CN106960933A - 耐热性及关闭特性优异的二次电池用隔膜 - Google Patents

耐热性及关闭特性优异的二次电池用隔膜 Download PDF

Info

Publication number
CN106960933A
CN106960933A CN201611096734.XA CN201611096734A CN106960933A CN 106960933 A CN106960933 A CN 106960933A CN 201611096734 A CN201611096734 A CN 201611096734A CN 106960933 A CN106960933 A CN 106960933A
Authority
CN
China
Prior art keywords
barrier film
base material
secondary cell
pore
refractory coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611096734.XA
Other languages
English (en)
Other versions
CN106960933B (zh
Inventor
金惠真
郭元燮
朴珉相
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Innovation Co Ltd
SK IE Technology Co Ltd
Original Assignee
SK Innovation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Innovation Co Ltd filed Critical SK Innovation Co Ltd
Publication of CN106960933A publication Critical patent/CN106960933A/zh
Application granted granted Critical
Publication of CN106960933B publication Critical patent/CN106960933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种夹在阳极与阴极之间的二次电池用隔膜及二次电池用隔膜的制造方法,更具体地,提供一种二次电池用隔膜,其包括:多孔性高分子基材,其具有第一表面和与所述第一表面相向的第二表面,并包括连通所述第一表面与所述第二表面之间的多个细孔;以及耐热涂层,其通过原子层沉积法(ALD)形成在所述多孔性高分子基材的所述第一表面或第二表面中的至少一个表面及所述细孔的内部表面,而且存在所述细孔的内部表面上具有未涂覆区域的细孔。

Description

耐热性及关闭特性优异的二次电池用隔膜
技术领域
本发明涉及一种夹在阳极与阴极之间的二次电池用隔膜及二次电池用隔膜的制造方法。
背景技术
例如,一般的锂离子二次电池具有包括锂复合氧化物的阳极、包括能够吸藏及释放锂离子的材料的阴极、以及夹在阳极与阴极之间的隔膜及非水电解液。所述阳极和阴极是夹着隔膜而被层叠,或者是在层叠后缠绕而构成柱形的卷绕式电极。
所述隔膜具有使阳极与阴极之间电绝缘的作用和支持非水电解液的作用。作为这种锂离子二次电池的隔膜,一般使用聚烯烃微多孔膜。聚烯烃微多孔膜会显示出优异的电绝缘性、离子透过性,从而被广泛应用为所述锂离子二次电池或电容器等的隔膜。
锂离子二次电池具有高的功率密度、容量密度,但非水电解液中利用有机溶剂,因此会因短路或过充电等异常状态所伴随的发热而使非水电解液分解,最坏的情况下还会起火。为了防止这种事态,锂离子二次电池结合有几个安全功能,其中之一就有隔膜的关闭(shut do wn)功能。
隔膜的关闭功能是指电池出现异常发热时,隔膜的微多孔会因树脂材料的热熔融等而被堵塞,从而抑制非水电解液中的离子传导,由此停止电化学反应的功能。
一般而言,已知关闭温度越低,安全性越高,将聚乙烯利用为隔膜成分的理由之一就是其具备适当的关闭温度。作为这种隔膜,例如为了多孔质化和提高强度,可以使用经过单轴拉伸或双轴拉伸的树脂膜。
最近,随着二次电池的高容量、高功率趋势,对隔膜的热稳定性的需求越来越高。就锂二次电池而言,为提高电池制造过程和使用中的安全性及容量和功率,需要较高的热稳定性。
例如,当隔膜的热稳定性下降时,可能会因电池内温度的上升所导致的隔膜受损或变形而发生电极间短路,因此电池的过热或火灾的危险性会增加。尤其在一般的关闭温度下会同时产生膜自身的收缩,因此存在使得阳极与阴极接触而导致内部短路等次级问题的情况。因此,需要提高隔膜的耐热性来减少热收缩,由此提高安全性。
例如,日本授权专利第2009-16279号记载了具有用玻璃层涂覆聚烯烃类树脂的微细框架的覆盖层的隔膜。此外,日本专利第3797729号记载了在聚烯烃多孔质膜的表面上无需占有空孔而通过溶胶-凝胶法形成无机薄膜的电池用隔膜。
发明内容
要解决的技术问题
本发明的一具体实施方式欲提供一种因耐热性优异而不会发生隔膜的收缩且同时具有优异的关闭特性的隔膜及其制造方法。
本发明要解决的技术问题如上述记载,但这只是本发明的代表性技术问题,本发明要解决的技术问题并不受限于此。
技术方案
本发明欲提供一种锂离子电池用隔膜,根据本发明的一方面,所述隔膜包括:多孔性高分子基材,其具有第一表面和与所述第一表面相向的第二表面,并包括连通所述第一表面与所述第二表面之间的多个细孔;以及耐热涂层,其通过原子层沉积法(ALD)形成在所述多孔性高分子基材的所述第一表面或第二表面中的至少一个表面及所述细孔的内部表面,而且存在所述细孔的内部表面上具有未涂覆区域的细孔。
优选地,相对于以与形成在所述多孔性高分子基材的第一表面及第二表面的耐热涂层的平均厚度(d)相同的厚度涂覆在多孔性高分子基材的表面及细孔内部表面时的耐热涂层的整体涂覆重量,所述耐热涂层的整体涂覆重量在10~50%的范围。
根据本发明的另一方面,提供一种二次电池用隔膜,其包括:多孔性高分子基材,其具有第一表面和与所述第一表面相向的第二表面,并包括连通所述第一表面与所述第二表面之间的多个细孔;以及耐热涂层,其通过原子层沉积法(ALD)形成在所述多孔性高分子基材的所述第一表面或第二表面中的至少一个表面及所述细孔的内部表面,相对于所述隔膜(SI)的透气度(Gurley)值,在150℃下放置1小时后的隔膜(SH)的透气度值的增加率为200%以上。
以隔膜(SI)为基准,所述隔膜(SH)的收缩率可以为5%以下。
所述锂离子电池用隔膜的根据热机械分析(TMA)的熔融断裂温度优选为160℃以上。
所述隔膜包括在细孔内部表面上共同存在已形成所述耐热涂层和未形成所述耐热涂层的区域的细孔。
优选地,相对于所述基材表面上形成的耐热涂层的厚度,在所述细孔内部表面上形成的耐热涂层具有70%以下的厚度。
所述多孔性高分子基材可以为聚烯烃类树脂。
所述耐热涂层可以包括分子,所述分子可以包括选自铝、钙、镁、硅、钛及锆中的至少一个金属元素的原子和选自碳、氮、硫及氧中的至少一个非金属元素的原子,所述耐热涂层也可以是选自氧化铝、氧化硅、氧化钛及氧化锌中的至少一个。
根据本发明的另一具体实施方式,提供一种二次电池用隔膜的制造方法,其通过对具有第一表面和与所述第一表面相向的第二表面且包括连通所述第一表面与所述第二表面之间的多个细孔的多孔性高分子基材反复进行ALD循环来形成耐热涂层,其中所述ALD循环包括:金属化合物层形成步骤,其通过使所述多孔性高分子基材的各表面与包括选自铝、钙、镁、硅、钛及锆中的至少一个金属的金属化合物蒸汽进行反应而形成包括金属的层;固体陶瓷层形成步骤,其通过使所述金属化合物层的金属化合物与包括选自碳、氮、硫及氧中的至少一个的非金属化合物蒸汽进行反应而形成包括非金属和金属的固体陶瓷层;以及在所述固体陶瓷层上连续实施所述金属化合物层形成步骤及固体陶瓷层形成步骤;针对所述多孔性高分子基材的整体反应面积,控制每一循环的金属化合物蒸汽的供应量,从而在细孔内部部分地形成包括金属的层。
优选地,通过进一步控制ALD循环的次数及金属化合物层形成步骤的反应时间,在所述细孔的内部部分地形成包括金属的层。
所述金属化合物蒸汽可以为选自AlCl3、三甲基铝(TMA,Tri-me thyl-Aluminum)、Al(CH3)2Cl、Al(C2H5)3、Al(OC2H5)3、Al(N(C2H5)2)3、Al(N(CH3)2)3、SiCl4、SiCl2H2、Si2Cl6、Si(C2H5)H2、Si2H6、TiF4、Ti Cl4、TiI4、Ti(OCH3)4、Ti(OC2H5)4、Ti(N(CH3)2)4、Ti(N(C2H5)2)4、Ti(N(CH3)(C2H5))4、VOCl3、Zn、ZnCl2、Zn(CH3)2、Zn(C2H5)2、ZnI2、ZrCl4、ZrI4、Zr(N(CH3)2)4、Zr(N(C2H5)2)4、Zr(N(CH3)(C2H5))4、HfCl4、HfI4、Hf(NO3)4、Hf(N(CH3)(C2H5))4、Hf(N(CH3)2)4、Hf(N(C2H5)2)4、TaCl5、TaF5、TaI5、Ta(O(C2H5))5、Ta(N(CH3)2)5、Ta(N(C2H5)2)5、TaBr5中的至少一个。
对所述多孔性高分子基材实施引入功能基团的前处理后,可实施ALD循环。
此时,所述功能基团可部分地形成在多孔性细孔内部,所述功能基团可通过对选自水、氧、氢、过氧化氢、乙醇、NO2、N2O、NH3、N2、N2H4、C2H4、HCOOH、CH3COOH、H2S、(C2H5)2S2及CO2中的至少一个进行等离子处理、电晕放电处理、紫外线(UV)照射或臭氧处理来形成。
所述前处理优选通过调节处理强度及处理时间中的至少一个来实施。
有益效果
作为耐热层形成部分涂层及网状结构而在宏观上维持根据热能注入的隔膜整体结构,从而不仅能够防止热收缩,而且不会阻碍关闭特性,因此能够实现具有优异的耐热性及关闭特性的隔膜。
根据本发明的一具体实施方式,可以通过ALD在多孔性薄片的表面上整体形成耐热涂层来确保耐热性。据此,能够防止隔膜的收缩(shrink),从而能够防止因阳极与阴极的接触导致的电池内部短路。
另外,在薄片内部的细孔表面上共同存在已形成耐热涂层和未形成耐热涂层的区域,因此当电池出现异常发热时,可以通过在未形成所述耐热涂层的区域的树脂热熔融来诱导细孔的堵塞,从而能够提高关闭特性。
因此,根据本发明的一具体实施方式,能够实现隔膜耐热性的提高及关闭特性的提高,从而能够提高电池安全性。
附图说明
图1示出本发明一具体实施方式的隔膜的截面,是表示在细孔的内部部分地形成耐热涂层的概念的概略图。
图2是概略性地示出本发明一具体实施方式的通过ALD形成耐热涂层的过程的图。
图3及图4是概略性地示出利用前驱体与反应物的吸附和被吸附分子之间的表面反应,通过具有半反应(half-reaction)的前驱体Al(CH3)3和H2O进行薄膜沉积的概念的图。
图5是拍摄在制造例中制造的多孔性高分子基材的表面的扫描电子显微镜(SEM)照片。
图6是拍摄通过实施例1部分地涂覆有铝氧化物层的隔膜表面的SEM截面照片。
具体实施方式
本发明确认到通过原子层沉积(ALD,atomic layer deposition)法在多孔质的薄片表面上形成耐热涂层来制造二次电池用隔膜(separator),不仅在细孔的内部表面部分地形成耐热涂层的情况下能够获得关闭特性,而且还能防止隔膜的收缩(shrink),因此能够提高电池的安全性,从而完成了本发明。
本发明的隔膜通过隔离阳极与阴极来防止因两极接触导致的电流短路,并起到使锂离子通过的功能。所述隔膜使用由强度优异的耐热性微多孔物质形成的基材。所述基材只要是具有第一表面和与所述第一表面相向的第二表面且包括连通所述第一表面与所述第二表面之间的多个细孔的多孔性高分子基材,则在本发明中可适当地使用。
更优选地,所述基材典型地可以使用离子透过度大、具有规定的机械强度的绝缘性树脂材料。作为这种树脂材料,可利用如聚丙烯(PP)或聚乙烯(PE)等聚烯烃类的合成树脂、丙烯酸树脂、苯乙烯树脂、聚酯树脂或聚酰胺类树脂等。这种聚烯烃多孔质膜会显示出优异的电绝缘性、离子透过性,因此被广泛应用为所述二次电池或电容器等的隔膜。
所述多孔性高分子基材为聚烯烃多孔性高分子基材,只要是具有两个电极之间锂离子的移动尽可能高的多孔性,则可以不受限地使用。这种多孔性高分子基材作为在该技术领域中普遍使用的基材,大多包括聚乙烯或聚丙烯等聚烯烃多孔性高分子基材,还可以使用其它多种材质的高分子多孔性高分子基材。
例如,可以是聚乙烯(高密度聚乙烯、低密度聚乙烯、线型低密度聚乙烯、高分子量聚乙烯等)、聚丙烯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚酯、聚缩醛、聚酰胺、聚碳酸酯、聚酰亚胺、聚酰胺酰亚胺、聚醚酰亚胺、聚醚醚酮、聚醚砜、聚苯醚、聚苯硫醚及聚萘二甲酸乙二醇酯等,但并不限定于此。
二次电池具有高的功率密度、容量密度,但非水电解液中利用有机溶剂,因此会因短路或过充电等异常发热状态所伴随的发热而使非水电解液分解,最坏的情况下还会存在起火的情况。
为了防止这种现象,当电池出现异常发热时,需要隔膜的微多孔在树脂材料的熔点附近发生热熔融来堵住细孔而切断电流的关闭功能。一般而言,关闭温度越低,安全性越高,如上所述的聚烯烃树脂具有适当的关闭温度,因此适合用作二次电池的隔膜。此外,包括聚烯烃类的多孔质膜可以使阳极与阴极的分离性优异,因此能够进一步减少内部短路或开路电压的降低。
尤其,从熔融温度的方面考虑,低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、线型聚乙烯等聚乙烯或聚丙烯等聚烯烃类树脂更为优选。作为这种隔膜,例如为了多孔质化和提高强度,可以使用经过单轴拉伸或双轴拉伸的树脂膜。此外,还可以使用层叠2种以上的这种多孔质膜的结构或熔融混炼2种以上的树脂材料来形成的多孔质膜。
所述基材的厚度只要达到能够维持必要强度的厚度以上,则可任意设定,无特殊限定,例如可以是5~80μm,也可以是7~30μm。具有所述范围内的厚度,不仅能够实现阳极与阴极之间的绝缘、防止短路等,而且还能够获得用于适当实施通过隔膜的电池反应的离子透过性,进而,对于电池内部能够使有助于电池反应的活性物质层的体积效率尽可能地变高。
另外,对多孔性高分子基材的孔隙率并无特殊限制,例如,可具有10~80%的孔隙率,更优选可具有40~70%的孔隙率。此时,就所述多孔性高分子基材的气孔大小而言,例如可以使用10nm~2μm,更优选可以使用10nm~1μm。
就如上所述的聚烯烃类树脂材料而言,在关闭功能方面是优选的,但在关闭后隔膜会收缩(shrink)而使得阳极与阴极相接触,从而存在导致内部短路等次级问题的情况。因此,聚烯烃树脂材料的隔膜需要提高耐热性来减少热收缩,并提高安全性。此外,这种耐热涂层具有能够提高与非水电解质间的润湿性的功能,因此是优选的。
根据本发明一具体实施方式,为通过提高由聚烯烃类树脂形成的基材的耐热性来抑制隔膜的收缩,在基材表面上包括耐热涂层。就所述耐热涂层而言,与构成耐热层基材的材料相比,优选由具有耐热性的无机材料层形成。
作为这种无机材料可以使用包括分子的物质,所述分子包括选自铝、钙、镁、硅、钛及锆中的至少一个金属元素的原子和选自碳、氮、硫及氧中的至少一个非金属元素的原子。更优选地,可以使用氧化铝、氧化硅、氧化钛及氧化锌等。
本发明的通过原子层沉积法形成的纳米厚度的无机氧化物可以使用例如钽氧化物、钽氮化物、锆氧化物、硅氧化物、硅氮化物、硅碳化物、钒氧化物、锌氧化物、锌硫化物、铝氧化物、氢氧化铝、铝氮化物、钛氧化物、钛氮化物、铪氧化物、铪氮化物等,但并不限定于此,这些不仅可以单独使用,也可以混合2种以上使用。
优选地,所述耐热涂层不仅形成在基材的表面(单面或双面),还可以形成在基材的细孔内部。由于形成在基材的表面,因此在异常高温环境下也可以通过形成在基材表面的耐热涂层来抑制隔膜的收缩。此外,由于细孔内部也形成耐热涂层,因此与仅在基材的表面上形成耐热涂层的情况相比,能够进一步提高隔膜的耐热性。此外,细孔的内部表面上形成与非水电解质的润湿性优异的耐热涂层,因此更能提高对细孔的电解液的亲和性。
根据本发明一具体实施方式,形成在所述细孔内部的耐热涂层优选部分地形成在细孔的内部。为实现在电池出现异常发热时隔膜的微多孔在树脂材料的熔点附近发生热熔融来堵住细孔而切断电流的关闭功能来得到电池安全性,会使用聚烯烃类树脂,然而,当细孔的内部全面形成耐热涂层时,耐热涂层会阻碍通过热熔融来堵住细孔的功能,从而使关闭功能显著降低。因此,会削弱使用聚烯烃类树脂的优点,从而不优选。
如本发明一具体实施方式,当细孔的内部表面上部分地涂覆有耐热涂层时,即,当共同存在已形成耐热涂层的涂覆区域和未形成耐热涂层的未涂覆区域时,不仅能够通过所述涂覆区域来起到抑制隔膜收缩的功能及提高电解液亲和性的功能,而且还因未涂覆区域的存在而在异常发热环境下能够通过树脂的熔融来堵住细孔,从而可以起到关闭功能,因此是优选的。
这种效果是通过在基材表面上形成的耐热涂层和在细孔内部表面上形成的部分涂覆区域及所述细孔内部的涂覆区域相互间形成的网状结构,在高温下提高多孔结构的维持力,从而可以抑制高温收缩,并可以起到关闭功能。
在图1中概略性地示出如上所述的本发明一具体实施方式的形成耐热涂层的隔膜的截面结构。图1是为易于理解本发明的概念而放大示出的,本发明并不限定于图中所示的结构。
进而,虽然在图1中示出各细孔是被隔绝的,但本发明所属技术领域的普通技术人员应能够理解细孔是连通基材的第一表面和与所述第一表面相向的第二表面之间,进而各细孔之间能够相互连接。
此外,并不限定为所述多孔性基材的所有细孔中共同存在已涂覆区域和未涂覆区域,也可以是一些细孔中仅有未涂覆区域,另一些细孔中仅有已涂覆区域。
优选地,通过原子层沉积法(ALD,Atomic Layer Deposition)在所述基材上形成耐热涂层。通过原子层沉积法形成耐热涂层,不仅可以在基材的表面上形成耐热涂层,还可以在细孔内部形成耐热涂层,并通过适当地控制实施ALD的条件,能够在细孔内部部分地形成涂层。下面更具体地说明通过ALD形成耐热涂层的方法。
本发明欲通过在多孔性高分子基材的细孔内部局部地形成无机膜来提高耐热性及关闭特性。在细孔内部部分地形成所述无机膜的隔膜与采用整体面积上涂覆金属化合物的无机沉积隔膜相比,热稳定性较差,但是采用整体面积上涂覆金属化合物的隔膜的关闭特性会受阻,因此在安全性上会处于劣势。
然而,本发明的隔膜是在多孔性高分子基材的细孔内部形成部分涂层,这些部分涂层会形成网状(network)结构。据此,宏观上能够维持根据热能注入的隔膜的整体结构,从而能够防止热收缩来提高整体的耐热性,并且部分地涂覆在细孔中而不会阻碍关闭特性,因此能够实现具有耐热性的同时具有关闭特性的隔膜。
一般的ALD法如众所周知是将相应物质引入到具有较高纵横比的基材的内部表面的方法,由于能够与具有微米及纳米大小的细孔的结构物的表面进行反应,因此应用于微通道板(microchannel plate)、纳米粒子(nanoparticles)、纳米细孔(nanopore)、气凝胶(aerogel)、纳米管膜(nanotube membrane)及微晶格(microlattice)等。
在ALD工序中一般将工序条件设计为能够实现自限制反应。在各注入步骤中,使前驱体与反应物的量饱和,并在吹扫步骤中完全去除来进行理想的ALD工序,从而均匀地形成表面和内部的涂覆厚度。与化学沉积法或热沉积法不同,利用这种特征能够实现在细孔内部进行无机膜沉积。
本发明的特征在于,不仅能够维持ALD法的这种特征,而且在一部分的细孔内部形成未涂覆区域来赋予关闭功能。这种细孔内部的部分涂层的形成是可以通过调节基材的反应基团形成程度来调节成膜。作为本发明特征的无机膜的部分涂覆可通过两种方法实现,第一种方法是通过调节在涂覆前引入到基材的反应基团的量来控制,使得在部分细孔表面不会形成无机膜。为调节基材表面与细孔内部表面的可进行反应的功能基团的引入,可以控制基材的前处理方法和强度。
作为所述前处理,本发明在形成ALD层之前,会对多孔性高分子基材表面进行包括氧、水或氮等气体的等离子处理、使有机化合物单体等离子化来进行表面处理、电晕放电处理、UV照射处理、臭氧处理等,这样有助于提高粘合力,尤其能够增加高分子基材表面的功能基团的密度,从而可以形成高密度及优异形态的金属化合物层,此时,可根据处理强度和时间来调节功能基团的量。
此外,通过原子层沉积法向高分子基材引入金属化合物的情况下,当金属前驱体被层叠时,随着相对于反应面积的前驱体供应程度及高分子基材表面的可进行反应的功能基团的程度,无机膜形成的形态会不同。
因此,根据本发明一具体实施方式,针对具有第一表面和与所述第一表面相向的第二表面且包括连通所述第一表面与所述第二表面之间的多个细孔的多孔性高分子薄片,可包括在所述第一表面及第二表面和所述细孔的内部表面上形成羟基等功能基团的步骤。
作为本发明能够使用的反应物,例如可以选自水、氧、臭氧、过氧化氢、乙醇、NO2、N2O、NH3、N2、N2H4、C2H4、HCOOH、CH3COOH、H2S、(C2H5)2S2、N2O等离子体、氢等离子体、氧等离子体、CO2等离子体、NH3等离子体,但并不限定于此。
本发明在形成ALD层之前,会对多孔性高分子基材表面进行包括氧、水或氮等气体的等离子处理、使有机化合物单体等离子化来进行表面处理、电晕放电处理、UV照射处理、臭氧处理等,这样有助于提高粘合力,尤其能够调节高分子基材表面的功能基团的形成程度,从而能够形成优异形态的金属化合物层。
此时,通过调节所述功能基团的形成程度来调节在基材表面上形成的功能基团的分布,由此能够改变耐热涂层的形成形态。所述功能基团的形成程度可以通过调节如上所述的处理的强度及时间来调节功能基团的量。
例如,当实施等离子处理时,可以通过改变等离子条件来调节涂层,作为一具体例,可进行如下处理。
利用在线(in-line)大气压(AP)等离子,以0.01~5.0kW的功率(power)、1~60m/分钟的传送速度(transfer speed)注入400slm的N2气体、0.4slm的压缩干燥空气(CDA),由此对基材进行等离子处理。
一般而言,用于高分子膜的气体或混合物可以使用N、Ar、O2、He、亚硝酸、水蒸气、二氧化碳、甲烷、氨等。如上所述,可根据功率及传送速度来调节基材的亲水化程度。即,通过等离子处理的亲水性官能基团的变化会使基材的表面张力发生变化,例如,当对41达因(dyne)的PE隔膜基材实施1.44kW、5m/分钟的AP等离子处理时,亲水化程度会提高到47dyne,当实施1.68kW、3m/分钟的AP等离子处理时,则能够增加到48dyne。除此之外,可以通过电晕处理、臭氧处理等表面处理方法来利用表面改性。
包括将引入所述功能基团的多孔性高分子基材置于反应腔室内,并在规定的真空氛围下在各表面上引入包括金属的金属前驱体来进行接触的步骤。
所述耐热涂层可以包括分子,所述分子包括选自铝、钙、镁、硅、钛、钒、锌、钽、铪、及锆中的至少一个金属元素的原子和选自碳、氮、硫及氧中的至少一个非金属元素的原子,更优选地,所述耐热涂层可以是选自氧化铝、氧化硅、氧化钛及氧化锌中的至少一个。
作为本发明中可使用的金属前驱体的具体例为,可以选自AlCl3、三甲基铝(TMA,Tri-methyl-Aluminum)、Al(CH3)2Cl、Al(C2H5)3、Al(OC2H5)3、Al(N(C2H5)2)3、Al(N(CH3)2)3、SiCl4、SiCl2H2、Si2Cl6、Si(C2H5)H2、Si2H6、TiF4、TiCl4、TiI4、Ti(OCH3)4、Ti(OC2H5)4、Ti(N(CH3)2)4、Ti(N(C2H5)2)4、Ti(N(CH3)(C2H5))4、VOCl3、Zn、ZnCl2、Zn(CH3)2、Zn(C2H5)2、ZnI2、ZrCl4、ZrI4、Zr(N(CH3)2)4、Zr(N(C2H5)2)4、Zr(N(CH3)(C2H5))4、HfCl4、HfI4、Hf(NO3)4、Hf(N(CH3)(C2H5))4、Hf(N(CH3)2)4、Hf(N(C2H5)2)4、TaCl5、TaF5、TaI5、Ta(O(C2H5))5、Ta(N(CH3)2)5、Ta(N(C2H5)2)5、TaBr5,但并不限定于此。
包括使所述金属前驱体与多孔性基材表面进行反应后,用氩等非反应性气体进行吹扫,然后引入包括选自碳、氮、硫及氧中的至少一个的反应物来进行接触的步骤。
接下来,可用非反应性气体进行吹扫来形成耐热性无机物层,就这种形成包括非金属和金属的固体陶瓷层的固体陶瓷层形成步骤而言,通过反复进行向所述固体陶瓷层上引入所述金属前驱体的步骤、吹扫的步骤、引入反应物质的步骤及吹扫的步骤来形成具有规定厚度的固体陶瓷的耐热涂层。通过原子层沉积法向高分子基材引入金属化合物的情况下,当金属前驱体被层叠时,根据相对于反应面积的前驱体供应程度,无机膜形成的形态会不同。
本发明中,不仅可以通过控制所述前处理步骤在细孔内部部分地形成耐热涂层,还可以通过调节循环的构成时间和条件来控制自限制反应进行程度,从而可以在细孔内部部分地形成耐热涂层。即,能够实现作为本发明特征的无机膜的部分涂覆的第二种方法是调节达到用于自限制反应的饱和状态为止的工序条件。
当实施ALD工序时,第一,沉积工序应由一系列分开的工序步骤构成。当两个反应物之间不分离而相互混合时,会发生气相反应。第二,反应物与表面之间的反应应通过自限制反应来实现。第三,自限制反应或化学吸附应为主要反应。
在图2中概略性地示出本发明的通过ALD的耐热涂层形成过程的概念。从图2可以知道,当向基材供应反应物(A)时,反应物(A)会与基材表面进行反应而被化学吸附。当反应物(A)以原子层沉积到表面后,即使供应过剩的反应物(A)的气体,也不会再进行反应(自限制反应;self-limiting reaction)(过程1)。
其次,在反应物(A)不再进行反应的状态下,使用氩等非活性气体来进行吹扫,将过剩的反应物(A)去除到反应器外部(过程2)。
接着,当反应器内部的反应物(A)被完全去除后,供应反应物(B),反应物(B)与被吸附到基材表面的反应物(A)进行反应而被化学吸附。当反应物(B)在表面上达到饱和状态时,不会再进行反应(自限制反应)(过程3)。
进而,在反应物(B)不再进行反应的状态下,使用非活性气体,将过剩的反应物(B)去除到反应器外部(过程4)。
将所述过程(1)至过程(4)为一个循环,通过反复进行这种循环,能够形成所需厚度的原子层薄膜。作为利用前驱体与反应物的吸附及被吸附分子之间的表面反应来沉积薄膜的方法,将使用具有如下所述的半反应(half-reaction)的前驱体Al(CH3)3和H2O的例子示于图3及图4中。
如图3及图4中所示,向形成有作为功能基团的羟基的基材的表面以蒸汽状供应Al(CH3)3,从而如(A)反应式使Al被吸附。通过向反应气体之间供应非活性气体来进行吹扫,从而分离两个半反应。此时,除化学吸附的分子之外,物理吸附的分子会被去除,并依次注入反应物来进行如下述(B)反应式的半反应。通过供应第二种反应气体,使其与在(A)反应中被吸附的分子相互吸附/结合,由此形成薄膜。
(A)Al-OH*+Al(CH3)3→Al-O-Al(CH3)2*+CH4↑
(B)Al-CH3*+H2O→Al-OH*+CH4
**(A):OH封端(terminated),(B):CH3封端表面(terminated surface)
如上所述,以用OH封端(terminated)化学物种吸附反应物(A)、CH3封端化学物种与反应物(B)吸附及结合反应为一次循环来分开反复进行反应,由此形成耐热涂层。
对ALD工序造成影响的一般因素如下所述。
反应物的流动方向与ALD设备有关,可分为喷头类型(shower head type)方式和层流(laminar flow)形态。喷头类型的反应面积宽,因此均匀性优异,但是吹扫时间较长。另外,层流方式能够使反应体积最小化,并且提高前驱体与反应基团的使用效率,从而能够进行有效的反应,但是从入口(inlet)到出口(outlet)的过程中,会因前驱体与反应基团的减少而可能会降低均匀性。具体地,就反应物的流动方向而言,其与细孔的方向相同时是有效的,因此优选适用整体反应物的流动方向与细孔的方向相同的喷头类型反应器。本发明尤其使用具有高纵横比(aspect ratio)的细孔结构的基材,因此适用细孔的方向与反应物的流动方向相同的喷头类型时,能够提高平均自由程(mean free path),从而对无机膜形成和细孔内部涂覆更有利。
另外,应根据所述反应物的流动形态来调节流量,用于注入前驱体与反应物的运载气体(Carrier gas)量越多越有效,但优选要根据基材的纵横比来调节。此外,需要根据腔室的体积来调节一定量以上的运载气体的引入。一般使用的运载气体可使用非活性气体,例如氩、氮等,但并无特别的限定。
ALD反应时的工序温度最主要是由前驱体的反应温度决定。工序温度是在前驱体的窗口(window)内决定,并且可根据基材的升温可能范围来决定。即,考虑到能够避免基材受损的温度范围和前驱体的反应温度范围,优选在最高的温度下进行。例如,ALD反应时的工序温度可以在25~400℃的范围内,以不会对基材造成影响的程度而进行适当选择。
腔室内的真空度一般可以从超高真空(Ultra high vacuum)水平的7.6×10-11到可用低真空泵(rough pump)实现的真空度水平的数托(torr)为止,并在数托或比数托更高真空的条件下决定。注入前驱体与反应物时的压力是真空度越高越有效,因此优选在较高真空度下进行。尤其在多孔性基材的情况下,真空度会对平均自由程造成影响。
前驱体与反应物的注入和吹扫时间会成为更直接调节膜厚度的因素。需要足够长的供应物供应时间,当吹扫时间不充分时,会因化学气相沉积(CVD)效果而降低优异的薄膜厚度均匀性。因此,所述注入时间可在0.1~10秒的范围内实施,吹扫时间会与所述注入时间成比例地增加,因此可在1~30秒的范围内实施。
控制过程(1)及过程(3)的自限制反应进行程度,就用于控制所述反应的前驱体和反应物的供应及滞流而言,通过综合调节流量的流动和吹扫方向、前驱体与反应物的注入时的压力、前驱体与反应物的浓度和注入量、前驱体与反应物在基材上的滞留时间、基材的纵横比(aspect ratio)、工序温度等,从而获得成膜部分和非成膜部分。据此,不仅能够引入作为ALD特征的高纵横比的覆盖(cover)能力,还能够包括调节无机膜的成膜形态,由此能够制造出电池用隔膜。
就通过本发明制造的隔膜而言,在多孔性高分子基材的细孔内部局部地形成耐热涂层,因此与在细孔整体面积上涂覆金属化合物的无机沉积隔膜相比,其热稳定性会降低,但是在整体面积上涂覆金属化合物的隔膜的关闭特性会受阻,从而在安全性上处于劣势。与此相比,本发明的在部分涂层之间形成网状结构的隔膜可以在宏观上维持根据热能注入的隔膜的整体结构来防止热收缩,并且不会阻碍关闭特性,因此能够实现同时具有耐热性和关闭特性的隔膜。
就根据本发明制造的具有部分耐热涂层的隔膜而言,利用SEM测定在基材表面上形成的无机物的平均厚度t,并分别测定工序前后的膜重量,从而可以获得无机物的沉积重量,由此能够确认已形成部分的涂覆。
测定基材的平均气孔直径R和基材的厚度,基材的孔隙率P可根据以下数学式1算出。
[数学式1]
孔隙率={(A×B×T)-(M÷ρp)÷(A×B×T)}×100
其中,T=隔膜厚度,M=基材重量,ρp=树脂密度。
[数学式2]
理论沉积重量={P×ρi×T×t×(2R-t)}/(100×R2)
其中,t=沉积厚度,ρi=树脂密度。
通过ALD法形成耐热涂层时,基材的表面和细孔的内部会全面形成耐热涂层,但在根据本发明的情况下,在细孔的内部部分地形成耐热涂层,因此涂层重量小于全面形成耐热涂层的情况。更具体而言,相对于以与形成在所述多孔性高分子基材的第一表面及第二表面的耐热涂层的平均厚度(d)相同的厚度涂覆在多孔性高分子基材的表面及细孔内部表面时的耐热涂层的整体涂覆重量,所述耐热涂层的整体涂覆重量在10~50%的范围内。
此时,形成在所述细孔内部的耐热涂层的厚度可以与形成在基材表面的耐热涂层的厚度相同,但也可以更薄。例如,细孔内部的耐热涂层的厚度可以为70%以下。
如上述的根据本发明一具体实施方式的所述隔膜,当评价其高耐热特性时,评价前后的透气度值的变化率优选为200%以上。更具体而言,以根据本发明一具体实施方式获得的隔膜的透气度值为基准,与所述隔膜在150℃下放置1小时后测定的透气度值进行比较时,高耐热特性评价后的透气度值为200%以上。这表示电池出现异常发热时隔膜的微多孔发生热熔融而堵住细孔的关闭功能能够顺利实施。
另外,所述高耐热特性评价前后的隔膜的收缩率优选具有5%以下的值。即,在发生关闭的温度下,即使在细孔的未涂覆区域中树脂发生热熔融而堵住细孔,也不会使隔膜的膜发生收缩,从而能够防止由阳极与阴极接触导致的内部短路。
此外,所述隔膜的根据热机械分析(TMA,thermo-mechanical an alysis)的熔融断裂温度优选为160℃以上。
实施例
通过实施例更具体地说明本发明。以下的实施例仅用于说明本发明的一例,本发明并不限定于此。
制造例-多孔性高分子基材的制造
为制造聚烯烃类微多孔膜,使用重量平均分子量为3.8×105的高密度聚乙烯,以1:2的比例混合邻苯二甲酸二丁酯和40℃运动粘度为160cSt的石蜡油作为稀释剂而使用,聚乙烯与稀释剂的含量分别为30重量%、70重量%。
利用装有T-模头的双轴混料机,以240℃挤压所述组合物,使其通过设定为180℃的区间来引发相分离,并利用铸轧辊制造薄片。通过拉伸比为纵向(MD)、横向(TD)各为7.5倍、拉伸温度为131℃的逐次双轴拉伸来制造,热固温度为130℃、热固宽度为1-1.3-1.1来制造。
对制造的多孔性高分子基材的表面进行SEM拍摄,其结果示于图5中。
此外,对由此获得的高分子基材进行了下述物理性质的测定,测定结果,获得的多孔性膜的最终厚度为25μm,透气度(Gurley)值为100秒,孔隙率为60%、细孔尺寸为22nm。此外,在130℃下的收缩率为纵向及横向分别为25%及28%。
实施例1
使用在线(in-line)氧等离子体设备,以1.9kW、基材与等离子体狭缝(slit)距离3mm、等离子体狭缝间隙(slit gap)2mm、线速(line speed)10m/分钟的条件处理所述制造例中获得的多孔性高分子基材。
将所述经过等离子处理的多孔性高分子基材安装到100℃腔室内,然后以1秒、5秒、3秒、15秒的暴露时间,向多孔性高分子基材表面依次引入三甲基铝(Al(CH3)3)、氩(Ar)、水分(H2O)、氩(Ar),并反复进行这种循环92次,从而形成作为金属化合物膜的密度为2.6g/cm3的铝氧化物(Al2O3)膜。具体的工序条件示于表1中。
对在多孔性高分子基材表面上形成有铝氧化物层的隔膜表面进行SEM拍摄,其照片示于图6中。
进而,评价形成有所述铝氧化物层的隔膜的特性,其结果示于表2中。
实施例2
除了没有实施等离子处理、将三甲基铝(Al(CH3)3)的引入时间变更为3秒、将吹扫(purge)时间变更为10秒之外,用与实施例1相同的方法,通过实施循环次数为60次的ALD沉积,在所述多孔性高分子基材上形成铝氧化物(Al2O3)膜。具体的工序条件示于表1中。
评价在多孔性高分子基材表面上形成铝氧化物层的隔膜的特性,其结果示于表2中。
实施例3
使用在线氧等离子体设备,以2.28kW、基材与等离子体狭缝距离3mm、等离子体狭缝间隙2mm、线速3m/分钟的条件处理所述制造例中获得的所述多孔性高分子基材。
对于所述经过等离子处理的多孔性高分子基材,除了将三甲基铝(Al(CH3)3)的引入时间变更为5秒、将三甲基铝(Al(CH3)3)的吹扫时间变更为10秒、将循环次数变更为45次之外,与实施例1相同地实施ALD沉积,从而在所述多孔性高分子基材上形成铝氧化物(Al2O3)膜。具体的工序条件示于表1中。
评价在多孔性高分子基材表面上形成铝氧化物层的隔膜的特性,其结果示于表2中。
比较例1
对于所述制造例中获得的所述多孔性高分子基材,除了没有实施等离子处理、将三甲基铝(Al(CH3)3)的引入时间变更为0.1秒、将循环次数变更为150次之外,与实施例1相同地实施ALD沉积,从而在所述多孔性高分子基材上形成铝氧化物(Al2O3)膜。具体的工序条件示于表1中。
评价在多孔性高分子基材表面上形成铝氧化物层的隔膜的特性,其结果示于表2中。
比较例2
使用在线氧等离子体设备,以2.28kW、基材与等离子体狭缝距离3mm、等离子体狭缝间隙2mm、线速3m/分钟的条件处理所述制造例中获得的所述多孔性高分子基材。
对于所述经过等离子处理的多孔性高分子基材,除了将三甲基铝(Al(CH3)3)的引入时间变更为5秒、将循环次数变更为50次之外,与实施例1相同地实施ALD沉积,从而在所述多孔性高分子基材上形成铝氧化物(Al2O3)膜。具体的工序条件示于表1中。
评价在多孔性高分子基材表面上形成铝氧化物层的隔膜的特性,其结果示于表2中。
比较例3
使用在线氧等离子设备,以2.28kW、基材与等离子体狭缝距离3mm、等离子体狭缝间隙2mm、线速3m/分钟的条件处理所述制造例中获得的所述多孔性高分子基材。
对于所述经过等离子处理的多孔性高分子基材,以20秒、20秒、5秒、30秒的暴露时间,向多孔性高分子基材表面依次引入三甲基铝(Al(CH3)3)、氩(Ar)、水分(H2O)、氩(Ar),并反复进行这种循环45次,从而形成铝氧化物(Al2O3)膜。具体的工序条件示于表1中。
评价由此获得的在多孔性高分子基材表面上形成铝氧化物层的隔膜的特性,其结果示于表2中。
表1
表2
从上述表2可知,通过实际沉积重量与理论重量的比例及沉积厚度,能够知道部分区域被涂覆而不是整个区域被涂覆。此时,可以知道比较例1因沉积量不充分而显示出收缩率较大的结果,比较例2因沉积量多而收缩率优异,但显示在200℃下经过1小时后测定的透气度的增加较少的结果。另外,比较例3因细孔的整个区域上沉积有铝氧化物层而收缩率优异,但显示在200℃下经过1小时后测定的透气度的增加显著低下的结果。
与此相反,就本发明的实施例1至3而言,与比较例1相比时,显示出优异的收缩率特性,与比较例2及3相比时,关闭特性优异。
因此可以知道显示沉积率的实际重量/理论重量之比为10~50%的隔膜能够同时确保优异的收缩率和关闭特性。
表1中显示的对所述多孔性高分子基材及实施例及比较例中获得的隔膜的物理性质通过如下方法获得。
膜的厚度:使用厚度精密度为0.1μm的接触方式的测厚仪。
平均气孔直径:利用气孔计(Porometer:PMI公司),依据ASTM F316-03,用半干法测定气孔大小。
孔隙率:切割Acm×Bcm的矩形样品,并通过数学式1算出。分别以5~20cm的范围切割A/B并进行测定。
[数学式1]
孔隙率={(A×B×T)-(M÷ρ)÷(A×B×T)}×100
其中,T=隔膜厚度(cm),M=样品重量(g),ρ=树脂密度(g/cm3)。
透气度(透气度测定仪(Gurley densometer)):透气度表示体积为100mL的气体以约1~2磅/平方英寸(psig)的压力通过1平方英寸(inch2)的面积所需的时间(单位:秒,second),用透气度测定仪(Gurley densometer:日本东洋精机(Toyoseiki)公司)进行测定。
沉积厚度:在通过ALD成膜法的复合微多孔膜上的无机金属化合物沉积厚度的情况下,用以相同的沉积条件在硅晶片(Si wafer)上使无机金属化合物沉积后通过反射计(reflectometer)测定厚度的值来替代。
收缩率:向玻璃板之间放入聚四氟乙烯纸张,向需测定的复合微多孔膜施加7.5mg/mm2的力度,并在200℃的烘箱放置1小时后,测定纵向及横向的收缩,以百分比(%)计算最终面积收缩。
TMA最大收缩率及熔融断裂温度:使用梅特勒-托利多(METTLER TOLEDO)公司的TMA(Thermo-mechanical analysis)设备,对6mm×10mm的试片装上0.015N的秤砣,以5℃/分钟的速度进行升温。
经过拉伸过程制作的试片会在一定温度下发生收缩,当超过玻璃化转变温度(Tg)及熔点(Tm)时,试片会因秤砣的重量而拉长。
TMA最大收缩率是定义为将在一定温度下发生的最大收缩点(point)的初始测定长度与收缩变形长度进行比较并用百分比(%)表示的值。试片会因秤砣的重量而开始拉长,此时,将开始超过试片初始长度(zero point)的温度定义为熔融断裂温度。
此外,在没有发生收缩的样品的情况下,当倾斜度为最大时,即,因温度增加而拉长的长度为最大时的x轴的温度被定义为熔融断裂温度。

Claims (18)

1.一种二次电池用隔膜,其特征在于,其包括:多孔性高分子基材,其具有第一表面和与所述第一表面相向的第二表面,并包括连通所述第一表面与所述第二表面之间的多个细孔;以及耐热涂层,其通过原子层沉积法(ALD)形成在所述多孔性高分子基材的所述第一表面或第二表面中的至少一个表面及所述细孔的内部表面;
存在所述细孔的内部表面上具有未涂覆区域的细孔。
2.根据权利要求1所述的二次电池用隔膜,其特征在于,相对于以与形成在所述多孔性高分子基材的第一表面及第二表面的耐热涂层的平均厚度(d)相同的厚度涂覆在多孔性高分子基材的表面及细孔内部表面时的耐热涂层的整体涂覆重量,所述耐热涂层的整体涂覆重量在10~50%的范围。
3.一种二次电池用隔膜,其特征在于,其包括:多孔性高分子基材,其具有第一表面和与所述第一表面相向的第二表面,并包括连通所述第一表面与所述第二表面之间的多个细孔;以及耐热涂层,其通过原子层沉积法(ALD)形成在所述多孔性高分子基材的所述第一表面或第二表面中的至少一个表面及所述细孔的内部表面;
相对于所述隔膜的透气度值,在150℃下放置1小时后的隔膜(SH)的透气度值的增加率为200%以上。
4.根据权利要求3所述的二次电池用隔膜,其特征在于,以隔膜为基准,所述隔膜(SH)的收缩率为5%以下。
5.根据权利要求3所述的二次电池用隔膜,其特征在于,所述隔膜的根据TMA的熔融断裂温度为160℃以上。
6.根据权利要求3所述的二次电池用隔膜,其特征在于,所述隔膜包括在细孔内部表面上共同存在已形成所述耐热涂层和未形成所述耐热涂层的区域的细孔。
7.根据权利要求1至6任一项所述的二次电池用隔膜,其特征在于,相对于所述多孔性高分子基材表面上形成的耐热涂层的厚度,在所述细孔内部表面上形成的耐热涂层具有70%以下的厚度。
8.根据权利要求1所述的二次电池用隔膜,其特征在于,所述多孔性高分子基材是由聚烯烃类树脂形成的。
9.根据权利要求1所述的二次电池用隔膜,其特征在于,所述耐热涂层包括分子,所述分子选自铝、钙、镁、硅、钛及锆中的至少一个金属元素的原子和选自碳、氮、硫及氧中的至少一个非金属元素的原子。
10.根据权利要求1所述的二次电池用隔膜,其特征在于,所述耐热涂层为选自氧化铝、氧化硅、氧化钛及氧化锌中的至少一个。
11.一种二次电池用隔膜制造方法,其特征在于,其通过对具有第一表面和与所述第一表面相向的第二表面且包括连通所述第一表面与所述第二表面之间的多个细孔的多孔性高分子基材反复进行原子层沉积法(ALD)循环来形成耐热涂层,其中所述原子层沉积法(ALD)循环包括:
金属化合物层形成步骤,其通过使所述多孔性高分子基材的各表面与包括选自铝、钙、镁、硅、钛及锆中的至少一个金属的金属化合物蒸汽进行反应而形成包括金属的层;
固体陶瓷层形成步骤,其通过使所述金属化合物层的金属化合物与包括选自碳、氮、硫及氧中的至少一个的非金属化合物蒸汽进行反应而形成包括非金属和金属的固体陶瓷层;以及
在所述固体陶瓷层上连续实施所述金属化合物层形成步骤及固体陶瓷层形成步骤;
针对所述多孔性高分子基材的整体反应面积,控制每一循环的金属化合物蒸汽的供应量,从而在细孔内部部分地形成包括金属的层。
12.根据权利要求11所述的二次电池用隔膜制造方法,其特征在于,通过进一步控制所述ALD循环次数及金属化合物层形成步骤的反应时间,从而在细孔内部部分地形成包括金属的层。
13.根据权利要求11所述的二次电池用隔膜制造方法,其特征在于,相对于理论重量,所述耐热涂层的整体涂覆重量在10~50%的范围内;
其中所述理论重量是定义为假设以与形成在多孔性高分子基材表面上的耐热涂层的平均厚度(d)相同的厚度涂覆在所述多孔性高分子基材的表面及细孔内部表面时的整体涂覆重量。
14.根据权利要求11所述的二次电池用隔膜制造方法,其特征在于,所述金属化合物蒸汽选自AlCl3、三甲基铝(TMA,Tri-methyl-Al uminum)、Al(CH3)2Cl、Al(C2H5)3、Al(OC2H5)3、Al(N(C2H5)2)3、Al(N(CH3)2)3、SiCl4、SiCl2H2、Si2Cl6、Si(C2H5)H2、Si2H6、TiF4、TiCl4、TiI4、Ti(OCH3)4、Ti(OC2H5)4、Ti(N(CH3)2)4、Ti(N(C2H5)2)4、Ti(N(CH3)(C2H5))4、VOCl3、Zn、ZnCl2、Zn(CH3)2、Zn(C2H5)2、ZnI2、Zr Cl4、ZrI4、Zr(N(CH3)2)4、Zr(N(C2H5)2)4、Zr(N(CH3)(C2H5))4、HfCl4、HfI4、Hf(NO3)4、Hf(N(CH3)(C2H5))4、Hf(N(CH3)2)4、Hf(N(C2H5)2)4、TaCl5、TaF5、TaI5、Ta(O(C2H5))5、Ta(N(CH3)2)5、Ta(N(C2H5)2)5、TaBr5中的至少一个。
15.根据权利要求11所述的二次电池用隔膜制造方法,其特征在于,对所述多孔性高分子基材实施引入功能基团的前处理后,实施ALD循环。
16.根据权利要求15所述的二次电池用隔膜制造方法,其特征在于,所述功能基团部分地形成在多孔性细孔内部。
17.据权利要求15所述的二次电池用隔膜制造方法,其特征在于,所述功能基团通过照射选自水、氧、臭氧、氢、过氧化氢、乙醇、NO2、N2O、NH3、N2、N2H4、C2H4、HCOOH、CH3COOH、H2S、(C2H5)2S2及CO2中的至少一个而进行反应或产生等离子体来进行反应而形成。
18.根据权利要求15所述的二次电池用隔膜制造方法,其特征在于,所述前处理通过调节处理强度、处理时间及处理次数中的至少一个来实施。
CN201611096734.XA 2015-12-02 2016-12-02 耐热性及关闭特性优异的二次电池用隔膜 Active CN106960933B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150170487A KR102438137B1 (ko) 2015-12-02 2015-12-02 내열성 및 셧다운 특성이 우수한 이차전지용 분리막
KR10-2015-0170487 2015-12-02

Publications (2)

Publication Number Publication Date
CN106960933A true CN106960933A (zh) 2017-07-18
CN106960933B CN106960933B (zh) 2021-10-15

Family

ID=58798696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611096734.XA Active CN106960933B (zh) 2015-12-02 2016-12-02 耐热性及关闭特性优异的二次电池用隔膜

Country Status (4)

Country Link
US (2) US10431805B2 (zh)
JP (1) JP7393853B2 (zh)
KR (1) KR102438137B1 (zh)
CN (1) CN106960933B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109082216A (zh) * 2018-05-23 2018-12-25 同济大学 一种弹性导电膜及其制备方法
CN109994690A (zh) * 2017-12-29 2019-07-09 宁德时代新能源科技股份有限公司 复合隔离膜及其制备方法、使用其的电化学装置
CN110603664A (zh) * 2017-10-26 2019-12-20 株式会社Lg化学 具有熔化截止部分的隔膜和包括该隔膜的电化学装置
CN110777367A (zh) * 2019-10-15 2020-02-11 江苏卓高新材料科技有限公司 一种可调节的微孔薄膜沉积装置及使用方法
CN110791748A (zh) * 2019-10-15 2020-02-14 江苏卓高新材料科技有限公司 一种微孔薄膜表面沉积装置及方法
CN112886143A (zh) * 2021-03-26 2021-06-01 上海电气集团股份有限公司 多层结构复合隔膜及其制备方法、以及二次电池与用电设备
CN113646924A (zh) * 2018-12-10 2021-11-12 株式会社Lg新能源 二次电池用正极及其制造方法以及包含其的锂二次电池
CN114883744A (zh) * 2022-05-31 2022-08-09 西安理工大学 一种改性pp/pe/pp隔膜的制备方法及隔膜的应用
CN115939671A (zh) * 2023-03-15 2023-04-07 中国铁塔股份有限公司 一种电池和电池制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6921382B2 (ja) * 2017-05-25 2021-08-18 日油株式会社 フレキシブルデバイス用レジスト樹脂
CN109994691B (zh) * 2017-12-29 2021-09-21 宁德时代新能源科技股份有限公司 一种隔离膜,其制备方法及包括该隔离膜的电化学装置
US11117346B2 (en) * 2019-07-18 2021-09-14 Hamilton Sundstrand Corporation Thermally-conductive polymer and components
KR102309681B1 (ko) * 2020-01-09 2021-10-07 전남대학교산학협력단 리튬-황 전지용 분리막 및 이의 제조방법
CN114243212A (zh) * 2021-11-12 2022-03-25 中国科学院近代物理研究所 一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及其制备方法
CN115473007B (zh) * 2022-09-28 2024-01-02 上海意定新材料科技有限公司 一种新能源汽车锂电池用陶瓷基隔膜及其制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070218290A1 (en) * 2004-06-24 2007-09-20 Beneq Oy Method for Doping Material and Doped Material
CN101359745A (zh) * 2007-08-02 2009-02-04 原子能委员会 在多孔载体上制造燃料电池的方法
US20090286674A1 (en) * 2006-06-19 2009-11-19 Universitetet I Oslo Activation of surfaces through gas phase reactions
US20090286147A1 (en) * 2008-05-16 2009-11-19 Atsushi Nakajima Composite porous membrane, method of producing composite porous membrane, and battery separator, battery and capacitor using the same
CN102163741A (zh) * 2010-02-12 2011-08-24 通用汽车环球科技运作有限责任公司 具有被涂覆的分隔体的锂离子蓄电池
US20110236746A1 (en) * 2008-08-01 2011-09-29 Takashi Mushiga Battery outer label and battery provided with the same
US8227105B1 (en) * 2007-03-23 2012-07-24 The United States Of America As Represented By The United States Department Of Energy Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same
CN102629676A (zh) * 2011-02-07 2012-08-08 索尼公司 电池隔膜、制造其的方法、电池、电池组及电子设备
CN103137930A (zh) * 2011-11-24 2013-06-05 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法、含有该隔膜的锂离子电池
US20130252098A1 (en) * 2006-12-15 2013-09-26 Kanto Gakuin University Surface Engineering Research Institute Negative electrode base member
CN103732392A (zh) * 2011-07-28 2014-04-16 凸版印刷株式会社 层叠体、阻气膜以及它们的制造方法
US20140205912A1 (en) * 1999-11-23 2014-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US20150010804A1 (en) * 2013-07-03 2015-01-08 Sion Power Corporation Ceramic/polymer matrix for electrode protection in electrochemical cells, including rechargeable lithium batteries
WO2015023116A1 (ko) * 2013-08-12 2015-02-19 성균관대학교산학협력단 고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지
CN104377331A (zh) * 2014-11-19 2015-02-25 新乡市中科科技有限公司 一种锂离子电池用隔膜及其制备方法
US20150303427A1 (en) * 2013-02-12 2015-10-22 Samsung Total Petrochemicals Co., Ltd Organic/Inorganic Complex Coating Porous Separator And Secondary Battery Using The Same
CN105050808A (zh) * 2013-03-27 2015-11-11 凸版印刷株式会社 层积体、阻隔膜及其制造方法
CN106848149A (zh) * 2015-10-23 2017-06-13 Sk新技术株式会社 具有疏水性表面的电池用隔膜及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797729B2 (ja) 1996-12-16 2006-07-19 日東電工株式会社 電池用セパレータ
DE10238257B4 (de) 2002-08-21 2007-04-19 Johannes-Gutenberg-Universität Mainz Sorbicillacton A und Sorbicillacton-A-Derivate, Verfahren zu ihrer Herstellung und sie enthaltende Arzneimittel
HUE052954T2 (hu) * 2004-07-07 2021-05-28 Lg Chemical Ltd Szerves/szervetlen kompozit porózus szétválasztó, és ezt tartalmazó elektrokémiai készülék
TWI346406B (en) * 2006-02-16 2011-08-01 Lg Chemical Ltd Lithium secondary battery with enhanced heat-resistance
JP4506792B2 (ja) 2007-07-06 2010-07-21 ソニー株式会社 非水電解質電池用セパレータおよびこれを用いた非水電解質電池
KR20100135369A (ko) * 2009-06-17 2010-12-27 에스케이에너지 주식회사 고내열성 유/무기 피복층을 갖는 폴리에틸렌계 복합 미세다공막
KR101499787B1 (ko) * 2013-08-12 2015-03-18 성균관대학교산학협력단 고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지
KR101439787B1 (ko) 2013-08-20 2014-09-12 심철현 저속촬영 가이드 시스템이 구비된 촬영장치
WO2015099190A1 (ja) * 2013-12-26 2015-07-02 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140205912A1 (en) * 1999-11-23 2014-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US20070218290A1 (en) * 2004-06-24 2007-09-20 Beneq Oy Method for Doping Material and Doped Material
US20090286674A1 (en) * 2006-06-19 2009-11-19 Universitetet I Oslo Activation of surfaces through gas phase reactions
US20130252098A1 (en) * 2006-12-15 2013-09-26 Kanto Gakuin University Surface Engineering Research Institute Negative electrode base member
US8227105B1 (en) * 2007-03-23 2012-07-24 The United States Of America As Represented By The United States Department Of Energy Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same
CN101359745A (zh) * 2007-08-02 2009-02-04 原子能委员会 在多孔载体上制造燃料电池的方法
US20090286147A1 (en) * 2008-05-16 2009-11-19 Atsushi Nakajima Composite porous membrane, method of producing composite porous membrane, and battery separator, battery and capacitor using the same
US20110236746A1 (en) * 2008-08-01 2011-09-29 Takashi Mushiga Battery outer label and battery provided with the same
CN102163741A (zh) * 2010-02-12 2011-08-24 通用汽车环球科技运作有限责任公司 具有被涂覆的分隔体的锂离子蓄电池
CN102629676A (zh) * 2011-02-07 2012-08-08 索尼公司 电池隔膜、制造其的方法、电池、电池组及电子设备
CN103732392A (zh) * 2011-07-28 2014-04-16 凸版印刷株式会社 层叠体、阻气膜以及它们的制造方法
CN103137930A (zh) * 2011-11-24 2013-06-05 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法、含有该隔膜的锂离子电池
US20150303427A1 (en) * 2013-02-12 2015-10-22 Samsung Total Petrochemicals Co., Ltd Organic/Inorganic Complex Coating Porous Separator And Secondary Battery Using The Same
CN105050808A (zh) * 2013-03-27 2015-11-11 凸版印刷株式会社 层积体、阻隔膜及其制造方法
US20150010804A1 (en) * 2013-07-03 2015-01-08 Sion Power Corporation Ceramic/polymer matrix for electrode protection in electrochemical cells, including rechargeable lithium batteries
WO2015023116A1 (ko) * 2013-08-12 2015-02-19 성균관대학교산학협력단 고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지
CN104377331A (zh) * 2014-11-19 2015-02-25 新乡市中科科技有限公司 一种锂离子电池用隔膜及其制备方法
CN106848149A (zh) * 2015-10-23 2017-06-13 Sk新技术株式会社 具有疏水性表面的电池用隔膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.A.WILSON,R.K.GRUBBS,S.M.GEORGE: "Nucleation and Growth during Al2O3 Atomic Layer Deposition on Polymers", 《CHEM.MATER.》 *
HE CHEN,QIANLIN,QIANGXU,YANGYANG,ZONGPINGSHAO,YONGWANG: "Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries", 《JOURNAL OF MEMBRANE SCIENCE》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603664A (zh) * 2017-10-26 2019-12-20 株式会社Lg化学 具有熔化截止部分的隔膜和包括该隔膜的电化学装置
US11527787B2 (en) 2017-10-26 2022-12-13 Lg Energy Solution, Ltd. Separator having melting-cutoff portion and electrochemical device including the same
CN110603664B (zh) * 2017-10-26 2022-05-24 株式会社Lg化学 具有熔化截止部分的隔膜和包括该隔膜的电化学装置
CN109994690B (zh) * 2017-12-29 2021-12-21 宁德时代新能源科技股份有限公司 复合隔离膜及其制备方法、使用其的电化学装置
CN109994690A (zh) * 2017-12-29 2019-07-09 宁德时代新能源科技股份有限公司 复合隔离膜及其制备方法、使用其的电化学装置
CN109082216B (zh) * 2018-05-23 2019-12-27 同济大学 一种弹性导电膜及其制备方法
CN109082216A (zh) * 2018-05-23 2018-12-25 同济大学 一种弹性导电膜及其制备方法
CN113646924A (zh) * 2018-12-10 2021-11-12 株式会社Lg新能源 二次电池用正极及其制造方法以及包含其的锂二次电池
CN110791748A (zh) * 2019-10-15 2020-02-14 江苏卓高新材料科技有限公司 一种微孔薄膜表面沉积装置及方法
CN110777367A (zh) * 2019-10-15 2020-02-11 江苏卓高新材料科技有限公司 一种可调节的微孔薄膜沉积装置及使用方法
CN110791748B (zh) * 2019-10-15 2024-05-28 江苏卓高新材料科技有限公司 一种微孔薄膜表面沉积装置及方法
CN112886143A (zh) * 2021-03-26 2021-06-01 上海电气集团股份有限公司 多层结构复合隔膜及其制备方法、以及二次电池与用电设备
CN112886143B (zh) * 2021-03-26 2023-01-24 上海电气集团股份有限公司 多层结构复合隔膜及其制备方法、以及二次电池与用电设备
CN114883744A (zh) * 2022-05-31 2022-08-09 西安理工大学 一种改性pp/pe/pp隔膜的制备方法及隔膜的应用
CN115939671A (zh) * 2023-03-15 2023-04-07 中国铁塔股份有限公司 一种电池和电池制备方法

Also Published As

Publication number Publication date
JP2017103233A (ja) 2017-06-08
JP7393853B2 (ja) 2023-12-07
US11139542B2 (en) 2021-10-05
CN106960933B (zh) 2021-10-15
KR102438137B1 (ko) 2022-08-30
US20190386287A1 (en) 2019-12-19
US20170162855A1 (en) 2017-06-08
KR20170064702A (ko) 2017-06-12
US10431805B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
CN106960933A (zh) 耐热性及关闭特性优异的二次电池用隔膜
KR102405070B1 (ko) 소수성 표면을 갖는 배터리용 세퍼레이터 및 그 제조방법
Blanquart et al. Atomic layer deposition and characterization of vanadium oxide thin films
Chen et al. Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries
CN107452924B (zh) 二次电池用多孔性隔膜及其制备方法
KR20120039334A (ko) 전기화학소자용 분리막 및 이의 제조방법
JP6044545B2 (ja) 多孔質膜の製造方法及びその多孔質膜、電池用セパレーター及び電池
US11180849B2 (en) Direct liquid injection system for thin film deposition
Lee et al. A highly efficient surface modified separator fabricated with atmospheric atomic layer deposition for high temperature lithium ion batteries
KR102324057B1 (ko) 복합분리막 및 그의 제조방법
KR20160134046A (ko) 이차전지용 복합분리막 및 이의 제조방법
WO2003017737A2 (en) Cascade arc plasma and abrasion resistant coatings made therefrom
KR102309876B1 (ko) 리튬 이차전지용 분리막 및 그의 제조방법
KR20150059462A (ko) 안정성이 향상된 이차전지용 다공성 분리막
US20170373295A1 (en) Separator Having Excellent Heat Resistance and Electrolyte Wetting Properties
KR101856870B1 (ko) 접착력이 개선된 고분자 복합체 및 그 제조 방법
JP5251135B2 (ja) 多孔性フィルム
KR20150084337A (ko) 유기-무기 복합 다공성 분리막, 이의 제조 방법, 및 이를 포함하는 전기화학소자
Ikeda et al. High hydrogen permeance silica membranes prepared by a chemical vapor deposition method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190927

Address after: Seoul, South Korea

Applicant after: SK INNOVATION Co.,Ltd.

Applicant after: SK IE TECHNOLOGY Co.,Ltd.

Address before: Seoul, South Korea

Applicant before: SK INNOVATION Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant