of Science And Technology School Corporation System and method based on low-pressure chemical vapor deposition for fabricating perovskite film
CN206109531U (zh) * 2016-08-25 2017-04-19 杭州纤纳光电科技有限公司 一种钙钛矿薄膜的低压化学沉积的设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421780A (ja) * 1990-05-14 1992-01-24 Sharp Corp 気相成長装置
JPH04118923A (ja) * 1990-09-10 1992-04-20 Yamaha Corp 熱処理炉
JP2004266297A (ja) * 2004-06-08 2004-09-24 Toshiba Corp 半導体装置の製造方法
CN100575546C (zh) * 2008-01-13 2009-12-30 大连理工大学 一种Sb掺杂制备p型ZnO薄膜方法
US8845809B2 (en) * 2008-10-09 2014-09-30 Silevo, Inc. Scalable, high-throughput, multi-chamber epitaxial reactor for silicon deposition
US20110097492A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid distribution manifold operating state management system
WO2013149572A1 (zh) 2012-04-02 2013-10-10 Xu Mingsheng 规模化连续制备二维纳米薄膜的装备
CN102618827A (zh) * 2012-04-27 2012-08-01 徐明生 一种连续制备二维纳米薄膜的装置
JP6316287B2 (ja) 2012-07-05 2018-04-25 インテヴァック インコーポレイテッド 透明な基板のための高度に透明な水素化炭素保護コーティングの生産方法
US20170229647A1 (en) * 2014-05-05 2017-08-10 Okinawa Institute Of Science And Technology School Corporation System and method for fabricating perovskite film for solar cell applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936044A (ja) * 1995-07-19 1997-02-07 Hitachi Ltd 半導体製造装置および半導体ウエハの処理方法
CN101438391A (zh) * 2006-05-05 2009-05-20 应用材料股份有限公司 用于介电薄膜的原子层沉积的化学品的光激发的方法和装置
CN102317500A (zh) * 2009-02-12 2012-01-11 格里菲斯大学 化学气相沉积系统和工艺
US20120108002A1 (en) * 2010-10-28 2012-05-03 Korea Institute Of Energy Research Apparatus, method and system for depositing layer of solar cell
WO2016027450A1 (en) * 2014-08-21 2016-02-25 Okinawa Institute Of Science And Technology School Corporation System and method based on low-pressure chemical vapor deposition for fabricating perovskite film
CN104485425A (zh) * 2014-12-08 2015-04-01 清华大学 钙钛矿型材料制备方法和设备及其光伏器件的加工方法
CN206109531U (zh) * 2016-08-25 2017-04-19 杭州纤纳光电科技有限公司 一种钙钛矿薄膜的低压化学沉积的设备

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880554B (zh) * 2018-09-05 2023-04-07 杭州纤纳光电科技有限公司 前驱体溶液与表面活性剂分步涂布的设备及其方法
CN110880554A (zh) * 2018-09-05 2020-03-13 杭州纤纳光电科技有限公司 前驱体溶液与表面活性剂分步涂布的设备及其方法
CN110880555A (zh) * 2018-09-05 2020-03-13 杭州纤纳光电科技有限公司 前驱体与表面活性剂的混合溶液的涂布设备及其方法
CN110880550A (zh) * 2018-09-05 2020-03-13 杭州纤纳光电科技有限公司 含有表面活性剂的前驱体溶液的涂布设备及其方法
CN109449295B (zh) * 2018-10-30 2023-09-22 麦耀华 一种基于两步法印刷制备钙钛矿薄膜的方法
CN109449295A (zh) * 2018-10-30 2019-03-08 暨南大学 一种基于两步法印刷制备钙钛矿薄膜的方法
CN109950409A (zh) * 2019-02-28 2019-06-28 深圳市先进清洁电力技术研究有限公司 一种钙钛矿气氛处理装置
CN109950409B (zh) * 2019-02-28 2023-01-06 深圳市先进清洁电力技术研究有限公司 一种钙钛矿气氛处理装置
CN109841740A (zh) * 2019-03-22 2019-06-04 上海交通大学 一种基于氧化镍空穴传输层的钙钛矿太阳电池的制备方法
CN111435707A (zh) * 2019-07-10 2020-07-21 杭州纤纳光电科技有限公司 提高钙钛矿薄膜成膜质量的方法以及钙钛矿太阳能电池
CN111435707B (zh) * 2019-07-10 2022-09-23 杭州纤纳光电科技有限公司 提高钙钛矿薄膜成膜质量的方法以及钙钛矿太阳能电池
CN112993080A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种钙钛矿太阳电池制备方法及制备装置
CN115768917A (zh) * 2020-06-08 2023-03-07 学校法人冲绳科学技术大学院大学学园 用于钙钛矿太阳能模块的快速混合化学气相沉积
CN111979527A (zh) * 2020-08-31 2020-11-24 王丽 一种制备半导体材料的金属有机源喷雾装置及其工艺
CN112467032B (zh) * 2020-10-27 2022-12-06 南昌大学 一种利用废弃原料制备高质量有机无机钙钛矿薄膜的方法
CN112467032A (zh) * 2020-10-27 2021-03-09 南昌大学 一种利用废弃原料制备高质量有机无机钙钛矿薄膜的方法
CN112490372B (zh) * 2020-10-30 2022-10-25 西安交通大学 一种太阳电池基体绒面蒸气预涂与涂膜一体化方法及设备
CN112490372A (zh) * 2020-10-30 2021-03-12 西安交通大学 一种太阳电池基体绒面蒸气预涂与涂膜一体化方法及设备
CN112382728A (zh) * 2020-11-13 2021-02-19 中国科学院大连化学物理研究所 一种修饰钙钛矿电池电子传输层的电池方法
CN113561305A (zh) * 2021-07-04 2021-10-29 内蒙古建能兴辉陶瓷有限公司 基于发泡陶瓷基体的装饰面墙板装置、制备装置和方法
CN115572946A (zh) * 2022-09-16 2023-01-06 华为数字能源技术有限公司 一种钙钛矿的制备方法、制备设备及光电转换器

