CN107081167A - 催化剂和用于制备催化剂的方法 - Google Patents

催化剂和用于制备催化剂的方法 Download PDF

Info

Publication number
CN107081167A
CN107081167A CN201710073032.8A CN201710073032A CN107081167A CN 107081167 A CN107081167 A CN 107081167A CN 201710073032 A CN201710073032 A CN 201710073032A CN 107081167 A CN107081167 A CN 107081167A
Authority
CN
China
Prior art keywords
catalyst
lta zeolite
lta
zeolite
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710073032.8A
Other languages
English (en)
Other versions
CN107081167B (zh
Inventor
洪锡凤
赵栋熙
柳泰炅
朴起泰
南寅植
金平淳
金昌焕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kia Auto Co Ltd
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Kia Motors Corp
Academy Industry Foundation of POSTECH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160165932A external-priority patent/KR20170095118A/ko
Application filed by Hyundai Motor Co, Kia Motors Corp, Academy Industry Foundation of POSTECH filed Critical Hyundai Motor Co
Publication of CN107081167A publication Critical patent/CN107081167A/zh
Application granted granted Critical
Publication of CN107081167B publication Critical patent/CN107081167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7607A-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • B01J35/19
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • C01B39/145Type A using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/22Type X
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/34Reaction with organic or organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides

Abstract

本发明涉及催化剂和用于制备催化剂的方法,根据本发明的示例性实施方案的催化剂包含LTA沸石,所述LTA沸石包含铜离子,其中LTA沸石的Si/Al比例为2至50。

Description

催化剂和用于制备催化剂的方法
相关申请的交叉引用
本申请要求于2016年2月12日和2016年12月7日在韩国知识产权局所提出的韩国专利申请号No.10-2016-0016512和10-2016-0165932的优先权和权益,并通过引用将其全文纳入本文。
技术领域
本发明涉及一种用于制备沸石催化剂的方法。更具体地,本发明涉及一种用于制备沸石催化剂的方法,所述沸石催化剂的高温性能可以得到改进。
背景技术
通常,一氧化碳、碳氢化合物和氮氧化物作为有害材料包含在柴油车辆的排放气体中。氮氧化物造成例如光化学烟雾和酸雨的环境问题以及人类疾病。因此,需要改进发动机并研发排放气体的后处理技术。
用于去除氮氧化物的最有效的技术使用选择性催化还原(SCR)法。这种方法根据还原剂和各种催化剂而已经得到发展,还原剂例如氨(NH3)、尿素、碳氢化合物(HC)等。已知氨(NH3)有效地从固定物体(例如发电厂和焚烧炉)中去除氮氧化物。因为存在氨的存储/运输和使用问题,在诸如车辆的移动物体的情况下,已知尿素是有效的,因为其可以通过热分解和水合反应容易地分解成氨。
同时,作为在选择性催化还原法中所用的催化剂,已经研发了具有优秀功能的基于沸石的催化剂,例如铜(Cu)/沸石。
特别地,这种催化剂的高温活性对于高温排放气体的处理而言非常重要。
公开于该发明背景技术部分的上述信息仅仅旨在加深对发明背景的理解,因此其可以包含的信息并不构成在本国已为本领域技术人员所公知的现有技术。
发明内容
本发明致力于提供用于制备沸石催化剂的方法,所述沸石催化剂的高温性能可以得到改进。
根据本发明的示例性实施方案的催化剂包含LTA沸石,所述LTA沸石包含铜离子,其中LTA沸石的Si/Al比例为2至50。
所述催化剂可以涂布在蜂窝载体或过滤器上。
所述催化剂可以在100℃或以上从反应气体中去除NOx。
所述催化剂在450℃或以上可以具有80%的NOx转化率。
所述催化剂中的铜的含量可以为1重量%至5重量%。
所述催化剂可以进一步包含添加剂。
所述添加剂可以为碱金属或碱土金属,所述添加剂和铝的比例可以为0.1至0.3。
所述添加剂可以选自La、Ce、Zr、Sc和In,并且所述添加剂和铝的比例可以为0.01至0.05。
所述催化剂可以进一步包含铜型SSZ-13沸石。
LTA沸石和铜型SSZ-13沸石的混合比例可以为1:3至3:1。
根据另一示例性实施方案,催化剂包含含有Fe离子的LTA沸石,其中LTA沸石的Si/Al比例为2至50。
所述催化剂可以涂布在蜂窝载体或过滤器上。
所述催化剂可以在100℃或以上从反应气体中去除NOx。
所述催化剂中的铁的含量可以为1重量%至5重量%。
根据本发明另一示例性实施方案,提供一种用于制备催化剂的方法。所述方法包括:制备Si/Al比例为2或更大的LTA沸石;通过使用LTA沸石制备含有离子的LTA沸石;以及通过在含有离子的LTA沸石上进行铜离子交换制备铜型LTA沸石。
LTA沸石的Si/Al比例可以为2至50。
含有离子的LTA沸石的制备可以包括取代LTA沸石中的离子。
含有离子的LTA沸石的制备可以包含将LTA沸石添加至用于反应的铵盐,然后干燥LTA沸石,其中铵盐可以为硝酸铵(NH4NO3)。
在含有离子的LTA沸石上进行铜离子交换可以包括将含有离子的LTA沸石添加至铜前体溶液并且搅拌该溶液。
用于制备催化剂的方法可以进一步包括在制备铜型LTA沸石之后热处理铜型LTA沸石,其中所述热处理可以在400至750℃的温度范围内以1至30℃/min进行。
Si/Al的比例为2或更大的LTA沸石的制备可以包括使用LTA晶种或不使用LTA晶种制备LTA沸石。
根据本发明另一示例性实施方案,提供一种用于制备催化剂的方法。所述方法包括:制备Si/Al比例为2或更大的LTA沸石;使用LTA沸石制备含有离子的LTA沸石;以及通过在含有离子的LTA沸石上进行铁(Fe)离子交换来制备铁型LTA沸石。
在含有离子的LTA沸石上进行Fe离子交换可以包括将含有离子的LTA沸石添加至铁前体溶液并且搅拌该溶液。
含有离子的LTA沸石的制备可以包含将LTA沸石添加至用于反应的铵盐,然后干燥LTA沸石,其中铵盐可以为硝酸铵(NH4NO3)。
在含有离子的LTA沸石上进行铁离子交换可以进一步包括将含有离子的LTA沸石与如下物质的至少一种混合:九水合硝酸铁(III)(Fe(NO3)3·9H2O);七水合硫酸亚铁(FeSO4·7H2O);二水合草酸亚铁(II)(FeC2O4·2H2O);以及四水合氯化亚铁(II)(FeCl2·4H2O),并搅拌该混合物。
用于制备催化剂的方法可以进一步包括在含有离子的LTA沸石上进行Fe离子交换之后热处理铁型LTA沸石,其中所述热处理可以在400至750℃的温度范围内以1至30℃/min进行。
Si/Al的比例为2或更大的LTA沸石的制备可以包括使用LTA晶种或不使用LTA晶种制备LTA沸石。
如上所述,根据本发明的示例性实施方案的用于制备沸石催化剂的方法,酸性较低,因此催化剂的高温性能可以得到改进,同时减少尿素的消耗。
附图说明
图1(a)和图1(b)显示根据本发明的示例性实施方案的LTA沸石的结构和XRD图谱。
图2为显示根据本发明的示例性实施方案和本发明的比较实施例的沸石催化剂在各个温度范围内去除氮氧化物的测量结果的图表。
图3(a)为在新鲜状态下NOx转化率的测量结果,图3(b)为在75℃下进行水热老化之后的NOx转化率的测量结果。
图4显示根据实验实施例3的催化剂的NOx转化率。
图5至图7显示根据实验实施例4的催化剂的NOx转化率。
图8和图9显示根据实验实施例5的催化剂的NOx转化率。
图10至图13显示根据实验实施例6的催化剂的NOx转化率。
图14至图17显示根据实验实施例7的催化剂的NOx转化率。
图18至图21显示根据比较实施例1的催化剂的NOx转化率。
图22显示根据比较实施例1的催化剂的NOx转化率。
图23为采用根据本发明的示例性实施方案的沸石催化剂的排放气体净化装置的框图。
<符号说明>
10:发动机 20:涡轮增压器
30:DOC装置 40:CPF装置
70:排气管 50:喷洒喷嘴
60:SCR装置
具体实施方式
下文将参考所附附图对本发明进行更为全面的描述,在这些附图中显示了本发明的示例性实施方案。本领域技术人员将意识到,可以对所描述的实施方案进行各种不同方式的修改,所有这些修改将不脱离本发明的精神或范围。
附图和说明书应被视为是说明性的而非限制性的,在整个说明书中相同的附图标记表示相同的元件。
此外,除非另有明确地说明,措辞“包括”及其变体例如“包含”或“含有”应理解为暗示包括所述要素但不排除任何其他要素。
下文中,将详细描述根据本发明的示例性实施方案的用于制备催化剂的方法。在本发明的示例性实施方案中制备的催化剂可以为沸石催化剂。
首先,将描述用于制备根据本发明的示例性实施方案的催化剂的沸石的制备方法。
首先,制备LTA沸石。在LTA沸石的制备中,可以使用或可以不使用晶种。在此阶段制备的LTA沸石的Si/Al比例可以超过1。更具体地,Si/Al比例可以为2至50。优选地,Si/Al比例可以为5至30。更优选地,Si/Al比例可以为8或更大。
作为实施例,将描述使用晶种制备LTA沸石的方法。
为了制备LTA沸石,将LTA晶种与氢氧化铝(Al(OH)3)和原硅酸四乙酯(Si(OC2H5)4)的混合物混合。
具体地,混合1,2-二甲基-3-(4-甲基苯甲基)氢氧化咪唑鎓水溶液和氢氧化铝(Al(OH)3),并初次搅拌混合物,然后额外地混合五水合四甲基氢氧化铵,然后第二次搅拌以制备第一混合物。
此处,相对于第一混合物的总重量,混合20至35重量%的1,2-二甲基-3-(4-甲基苯甲基)氢氧化咪唑鎓、1至2重量%的氢氧化铝(Al(OH)3)、1至5重量%的五水合四甲基氢氧化铵和剩余量的水,并分别进行初次搅拌和第二次搅拌约0.5至1.5小时。
将原硅酸四乙酯(TEOS)(Si(OC2H5)4)混入第一混合物,然后进行第三次搅拌,然后混合LTA晶种并进行第四次搅拌从而制备第二混合物。
相对于第二混合物的总重量,可以混合30至35重量%的TEOS,并且相对于包含在LTA沸石中的全部硅的总重量,LTA晶种的量可以为2至6重量%。
此外,第三次搅拌可以进行约2至4小时,并且第四次搅拌可以进行约20至28小时。
接着,充分加热第二混合物以引起TEOS的水解,并且蒸发由TEOS的水解产生的乙醇和水从而制备第三混合物。
可以在70℃和90℃之间的温度下加热第二混合物。
接着,在第三混合物中混合氢氟酸水溶液,并且通过加热、清洁和干燥工序制备第四混合物。
此处,可以在约150℃至200℃的温度下加热第三混合物恒定时间,清洁工序可以反复进行,而干燥工序可以在室温下进行。
接着,额外地进行热处理以从第四混合物中去除有机材料从而制备用于制备根据本发明的示例性实施方案的沸石催化剂的LTA沸石。
热处理可以在500℃和700℃之间的温度下进行约6至10小时,在此示例性实施方案中LTA沸石的Si/Al比例可以为2至50。
当不使用晶种制备LTA沸石时,LTA沸石可以如下制备。作为有机结构诱导分子,在塑料烧杯中将0.0mol至0.2mol的氢氧化铝和0.0mol至0.2mol的四甲基氢氧化铵(后文被称为TMAOH)添加至0.1mol至1.0摩尔的1,2-二甲基-3-(4-甲基苯甲基)氢氧化咪唑鎓(后文被称为12DM3(4MB)IOH),然后充分搅拌。接着,将原硅酸四乙酯(后文被称为TEOS)以1mol的比例添加至反应物,并且充分搅拌混合物。
接着,在60℃至100℃下充分加热溶液直至由于添加至溶液的TEOS的水解产生的乙醇的量被完全去除,同时水的量为0至10mol。然而,当添加0.1至1.0mol的氟化氢(HF)并充分混合时,获得具有化学式1的反应混合物。
[化学式1]
1SiO2:0.0-0.2Al(OH)3:0.0-0.2TMAOH:0.1-1.0R:0.1-1.0HF:0-10H2O
其中R表示12DM3(4MB)IOH。
然后将反应混合物移至Teflon反应器,并再次放置在不锈钢制得的容器中并在100℃至200℃加热0.1至14天以制备LTA沸石。由上述方法制备的LTA沸石也可以具有2至50的Si/Al比例。然而,上述制备方法是说明性的,且不限于如上描述。
在此阶段制备的LTA沸石的XRD图谱显示在图1(b)。在此阶段制备的LTA沸石的结构显示在图1(a)。
接着将详细描述使用经制备的LTA沸石制备含有离子的LTA沸石的步骤。
首先,将LTA沸石放入铵盐中,回流,清洗并干燥以制备含有NH4+离子的NH4型LTA沸石。
此处,铵盐可以为硝酸铵(NH4NO3)。
回流工序可以在60至100℃的温度下进行5至7小时。
在本实施方案中,铵离子为示例性描述的离子,但本发明不限于此。亦即,使用其他离子和离子盐也包含在本公开的范围内。
然后,包含离子的LTA沸石经受铜(Cu)离子交换从而制备包含铜离子的Cu型LTA沸石。
对于铜离子交换,将LTA沸石离子注入铜前体溶液,如一水合乙酸铜、一氮化三铜、硝酸铜、硫酸铜等,搅拌,然后进行清洁和干燥工序从而可以制备Cu型LTA沸石。
作为可能的替代形式,在本发明的另一示例性实施方案中,包含离子的LTA沸石可以经受铁(Fe)离子交换从而可以制备包含Fe离子的Fe型LTA沸石。
可以通过将包含离子的LTA沸石与九水合硝酸铁(III)(Fe(NO3)3·9H2O)、七水合硫酸亚铁(FeSO4·7H2O)、二水合草酸亚铁(II)(FeC2O4·2H2O)以及四水合氯化亚铁(II)(FeCl2·4H2O)的至少一种混合并搅拌而进行Fe离子交换。
接着,在烘箱中通过逐渐增加的温度加热Cu型LTA沸石或Fe型LTA沸石,然后进行热处理工序,从而制备根据本发明的示例性实施方案的沸石催化剂。
此处,对于Cu型LTA沸石或Fe型LTA沸石的加热温度,该温度可以以1至30℃/min的速度增加至400至750℃,然后可以进行热处理约1至24小时。
后文将描述本发明的实验实施例。然而,以下实验实施例仅为本发明的示例,且本发明不限于以下实验实施例。
实验实施例:LTA沸石催化剂制备
1LTA沸石制备
在塑料烧杯中,相对于水溶液的总重量,混合29.4重量%(12.38g)的1,2-二甲基-3-(4-甲基苯甲基)氢氧化咪唑鎓水溶液和0.1733g的氢氧化铝,然后搅拌约1小时,然后额外地将0.4152g的五水合四甲基氢氧化铵混合其中,然后搅拌约1小时。
接着,将6.80g的原硅酸四乙酯(TEOS)混合其中,然后搅拌约3小时,相对于注射其中的全部二氧化硅添加4重量%的LTA晶种,然后搅拌约24小时,并且将混合物加热至80℃以引起TEOS的水解使得由水解产生的5.90g的乙醇和5.37g的水蒸发。
接着,相对于水溶液的总重量,将48重量%(0.577ml)的氢氟酸水溶液混合其中。
然后,将添加了氢氟酸水溶液的混合物注入钢容器,然后在175℃下加热约17小时,同时以60rpm的速度旋转容器,从而产生固体产物,并且反复地清洁固体产物,然后在室温下干燥。
为了从经干燥的混合物中去除有机材料,在马弗炉中在600℃下热处理经干燥的混合物约8小时从而制备LTA沸石,在经制备的沸石上进行XRD分析以确定沸石具有LTA结构,并通过ICP分析确定Si/Al比例为16。
2.沸石催化剂制备
在两颈烧瓶中混合2g经制备的LTA沸石和100ml的1M的硝酸铵,并且使混合物在80℃下回流约6小时。
接着,用过滤器和蒸馏水反复清洁混合物,然后在室温下干燥,并且清洁和干燥工序重复两次从而制备NH4型LTA沸石。
将经干燥的NH4型LTA沸石注入100ml的0.01M的一水合乙酸铜(Cu(OAc)2·H2O)溶液中,然后在室温下搅拌约6小时。
将经干燥的NH4型LTA沸石注入100ml的0.01M的一水合乙酸铜(Cu(OAc)2·H2O)溶液中,然后在室温下搅拌约6小时。
为了确定根据本发明的示例性实施方案的沸石催化剂中的氮氧化物的去除率,进行实验以测量氮氧化物相对于温度的去除率,并且实验结果显示在图2中。
图2为显示为了测量根据本发明的示例性实施方案的沸石催化剂和根据比较实施例的沸石催化剂在各个温度范围内的氮氧化物的去除率所进行的实验的结果的图表。
在图2中,横轴表示温度(℃),纵轴表示氮氧化物的去除率(%)。
作为根据比较实施例的沸石催化剂,使用Cu/SSZ-13(Si/Al=13)。
为了确定根据本发明的示例性实施方案的沸石催化剂的高温性能,在实验中分别使用两种沸石催化剂,一种没有进行处理(示例性实施例1),另一种在750℃下在含有10%水分的空气中经受热处理约24小时(示例性实施例2)。
此外,为了确定Cu/SSZ-13的高温性能,在实验中分别使用两种催化剂,一种没有进行处理(比较实施例1),另一种在750℃下在含有10%水分的空气中经受热处理约24小时(比较实施例2)。
为了确定相对于温度的去除率,以100,000的氮气(N2)气体时空速度(GHSV)向示例性实施例和比较实施例的沸石催化剂供应500ppm的氮氧化物(NO)、500ppm的氨(NH3)、5%的氧以及10%的水分,并且测量氮氧化物的去除率,同时在150℃和550℃之间改变温度。
首先,参考图2,在温度达到400℃之前,示例性实施方案1的氮氧化物去除率与比较实施例1相似,但是当温度超过400℃时,示例性实施方案1的氮氧化物去除率与比较实施例1相比更优秀。
此外,在示例性实施方案2中,从温度超过300℃的区域开始,氮氧化物去除率与比较实施例2相比高约30%。
后文中将描述根据示例性实施方案的催化剂。根据此示例性实施方案的催化剂包含含有铜离子的LTA沸石,并且LTA沸石的Si/Al比例可以为2至50。所述催化剂可以涂布在蜂窝载体或过滤器上。
在根据此示例性实施方案的催化剂中,LTA沸石的Si/Al比例可以为2至50。当Si/Al比例小于2时,水热稳定性可能较差,并且当Si/Al比例为50或更大时,可能存在低性能的问题,因为可能含有Cu或Fe的铝位点较少。
催化剂可以通过根据此示例性实施方案的制备方法制备。催化剂可以在100℃或更高的温度下从反应气体中去除NOx。
此外,如图1中所示,根据此示例性实施方案的催化剂在高于450℃的温度下可以具有80%以上的NOx转化率。
在催化剂中,铜/铝比可以为0.1至0.6。替代地,催化剂中的铜的量可以为1重量%至5重量%。在Si/Al比例为23的催化剂中铜含量设定为2重量%时,即使在900℃或更高的高温下进行水热老化24小时,仍显示出优秀的NOx净化效率。在本公开中,术语“水热”意指在预定的温度下以预定的时间输送相对湿度10%的空气流的过程。
此外,在示例性实施方案中,催化剂可以进一步包含添加剂。添加剂可以包含碱金属或碱土金属。替代地,添加剂可以选自La、Ce、Zr、Sc和In,并且在此情况下,低温下的催化剂性能可以得到改进。
当添加剂为碱金属或碱土金属时,添加剂/铝的比例可以在0.1至0.3的范围内。当添加剂为选自La、Ce、Zr、Sc和In的一种或多种时,添加剂/铝的比例可以在0.01至0.05的范围内。
此外,根据本公开的实施方案的催化剂可以为铜型LTA沸石和铜型SSZ-13沸石的混合物。在此情况下,铜型LTA沸石和铜型SSZ-13沸石的混合比例可以为1:3至3:1。更优选地,铜型LTA沸石和铜型SSZ-13沸石的混合比例可以为1:1。当混合并使用铜型LTA沸石和铜型SSZ-13时,可以改进低温下的NOx净化率。
如上所述,根据本发明的LTA沸石催化剂具有2至50的Si/Al比例。取决于新鲜状态或水热老化的温度和时间,呈现最优性能的Si/Al比例可以变化。
现在将参考如下实验实施例描述根据本发明的各个示例性实施方案的LTA沸石催化剂的效果。
实验实施例2:NOx转化率的测量
分别测量Si/Al比例为11的铜型LTA沸石(■)、Si/Al比例为16的铜型LTA沸石(●)和Si/Al比例为16的铜型SSZ-13沸石(▲)相对于温度的NOx转化率,并且测量结果显示在图3(a)和图3(b)中。图3(a)显示在新鲜状态下NOx转化率的测量结果,并且图3(b)显示在750℃下进行水热老化之后的NOx转化率的测量结果。
在此情况下,在与实验实施例1相同的条件下测量转化率。亦即,以100,000的氮气(N2)气体时空速度(GHSV)向催化剂供应500ppm的氮氧化物(NO)、500ppm的氨(NH3)、5%的氧以及10%的水分,并且测量氮氧化物的去除率,同时在150℃和550℃之间改变温度。这与在以下其它实验实施例中相同。
参考图3(a)和图3(b),根据本公开的LTA催化剂在水热老化之前具有优秀的NOx转化率,而在750℃下水热老化之后即使在高温下NOx转化率也显著改进。
实验实施例3:铜含量为2重量%且Si/Al比例为23的LTA沸石催化剂
在根据本公开制备的Si/Al比例为23的LTA沸石中,在铜离子交换中的铜含量设定为2重量%。相对于这种催化剂,在各种温度和时间条件下进行水热老化,并且测量NOx转化性能,并且测量结果显示在图4中。参考图4,确定即使在900℃下进行水热老化24小时,优秀的NOx转化性能仍维持在50%或更高。
实验实施例4:包含添加剂的催化剂
在根据本公开制备的Si/Al比例为16的LTA沸石中,添加各种添加剂的同时测量NOx转化率,并且测量结果显示在图5至图7中。图5显示添加作为添加剂的碱金属或碱土金属的结果,图6显示添加作为添加剂的基于La的金属的结果,而图7显示添加作为添加剂的Zr、Sc和In的结果。参考图5至图7,确定当添加各种添加剂时,在低温下的NOx转化性能得以改进而不明显影响高温下进行的NOx转化。
实验实施例5:与铜型SSZ-13沸石混合
通过改变根据本公开制备的Si/Al比例为16的LTA沸石和铜型SSZ-13沸石的混合比例制备催化剂,并且测量相对于温度的NOx转化性能,并且测量结果显示在图8和图9中。图8显示新鲜状态下的NOx转化性能的测量结果,而图9显示在900℃下水热老化12小时之后的NOx转化性能的测量结果。
参考图8和图9,在新鲜催化剂的情况下铜型SSZ-13沸石含量高的性能优秀,而铜型沸石含量高的性能优秀。当考虑图8和图9中所示的全部结果时,可以确定在铜型LTA沸石与铜型SSZ-13沸石的混合比例为1:1至3:1的情况下性能优秀。
实验实施例6:不同Si/Al比例的实验
通过改变根据本公开的LTA沸石催化剂的Si/Al比例测量相对于温度的NOx转化率。通过将新鲜状态下的催化剂的老化温度分别改变为750℃、850℃和900℃测量NOx转化,并且测量结果显示在图10至13中。图10显示新鲜状态下的性能,图11显示在750℃下老化状态下的性能,图12显示在850℃下老化状态下的性能,并且图13显示在900℃下的性能。在图10至图13中,铜的含量设定为使得Cu/Al比例变为0.5。
参考图10至图13,可以确定取决于老化温度显示出最优活性的Si/Al比例对于各个催化剂是不同的。因此,本领域技术人员可以根据催化剂的使用条件适当地使用最优的Si/Al比例。
实验实施例7:不同Si/Al比例的实验
使用与实验实施例6相似的方法进行实验,不同之处在于反应温度恒定,并且相对于催化剂的Si/Al比例的NOx转化率显示在图14至图17中。图14显示新鲜状态下的性能,图15显示在750℃下老化状态下的性能,图16显示在850℃下老化状态下的性能,并且图17显示在900℃下老化状态下的性能。
结果,在新鲜催化剂的情况下当Si/Al比例较低时,低温性能优秀,但是当Si/Al比例较高时高温性能优秀。
此外,参考图15至图17,在老化状态下,当Si/Al比例为10至30时性能优秀。
比较实施例1:针对Cu型SSZ-13催化剂的不同Si/Al比例的实验
比较实施例1与实验实施例7相似,不同之处在于使用SSZ-13沸石而非本公开的LTA沸石,并且测量各个温度下相对于Si/Al比例的NOx转化率,并且测量结果显示在图18至图21中。图18显示新鲜状态下的性能,图19显示在750℃下老化状态下的性能,图20显示在850℃下老化状态下的性能,并且图21显示在900℃下老化状态下的性能。
在图18至图21中显示的比较实施例1的测量结果和图14至图17中显示的实验实施例7的测量结果之间进行比较,相比于根据本发明的LTA沸石,比较实施例1的结果显示在500℃下的高温性能相对较低。此外,在图20和图21中显示的比较实施例1的结果和图16和图17中显示的示例性实施方案7的结果之间进行比较,在850℃或更高温度下老化之后性能显著不同。亦即,相比于SSZ-13催化剂,根据本发明的示例性实施方案的LTA沸石催化剂即使在Si/Al比例与SSZ-13催化剂相同时仍显示出显著改进的效果。
此外,根据另一示例性实施方案的催化剂包含含有Fe离子的LTA沸石,并且该LTA沸石的Si/Al比例可以为2至50。催化剂可以涂布在蜂窝载体或过滤器上,并且催化剂可以在100℃或以上从反应气体中去除NOx。催化剂可以包含1重量%至5重量%含量的离子。
实验实施例8:含有Fe的LTA沸石催化剂
制备根据本发明的Si/Al比例为16的LTA沸石。在此情况下,将Fe离子添加至LTA沸石从而制备Fe/Al比例为0.2的Fe型LTA沸石。此外,作为比较实施例,制备含有Fe离子的SSZ-13沸石。
对于Fe型LTA沸石催化剂(示例性实施方案)和Fe型SSZ-13沸石催化剂,测量相对于各个温度的NOx转化率,并且测量结果显示在图22中。测量各个催化剂在新鲜状态下的转化率和在850℃下水热老化之后的转化率。
参考图22,可以确定相比于Fe型SSZ-13沸石催化剂,根据本发明的Fe型LTA沸石催化剂在850℃下水热老化之后具有显著改进的性能。
后文中将参考图23描述应用根据用于制备根据本发明的示例性实施方案的沸石催化剂的方法制备的沸石催化剂的实施例。
图23为应用根据本发明的示例性实施方案的沸石催化剂的排放气体净化装置的框图。
如图23中所示,从发动机10产生的排放气体连续地经过涡轮增压器20、柴油氧化催化剂(DOC)装置30、催化颗粒过滤器(CPF)40、喷洒喷嘴50和选择性催化还原(SCR)装置60从而去除排放气体中的有害材料。此处,涡轮增压器20、DOC装置30、CPF 40、喷洒喷嘴50和SCR装置60可以安装在排气管70中。
发动机10包括用于燃烧空气混合物的多个汽缸(未示出)。汽缸与进气歧管(未示出)连接以接收空气混合物,并且进气歧管与进气管(未示出)连接以接收外部空气。
此外,汽缸与排气歧管(未示出)连接使得在燃烧过程中产生的排放气体收集在排气歧管中。排气歧管与排气管70连接。
涡轮增压器20使用排放气体的能量旋转涡轮(未示出)从而增加空气进气量。
DOC装置30可以设置在涡轮增压器20的后端。在DOC装置30中,HC和CO被氧化,NO被氧化为NO2。此外,为了有效地产生NO2,与过渡金属进行离子交换并且根据本发明的上述方法制备的至少一种沸石催化剂和贵金属可以包含在DOC装置30中,并且根据本发明的上述方法制备的沸石催化剂可以在DOC装置30中用作插入初始冷启动时产生的NOx的冷启动催化剂(CSC)的载体。
CPF 40设置在DOC装置30的后端,并包括催化剂过滤器CPF。
CPF 40收集排放气体中的颗粒物质(PM)并再生经收集的PM(即烟灰)。当CPF 40的入口和出口之间的压力差比预定的压力更高时进行烟灰的再生。
喷洒喷嘴50设置在CPF 40和SCR装置60之间,并将还原剂喷洒至在DOC装置30和CPF 40中氧化的排气。还原剂可以为氨,通常从喷洒喷嘴50喷洒尿素,并且经喷洒的尿素分解为氨。
将与还原剂和DPC装置30产生的NO2混合的排放气体供应至SCR装置60。
SCR装置60设置在喷洒喷嘴50的后端,并且包括根据本发明的上述方法制备的与过渡金属进行离子交换的沸石催化剂。根据上述各个示例性实施方案的LTA沸石催化剂可以包含在SCR装置60中。将省略相同组件的详细描述。SCR装置60使用从DOC装置30产生的NO2和还原剂将排放气体中的NOx还原成氮气N2使得排放气体中的NOx可以被还原。
此外,可以应用至DOC装置30和SCR装置60的根据本发明的示例性实施方案的Cu型LTA沸石催化剂可以单独地使用或与Cu型SSZ-13催化剂混合。当混合Cu型SSZ-13催化剂和根据本发明的示例性实施方案的Cu型LTA沸石催化剂时,可以更大地改进低温性能和高温性能。
如上所述,根据本发明的示例性实施方案的用于制备沸石催化剂的方法,酸性较低,因此催化剂的高温性能可以得到改进,同时减少尿素的消耗。
尽管已经通过目前被认为是实际示例性的实施方案描述了本发明,应理解本发明不限于所公开的实施方案,相反地,本发明旨在覆盖包含在所附权利要求书的本质和范围内的各种变体和等同形式。

Claims (27)

1.一种催化剂,所述催化剂包含含有铜离子的LTA沸石,
其中LTA沸石的Si/Al比例为2至50。
2.根据权利要求1所述的催化剂,其中催化剂涂布在蜂窝载体或过滤器上。
3.根据权利要求1所述的催化剂,其中催化剂在100℃或以上从反应气体中去除NOx。
4.根据权利要求1所述的催化剂,其中催化剂在450℃或以上具有80%的NOx转化率。
5.根据权利要求1所述的催化剂,其中催化剂中的铜含量为1重量%至5重量%。
6.根据权利要求1所述的催化剂,其中催化剂进一步包含添加剂。
7.根据权利要求6所述的催化剂,其中添加剂为碱金属或碱土金属,并且添加剂和铝的比例为0.1至0.3。
8.根据权利要求6所述的催化剂,其中添加剂选自La、Ce、Zr、Sc和In,并且添加剂和铝的比例为0.01至0.05。
9.根据权利要求1所述的催化剂,所述催化剂进一步包含铜型SSZ-13沸石。
10.根据权利要求9所述的催化剂,其中LTA沸石和铜型SSZ-13沸石的混合比例为1:3至3:1。
11.一种催化剂,所述催化剂包含含有Fe离子的LTA沸石,其中LTA沸石的Si/Al比例为2至50。
12.根据权利要求11所述的催化剂,其中催化剂涂布在蜂窝载体或过滤器上。
13.根据权利要求11所述的催化剂,其中催化剂在100℃或以上从反应气体中去除NOx。
14.根据权利要求11所述的催化剂,其中催化剂中的铁含量为1重量%至5重量%。
15.一种用于制备催化剂的方法,所述方法包括:
制备Si/Al比例为2或更大的LTA沸石;
通过使用LTA沸石制备含有离子的LTA沸石;以及
通过在含有离子的LTA沸石上进行铜离子交换制备铜型LTA沸石。
16.根据权利要求15所述的用于制备催化剂的方法,其中LTA沸石的Si/Al比例为2至50。
17.根据权利要求15所述的用于制备催化剂的方法,其中含有离子的LTA沸石的制备包括取代LTA沸石中的离子。
18.根据权利要求15所述的用于制备催化剂的方法,其中含有离子的LTA沸石的制备包括将LTA沸石添加至用于反应的铵盐,然后干燥LTA沸石,其中铵盐为硝酸铵(NH4NO3)。
19.根据权利要求15所述的用于制备催化剂的方法,其中在含有离子的LTA沸石上进行铜离子交换包括将含有离子的LTA沸石添加至铜前体溶液然后搅拌该溶液。
20.根据权利要求15所述的用于制备催化剂的方法,所述方法进一步包括在制备铜型LTA沸石之后热处理铜型LTA沸石,
其中热处理在400至750℃的温度范围内以1至30℃/min进行。
21.根据权利要求15所述的用于制备催化剂的方法,其中Si/Al比例为2或更大的LTA沸石的制备包括使用LTA晶种或不使用LTA晶种制备LTA沸石。
22.一种用于制备催化剂的方法,所述方法包括:
制备Si/Al比例为2或更大的LTA沸石;
使用LTA沸石制备含有离子的LTA沸石;以及
通过在含有离子的LTA沸石上进行铁(Fe)离子交换制备铁型LTA沸石。
23.根据权利要求22所述的用于制备催化剂的方法,其中在含有离子的LTA沸石上进行Fe离子交换包括将含有离子的LTA沸石添加至铁前体溶液并且搅拌该溶液。
24.根据权利要求22所述的用于制备催化剂的方法,其中含有离子的LTA沸石的制备包括将LTA沸石添加至用于反应的铵盐,然后干燥LTA沸石,其中铵盐为硝酸铵(NH4NO3)。
25.根据权利要求22所述的用于制备催化剂的方法,其中在含有离子的LTA沸石上进行Fe离子交换进一步包括将含有离子的LTA沸石与九水合硝酸铁(III)(Fe(NO3)3·9H2O)、七水合硫酸亚铁(FeSO4·7H2O)、二水合草酸亚铁(II)(FeC2O4·2H2O)以及四水合氯化亚铁(II)(FeCl2·4H2O)的至少一种混合并且搅拌混合物。
26.根据权利要求22所述的用于制备催化剂的方法,所述方法进一步包括在含有离子的LTA沸石上进行Fe离子交换之后热处理Fe型LTA沸石,
其中热处理在400至750℃的温度范围内以1至30℃/min进行。
27.根据权利要求22所述的用于制备催化剂的方法,其中Si/Al比例为2或更大的LTA沸石的制备包括使用LTA晶种或不使用LTA晶种制备LTA沸石。
CN201710073032.8A 2016-02-12 2017-02-10 催化剂和用于制备催化剂的方法 Active CN107081167B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160016512 2016-02-12
KR10-2016-0016512 2016-02-12
KR10-2016-0165932 2016-12-07
KR1020160165932A KR20170095118A (ko) 2016-02-12 2016-12-07 촉매 및 촉매의 제조 방법

Publications (2)

Publication Number Publication Date
CN107081167A true CN107081167A (zh) 2017-08-22
CN107081167B CN107081167B (zh) 2022-05-24

Family

ID=57821830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710073032.8A Active CN107081167B (zh) 2016-02-12 2017-02-10 催化剂和用于制备催化剂的方法

Country Status (5)

Country Link
US (2) US10518253B2 (zh)
EP (2) EP3205398A1 (zh)
JP (1) JP7001880B2 (zh)
KR (1) KR102359951B1 (zh)
CN (1) CN107081167B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081682A1 (en) * 2016-10-31 2018-05-03 Johnson Matthey Public Limited Company Lta catalysts having extra-framework iron and/or manganese for treating exhaust gas
KR20180117929A (ko) * 2017-04-20 2018-10-30 현대자동차주식회사 촉매 및 촉매의 제조 방법
CN109985662B (zh) * 2017-12-29 2020-10-16 华中科技大学 一种高硅Cu-LTA催化剂的制备方法及其应用
JP7109023B2 (ja) * 2018-10-26 2022-07-29 東ソー株式会社 Rho型ゼオライト及びその製造方法
EP3919165A1 (en) * 2020-06-03 2021-12-08 Johnson Matthey Public Limited Company Method for forming a catalyst article
CN112844463B (zh) * 2021-01-20 2022-12-13 山东国瓷功能材料股份有限公司 一种Ce改性Cu-Fe-SSZ-13分子筛的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674885A (zh) * 2007-03-26 2010-03-17 Pq公司 包含具有8元环开孔结构的分子筛或沸石的新型微孔结晶材料及其制备方法和应用
CN104128200A (zh) * 2014-07-22 2014-11-05 清华大学苏州汽车研究院(吴江) 铜基scr催化剂及其制备方法
CN104226361A (zh) * 2014-09-01 2014-12-24 清华大学苏州汽车研究院 铁基scr催化剂及其制备方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314752A (en) * 1961-08-30 1967-04-18 Mobil Oil Corp Synthetic zeolite
JPS5386693A (en) * 1976-12-21 1978-07-31 Kurita Water Ind Ltd Nitrogen oxides reduction catalyst
JPH01219013A (ja) * 1988-02-27 1989-09-01 Satoyuki Inui 銅含有ゼオライト、その製造法、該ゼオライトからなるcoガス中のo2の除去用触媒、およびcoガス中のo2の除去方法
JPH038447A (ja) * 1989-03-07 1991-01-16 Sakai Chem Ind Co Ltd オゾン分解用触媒
JPH07108136A (ja) * 1993-10-08 1995-04-25 Babcock Hitachi Kk メタン含有排ガスの脱硝方法
WO2000072965A1 (en) * 1999-05-27 2000-12-07 The Regents Of The University Of Michigan Zeolite catalysts for selective catalytic reduction of nitric oxide by ammonia and method of making
DE19939416A1 (de) * 1999-08-20 2001-02-22 Basf Ag Verfahren zur Herstellung eines kristallinen, zeolithischen Feststoffs
BRPI0412273B1 (pt) * 2003-07-03 2019-09-24 The University Court Of The University Of St. Andrews Preparação farmacêutica, uso de um material de zeólito, artigo médico, produto cosmético e/ou de higiene pessoal, e, método de liberação de óxido nítrico
GB0617070D0 (en) 2006-08-30 2006-10-11 Johnson Matthey Plc Low Temperature Hydrocarbon SCR
US7998423B2 (en) * 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
KR20150052335A (ko) * 2007-04-26 2015-05-13 존슨 맛쎄이 퍼블릭 리미티드 컴파니 전이 금속/제올라이트 scr 촉매
DE102007030895A1 (de) 2007-07-03 2009-01-08 Süd-Chemie AG Abgaskatalysator für Salzsäure-haltige Abgase
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
WO2009141897A1 (ja) 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
WO2009141889A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
JP5743885B2 (ja) 2008-05-21 2015-07-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se CHA構造を有するCu含有ゼオライトの直接合成のための方法
US8293199B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
US8263032B2 (en) 2010-02-01 2012-09-11 Johnson Matthey Public Limited Company Oxidation catalyst
DE102010007626A1 (de) * 2010-02-11 2011-08-11 Süd-Chemie AG, 80333 Kupferhaltiger Zeolith vom KFI-Typ und Verwendung in der SCR-Katalyse
JP5902682B2 (ja) 2010-07-15 2016-04-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se NOxの選択的還元用の銅含有ZSM−34、OFF及び/又はERIゼオライト系材料
KR101860741B1 (ko) * 2010-09-15 2018-05-24 존슨 맛쎄이 퍼블릭 리미티드 컴파니 조합된 슬립 촉매와 탄화수소 발열 촉매
EP2463028A1 (en) * 2010-12-11 2012-06-13 Umicore Ag & Co. Kg Process for the production of metal doped zeolites and zeotypes and application of same to the catalytic removal of nitrogen oxides
MX356604B (es) * 2010-12-28 2018-06-05 Tosoh Corp Zeolita que tiene cobre y metal alcalinotérreo soportados.
US20120134916A1 (en) 2011-02-28 2012-05-31 Fedeyko Joseph M High-temperature scr catalyst
KR102018484B1 (ko) * 2011-06-05 2019-09-05 존슨 맛쎄이 퍼블릭 리미티드 컴파니 배기 가스를 처리하기 위한 백금족 금속(pgm) 촉매
US9981256B2 (en) * 2011-12-02 2018-05-29 Pq Corporation Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx
CA2888518C (en) 2012-10-19 2021-09-14 Basf Corporation 8-ring small pore molecular sieve with promoter to improve low temperature performance
JP6029424B2 (ja) * 2012-11-12 2016-11-24 日揮触媒化成株式会社 内部に空洞を有するシリカ粒子の製造方法および内部に空洞を有するシリカ粒子、該シリカ粒子を含む被膜形成用塗布液および被膜付基材
WO2014210560A1 (en) * 2013-06-27 2014-12-31 California Institute Of Technology Molecular sieves with a linde type a topology and related methods and systems
US20150136660A1 (en) 2013-11-19 2015-05-21 Uop Llc Process for removing a contaminant from coal tar
GB2530129B (en) 2014-05-16 2016-10-26 Johnson Matthey Plc Catalytic article for treating exhaust gas
CN104741143A (zh) 2015-03-15 2015-07-01 北京工业大学 Cu-ZSM-5掺杂Zr和Sr复合催化剂的制备方法和应用
US10343925B2 (en) * 2016-02-12 2019-07-09 Hyundai Motor Company Method for preparing zeolite catalyst
KR101846914B1 (ko) 2016-10-21 2018-04-09 현대자동차 주식회사 촉매 및 촉매의 제조 방법
KR101846918B1 (ko) 2016-11-16 2018-04-09 현대자동차 주식회사 Cu/LTA 촉매 및 이를 포함하는 배기 시스템, 그리고 Cu/LTA 촉매 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674885A (zh) * 2007-03-26 2010-03-17 Pq公司 包含具有8元环开孔结构的分子筛或沸石的新型微孔结晶材料及其制备方法和应用
CN104128200A (zh) * 2014-07-22 2014-11-05 清华大学苏州汽车研究院(吴江) 铜基scr催化剂及其制备方法
CN104226361A (zh) * 2014-09-01 2014-12-24 清华大学苏州汽车研究院 铁基scr催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MICHAEL W. ANDERSON ET AL.,: "Electron Spin Echo Study of Cu2+-Doped Zeolite K-ZK4: Cation Location and Adsorbate Interaction", 《J. PHYS. CHEM.》 *
周松 等: "《内燃机排放与污染控制》", 31 July 2010, 北京航空航天大学出版社 *
陈冠荣 等: "《化工百科全书 第4卷》", 30 September 1993, 化学工业出版社 *

Also Published As

Publication number Publication date
KR102359951B1 (ko) 2022-02-09
CN107081167B (zh) 2022-05-24
KR20210099535A (ko) 2021-08-12
JP7001880B2 (ja) 2022-01-20
EP3205402A1 (en) 2017-08-16
US10981153B2 (en) 2021-04-20
US20200086303A1 (en) 2020-03-19
JP2017140614A (ja) 2017-08-17
US10518253B2 (en) 2019-12-31
US20170232428A1 (en) 2017-08-17
EP3205398A1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
CN107081167A (zh) 催化剂和用于制备催化剂的方法
CN102215960B (zh) 具有低二氧化硅与氧化铝比率的菱沸石催化剂
CN101549290B (zh) 复合金属氧化物及低温氨选择性催化还原氮化物催化剂
CN101203295B (zh) 利用第一和第二催化作用还原NOx的方法和设备
CN107921416A (zh) 用于排气系统的一氧化二氮去除催化剂
CN104971766A (zh) 用于nox还原的含铁和铜的菱沸石催化剂
CN105263864B (zh) 基于锆、铈、铌和锡的氧化物的组合物、制备方法及在催化中的用途
CN107081168B (zh) 制备沸石催化剂的方法
CN101448567A (zh) 尤其用于捕集氮氧化物(NOx)的基于氧化铝、铈和钡和/或锶的组合物
CN103089379A (zh) 废气后处理系统
CN104379239A (zh) 用于处理摩托车排气的本体金属催化剂组合物和方法
CN106824173A (zh) 一种scr烟气脱硝催化剂及其制备方法
CN103764282A (zh) 低磷菱沸石
CN102933497A (zh) 基于铈、锆和钨的组合物,制备方法及其在催化中的用途
CN103566964A (zh) 一种低温催化剂及其制备方法
CN105032446A (zh) 用于柴油机尾气氮氧化物净化的低温型scr催化剂及其制备方法
CN203584530U (zh) 用于scr后处理系统的静态混合系统
CN102112212A (zh) 高温废气用脱硝催化剂及其制造方法、高温废气脱硝方法
CN102728224B (zh) 用于净化燃烧废气的催化器及其制备方法
CN108071450B (zh) Cu/LTA催化剂和排气系统、以及Cu/LTA催化剂的制造方法
CN105879869A (zh) 一种用于氢气选择性还原氮氧化物的催化剂及其制备方法和应用
CN107971009A (zh) 催化剂及催化剂的制备方法
CN104415747A (zh) 一种钛钨粉及其制备方法
CN108071467A (zh) 用于净化废气的装置
CN101933115B (zh) 从尾气中除去氮氧化物的催化剂、其制备方法和使用该催化剂从尾气中除去氮氧化物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211123

Address after: Seoul, South Kerean

Applicant after: Hyundai Motor Co.,Ltd.

Applicant after: Kia auto Co., Ltd

Address before: Seoul, South Kerean

Applicant before: Hyundai Motor Co.,Ltd.

Applicant before: Kia Motors Corp.

Applicant before: POSTECH ACADEMY-INDUSTRY FOUNDATION

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant