CN101203295B - 利用第一和第二催化作用还原NOx的方法和设备 - Google Patents

利用第一和第二催化作用还原NOx的方法和设备 Download PDF

Info

Publication number
CN101203295B
CN101203295B CN2006800225742A CN200680022574A CN101203295B CN 101203295 B CN101203295 B CN 101203295B CN 2006800225742 A CN2006800225742 A CN 2006800225742A CN 200680022574 A CN200680022574 A CN 200680022574A CN 101203295 B CN101203295 B CN 101203295B
Authority
CN
China
Prior art keywords
catalyst
equipment
flow
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800225742A
Other languages
English (en)
Other versions
CN101203295A (zh
Inventor
理查德·F·索哈
詹姆斯·C·瓦尔图利
埃-梅基·埃尔-马勒基
莫汉·卡利亚纳拉曼
保罗·W·帕克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
ExxonMobil Technology and Engineering Co
Original Assignee
Caterpillar Inc
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc, ExxonMobil Research and Engineering Co filed Critical Caterpillar Inc
Publication of CN101203295A publication Critical patent/CN101203295A/zh
Application granted granted Critical
Publication of CN101203295B publication Critical patent/CN101203295B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/02Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate silencers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9468Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

一种用于催化处理通过其中的气流(13)以减少气流中存在的NOx的方法和设备(10),其中所述设备包括第一催化剂(20)和第二催化剂(22),第一催化剂由含银的氧化铝构成并适用于在第一温度范围下催化处理所述气流,第二催化剂由含铜的沸石构成并位于第一催化剂下游,其中第二催化剂适用于在比第一温度范围更低的第二温度范围下催化处理气流。

Description

利用第一和第二催化作用还原NO<sub>x</sub>的方法和设备
技术领域
本发明总体上涉及从诸如内燃机、加热炉、发电厂等运行所需的燃烧过程形成的废气流中除去污染气体的方法和设备,更具体地涉及从燃烧过程产生的废气中除去氮氧化物(NOx)的催化剂。
背景技术
多年来不断努力研究从燃烧设备产生的废气中除去污染气体的方法和系统。近年来,世界上许多国家已将环境条例制定成法律,努力减少燃烧设备的污染气体向大气中的排放。主要问题是诸如汽油驱动的发动机并且尤其是柴油机等内燃机所驱动的机动车产生的氮氧化物(NOx)。其他燃烧设备也受到关注,如安装在工厂中的加热炉、商用和家用加热装置、发电设备等。
在这种设备的燃烧过程中,当空气中的氮与氧在燃烧室内在其中通常存在的高温和高压条件下反应时,如在内燃机的汽缸中,产生氮氧化物(NOx),其通常包括一氧化氮和二氧化氮中的任一种或二者混合物,它们统称作NOx排放物。NOx排放物是引起烟雾和酸雨的主要大气污染物质。世界上主要工业化国家均已制定减少NOx排放物的条例。
因而,进行了长期的大量努力来研究实质上消除氮氧化物或NOx经燃烧设备的废气流排放进入大气中的方法和系统。已经认识到汽车排放物是主要的空气污染源,在1966汽车模型年中,加利福尼亚政府通过了要求在加利福尼亚出售的车辆中使用废气排放物控制系统的条例。1968汽车模型年在全美国内制定了相似的条例。
在燃烧过程中,燃料和空气的″理想混合物″在热力学中称作″化学计量量的″。这是空气量刚好足以燃烧所有燃料而没有过量氧剩余的点。出于多种原因,内燃机不能按化学计量量运行,并通常在不足量下运行,其中相对于化学计量量的条件,氧相对于燃料过量。尽管汽油和柴油内燃机通常都按稀燃发动机运行,但在运行柴油机时最经常发现这种情况,并且导致在这种发动机的废气中产生不需要量的NOx排放物。有时发动机可以过量运行,即燃料相对于氧过量。应注意到,对于汽油,化学计量量的混合物是14.6∶1。即使在这些条件下,空气中的一些氮也能够与氧反应形成NOx
稀燃发动机的废气流含有大量氧,从而阻碍了通过使用常规废气催化剂如″三效催化剂″从气流中有效地除去NOx。因而,已经研究出NOx捕获或NOx贮存/减少系统以有助于从当前的稀燃发动机除去NOx。然而,这些系统必须依赖于精密的发动机控制,以交替改变废气流中的足量和不足量条件。在不足量状态时,使用的催化剂贮存NOx。在足量状态时,催化剂将NOx还原成N2。此外,已经研究出HC-SCR系统作为用于从内燃机的废气流中减少NOx的新形式,但是发现这种系统的应用很有限。
因此,本领域中需要从诸如内燃机等燃烧装置的废气流中除去NOx的改进的方法和设备。
发明内容
本发明涉及催化处理气流以从其除去或至少大大减少NOx化合物的方法和设备。本发明的设备提供了用于减少或除去内燃机产生的废气中的NOx化合物的有效方式。特别地,本发明的设备可有效地处理稀燃发动机如柴油机的废气,例如,其中所述废气具有相对较大比例的氧含量。本发明利用在相对高的温度下表现出NOx转化活性的第一催化剂与在较低温度下至少表现出相似活性的第二催化剂的组合,以产生协同效果。本发明的特征在于,更宽的操作温度范围和增强了的气流处理能力。更具体而言,本发明利用产生协同作用的催化剂组合,其效果优于通过在所述第一催化剂上产生适当的中间含氮化合物并在所述第二催化剂上还原它们的部分总和。
本发明的设备通常包括用于在第一优化温度下操作的第一催化剂和用于在比所述第一温度更低的第二优化温度下操作的第二催化剂。所述第一催化剂位于所述第二催化剂上游,使得气流形式的废气从所述第一催化剂流向所述第二催化剂。所述第一催化剂和第二催化剂可以彼此邻近或彼此间隔开。
在本发明的一个实施方案中,通常是烃化合物形式的还原剂被引入所述气流中,经烃的选择性催化还原(HC-SCR)进一步增强所述设备的NOx除去作用。
在本发明的优选实施方案中,所述第一催化剂由含金属的氧化铝材料构成,所述第二催化剂由含金属的沸石材料构成。在操作中,废气通过所述设备,相继被所述第一催化剂和第二催化剂处理。所述第一催化剂和第二催化剂组合作用,以除去或至少大大减少所述NOx化合物,并以简单和有成本效益的方式将其转化成环境相容的副产物。
在本发明的一个方面中,提供一种用于催化处理通过其中的气流以减少气流中存在的NOx的设备,所述设备包括:
第一催化剂,其具有用于催化处理所述气流的第一优化处理温度范围;和
第二催化剂,其位于所述第一催化剂下游,相对于用于催化处理所述气流的第一温度范围,在所述第一催化剂后面的所述第二催化剂具有更低的第二优化处理温度范围。
在本发明的特定方面中,提供一种用于催化处理通过其中的气流以减少气流中存在的NOx的设备,所述设备包括:
包括含金属的氧化铝的第一催化剂,其具有用于催化处理所述气流的第一优化处理温度范围;和
包括含金属的沸石的第二催化剂,其位于所述第一催化剂下游,相对于用于催化处理所述气流的第一优化处理温度范围,在所述第一催化剂后面的所述第二催化剂具有更低的第二优化处理温度范围。
本发明的另一个方面中,提供一种催化处理气流以减少气流中存在的NOx的方法,所述方法包括以下步骤:
将所述气流输送至第一催化剂,所述第一催化剂具有用于催化处理所述气流的第一优化处理温度范围;和
将所述气流从所述第一催化剂输送至第二催化剂,其中相对于用于催化处理所述气流的第一优化处理温度范围,在所述第一催化剂后面的所述第二催化剂具有更低的第二优化处理温度范围。
附图说明
下面结合附图详细地说明本发明的各实施方案,其中相同项用相同的附图标记表示,其中:
图1是根据本发明的一个实施方案用于催化处理气流以从其除去或至少大大减少NOx化合物的设备应用的示意图,并且其适用于柴油机;
图2是根据本发明的一个实施方案的用于催化处理气流以从其除去或至少大大减少NOx化合物的设备的纵剖视图;
图3是根据本发明在没有水存在下比较Ag/氧化铝和Cu/ZSM-5催化剂组合的性能与单独的催化剂性能的图;
图4是根据本发明在有水存在下比较Ag/氧化铝和Cu/ZSM-5催化剂组合的性能与单独的催化剂性能的图;
图5是根据本发明在不同铜负载时比较Ag/氧化铝和Cu/ZSM-5催化剂组合的性能的图;
图6是根据本发明在十二烷还原剂存在下比较Ag/氧化铝和Cu/ZSM-5催化剂组合的性能与单独的催化剂性能的图;
图7是根据本发明在不同物理排列时比较Ag/氧化铝和Cu/ZSM-5催化剂组合的性能的图;和
图8是根据本发明比较Ag/氧化铝和Cu/ZSM-5催化剂组合的性能与Ag/氧化铝和Pt/氧化铝催化剂组合的性能的图。
具体实施方式
本发明涉及催化处理气流以从其除去或至少大大减少NOx化合物的方法和设备。本发明的设备和方法提供用于减少或除去内燃机产生的废气中的NOx化合物的有效方式。本发明的设备和方法被设计成能够促进废气中存在的NOx化合物催化转化成环境相容的产物。已经观察到,在通常是烃形式的还原剂存在下,本发明的设备利用第一催化剂和第二催化剂的组合产生了协同作用,同时使用最小的填充空间。可以预期到,本文所公开的设备适用于不足量NOx废气后处理系统。
本发明被设计成通过调节中间体反应物促进不同催化剂组合的协同作用,而生成氨水、胺、腈和其他有机含氮物质。本发明能够产生较高的NOx减少性能,同时保持同样的填充体积和空速。
参照图1,是本发明设备的示意图,用附图标记10代表,其与柴油机形式的″稀燃″发动机12连接。这里,″稀燃发动机″被定义成产生富氧废气的发动机,富氧废气被定义成其中氧的摩尔比比还原性化合物如CO、氢和烃的总摩尔比更高的废气。废气处于氧化性环境。这种发动机系统的例子包括柴油机系统、火花点火天然气或其他燃料发动机系统、供给液态或气态燃料的涡轮发动机和各种稀燃汽油发动机系统。通常,如图1所示,柴油机系统产生氧含量为4%~16%的废气,这取决于柴油机的负载条件和运行模式。
富氧废气13离开发动机12,并被导向设备10。优选地,通过加入雾状烃或烃混合物形式的还原剂18补充这种废气。在图示实施方案中,这些烃的一个来源可以是用作柴油机12的主要燃料来源的罐2中的柴油燃料15。烃还原剂可以是在发动机循环中燃烧事件后的废气中保留的残余烃。可选择地,补充的烃可以作为喷射后事件引入,优选在四冲程柴油机的动力冲程或废气冲程中。如图所示,另一个选择是使用被发动机控制模块(ECM)19控制的辅助喷射器17将补充的烃引入发动机汽缸下游位置的废气系统。还公知的是使用主要柴油燃料之外的烃。
发动机废气被导向包括催化单元14的设备10。在催化单元14内沉积的是具有本发明公开的特定物理和化学特性的含金属催化剂组合物,这种催化剂可获得高的NOx除去性能以及其他有利的不足量NOx催化剂性能。下面更详细地说明含金属的催化剂组合物的组成以及催化反应。
参照图2,设备10包括催化单元14,该催化单元沿废气出管16置于稀燃发动机12的下游。来自发动机12的气流形式的废气13(箭头所示)沿废气管16在图2相关箭头所示方向传输。对于本发明的一个实施方案,设备10包括气密壳体24、一端的入口26和其相对端的出口28,壳体限定了被催化单元14占据的填充空间30。填充空间30分别在入口26和出口28之间流体连通。入口26从燃烧发动机供应废气13,出口28排放输出净化的废气流21。
设备10的催化单元14包括第一催化剂20和第二催化剂22,第一催化剂20具有用于催化处理废气13的气流的第一优化处理温度范围,第二催化剂22位于第一催化剂20下游。相对于用于催化处理气流的第一温度范围,在第一催化剂20后面的第二催化剂22具有更低的第二优化处理温度范围。特别地,第一催化剂20适于促进NOx与烃的反应,以生成含氮中间体,如胺、氨水、有机含氮物质和氧合物。这些中间体物质与活化的NOx物质一起吸入气相。第二催化剂22适于促进这些中间体进一步还原成N2的反应。本发明人认为,第一催化剂不仅使一些NOx直接转化成N2,而且也可以由残余的NOx生成中间体物质,并在第二催化剂作用下进一步反应形成N2
在本发明的优选实施方案中,第一催化剂20由含催化活性的金属的氧化铝(Al2O3)材料构成,优选含金属的γ-氧化铝材料,第二催化剂22由含催化活性的金属的沸石材料构成,优选含金属的ZSM-5材料。第一催化剂20和第二催化剂22通常在结构上排列成催化剂床,所述催化剂床可以是粉末、小球、颗粒、洗涂的或形成的整料(如蜂窝结构)等形式。
第一催化剂20的金属优选选自银、铟、镓、锡、钴和其混合物,更优选选自银。按第一催化剂总重计,第一催化剂20的金属装载优选约1~15wt%,更优选约2~5wt%。为在废气13中使用还原剂,优选的是金属装载至少2%。在本发明的优选实施方案中,第一催化剂20由含银的氧化铝催化剂(Ag/氧化铝)构成。
已经发现,通过溶胶-凝胶法形成的氧化铝产生具有可用于富氧废气的不足量NOx催化处理的独特性能的材料。研究了形成氧化铝成分的各种方法。在一个实施方案中,通过配位剂辅助的溶胶-凝胶法制备γ-氧化铝。另一个实施方案使用通过在未使用配位剂情况下经溶胶-凝胶法制备的γ-氧化铝载体材料。
优选通过使用配位剂的溶胶-凝胶法与利用诸如2-丙醇等醇的洗涤步骤结合,而合成第一催化剂20的氧化铝成分。溶胶-凝胶法的优点在于,生成的产物其特征在于具有碱性pH,优异的水热稳定性,并且具有在氧化铝成分上优化的金属分散以使装载能力和均匀性最大化,从而与常规制备方法相比,提高更大的NOx减少。关于溶胶-凝胶法的具体细节可以参见后面的实施例2。经溶胶-凝胶法合成氧化铝的进一步细节可以参见美国专利No.6,703,343和6,706,660,在此引入这些专利的教导作为参考,其引入以不与本发明冲突为限。
金属参杂或氧化铝材料的装载优选以两种方法中的一种方法而实现。在一种方法中,目标金属掺杂剂溶解在水中,而水用于防止上述溶胶-凝胶过程中的胶凝化。
在第二种方法中,利用初湿含浸法用金属掺杂煅烧的溶胶-凝胶γ-氧化铝。在优选的初湿含浸法中,将煅烧的粉末溶胶-凝胶制备的γ-氧化铝与适当金属的溶液接触。金属溶液的用量等于或大于γ-氧化铝样品的总孔体积。制备的γ-氧化铝的孔体积优选为约0.5~约2.0cc/g氧化铝。
为通过初湿法形成铟或氧化铟掺杂的γ-氧化铝,将适量的In(NO3)3(或InCl3)溶解在水溶液中,并使其与溶胶-凝胶γ-氧化铝接触。然后,将铟或氧化铟掺杂的γ-氧化铝催化剂在600℃下煅烧约5小时。
按相同方式,使用SnCl3的乙醇溶液代替水制备锡或氧化锡掺杂的γ-氧化铝。将锡或氧化锡掺杂的γ-氧化铝催化剂在600℃下煅烧约5小时,然后,在800℃下煅烧约2小时。
所评价的第三种有前景的金属促进剂是镓或氧化镓。通过使γ-氧化铝与Ga(NO3)3-H2O的水溶液接触而制备镓或氧化镓掺杂的γ-氧化铝,其中该水溶液在溶胶-凝胶法中,在γ-氧化铝制备过程中加到氧化铝凝胶中。将镓或氧化镓掺杂的γ-氧化铝催化剂在600℃下煅烧约5小时,形成镓的氧化物装载的氧化铝。
第二催化剂22的金属优选选自铜、铁、钴、其混合物,更优选选自铜。按第二催化剂总重计,第二催化剂22的金属装载优选约2~15wt%,更优选约3~11.5wt%。在本发明的优选实施方案中,第二催化剂22由含铜的沸石催化剂(Cu/沸石)构成。沸石成分可以选自任何适合的沸石,包括但不限于ZSM-5、ZSM-11、ZSM-35、MCM-22、MCM-49、β、MCM-56、ITQ-13和MCM-68。优选的沸石是ZSM-5。关于金属掺杂或装载ZSM-5成分的进一步细节可以参见下面的实施例1。
催化单元14的第一催化剂20和第二催化剂22被封装在壳体24的填充空间20内,其中第一催化剂20位于第二催化剂22上游。第一催化剂和第二催化剂存在的量之比为约1∶2~2∶1,其比优选为约1∶1。在该实施方案中,第一催化剂20和第二催化剂22彼此邻接。可选择地,第一催化剂20和第二催化剂22彼此保持间隔开一定距离L。通常,随着停留时间减小,性能提高。第一催化剂20与第二催化剂22组合的作用在于转化并减少通过入口26进入的废气13气流中存在的NOx,并以净化程度更高的形式从设备10的出口28离去。
如上所述,在催化单元14之前,可将废气13与还原剂一同注入,以增强与将NOx转化成N2相关的催化反应。所述还原剂可以从与燃烧发动机12相连的燃料箱15抽出并经燃料注射器或其他适合装置注入废气13中。与柴油机相关的适合还原剂的其他例子包括十二烷、乙醇、丙烷、柴油燃料、煤油、柴油范围的石蜡、柴油范围的非芳香族物流等。与汽油发动机相关的适合还原剂的其他例子包括汽油、丙烷、乙醇、辛烷等。
实施例1
通过制备含有68克硝酸铜(II)水合物和1000ml去离子水的溶液得到含铜的ZSM-5沸石催化剂样品。随后,加入200克ZSM-5沸石晶体,同时搅拌溶液。将得到的混合物搅拌约1.5小时,然后通过加入35.7克NH4OH将pH调节至7.25。将混合物继续搅拌约1小时。过滤沸石混合物,用1000ml去离子水洗涤。将滤液在约85℃下干燥过夜。然后,通过将温度以2℃/min的速率升至550℃,空气煅烧交换的沸石,保持约2小时,然后冷却到室温。铜分析表明载铜量约11.5wt%。
使用上述步骤,通过改变硝酸铜(II)水合物的量制备3wt%载铜量的样品。
实施例2
利用配位剂辅助的溶胶-凝胶法制备γ-氧化铝载体。将500克异丙醇铝(AIP)(98%+,Aldrich Chemical Company,Inc.)溶解在烧杯中的600ml 2-甲基-2,4-戊二醇(MPD)(99%,Aldrich Chemical Company,Inc)中。使用机械聚乙烯搅拌器剧烈搅拌得到的混合物。一旦混合物混合均匀后,就将烧杯置于温度约120℃的恒温浴中,并连续搅拌约1小时。一旦所有的AIP都溶解,就得到透明的黄绿色溶液。AIP与MPD反应,产生在120℃反应条件下为蒸汽形式的2-丙醇,并且溶液开始胶凝。一旦在4小时后完成胶凝化,就加入400ml水以终止胶凝化,并生成白色沉淀(氢氧化铝)。在恒定搅拌下将白色固体产物再次分散在水中,并在90℃下老化过夜。
老化过夜后,加入600ml 2-丙醇以从沉淀的孔中除去水。尽管2-丙醇或甲醇是优选的,但是可以使用表面张力约等于或小于30mN/m的任何有机溶剂。只需溶剂的表面张力显著低于水的表面张力,水的表面张力约72mN/m。真空过滤浆料,在烘箱中在90℃下干燥约48小时。
在程序升温管式炉中进行煅烧,其中流动通过5L/min空气。通常煅烧方案如下:以约1℃/min的速率将温度从100℃升至700℃;在700℃下保持规定时间,停止加热,使空气连续通过氧化铝,直到温度降到100℃。在煅烧中,可以加入选定量的水(例如,2%~6%或更大),以部分地烧结所述粉末。
可以控制该过程以制得老化前表面积大于约200m2/g,老化前孔体积为约1.0~2.0cc/g和老化前孔尺寸平均约4~20nm的γ-氧化铝。得到的氧化铝产品其表面积为约200~230m2/g。
实施例3
通过初湿含浸技术制备含银的γ-氧化铝催化剂的几个样品。滴加硝酸银或硫酸银水溶液,并与实施例2的γ-氧化铝产物混合。计算硝酸盐溶液的体积,以基本上与γ-氧化铝产物的孔体积匹配,其约为1.4ml/克γ-氧化铝。从而,将0.322克硝酸银溶解在14ml水中,并与10.0克氧化铝混合。然后用抹刀手动混合浸渍的样品,在90-110℃下干燥过夜,在空气存在下在600℃下煅烧约5小时。在另一个制备方案中,由于溶解度较低,将0.2966克硫酸银溶解在42ml水中,并且每次使用14ml分三个步骤加入,其中各步骤之间进行干燥和煅烧。按催化剂总重计,催化剂中的载银量为2wt%。
实施例4
使用实施例2中记载的溶胶-凝胶法,通过将500g异丙醇铝(AIP)溶解在600ml 2-甲基-2,4-戊二醇(MPD)中制备两个催化剂。然而,在该实施例中,作为制备的一部分,将4.025g Ag(NO3)或3.7075g Ag2(SO4)溶解在600mL丙醇中,并在实施例2的丙醇洗涤步骤中加到浆料中。浆料混合约1小时,真空过滤得到的产物,生成催化剂。
实施例5
在电炉加热的石英反应器中进行催化剂评价实验。使气体混合物通过石英反应器中载有的催化剂床。所述气体混合物含有1000ppm NO(一氧化氮)、作为还原剂的1000ppm丙烯和9%氧,其余部分由氦构成。气体的总流速为约1500ml/分钟,催化剂体积约3.0ml,得到气时空速(GHSV)30,000。催化剂的温度从150℃升到550℃,然后降回150℃。随着温度降低,记录数据。在一次测评中,将1.5ml Ag/氧化铝催化剂置于1.5ml Cu/ZSM-5催化剂的上游。在第二和第三测评中,单独测评各催化剂。按含铜催化剂的总重计,载铜量约11.5wt%。氧化铝催化剂含有2wt%的银。
如图3所示,测评的结果比较了催化剂组合的性能与单独催化剂的性能。该图表明,与曲线32和34所代表的单独催化剂相比,曲线30所代表的催化剂组合在除去NOx方面表现出更宽的活性温度窗口。
实施例6
根据实施例5记载的方法,在电炉加热的石英反应器中进行催化剂测评实验,除了通过催化剂床的气体混合物含有7%的水之外。进行进一步测评,以比较按含铜催化剂的总重计载铜量分别为约3wt%和约11.5wt%时的作用。
如图4所示,测评的结果比较了催化剂组合的性能与单独催化剂的性能。该图表明,与曲线38和40分别所代表的单独催化剂相比,即使在有水存在下,在除去NOx时曲线36所代表的催化剂组合也保持了更宽的催化活性温度窗口。
进一步如图5所示,与曲线44所代表的按含铜催化剂的总重计载Cu量约11.5wt%相比,使用曲线42所代表的约3wt%的较低载Cu量,观察到提高了温度范围更高端的催化活性。
实施例7
将Ag/氧化铝和Cu/ZSM-5催化剂洗涂在1″直径×3″长的整料上,并使用十二烷(柴油范围分子)作为还原剂进行测评。在电炉加热的石英反应器中进行测评。使气体混合物通过石英反应器中载有的催化剂床。气体混合物含有500ppm NO(一氧化氮)、作为还原剂的3000ppm十二烷、50ppm丙烯、500ppm CO、8%一氧化碳、7%水和9%氧,其余部分由氦构成。气时空速(GHSV)调节到约35,000。催化剂的温度从150℃升到550℃,然后降回150℃。随着温度降低,记录数据。在一个测评中,将Ag/氧化铝催化剂置于Cu/ZSM-5催化剂的上游。在第二和第三测评中,单独测评各催化剂。
如图6所示,测评的结果比较了催化剂组合的性能与单独催化剂的性能。令人惊讶的是,观察到曲线46所代表的催化剂组合的性能比曲线48和50各自所代表的单独催化剂的加和性能更好。
实施例8
使不同晶体尺寸和氧化硅/氧化铝比例的一组ZSM-5粉末在600℃下接触10%水蒸汽浓度的蒸汽约16小时,以模拟发动机废气产生的老化。然后使粉末粒化,并测试或测评NOx转化。从相同的原料粉末制备第二组催化剂,除了在接触蒸汽之前用铁浸渍催化剂之外。通过在恒定搅拌下将5.4克硝酸铁(III)九水合物加到40克去离子水中,制备第二组含铁的催化剂。将得到的溶液滴加至30克ZSM-5并与之混合。然后浸渍的粉末在约85℃下干燥过夜。含铁的ZSM-5催化剂在约400℃下空气煅烧约3小时。得到的催化剂含有2.5wt%铁。
使用电炉加热的石英反应器测评催化剂。气体混合物含有1000ppm NO(一氧化氮)、1000ppm丙烯、9%氧,其余部分是氦,使该气体混合物通过石英反应器中载有的催化剂床。气体混合物的总流速为约1500ml/min,催化剂体积保持在约3.0ml,得到的气时空速(GHSV)约为30,000。催化剂的温度从150℃升到550℃,然后降回150℃。在温度降低过程中,记录数据。结果总结在下表1中。
表1
 晶体尺寸,μm   SiO2/Al2O3   最大NOx转化,%
 H-ZSM-5   Fe-ZSM-5
  0.02-0.05   60   8   10
  0.5-2.0   50   14   17
  0.5-2.0   25   8   10
  5-8   80   8   8
数据表明,通常在中间晶体尺寸(0.5-2.0μm)和中间SiO2/Al2O3(50)时获得优化的催化剂。尽管含金属的沸石(ZSM-5)中的金属是铁,但是本申请人预期对于其他相关的金属也有相似的结果,包括铜。
实施例9
测试由Ag/氧化铝和位于其下游的Cu/ZSM-5构成的组合催化剂以及由Cu/ZSM-5与Ag/氧化铝混合构成的组合催化剂,进行测评。使用电炉加热的石英反应器测评催化剂。气体混合物含有1000ppm NO(一氧化氮)、1000ppm丙烯、2000ppm氢、9%氧,其余部分是氦,使该气体混合物通过石英反应器中载有的催化剂床。气体混合物的总流速为约1500ml/min,催化剂体积保持在约3.0ml,得到气时空速(GHSV)约30,000。催化剂的温度从150℃升到550℃,然后降回150℃。在温度降低过程中,记录数据。结果示于图7。
结果表明,曲线52所代表的混合催化剂组合的操作效率比曲线54所代表的在Cu/ZSM-5上游具有Ag/氧化铝的分段催化剂更低。对于分段催化剂而言,NOx转化成N2的峰值约63%,而混合催化剂其NOx转化成N2的峰值约43%。
实施例10
根据实施例5记载的方法,在电炉加热的石英反应器中进行催化剂测评实验,除了通过催化剂床的气体混合物含有7%的水之外。使用Ag/氧化铝和载Cu量3wt%的下游Cu/ZSM-5催化剂的组合,以及Ag/氧化铝和载Pt量1wt%的下游Pt/氧化铝组合,在475℃下测量NOx除去活性。测评结果示于图8。如图柱56所表示的,Ag/氧化铝和下游Cu/ZSM-5催化剂的组合表现出80%NOx转化成N2,而如图柱58所代表的,Ag/氧化铝和下游Pt/氧化铝的组合表现出4%NOx转化成N2
本申请人认为,在Ag/氧化铝催化剂上NOx与烃的初始反应形成中间体物质,如氨水、胺、有机含氮物质和氧合物。这些中间体与活化的NOx物质一起吸收进入气相。进一步的均相气体反应形成N2。这些物质在Cu/ZSM-5上反应进一步还原成N2。然而,在Pt/氧化铝上相同的物质反应,并氧化成NOx,这显著地减少了NOx转化。
尽管给出和描述了本发明的各种实施方案,但这些实施方案不是限制性的。本领域技术人员可以认识到对这些实施方案的各种修改,而这些修改也意图被所附权利要求的精神和范围所覆盖。

Claims (22)

1.一种用于催化处理通过其中的气流以减少气流中存在的NOx的设备,所述设备包括:
用于催化处理所述气流的、包括含金属的氧化铝的第一催化剂,所述第一催化剂具有在该温度下出现峰值催化活性的第一温度,所述第一催化剂适用于将一部分NOx直接转化成N2和将另一部分转化成含氮中间体,剩余一部分NOx,所述第一催化剂的金属是银、铟、镓、锡或钴或这些的任意混合物;和
用于催化处理所述气流的、包括含金属的沸石的第二催化剂,其在所述第一催化剂下游,所述第二催化剂具有在该温度下出现峰值活性的第二温度,所述第二催化剂适用于促进将剩余的NOx和中间体进一步还原为N2的反应,所述第二催化剂的金属是铜、铁、钴或银或这些的任意混合物,
其中所述第二温度的值低于所述第一温度的值。
2.如权利要求1所述的设备,其中所述第一催化剂和第二催化剂彼此邻接。
3.如权利要求1所述的设备,其中所述第一催化剂和第二催化剂彼此间隔开一定距离。
4.如权利要求1所述的设备,其中所述第一催化剂和第二催化剂用量之比为1∶2~2∶1。
5.如权利要求1所述的设备,其中所述第一催化剂和第二催化剂用量之比为1∶1。
6.如权利要求1所述的设备,其中所述气流还包括还原剂。
7.如权利要求6所述的设备,其中所述还原剂是烃化合物。
8.如权利要求1所述的设备,其中按第一催化剂总重计,所述金属用量为1~15wt%。
9.如权利要求1所述的设备,其中按第一催化剂总重计,所述金属用量为2~5wt%。
10.如权利要求1所述的设备,其中所述氧化铝得自于溶胶-凝胶合成法。
11.如权利要求1所述的设备,其中所述第一催化剂是含银的氧化铝。
12.如权利要求1所述的设备,其中所述沸石选自ZSM-5、MCM-22、MCM-49、MCM-56、β、ITQ-13、MCM-68、ZSM-35和ZSM-11。
13.如权利要求1所述的设备,其中按第二催化剂总重计,所述金属用量为2~15wt%。
14.如权利要求1所述的设备,其中按第二催化剂总重计,所述金属用量为3~11.5wt%。
15.如权利要求1所述的设备,其中所述第二催化剂是含铜的沸石。
16.如权利要求1所述的设备,其中所述第一催化剂和第二催化剂的形式选自粉末、小球、整料、流化床和其组合。
17.一种制造用于催化处理通过其中的气流以减少气流中存在的NOx的设备的方法,所述方法包括以下步骤:
设置适用于催化处理所述气流的第一催化剂,用于将一部分NOx直接转化成N2和将一部分NOx转化成含氮中间体,以及剩余一部分NOx,所述第一催化剂具有在该温度下出现峰值催化活性的第一温度,所述第一催化剂的金属是银、铟、镓、锡或钴或这些的任意混合物;和
将第二催化剂置于所述第一催化剂下游,其中所述第二催化剂适用于催化处理所述气流,以促进将剩余的NOx和中间体进一步还原为N2的反应,并具有在该温度下出现峰值催化活性的第二温度,所述第二催化剂的金属是铜、铁、钴或银或这些的任意混合物,
其中所述第二温度的值低于所述第一温度的值。
18.如权利要求17所述的方法,还包括使所述第一催化剂和第二催化剂彼此间隔开的步骤。
19.一种催化处理气流以减少气流中存在的NOx的方法,所述方法包括以下步骤:
将所述气流输送至用于催化处理所述气流的、包括含金属的氧化铝的第一催化剂,所述第一催化剂适用于将一部分NOx直接转化成N2和将另一部分转化成含氮中间体,剩余一部分NOx,所述第一催化剂具有在该温度下出现峰值催化活性的第一温度,所述第一催化剂的金属是银、铟、镓、锡或钴或这些的任意混合物;和
将所述气流从所述第一催化剂输送至用于催化处理所述气流的、包括含金属的沸石的第二催化剂,所述第二催化剂具有在该温度下出现峰值活性的第二温度,所述第二催化剂适用于促进将剩余的NOx和中间体进一步还原为N2的反应,所述第二催化剂的金属是铜、铁、钴或银或这些的任意混合物,
其中所述第二温度的值低于所述第一温度的值。
20.如权利要求19所述的方法,还包括在将所述气流输送至所述第一催化剂之前,将还原剂注入所述气流中的步骤,所述还原剂其量足以促进所述气流中NOx的还原。
21.如权利要求19所述的方法,还包括使所述第一催化剂和第二催化剂彼此间隔开的步骤。
22.如权利要求20所述的方法,还包括使所述第一催化剂和第二催化剂彼此间隔开的步骤。
CN2006800225742A 2005-06-21 2006-02-16 利用第一和第二催化作用还原NOx的方法和设备 Expired - Fee Related CN101203295B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/157,729 US7803338B2 (en) 2005-06-21 2005-06-21 Method and apparatus for combination catalyst for reduction of NOx in combustion products
US11/157,729 2005-06-21
PCT/US2006/005464 WO2007001500A1 (en) 2005-06-21 2006-02-16 Method and apparatus for reducing nox with first and second catalysis

Publications (2)

Publication Number Publication Date
CN101203295A CN101203295A (zh) 2008-06-18
CN101203295B true CN101203295B (zh) 2011-06-29

Family

ID=36600252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800225742A Expired - Fee Related CN101203295B (zh) 2005-06-21 2006-02-16 利用第一和第二催化作用还原NOx的方法和设备

Country Status (7)

Country Link
US (1) US7803338B2 (zh)
EP (1) EP1893321B1 (zh)
JP (1) JP5094717B2 (zh)
KR (1) KR100992156B1 (zh)
CN (1) CN101203295B (zh)
DE (1) DE602006013972D1 (zh)
WO (1) WO2007001500A1 (zh)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803338B2 (en) * 2005-06-21 2010-09-28 Exonmobil Research And Engineering Company Method and apparatus for combination catalyst for reduction of NOx in combustion products
US7743602B2 (en) 2005-06-21 2010-06-29 Exxonmobil Research And Engineering Co. Reformer assisted lean NOx catalyst aftertreatment system and method
KR100892483B1 (ko) * 2006-08-11 2009-04-10 현대자동차주식회사 질소산화물 제거용 이중 층 촉매 시스템
JP4710866B2 (ja) * 2007-04-18 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9375710B2 (en) 2007-09-19 2016-06-28 General Electric Company Catalyst and method of manufacture
US9272271B2 (en) 2007-09-19 2016-03-01 General Electric Company Manufacture of catalyst compositions and systems
US20090263297A1 (en) * 2007-09-19 2009-10-22 General Electric Company Catalyst and method of manufacture
US8530369B2 (en) * 2007-09-19 2013-09-10 General Electric Company Catalyst and method of manufacture
US8871669B2 (en) * 2008-05-19 2014-10-28 General Electric Company Catalyst and method of manufacture
KR100969104B1 (ko) * 2008-09-03 2010-07-09 현대자동차주식회사 디젤 산화촉매 및 그 제조 방법
US8225597B2 (en) 2008-09-30 2012-07-24 Ford Global Technologies, Llc System for reducing NOx in exhaust
US20100115930A1 (en) * 2008-11-07 2010-05-13 Gm Global Technology Operations, Inc. Exhaust after treatment system
US20100196237A1 (en) 2009-01-30 2010-08-05 General Electric Company Templated catalyst composition and associated method
US20100196236A1 (en) 2009-01-30 2010-08-05 General Electric Company Templated catalyst composition and associated method
CN101559365B (zh) * 2009-05-21 2014-09-24 中国矿业大学(北京) 一种负载型银催化剂的制备及其应用
WO2010140262A1 (ja) * 2009-06-03 2010-12-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8889587B2 (en) 2009-08-31 2014-11-18 General Electric Company Catalyst and method of manufacture
US8353155B2 (en) * 2009-08-31 2013-01-15 General Electric Company Catalyst and method of manufacture
JP4868096B2 (ja) * 2009-09-03 2012-02-01 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2301650B1 (en) * 2009-09-24 2016-11-02 Haldor Topsøe A/S Process and catalyst system for scr of nox
US9120056B2 (en) * 2010-02-16 2015-09-01 Ford Global Technologies, Llc Catalyst assembly for treating engine exhaust
ES2508365T3 (es) 2010-03-15 2014-10-16 Toyota Jidosha Kabushiki Kaisha Método de operación de un sistema de purificación de gases de escape de un motor de combustión interna
WO2011114500A1 (ja) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
BRPI1012615B1 (pt) 2010-03-15 2020-08-11 Toyota Jidosha Kabushiki Kaisha Sistema de purificação de exaustão de motor de combustão interna
WO2011125198A1 (ja) 2010-04-01 2011-10-13 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5196024B2 (ja) 2010-07-28 2013-05-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2012029187A1 (ja) * 2010-08-30 2012-03-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5067511B2 (ja) * 2010-08-30 2012-11-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2472078B1 (en) 2010-10-04 2018-05-16 Toyota Jidosha Kabushiki Kaisha An exhaust purification system of an internal combustion engine
EP2530267B1 (en) 2010-10-04 2016-07-06 Toyota Jidosha Kabushiki Kaisha Method for exhaust purification in exhaust purification system of internal combustion engine
US8505285B2 (en) * 2010-10-06 2013-08-13 General Electric Company Catalyst and method of manufacture
EP2617959B1 (en) 2010-10-18 2019-03-20 Toyota Jidosha Kabushiki Kaisha Nox purification method of an exhaust purification system of an internal combustion engine
US9017614B2 (en) 2010-12-06 2015-04-28 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
WO2012086093A1 (ja) 2010-12-20 2012-06-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2495409B1 (en) 2010-12-24 2017-04-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
WO2012108059A1 (ja) 2011-02-07 2012-08-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN103348102B (zh) 2011-02-10 2016-01-20 丰田自动车株式会社 内燃机的排气净化装置
WO2012124173A1 (ja) 2011-03-17 2012-09-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5218672B2 (ja) 2011-04-15 2013-06-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
US20120329644A1 (en) 2011-06-21 2012-12-27 General Electric Company Catalyst composition and catalytic reduction system
JP5839663B2 (ja) * 2011-07-05 2016-01-06 日野自動車株式会社 排ガス浄化装置
EP2628912B1 (en) 2011-11-07 2017-05-03 Toyota Jidosha Kabushiki Kaisha Exhaust cleaning device for internal combustion engine
CN103958842B (zh) 2011-11-09 2016-08-17 丰田自动车株式会社 内燃机的排气净化装置
WO2013080330A1 (ja) 2011-11-30 2013-06-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2013080328A1 (ja) 2011-11-30 2013-06-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
ES2629482T3 (es) 2012-02-07 2017-08-10 Toyota Jidosha Kabushiki Kaisha Dispositivo de purificación de gases de escape para motor de combustión interna
JP2014020310A (ja) * 2012-07-20 2014-02-03 Hino Motors Ltd 排ガス浄化装置
US8795621B2 (en) 2012-08-09 2014-08-05 Exxonmobil Research And Engineering Catalytic reduction of NOx with high activity catalysts with acetaldehyde reductant
US8815195B2 (en) 2012-08-09 2014-08-26 Exxonmobil Research And Engineering Company Catalytic reduction of NOx with high activity catalysts with propylene reductant
US8834823B2 (en) 2012-08-09 2014-09-16 Exxonmobil Research And Engineering Company Catalytic reduction of NOx with high activity catalysts
US8858907B2 (en) 2012-08-09 2014-10-14 Exxonmobil Research And Engineering Company Catalytic reduction of NOx with high activity catalysts with NH3 reductant
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US9216383B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way ZPGM catalyst
US8858903B2 (en) * 2013-03-15 2014-10-14 Clean Diesel Technology Inc Methods for oxidation and two-way and three-way ZPGM catalyst systems and apparatus comprising same
US9259716B2 (en) 2013-03-15 2016-02-16 Clean Diesel Technologies, Inc. Oxidation catalyst systems compositions and methods thereof
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9227177B2 (en) 2013-03-15 2016-01-05 Clean Diesel Technologies, Inc. Coating process of Zero-PGM catalysts and methods thereof
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US8894952B1 (en) * 2013-08-01 2014-11-25 Hyundai Motor Company Method of reducing nitrogen oxide using amine compound as reductant
CN105518262B (zh) * 2013-09-05 2018-02-13 斗山英维高株式会社 用于去除硫氧化物的排气后处理装置及方法
US8853121B1 (en) 2013-10-16 2014-10-07 Clean Diesel Technology Inc. Thermally stable compositions of OSM free of rare earth metals
US20150107226A1 (en) * 2013-10-18 2015-04-23 Cummins Ip, Inc. Gasoline dithering for spark-ignited gaseous fuel internal combustion engine
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
JP5956496B2 (ja) * 2014-04-02 2016-07-27 株式会社豊田中央研究所 排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法
CN103920392B (zh) * 2014-04-17 2016-08-17 山东大学 一种利用贫富氧交替反应进行烟气脱硝的工艺
JP6947471B2 (ja) * 2016-03-24 2021-10-13 ヤンマーパワーテクノロジー株式会社 ガス濃度計測装置
US11268415B2 (en) * 2017-06-02 2022-03-08 Volvo Truck Corporation Method for controlling the temperature of a NOx controlling component and an exhaust after treatment system
US10920636B2 (en) 2017-11-09 2021-02-16 Exxonmobil Research And Engineering Company Treatment of combustion exhaust
DK201800098A1 (en) 2018-03-01 2019-10-09 HANS JENSEN GREENTECH ApS Selective Catalytic Reduction System and Method for NOx Reduction
CN108854532B (zh) * 2018-09-10 2021-02-26 东南大学 船舶尾气脱硝scr反应器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702997A1 (en) * 1994-09-23 1996-03-27 Ford Motor Company Limited Catalysts and method of making same
US6314722B1 (en) * 1999-10-06 2001-11-13 Matros Technologies, Inc. Method and apparatus for emission control

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828679A (en) * 1984-03-12 1989-05-09 Mobil Oil Corporation Octane improvement with large size ZSM-5 catalytic cracking
JPH01159029A (ja) * 1987-12-16 1989-06-22 Toyota Motor Corp ディーゼルエンジンの排気浄化装置
US5223236A (en) * 1988-12-16 1993-06-29 Tosoh Corporation Method for exhaust gas cleaning
CA2044893C (en) * 1990-06-20 1998-11-03 Senshi Kasahara Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JP3086015B2 (ja) 1991-08-07 2000-09-11 トヨタ自動車株式会社 排気ガス浄化用触媒
JPH05103953A (ja) 1991-10-15 1993-04-27 Babcock Hitachi Kk 排ガス中の窒素酸化物除去方法および除去触媒
US5443083A (en) * 1993-02-11 1995-08-22 Itt Corporation Pressure-reducing regulator for compressed natural gas
JP2558589B2 (ja) 1993-02-16 1996-11-27 財団法人石油産業活性化センター 窒素酸化物接触還元用触媒構造体
US5425332A (en) * 1993-08-20 1995-06-20 Massachusetts Institute Of Technology Plasmatron-internal combustion engine system
US5437250A (en) * 1993-08-20 1995-08-01 Massachusetts Institute Of Technology Plasmatron-internal combustion engine system
JPH07194973A (ja) 1994-01-12 1995-08-01 Hitachi Ltd 排ガス浄化触媒
US5776423A (en) * 1994-05-10 1998-07-07 Engelhard Corporation Trimetallic zeolite catalyst and method of NOx abatement using the same
US6245307B1 (en) * 1994-06-17 2001-06-12 Ict Co., Ltd. Catalyst for purifying exhaust gas from lean burn engine and method for purification
EP0710499A3 (en) 1994-11-04 1997-05-21 Agency Ind Science Techn Exhaust gas purifier and method for purifying an exhaust gas
US5714130A (en) 1994-11-28 1998-02-03 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
US5599758A (en) * 1994-12-23 1997-02-04 Goal Line Environmental Technologies Regeneration of catalyst/absorber
US5741468A (en) * 1994-12-28 1998-04-21 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
EP0730900A1 (en) 1995-03-09 1996-09-11 N.E. Chemcat Corporation Method of purifying exhaust gas from internal combustion engine
US5968466A (en) * 1995-06-07 1999-10-19 Asec Manufacturing Copper-silver zeolite catalysts in exhaust gas treatment
JPH0957064A (ja) 1995-08-21 1997-03-04 Riken Corp 排ガス浄化材及び排ガス浄化方法
JPH0985057A (ja) 1995-09-28 1997-03-31 Riken Corp 排ガス浄化材及び排ガス浄化方法
JP3506292B2 (ja) * 1995-10-09 2004-03-15 株式会社新エィシーイー 自動車排気浄化方法
US5727385A (en) 1995-12-08 1998-03-17 Ford Global Technologies, Inc. Lean-burn nox catalyst/nox trap system
US5921076A (en) * 1996-01-09 1999-07-13 Daimler-Benz Ag Process and apparatus for reducing nitrogen oxides in engine emissions
US5878567A (en) * 1996-01-22 1999-03-09 Ford Global Technologies, Inc. Closely coupled exhaust catalyst system and engine strategy associated therewith
JP3497043B2 (ja) * 1996-03-21 2004-02-16 出光興産株式会社 排ガス中の炭化水素類浄化用吸着材
DE19628796C1 (de) * 1996-07-17 1997-10-23 Daimler Benz Ag Abgasreinigungsanlage mit Stickoxid-Adsorbern für eine Brennkraftmaschine
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
JPH10328567A (ja) 1997-05-30 1998-12-15 Riken Corp 排ガス浄化材及び排ガス浄化方法
US6475350B2 (en) * 1997-07-18 2002-11-05 Noxtech Inc Method for removing NOx and other pollutants from gas streams using a plasma assisted catalyst
US6029623A (en) * 1997-12-10 2000-02-29 Exxon Research And Engineering Co. NOx reductant generation in a compression-ignition engine by hydrocarbon injection during the expansion stroke
US5980844A (en) * 1998-04-09 1999-11-09 Asec Manufacturing SO2 -tolerant silver oxide catalysts
JPH11324663A (ja) * 1998-05-11 1999-11-26 Mazda Motor Corp 排気ガス浄化用触媒
JP3565035B2 (ja) 1998-07-10 2004-09-15 三菱ふそうトラック・バス株式会社 燃焼排ガス用NOx還元システム
US6560958B1 (en) * 1998-10-29 2003-05-13 Massachusetts Institute Of Technology Emission abatement system
US6176078B1 (en) * 1998-11-13 2001-01-23 Engelhard Corporation Plasma fuel processing for NOx control of lean burn engines
US6125629A (en) * 1998-11-13 2000-10-03 Engelhard Corporation Staged reductant injection for improved NOx reduction
DE19918756A1 (de) 1999-04-24 2000-10-26 Volkswagen Ag Anordnung zur Reinigung eines Abgases einer Verbrennungsmaschine und Verfahren zum Betrieb einer solchen Anordnung
US6592833B1 (en) 1999-10-18 2003-07-15 Delphi Technologies, Inc. Method of NOx abatement in high temperature lean NOx catalyst systems
JP3642273B2 (ja) 1999-10-21 2005-04-27 日産自動車株式会社 排気ガス浄化システム
US6269633B1 (en) 2000-03-08 2001-08-07 Ford Global Technologies, Inc. Emission control system
US6846466B2 (en) * 2000-03-22 2005-01-25 Cataler Corporation Catalyst for purifying an exhaust gas
GB0020287D0 (en) * 2000-08-17 2000-10-04 Aea Technology Plc The catalytic treatment of gases
JP4573320B2 (ja) * 2000-09-08 2010-11-04 昭和電工株式会社 亜酸化窒素分解触媒、その製造方法及び亜酸化窒素の分解方法
GB2366747B (en) 2000-09-14 2004-06-30 Aea Technology Plc The plasma assisted catalytic treatment of gases
US6670296B2 (en) * 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
JP3845274B2 (ja) * 2001-06-26 2006-11-15 ダイハツ工業株式会社 排ガス浄化用触媒
US20030047146A1 (en) * 2001-09-10 2003-03-13 Daniel Michael J. Plasmatron-internal combustion engine system having an independent electrical power source
US6655324B2 (en) * 2001-11-14 2003-12-02 Massachusetts Institute Of Technology High compression ratio, hydrogen enhanced gasoline engine system
US6706660B2 (en) 2001-12-18 2004-03-16 Caterpillar Inc Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems
US6703343B2 (en) 2001-12-18 2004-03-09 Caterpillar Inc Method of preparing doped oxide catalysts for lean NOx exhaust
US20030118960A1 (en) * 2001-12-21 2003-06-26 Balmer-Millar Mari Lou Lean NOx aftertreatment system
US6959542B2 (en) * 2002-01-25 2005-11-01 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to regenerate a DPNR device
US6810658B2 (en) * 2002-03-08 2004-11-02 Daimlerchrysler Ag Exhaust-gas purification installation and exhaust-gas purification method for purifying an exhaust gas from an internal combustion engine
US6895746B2 (en) * 2002-05-31 2005-05-24 Utc Fuel Cells, Llc Reducing oxides of nitrogen using hydrogen generated from engine fuel and exhaust
US20040126286A1 (en) * 2002-06-19 2004-07-01 Deruyter John C. Method and apparatus for reducing a nitrogen oxide
US6679051B1 (en) * 2002-07-31 2004-01-20 Ford Global Technologies, Llc Diesel engine system for use with emission control device
US20040050345A1 (en) * 2002-09-17 2004-03-18 Bauer Shawn D. Fuel reformer control system and method
US6758035B2 (en) * 2002-09-18 2004-07-06 Arvin Technologies, Inc. Method and apparatus for purging SOX from a NOX trap
US6968678B2 (en) * 2002-10-31 2005-11-29 Le Leux Christopher R High efficiency, reduced emissions internal combustion engine system, especially suitable for gaseous fuels
JP2006506581A (ja) * 2002-11-15 2006-02-23 カタリティカ エナジー システムズ, インコーポレイテッド 希薄燃焼エンジンからのNOx排出を低減するための装置および方法
US6981472B2 (en) * 2002-11-18 2006-01-03 Massachusetts Institute Of Technology Homogeneous charge compression ignition control utilizing plasmatron fuel converter technology
US6832473B2 (en) * 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters
US6843054B2 (en) * 2003-01-16 2005-01-18 Arvin Technologies, Inc. Method and apparatus for removing NOx and soot from engine exhaust gas
US7131264B2 (en) * 2003-01-29 2006-11-07 Delphi Technologies, Inc. Method of operating a reformer and a vehicle
GB0318776D0 (en) * 2003-08-09 2003-09-10 Johnson Matthey Plc Lean NOx catalyst
WO2005103467A1 (en) * 2004-04-20 2005-11-03 David Lange System and method for operating an internal combustion engine with hydrogen blended with conventional fossil fuels
US7117669B2 (en) * 2004-05-05 2006-10-10 Eaton Corporation Temperature swing adsorption and selective catalytic reduction NOx removal system
US6957528B1 (en) * 2004-06-09 2005-10-25 General Motors Corporation No reduction with diesel fuel reformed by nonthermal hyperplasma
US20060112678A1 (en) * 2004-11-04 2006-06-01 Eaton Corporation Multiple reactant multiple catalyst selective catalytic reduction for NOx abatement in internal combustion engines
US7803338B2 (en) 2005-06-21 2010-09-28 Exonmobil Research And Engineering Company Method and apparatus for combination catalyst for reduction of NOx in combustion products
US7743602B2 (en) * 2005-06-21 2010-06-29 Exxonmobil Research And Engineering Co. Reformer assisted lean NOx catalyst aftertreatment system and method
US7063642B1 (en) * 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702997A1 (en) * 1994-09-23 1996-03-27 Ford Motor Company Limited Catalysts and method of making same
US6314722B1 (en) * 1999-10-06 2001-11-13 Matros Technologies, Inc. Method and apparatus for emission control

Also Published As

Publication number Publication date
EP1893321A1 (en) 2008-03-05
JP5094717B2 (ja) 2012-12-12
US20060286012A1 (en) 2006-12-21
KR20080021123A (ko) 2008-03-06
KR100992156B1 (ko) 2010-11-04
JP2008543559A (ja) 2008-12-04
EP1893321B1 (en) 2010-04-28
US7803338B2 (en) 2010-09-28
WO2007001500A1 (en) 2007-01-04
WO2007001500A9 (en) 2008-02-21
CN101203295A (zh) 2008-06-18
DE602006013972D1 (de) 2010-06-10

Similar Documents

Publication Publication Date Title
CN101203295B (zh) 利用第一和第二催化作用还原NOx的方法和设备
US7743602B2 (en) Reformer assisted lean NOx catalyst aftertreatment system and method
Dhal et al. Simultaneous abatement of diesel soot and NO x emissions by effective catalysts at low temperature: An overview
CN102574108B (zh) 用于分解氮氧化物的混合金属氧化物催化剂
CN103089379B (zh) 废气后处理系统
Bian et al. Recent progress of Pd/zeolite as passive NOx adsorber: Adsorption chemistry, structure-performance relationships, challenges and prospects
US6919047B1 (en) Reduction of nitrogen oxides in diesel exhaust gases and fuel injection system
CN103260752A (zh) 选择还原型催化剂、以及使用其的废气净化装置和废气净化方法
US7541010B2 (en) Silver doped catalysts for treatment of exhaust
CN107081167A (zh) 催化剂和用于制备催化剂的方法
CN111111641B (zh) 一种二氧化铈基催化剂及其制备方法和应用
JPH0483516A (ja) 窒素酸化物の除去方法
JP4448820B2 (ja) 脱硝触媒組成物、一体構造型脱硝触媒、及びそれを用いた脱硝方法
JP2007181752A (ja) 脱硝触媒組成物、一体構造型脱硝触媒、及びそれを用いた脱硝方法
JPH05212248A (ja) 天然ガス燃焼排ガス中の窒素酸化物の浄化方法
KR100909989B1 (ko) 디젤 또는 린번 엔진 배기가스 질소산화물 제거용DeNOx 복합촉매
KR20220133443A (ko) 1차 및 2차 촉매작용으로 nox를 저감시키기 위한 장치 및 방법
JP2003062432A (ja) 排ガス浄化方法
Lachquer et al. Conversion of gaseous nitrogen oxides (NOx) to N2
KR100258585B1 (ko) 디젤엔진에서 배출되는 질소산화물과 입자상 물질을 동시에 제거하기 위한 촉매 및 그 제조방법
JPH06238164A (ja) 窒素酸化物除去触媒及び除去方法
JPH05208138A (ja) コバルト及びパラジウム含有ゼオライトの製造方法並びに排ガス浄化方法
CN117899853A (zh) 一种MnOx/TiO2脱硝催化剂的制备方法及应用
CN118719048A (zh) 一种铌改性抗硫抗碱金属低温脱硝催化剂及其制备方法与烟气脱硝方法
Hu et al. Removal of NO by Selective Catalytic Reduction with Ethylene over Catalyst Cu/ZSM-5

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110629

Termination date: 20170216