Also Published As

Publication number Publication date
EP3333282A4 (en) 2018-10-10
AU2017314804A1 (en) 2018-04-12
AU2017314804B2 (en) 2018-09-13
EP3333282A1 (en) 2018-06-13
JP6550534B2 (ja) 2019-07-24
KR20180042441A (ko) 2018-04-25
US10319534B2 (en) 2019-06-11
KR101942696B1 (ko) 2019-04-11
US20180233296A1 (en) 2018-08-16
JP2018531320A (ja) 2018-10-25
EP3333282B1 (en) 2020-07-08
WO2018036193A1 (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
CN107785488A (zh) 钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用
Yang et al. Research progress on large-area perovskite thin films and solar modules
JP2018531320A6 (ja) ペロブスカイト薄膜用の低圧化学蒸着装置及びその使用方法と応用
Jiang et al. All electrospray printed perovskite solar cells
CN106816535B (zh) 利用离子液体添加剂提高钙钛矿太阳能电池效率的方法
Kajal et al. Manufacturing techniques of perovskite solar cells
CN105765753B (zh) 反向聚合物太阳能电池及制造其的方法
CN108832002B (zh) 一种基于pva修饰空穴传输层的钙钛矿太阳能电池
CN108493340B (zh) 一种蒸气辅助制备钙钛矿太阳能电池的方法
CN108598268A (zh) 一种环境条件下印刷制备高效平面异质结钙钛矿太阳电池的方法
KR101819954B1 (ko) 페로브스카이트 광흡수층의 제조방법 및 이에 의해 제조된 광흡수층을 포함하는 태양전지
CN106449882B (zh) 一种掺杂蒽类有机化合物薄膜的制备方法及其应用
Singh et al. Effect of NiO precursor solution ageing on the Perovskite film formation and their integration as hole transport material for perovskite solar cells
Lin et al. Laser patterning technology based on nanosecond pulsed laser for manufacturing bifacial perovskite solar modules
Seo et al. Temperature-controlled slot-die coating for efficient and stable perovskite solar cells
CN103329298B (zh) 用于光电子学的酞菁/聚合物纳米复合墨水
Bu Self-assembled, wrinkled zinc oxide for enhanced solar cell performances
TW201501340A (zh) 製備大面積有機太陽能電池之方法
Manseki et al. Current Advances in the Preparation of SnO2 Electron Transport Materials for Perovskite Solar Cells
CN116082880B (zh) 一种纳米胶囊型钙钛矿墨水、制备方法及其应用
US20220140268A1 (en) Method of manufacturing all-solution-processed interconnection layer for multi-junction tandem organic solar cell
CN115353767B (zh) 一种用于钙钛矿光伏规模化量产的电子传输层墨水
CN118175861A (zh) 一种钙钛矿/硅叠层太阳能电池组件及其制备方法
CN103022255B (zh) 一种在未引入电极的太阳能电池片上制备ZnO/Al薄膜的方法
CN109449293A (zh) 一种纳米无机铁电-有机杂化太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination