CN115768917A - 用于钙钛矿太阳能模块的快速混合化学气相沉积 - Google Patents
用于钙钛矿太阳能模块的快速混合化学气相沉积 Download PDFInfo
- Publication number
- CN115768917A CN115768917A CN202180041385.4A CN202180041385A CN115768917A CN 115768917 A CN115768917 A CN 115768917A CN 202180041385 A CN202180041385 A CN 202180041385A CN 115768917 A CN115768917 A CN 115768917A
- Authority
- CN
- China
- Prior art keywords
- heating
- substrate
- susceptor
- precursor material
- heating device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005229 chemical vapour deposition Methods 0.000 title abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 91
- 239000000463 material Substances 0.000 claims abstract description 63
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 38
- 239000002243 precursor Substances 0.000 claims abstract description 38
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims description 39
- 238000000151 deposition Methods 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 6
- QHJPGANWSLEMTI-UHFFFAOYSA-N aminomethylideneazanium;iodide Chemical compound I.NC=N QHJPGANWSLEMTI-UHFFFAOYSA-N 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 235000011089 carbon dioxide Nutrition 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- ISWNAMNOYHCTSB-UHFFFAOYSA-N methanamine;hydrobromide Chemical compound [Br-].[NH3+]C ISWNAMNOYHCTSB-UHFFFAOYSA-N 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- QWANGZFTSGZRPZ-UHFFFAOYSA-N aminomethylideneazanium;bromide Chemical compound Br.NC=N QWANGZFTSGZRPZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000010549 co-Evaporation Methods 0.000 claims description 2
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 claims 2
- 239000010410 layer Substances 0.000 description 40
- 230000008021 deposition Effects 0.000 description 19
- 239000007789 gas Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 10
- 230000005525 hole transport Effects 0.000 description 9
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 5
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 3
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000013082 photovoltaic technology Methods 0.000 description 3
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 3
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
- C23C16/463—Cooling of the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/482—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/10—Heating of the reaction chamber or the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
- C30B25/165—Controlling or regulating the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/12—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2004—Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
- H01G9/2009—Solid electrolytes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
- H10K71/164—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Photovoltaic Devices (AREA)
- Physical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本文描述了用于执行快速混合化学气相沉积的系统和方法。在一个实施方式中,将第一类型的前体材料沉积在基板上。基板被放置在加热装置的接受器中,该加热装置被配置为向该接受器的至少一部分提供热量。将第二类型的前体材料放置在该加热装置的该接受器中,使得该有机化合物比该基板更靠近该加热装置的气源。创建通过该加热装置的该接受器的气流。该加热部件用于导致包括该基板和该第二类型的前体材料的该接受器的一部分被加热。在该加热过程期间,该第二类型的前体材料的至少一部分被沉积在该第一类型的前体材料的至少一部分上。
Description
技术领域
本公开涉及用于制造钙钛矿太阳能电池的化学气相沉积技术。
背景技术
本部分中所描述的方法是可以采用的方法,但不一定是先前设想或采用的方法。因此,除非另外指明,否则不应假定本部分中描述的任何方法仅仅因为它们包含在本部分中就有作为现有技术的资格。进一步,不应假定本部分中所描述的任何方法仅仅因为它们包含在本部分中就是已被充分理解、惯例或常规的。
钙钛矿作为一种低成本材料,将小面积(0.09cm2)单结太阳能电池的性能提高了高达25.2%,并且当假设1m2模块具有20%的效率和>15年的使用寿命时,预计均化发电成本(levelized cost of electricity,LCOE)低至3.5美分/kWh(相比之下,电网电力的LCOE为7.04-11.90美分/kWh并且c-Si太阳能电池的LCOE为9.78-19.33美分/kWh),并且这超过了美国能源部(US Department of Energy)2030年住宅太阳能5美分/kWh的目标。最近,越来越多的工作专注于钙钛矿太阳能模块(perovskite solar module,PSM)的可扩展制造,以将所需性能从小面积电池转移至大面积模块。然而,小面积电池与大面积模块之间仍存在较大差距。
为了实现可扩展制造,关键指标是按比例放大时的性能衰减率。对于成熟的光伏技术(例如,结晶硅太阳能电池、多晶硅太阳能电池、CdTe太阳能电池),绝对性能衰减率为约0.8%/数十面积增加。如果钙钛矿光伏技术可以实现相同的衰减率,则面积为约1000cm2的模块当从最先进的小面积电池(25.2% PCE,电池面积为0.0937cm2)按比例放大时的功率转换效率(power conversion efficiency,PCE)将预计为约22%。目前报告的此类大尺寸PSM的最高PCE是在指定面积为802cm2时为16.1%。为了减少小面积电池与大面积模块之间的巨大PCE差距,需要用于钙钛矿和其他功能层(例如,电子传输层(electron transportlayer,ETL)、空穴传输层(hole transport layer,HTL)、电极和界面改性)的可扩展制造方法。对于钙钛矿太阳能电池(perovskite solar cell,PSC)的可扩展制造,已经报道了基于溶液的方法和基于蒸汽的方法,所述方法包括刮涂、狭缝式涂布、喷涂、热蒸发和混合化学气相沉积(hybrid chemical vapor deposition,HCVD)。
与基于溶液的方法相比,HCVD因为其诸如在大面积上的均匀沉积、低成本、无溶剂以及易于与其他薄膜太阳能技术(例如,薄膜硅太阳能电池)以形成串联太阳能电池集成的优点而是一种有前途的方法。目前,小面积电池与大面积模块之间的衰减率为1.3%/数十面积增加,此正在接近其他成熟的光伏技术。HCVD是一种两步沉积方法。在第一步骤中,通过热蒸发、喷涂或旋涂来沉积无机前体材料(例如,PbI2、PbCl2、CsI等)。在第二步骤中,将有机前体材料(例如,FAI、MAI、MABr等,其中FA是甲脒并且MA是甲铵)在CVD管式炉的第一加热区中升华,随后由气流(例如,N2、Ar、或干燥空气)朝向第二加热区驱动,在该第二加热区中有机前体蒸汽与预沉积在基板上的无机前体发生反应,从而导致钙钛矿膜生长。基于压力和区域温度,可以开发各种HCVD技术来制造钙钛矿膜,包括常压HCVD、低压HCVD、单区HCVD和双区HCVD。然而,所有的HCVD方法通常都需要相对较长的处理时间(2~3小时),这严重限制了大面积太阳能电池制造的大规模生产能力。如何缩短沉积时间是HCVD进一步发展所需要解决的挑战之一。此外,已经发现较长的沉积时间对诸如SnO2和TiO2的ETL具有不利影响,这会降低太阳能模块的性能。此外,还观察到这种ETL层与钙钛矿层之间的未优化界面的滞后行为。附加的缓冲层例如C60的使用通过减少真空退火对ETL的负面影响而提高了经HCVD处理的太阳能电池的性能。然而,这个附加的层增加了沉积过程的成本和复杂性。
发明内容
所附权利要求书可用作本公开的发明内容。
附图说明
图1描绘了平面钙钛矿太阳能电池的示例性结构。
图2描绘了用于生成钙钛矿膜的示例性装置。
图3描绘了示例性快速混合化学气相沉积方法。
具体实施方式
在以下描述中,出于解释的目的,阐述了许多具体细节以提供对本发明的透彻理解。然而,将明显的是可以在没有这些具体细节的情况下实践本发明。在其他情况下,众所周知的结构和装置以框图形式示出以避免不必要地模糊本发明。
总体概述
在一个实施方式中,一种用于制造钙钛矿膜的方法包括:在基板上沉积第一类型的前体材料;将该基板放置在加热装置的接受器中,该加热装置包括被配置为向该接受器的至少一部分提供热量的加热部件;将第二类型的前体材料放置在该加热装置的该接受器中,使得该第二类型的前体材料比该基板更靠近该加热装置的气源;创建穿过该加热装置的该接受器的气流;使用该加热部件,导致包括该基板和该第二类型的前体材料的该接受器的一部分被加热;其中在加热过程期间,该第二类型的前体材料的至少一部分被沉积在该基板上的该第一类型的前体材料的至少一部分上。
在一个实施方式中,该加热装置包括冷却部件,并且该方法进一步包括,在完成该加热过程之后,使用该冷却部件,导致包括该基板的该接受器的一部分被冷却。在一个实施方式中,该冷却部件包括风扇、干冰或提供经冷却的干燥空气流的方法中的一者或多者。在一个实施方式中,该加热部件包括红外加热部件。在一个实施方式中,该加热部件或该冷却部件中的一者或多者可相对于该接受器机械移动并且移动到分别导致加热或冷却性能的位置。
在一个实施方式中,该第二类型的前体材料包括碘化甲脒、甲基碘化铵、甲基溴化铵或溴化甲脒。在一个实施方式中,无机前体材料包括包含CsI和PbI2的层。在一个实施方式中,包含CsI和PbI2的层是通过共蒸发、喷涂、刮涂或旋涂沉积的。在一个实施方式中,加热装置进一步包括真空泵和真空计,并且其中该方法进一步包括使用真空泵和真空计在加热过程期间控制接受器的真空水平。
在一个实施方式中,加热装置包括接受器,该接受器被配置为将无机前体材料保持在基板和有机化合物上;加热部件,该加热部件被配置为加热包括该基板和该有机化合物的该接受器的至少一部分以导致在该基板上产生钙钛矿层;真空计,该真空计被配置为测量该接受器的真空水平;和真空泵,该真空泵被配置为在该接受器中创建至少部分真空。在一个实施方式中,该加热部件包括红外加热部件。在一个实施方式中,该加热部件可相对于该接受器机械地移动。在一个实施方式中,该加热装置进一步包括冷却部件,该冷却部件被配置为导致在基板上创建钙钛矿层之后该接受器的包括该基板的部分被冷却。在一个实施方式中,该冷却部件包括风扇、干冰或提供经冷却的干燥空气流的器具中的一者或多者。在一个实施方式中,该冷却部件可相对于该接受器机械地移动。
钙钛矿太阳能电池结构
在一个实施方式中,n-i-p平面钙钛矿太阳能电池(planar perovskite solarcell,PSC)结构配置有夹在电子传输层(electron transport layer,ETL)与空穴传输层(hole transport layer HTL)之间的钙钛矿层。在一个实施方式中,PSC结构不包括介孔结构(mesoporous structure),从而避免了对生成PSC结构的高温步骤的需要。
图1描绘了平面钙钛矿太阳能电池的示例性结构。在一个实施方式中,平面钙钛矿太阳能电池100包括底层102,该底层包括铟掺杂的氧化锡(indium-doped tin oxide,ITO)基板,该基板对应于透明导电氧化物(transparent conductive oxide,TCO)。ITO基板可以最初依次用蒸馏水、丙酮和异丙醇洗涤,并用N2气干燥。第二层104可以包括二氧化锡(SnO2)纳米晶体层。SnO2层可以以3000rpm的速率旋涂到ITO层上达30秒,然后干燥,诸如于150℃的温度干燥30钟。虽然TCO和ETL在图4中被描绘为分别包括ITO层和SnO2层,但是其他实施方式可以包括适用于本文所述的快速混合化学气相沉积(RHCVD)方法的任何TCO和ETL。
钙钛矿层106包括使用本文所述的系统和方法沉积到ETL上的无机前体材料和有机前体材料的层。在一个实施方式中,钙钛矿层106包含碘化铯、甲脒(FA)和碘化铅的组合。其他实施方式可以包括有机前体材料和无机前体材料的不同组合,例如用于无机材料的氯化铅或用于有机材料的甲基铵。钙钛矿层的示例性组成是Cs0.1FA0.9PbI3。
空穴传输层108包含坐置于钙钛矿层106顶上的空穴传输材料。可以将空穴传输层108旋涂在钙钛矿层106的顶部上,例如以300rpm的旋转速度旋涂30秒。在一个实施方式中,空穴传输层108包含螺环-MeOTAD、磷酸三丁酯(tributyl phosphate,TBP)和双(三氟甲磺酰基)亚胺锂(LiTFSI)在氯化苯中的溶液。作为实际示例,该溶液可包含在0.4mL氯化苯中20mg的螺环-MeOTAD、11.5μL的TBP和7μL的LiTFSI。顶层110可包括背接触电极,例如厚度为100-120nm的金层。
快速混合化学气相沉积装置
图2描绘了用于生成钙钛矿太阳能模块的示例性装置。在一个实施方式中,装置200包括快速热退火(rapid-thermal annealing,RTA)管式炉。装置200包括单区或多区管202。管202可包含能够被加热到所需温度并将热量传递到内部物体的任何材料。示例性管202可以是石英管。
输入部204包括开口,在该开口中可以将气体泵入管202中。输入部204还可包括可以放置真空计(未示出)以测量管202内的压力的位置。输出部206包括开口,该开口可附接到真空泵(未示出)以降低管202内的压力。输出部206可以另外提供开口,气体可以通过该开口流出管202。
加热系统208包括一个或多个加热设备,该一个或多个加热设备被配置为向管202的某一区段提供热量。在一个实施方式中,加热系统208包括红外加热系统。加热系统208可以相对于管202机械地自由移动和/或附接到一个或多个轨道,该一个或多个轨道允许加热系统208沿着管202的水平轴自由移动。加热系统的移动可以机械地控制,或者可以由计算装置自动控制。
冷却系统210包括一个或多个冷却设备,该一个或多个冷却设备被配置为冷却管202的某一区段。在一个实施方式中,冷却设备210包括一个或多个风扇。冷却系统210可以相对于管202机械地自由移动和/或附接到一个或多个轨道,该一个或多个轨道允许冷却系统210沿管202的水平轴线自由移动。冷却系统210的移动可以机械地控制,或者可以由计算装置自动控制。在一个实施方式中,冷却系统210和加热系统208被附接,使得移动加热系统208导致冷却系统210的移动。
基板212包括一个或多个太阳能模块基板,钙钛矿膜将使用本文所述的方法沉积到该一个或多个太阳能模块基板上。在一个实施方式中,基板212放置在装置200内的平台上。在一个实施方式中,该平台是可控的,从而允许在执行如本文进一步所述的方法期间在装置200内移动基板。在一个实施方式中,基板212预涂有无机前体材料,例如CsI和PbI2的混合物。
沉积材料214包括放置在装置200中用于升华的有机前体材料。该有机前体材料可包括碘化甲脒、甲基碘化铵、甲基溴化铵,或任何其他合适的有机前体材料。有机前体材料可以放置在基板212的相对于将被驱动通过装置200的气流的上游位置。在一个实施方式中,沉积材料213放置在装置200内的平台上。在一个实施方式中,平台是可控的,从而允许在执行如本文进一步所述的方法期间在装置200内移动沉积材料。
快速混合化学气相沉积
图3描绘了示例性快速混合化学气相沉积方法。图3的示例包括本文所述的快速混合化学气相沉积方法的一种实施方案。替代示例可包括不同材料、不同类型的加热或冷却系统、不同类型的移动系统、多区管和/或其他变体。
在步骤302处,将太阳能基板模块和沉积材料放置在腔室中。该腔室可包括含适用于本文所述的真空压力和加热方法的任何材料的腔室。虽然腔室在图3中被描绘为圆柱形管,但是也可采用其他形状,例如长方体或六棱柱。此外,虽然圆柱形管被列为由石英制成,但是也可以使用其他材料。
太阳能基板模块可以包括涂有SnO2层的铟掺杂的氧化锡。沉积材料可以包括粉末形式的有机前体材料,例如用于5cm×5cm基板模块的0.1g碘化甲脒。沉积材料可经放置为使得该沉积材料相对于气流位于太阳能基板模块的上游。例如,如果通过使用真空泵来将气体抽吸通过装置,则沉积材料可以放置得比太阳能基板模块更靠近气体源,使得气流将在到达太阳能基板模块之前到达沉积材料。
在步骤304处,创建通过腔室的载气流。该载气可以是用于创建气流的任何合适的气体,例如N2、Ar、空气、O2或其他气体。该流可以使用任何合适的用于提供气流的手段来创建。真空泵可用于在腔室内生成压力。在一个实施方式中,真空计用于控制腔室的压力水平。作为示例,可以通过使用真空泵来调节真空水平以保持在处于或接近10托。
在步骤306处,加热系统开始加热太阳能基板模块和沉积材料。例如,可移动的红外加热系统可以移动到某一位置,使得热量将被直接施加到太阳能基板模块和沉积材料两者。另外地或替代地,可以启动已经就位以加热太阳能基板模块和沉积材料的加热系统以开始加热过程。另外地或替代地,太阳能基板模块和沉积材料可以被移动到将被加热系统加热的位置,例如通过腔室内的移动平台移动到将被加热系统加热的位置。虽然图3将加热系统描绘为红外加热系统,但是其他系统也可用于加热太阳能基板模块和沉积材料两者。
在一个实施方式中,加热系统和冷却系统被配置为一起移动。例如,加热系统和冷却系统可以沿着轨道彼此附接,使得这两个系统可以沿着腔室的水平轴移动。在其他实施方式中,加热和冷却系统是固定的,而太阳能基板模块和沉积材料沿着腔室的水平轴移动。
在一个实施方式中,步骤306的加热可以执行达介于一分钟与二十分钟之间的任何时间。降低的温度可能对应于更高的钙钛矿转化时间。例如,可以施加170℃的温度两到三分钟,而施加160℃的温度五到六分钟。
在步骤308处,加热系统停止加热太阳能基板模块和沉积材料,并且冷却系统开始冷却太阳能基板模块。例如,可以关闭加热系统,并且可以将冷却系统移动到为至少太阳能基板模块提供冷却的位置。另外地或可替代地,可以将太阳能基板模块移动到冷却系统能够冷却该太阳能基板模块的位置,例如通过可移动平台移动。该冷却系统可包括一个或多个风扇或任何其他冷却系统。
虽然已经关于用于太阳能基板模块和沉积材料的可移动加热和冷却系统和/或可移动平台描述了实施方式,但是其他实施方式可以包括具有固定元件的腔室。例如,冷却系统和加热系统可以被配置为都以腔室的相同部分为目标。在步骤306处,可以启动加热系统,从而将热量施加到太阳能基板模块和沉积材料。然后,在步骤308处,可以停用加热系统并且可以启动冷却系统。
在执行快速混合化学沉积方法(例如图3所描绘的方法)之后,可以洗涤和加热钙钛矿膜以去除任何残留的碘化甲脒。可以将空穴传输材料旋涂在钙钛矿层的顶部上。在空穴传输层被沉积在钙钛矿的顶部上之后,可以将背接触电极(例如120nm的金层)添加到空穴传输层上。
实施方式的有益效果
本文所述的系统和方法改进了混合化学气相沉积方法以生成钙钛矿太阳能模块。快速混合化学气相沉积方法的使用将钙钛矿层的沉积时间从几个小时缩短到10分钟以内。该方法还可以按比例缩放以一次生产更多数量的钙钛矿太阳能模块,而不会显著降低效率并且具有最小的滞后。此外,由于红外(IR)加热具有促进钙钛矿形成以及均匀加热经转化的钙钛矿膜以提高其结晶度的双重功能,所以与通过传统方法后退火的钙钛矿膜相比,使用红外加热系统导致更好的钙钛矿膜品质。
此外,CVD管式炉内的较短处理时间缩短了玻璃/ITO/SnO2电子传输层基板在真空中的暴露时间,这有助于维持具有带隙态密度的SnO2电子传输层的高品质。指定面积为22.4cm2的PSM经证明效率为12.3%。这些PSM在连续光照下以稳态功率输出操作超过800h后,其性能维持其初始值的90%。
由于缺乏介孔结构,所以使用在ETL于HTL之间具有钙钛矿层的n-i-p平面PSC结构消除了对高温方法的需要。少量Cs阳离子的使用提高了钙钛矿膜的稳定性。
Claims (16)
1.一种制造钙钛矿太阳能电池的方法,所述方法包括:
在基板上沉积第一类型的前体材料;
将所述基板放置在加热装置的接受器中,所述加热装置包括:加热部件,所述加热部件被配置为向所述接受器的至少一部分提供热量;
将第二类型的前体材料放置在所述加热装置的所述接受器中,使得所述第二类型的前体材料比所述基板更靠近所述加热装置的气源;
创建通过所述加热装置的所述接受器的气流;
使用所述加热部件,导致所述包括所述基板和所述第二类型的前体材料的接受器的一部分被加热;
其中在加热过程期间,所述第二类型的前体材料的至少一部分被沉积在所述基板上的所述第一类型的前体材料的至少一部分上。
2.根据权利要求1所述的方法,其中所述加热装置包括冷却部件,其中所述方法进一步包括在完成所述加热过程之后,使用所述冷却部件,导致所包括所述基板的述接受器的一部分被冷却。
3.根据权利要求2所述的方法,其中所述冷却部件包括一个或多个风扇、干冰或经冷却的干燥空气流。
4.根据权利要求2或3所述的方法,其中所述冷却部件可相对于所述接受器机械地移动,并且其中导致所述接受器的包括所述基板的所述部分被冷却,包括将所述冷却部件移动到启动所述冷却部件的位置,导致所述接受器的包括所述基板的所述部分被冷却。
5.根据权利要求1所述的方法,其中所述加热部件包括红外加热部件。
6.根据权利要求1或5所述的方法,其中所述加热部件可相对于所述接受器机械地移动,并且其中导致所述接受器的包括所述基板和所述第二类型的前体材料的所述部分被加热,包括将所述加热部件移动到启动所述加热部件的位置,导致所述接受器的包括所述基板和所述第二类型的前体材料的所述部分被加热。
7.根据权利要求1所述的方法,其中所述第二类型的前体材料包括碘化甲脒、甲基碘化铵、甲基溴化铵或溴化甲脒。
8.根据权利要求1所述的方法,其中所述第一类型的前体材料包括CsI层、PbI2层、PbBr2层或CsBr层中的一者或多者。
9.根据权利要求1所述的方法,其中所述第一类型的材料包括包含CsI和PbI2的层,并且其中所述包含CsI和PbI2层的层是通过共蒸发、喷涂、刮涂或旋涂沉积的。
10.根据权利要求1所述的方法,其中所述加热装置进一步包括真空泵和真空计,并且其中所述方法进一步包括使用所述真空泵和所述真空计在所述加热过程期间控制所述接受器的真空水平。
11.一种加热装置,所述加热装置包括:
接受器,所述接受器被配置为将无机前体材料保持在基板和有机化合物上;
加热部件,所述加热部件被配置为加热所述包括所述基板和所述有机化合物的接受器的至少一部分,以导致在所述基板上创建钙钛矿层;
真空计,所述真空计被配置为测量所述接受器的真空水平;以及
真空泵,所述真空泵被配置为在所述接受器中创建至少部分真空。
12.根据权利要求11所述的加热装置,其中所述加热部件包括红外线加热部件。
13.根据权利要求11或12所述的加热装置,其中所述加热部件可相对于所述接受器机械地移动。
14.根据权利要求11所述的加热装置,所述加热装置进一步包括冷却部件,所述冷却部件被配置为导致在所述基板上创建所述钙钛矿层之后所述接受器的包括所述基板的部分被冷却。
15.根据权利要求14所述的加热装置,其中所述冷却部件包括风扇、干冰或提供经冷却的干燥空气流的器具中的一者或多者。
16.根据权利要求14或15所述的加热装置,其中所述冷却部件可相对于所述接受器机械地移动。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063036068P | 2020-06-08 | 2020-06-08 | |
US63/036,068 | 2020-06-08 | ||
PCT/IB2021/054618 WO2021250499A1 (en) | 2020-06-08 | 2021-05-27 | Rapid hybrid chemical vapor deposition for perovskite solar modules |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115768917A true CN115768917A (zh) | 2023-03-07 |
Family
ID=76269776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180041385.4A Pending CN115768917A (zh) | 2020-06-08 | 2021-05-27 | 用于钙钛矿太阳能模块的快速混合化学气相沉积 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210383978A1 (zh) |
EP (1) | EP4143363A1 (zh) |
JP (1) | JP2023534606A (zh) |
CN (1) | CN115768917A (zh) |
WO (1) | WO2021250499A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114540771B (zh) * | 2022-03-04 | 2022-12-20 | 浙江大学 | 一种纯无机铅卤钙钛矿吸收层及其制备方法和应用 |
WO2023190006A1 (ja) * | 2022-03-28 | 2023-10-05 | 株式会社カネカ | ペロブスカイト薄膜太陽電池の製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030143821A1 (en) * | 2001-07-18 | 2003-07-31 | Hiroaki Niino | Plasma processing method and method for manufacturing semiconductor device |
CN106661729A (zh) * | 2014-08-21 | 2017-05-10 | 学校法人冲绳科学技术大学院大学学园 | 用于制造钙钛矿膜的基于低压化学气相沉积的系统和方法 |
CN107785488A (zh) * | 2016-08-25 | 2018-03-09 | 杭州纤纳光电科技有限公司 | 钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用 |
CN108677169A (zh) * | 2018-05-17 | 2018-10-19 | 天津理工大学 | 一种有机铵金属卤化物薄膜的制备装置及制备和表征方法 |
CN109796977A (zh) * | 2019-03-20 | 2019-05-24 | 清华大学 | 一种铯碘铅发光材料的制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS584811B2 (ja) * | 1978-10-31 | 1983-01-27 | 富士通株式会社 | 半導体装置の製造方法 |
KR101424543B1 (ko) * | 2010-06-04 | 2014-07-31 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 열처리로 |
-
2021
- 2021-05-27 WO PCT/IB2021/054618 patent/WO2021250499A1/en unknown
- 2021-05-27 EP EP21729949.4A patent/EP4143363A1/en active Pending
- 2021-05-27 CN CN202180041385.4A patent/CN115768917A/zh active Pending
- 2021-05-27 JP JP2022575675A patent/JP2023534606A/ja active Pending
- 2021-06-04 US US17/339,005 patent/US20210383978A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030143821A1 (en) * | 2001-07-18 | 2003-07-31 | Hiroaki Niino | Plasma processing method and method for manufacturing semiconductor device |
CN106661729A (zh) * | 2014-08-21 | 2017-05-10 | 学校法人冲绳科学技术大学院大学学园 | 用于制造钙钛矿膜的基于低压化学气相沉积的系统和方法 |
US20170268128A1 (en) * | 2014-08-21 | 2017-09-21 | Okinawa Institute Of Science And Technology School Corporation | System and method based on low-pressure chemical vapor deposition for fabricating perovskite film |
CN107785488A (zh) * | 2016-08-25 | 2018-03-09 | 杭州纤纳光电科技有限公司 | 钙钛矿薄膜的低压化学沉积的设备及其使用方法和应用 |
CN108677169A (zh) * | 2018-05-17 | 2018-10-19 | 天津理工大学 | 一种有机铵金属卤化物薄膜的制备装置及制备和表征方法 |
CN109796977A (zh) * | 2019-03-20 | 2019-05-24 | 清华大学 | 一种铯碘铅发光材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
PAIFENG LUO等: "Uniform, Stable and Efficient Planar-Heterojunction Perovskite Solar Cells by a Facile Low-Pressure Chemical Vapor Deposition under Fully Open-Air Condition", 《APPLIED MATERIALS& INTERFACES》, 14 January 2015 (2015-01-14), pages 1 - 20 * |
Also Published As
Publication number | Publication date |
---|---|
JP2023534606A (ja) | 2023-08-10 |
WO2021250499A1 (en) | 2021-12-16 |
EP4143363A1 (en) | 2023-03-08 |
US20210383978A1 (en) | 2021-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11447858B2 (en) | System and method for fabricating perovskite film for solar cell applications | |
CN102034898B (zh) | 一种太阳电池用铜铟硫光电薄膜材料的制备方法 | |
Qiu et al. | Rapid hybrid chemical vapor deposition for efficient and hysteresis-free perovskite solar modules with an operation lifetime exceeding 800 hours | |
JP2017526821A (ja) | 低圧化学気相成長に基づくペロブスカイト膜、その製造システム、製造方法、ソーラーセルおよびled。 | |
CN107620052B (zh) | 一种甲脒铯铅碘钙钛矿薄膜的化学气相沉积制备方法及基于其的光伏器件 | |
CN115768917A (zh) | 用于钙钛矿太阳能模块的快速混合化学气相沉积 | |
WO2014012383A1 (zh) | 一种铜铟镓硒薄膜太阳能电池的制备方法 | |
CN106711288B (zh) | 一种纳米晶硅薄膜太阳能电池的制备方法 | |
CN112968129A (zh) | 一种热稳定的无机钙钛矿薄膜及其制备方法 | |
Poespawati et al. | Perovskite Solar Cells Based on Organic-metal halide Perovskite Materials | |
KR101577906B1 (ko) | Cigs 박막 급속 열처리 장치 | |
CN103280486A (zh) | 一种铜铟镓硒薄膜的制备方法 | |
JP2014123739A (ja) | 太陽電池吸収層作製方法及びその熱処理デバイス | |
CN113193122B (zh) | 一种基于PbCl2缓冲层的钙钛矿薄膜及其制备方法和应用 | |
Harrison et al. | The effects of pressure on the fabrication of CdS/CdTe thin film solar cells made via pulsed laser deposition | |
JP2013524538A (ja) | 希土類硫化物薄膜 | |
CN109473551B (zh) | 一种基于双源蒸镀的太阳能电池及其制备方法 | |
Yang et al. | Stable high efficiency perovskite solar cells using vacuum deposition | |
CN105932111A (zh) | 一种由氯化铜和氯化镓制备铜铟镓硒光电薄膜的方法 | |
CN105914246A (zh) | 一种由硫酸铜和硝酸镓制备铜镓硒光电薄膜的方法 | |
CN106057969A (zh) | 一种由升华硫粉制备铜铟硫光电薄膜的方法 | |
CN105895717A (zh) | 一种由氯化铜和硝酸镓制备铜铟镓硒光电薄膜的方法 | |
Kottokkaran et al. | Layer by Layer deposition of CsPbI 3 perovskite: Device optimization and Characterization | |
Suhaimi et al. | Critical analysis of stability and performance of organometal halide perovskite solar cells via various fabrication method | |
KR101356212B1 (ko) | Cis계 박막태양전지 흡수층 제조방법 및 제조 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |