WO2015023116A1 - 고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지 - Google Patents

고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지 Download PDF

Info

Publication number
WO2015023116A1
WO2015023116A1 PCT/KR2014/007505 KR2014007505W WO2015023116A1 WO 2015023116 A1 WO2015023116 A1 WO 2015023116A1 KR 2014007505 W KR2014007505 W KR 2014007505W WO 2015023116 A1 WO2015023116 A1 WO 2015023116A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
high heat
tetrakis
amino
polyethylene
Prior art date
Application number
PCT/KR2014/007505
Other languages
English (en)
French (fr)
Inventor
박종혁
김민
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority claimed from KR1020140104677A external-priority patent/KR101499787B1/ko
Publication of WO2015023116A1 publication Critical patent/WO2015023116A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a high heat resistant separator, a method for producing the high heat resistant separator, and a battery including the high heat resistant separator.
  • rechargeable batteries are under active research due to the development of mobile electronic devices such as mobile phones, notebook computers, digital cameras and camcorders.
  • secondary batteries include nickel-cadmium batteries, nickel-metal hydride batteries, nickel-hydrogen batteries, and lithium secondary batteries.
  • lithium secondary batteries are the most popular among nickel-cadmium batteries or nickel-metal hydride batteries, which are widely used as power sources for electronic devices. have.
  • the lithium secondary battery includes a positive electrode formed by coating a positive electrode active material on both sides of a positive electrode current collector, a negative electrode formed by applying a negative electrode active material on both sides of a negative electrode current collector, and a separator interposed between the positive electrode and the negative electrode to electrically insulate them.
  • lithium ion batteries are easy to manufacture and have improved ion conductivity at room temperature, there are problems of stability such as electrode corrosion and ignition explosion, and lithium polymer batteries have improved disadvantages of lithium ion batteries. Since the resistance is relatively low, the battery has a high resistance, which is disadvantageous for large current discharge, and has a problem in that the discharge characteristics are rapidly decreased at low temperatures.
  • the separator is a key device that serves to provide a passage for smoothly moving the electrolyte components while blocking the physical contact between the positive electrode and the negative electrode in the battery.
  • the separator applied to the lithium ion battery which is a high-capacity high-voltage battery, must have a thin thickness and excellent mechanical properties to secure the safety of the lithium ion battery in order to compensate for the low ion conductivity of the liquid organic electrolyte.
  • a separator for a lithium battery a microporous membrane made of polyolefin is generally used.
  • the polyolefin separator has a weak adhesive strength with the positive electrode plate when the thermocompression bonding is performed at a temperature that does not damage the cell performance and the microporous structure below the melting point, the internal resistance increases and the cycle life and the large current discharge characteristics deteriorate. do.
  • Korean Patent Laid-Open Publication No. 2006-0072065, 2007-0000231, etc. propose a separator in which a porous coating layer formed of a mixture of inorganic filler particles and a polymer binder is formed on one or both surfaces of a porous substrate.
  • the inorganic filler particles of the microporous coating layer formed on the porous substrate serve as a kind of passivation to maintain physical shape, thereby inhibiting thermal shrinkage of the porous substrate during overheating due to malfunction of the electrochemical device, and Together, an empty space exists between the inorganic filler particles to form fine pores.
  • the microporous coating layer formed on the porous substrate contributes to improving the safety of the electrochemical device.
  • Inorganic filler particles used to form the microporous coating layer according to the prior art include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), ZrO 3 , SiO 2 , Al 2 O 3 , TiO 2 , Li 3 PO 4 , LixTiy (PO 4 ) 3 (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3) particles are used, which are mixed with the polymer binder, and in addition to the inherent problems that can cause a small amount of polymer binder to melt or deform at high temperatures.
  • a patent has been applied for a separator in which particles are coated with a thickness of about 5 ⁇ m on a nonwoven fabric having a pore size of 75 ⁇ m to 150 ⁇ m using the sol-gel method.
  • a separator in which particles are coated with a thickness of about 5 ⁇ m on a nonwoven fabric having a pore size of 75 ⁇ m to 150 ⁇ m using the sol-gel method.
  • the present application is to provide a method of producing a high heat resistant separator, a high heat resistant separator prepared according to the method, and a battery comprising the high heat resistant separator.
  • a first aspect of the present disclosure provides a method of manufacturing a high heat resistance separator, including forming a metal oxide thin film on a surface of a porous polymer substrate and an inner surface of a pore through low temperature atomic layer deposition.
  • the second aspect of the present application comprises a metal oxide thin film formed on the surface of the porous polymer substrate and the inner surface of the pore, and provides a high heat resistant separator manufactured according to the first aspect of the present application.
  • a third aspect of the present application provides a battery comprising the high heat resistant separator according to the second aspect of the present application.
  • the method of manufacturing a separator according to an embodiment of the present application can independently manufacture a thin thickness inorganic separator capable of high-density filling for high capacity, and it is easy to appropriate mechanical properties and ion mobility by improving the conventional commercialized separator. It is possible to secure the characteristics of excellent ion conductivity with a continuous porous structure.
  • FIG. 1 is a schematic diagram of a separator in which a metal oxide thin film is formed by a low temperature atomic layer deposition method according to an embodiment of the present disclosure.
  • Figure 2 is a photograph showing the heat shrinkage behavior of the separator prepared according to an embodiment of the present application.
  • Figure 3 is a photograph showing a separator prepared for different temperatures according to an embodiment of the present application.
  • FIG. 4 is a graph showing the charging capacity according to the C-rate of the separator prepared at different temperatures according to an embodiment.
  • 5 is a graph showing discharge capacity according to the number of cycles of a separator manufactured at different temperatures according to an embodiment.
  • step to or “step of” does not mean “step for.”
  • the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
  • a first aspect of the present disclosure provides a method of manufacturing a high heat resistance separator, including forming a metal oxide thin film on a surface of a porous polymer substrate and an inner surface of a pore through low temperature atomic layer deposition.
  • the decomposition process of the compound can be proceeded through both sides of the separator from the beginning, thereby controlling not only a few nanometer thick thin film layer but also more precisely coating the metal oxide layer, and thus, the conventional 30 nm to It can exhibit excellent mechanical properties and ion mobility effects even under a thickness of 400 nm.
  • before forming the metal oxide thin film may further include introducing a hydrophilic functional group on the surface of the porous polymer substrate and the inner surface of the pores using an oxygen plasma, but may not be limited thereto.
  • the hydrophilic functional group may include -OH or -COOH, but may not be limited thereto.
  • the porous polymer substrate is a high density polyethylene, low density polyethylene, linear low density polyethylene, high molecular weight polyethylene, polypropylene terephthalate, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide , Polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, and may include those selected from the group consisting of polyethylene naphthalene, but may not be limited thereto.
  • the polymer substrate may be used without limitation as long as it is a substrate of a polymer prepared by a drawing process, which is a material of a separator of an electrochemical device, or a non-woven fabric formed of a porous net structure by the intersection of nanofibers.
  • the porous polymer substrate may have a continuous porous structure having high porosity and uniform pore size distribution so as to facilitate mobility of lithium ions such as both electrodes when used in a battery, but may not be limited thereto. .
  • the metal oxide, Al 2 O 3 , SiO 2 , ZrO 2 , TiO 2 , SnO 2 , CeO 2 , ZnO, MgO, CaO, SrO, BaO, Na 2 O, B 2 O 3 , Mn 2 O 3 , Y 2 O 3 , WO 3 , and combinations thereof may be included, but may not be limited thereto.
  • Precursors used to form the metal oxide thin film by the low temperature atomic layer deposition method TMA (Tri-methyl-Aluminum), MPTMA (methyl-Pyrrolidine-Tri-methyl-Aluminum), EPPTEA (ethyl-pyridine-triethyl-aluminum ), EPPDMAH (ethyl-pyridine-dimethyl-aluminum hydridge), IPA (C 3 H 7 -O) 3 Al), SiCl 4 (silicon tetrachloride), TEMASi (tetrakis-ethyl-methyl-amino-Silcon), TiCl 4 ( titanium tetrachloride), TTIP (titanium-tetrakis-isoproproxide), TEMAT (tretrakis-ethyl-methyl-amino-Titanium), TDMAT (tetrakis-dimethyl-amino-titanium), TDEAT (tetrakis
  • the low-temperature atomic layer deposition method may be performed in a temperature range of about 25 °C to less than about 80 °C, but may not be limited thereto.
  • the temperature of the low temperature atomic layer deposition method is, for example, about 25 °C to less than about 80 °C, about 25 °C to about 75 °C, about 25 °C to about 70 °C, about 25 °C to about 65 °C, about 25 °C to About 60 ° C., about 25 ° C. to about 55 ° C., about 25 ° C. to about 50 ° C., about 50 ° C. to less than about 80 ° C., about 50 ° C.
  • the manufacturing method of the high heat resistant separator according to the exemplary embodiment of the present application is performed at a relatively low temperature, it is possible to prevent pore collapse and particle generation of the porous polymer substrate, which may appear when performing a high temperature process.
  • the temperature of the low temperature atomic layer deposition method is preferably more than 60 °C to less than 80 °C, more preferably more than 60 °C to 75 °C, 65 °C to 75 °C or less, more Preferably it is more than 60 degreeC-70 degrees C or less.
  • the low-temperature atomic layer deposition method may be performed in a temperature range of more than 60 °C to less than 80 °C, but may not be limited thereto.
  • the temperature is determined by the characteristics of the precursor used. A large number of precursors are usually deposited at temperatures between 100 ° C. and 800 ° C. using atomic vapor deposition or chemical vapor deposition. The process is carried out.
  • the thickness of the metal oxide thin film may be about 100 nm or less, but may not be limited thereto.
  • the thickness of the metal oxide thin film is, for example, about 1 nm to about 100 nm, about 10 nm to about 100 nm, about 20 nm to about 100 nm, about 30 nm to about 100 nm, about 40 nm to about 100 nm, about 50 nm to about 100 nm, about 60 nm to about 100 nm, about 70 nm to about 100 nm, about 80 nm to about 100 nm, about 90 nm to about 100 nm, about 1 nm to about 90 nm, About 1 nm to about 80 nm, about 1 nm to about 70 nm, about 1 nm to about 60 nm, about 1 nm to about 50 nm, about 1 nm to about 40 nm, about 1 nm to about 30 nm, about 1 nm to about 100
  • the high heat resistant separator may have a porous structure, but may not be limited thereto. Since the high heat resistant separation membrane including the metal oxide thin film according to the present invention has a porous structure, the electrolyte may serve as a movement passage through which the electrolyte can move smoothly.
  • an oxygen plasma may be treated on a surface of a porous polymer substrate and an inner surface of pores to form a hydroxyl group or a carboxyl group layer.
  • a metal oxide thin film having a thickness of about 100 nm or less may be formed on the surface of the porous polymer substrate and the inner surface of the pores on which the hydroxy group or the carboxyl group layer is formed by using a low temperature atomic layer deposition method.
  • the separator prepared in this way has high heat resistance.
  • the battery having the same can be increased in capacity by increasing the volume of the limited electrode active material in the device.
  • the atomic layer deposition method is a high temperature of 80 °C or more with respect to the temperature of the atomic layer deposition method, the separator itself is damaged during the process and shrinkage of the separator occurs, whereas in the case of low temperature, There is no shrinkage phenomenon.
  • low temperature that is, using the low temperature atomic layer deposition method of less than 75 °C or 70 °C using the chemical decomposition reaction of the inorganic precursors to describe the inorganic oxide layer It can be densely coated on the phase, and by such a low temperature atomic layer deposition method, there is no change in thickness of the separator after coating.
  • the chemical decomposition reaction of the inorganic precursor does not proceed effectively, so that the unreacted substance remains more than the process of other temperatures, and thus the coating layer of the inorganic oxide is not densely coated.
  • the second aspect of the present application comprises a metal oxide thin film formed on the surface of the porous polymer substrate and the inner surface of the pore, and provides a high heat resistant separator manufactured according to the first aspect of the present application.
  • the high heat resistance separator may include a metal oxide thin film formed through a low temperature atomic layer deposition method on the surface of the porous polymer substrate and the pores.
  • the high heat resistant separator according to the present application has a continuous porous structure.
  • the porous polymer substrate is a high density polyethylene, low density polyethylene, linear low density polyethylene, high molecular weight polyethylene, polypropylene terephthalate, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide , Polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, and may include those selected from the group consisting of polyethylene naphthalene, but may not be limited thereto.
  • the polymer substrate may be used without limitation as long as it is a substrate of a polymer prepared by a drawing process, which is a material of a separator of an electrochemical device, or a non-woven fabric formed of a porous net structure by the intersection of nanofibers.
  • the porous polymer substrate may have a continuous porous structure having high porosity and uniform pore size distribution so as to facilitate mobility of lithium ions such as both electrodes when used in a battery, but may not be limited thereto. .
  • the metal oxide, Al 2 O 3 , SiO 2 , ZrO 2 , TiO 2 , SnO 2 , CeO 2 , ZnO, MgO, CaO, SrO, BaO, Na 2 O, B 2 O 3 , Mn 2 O 3 , Y 2 O 3 , WO 3 , and combinations thereof may be included, but may not be limited thereto.
  • the thickness of the metal oxide thin film may be about 100 nm or less, but may not be limited thereto.
  • the thickness of the metal oxide thin film is, for example, about 1 nm to about 100 nm, about 10 nm to about 100 nm, about 20 nm to about 100 nm, about 30 nm to about 100 nm, about 40 nm to about 100 nm, about 50 nm to about 100 nm, about 60 nm to about 100 nm, about 70 nm to about 100 nm, about 80 nm to about 100 nm, about 90 nm to about 100 nm, about 1 nm to about 90 nm, About 1 nm to about 80 nm, about 1 nm to about 70 nm, about 1 nm to about 60 nm, about 1 nm to about 50 nm, about 1 nm to about 40 nm, about 1 nm to about 30 nm, about 1 nm to about 100
  • the high heat resistant separator may have a porous structure, but may not be limited thereto. Since the high heat resistant separation membrane including the metal oxide thin film according to the present invention has a porous structure, the electrolyte may serve as a movement passage through which the electrolyte can move smoothly.
  • a third aspect of the present application provides a battery comprising the high heat resistant separator according to the second aspect of the present application.
  • the battery may be a secondary battery, but may not be limited thereto.
  • the secondary battery may include a positive electrode, a negative electrode, a separator and an electrolyte, but may not be limited thereto.
  • the separator is a high heat resistant separator manufactured by the manufacturing method according to the first aspect of the present application, the low temperature atomic layer deposition method (Low Temperature Atomic Layer Deposition) on the surface of the porous polymer substrate and the pores It may be to include a metal oxide thin film formed through.
  • the high heat resistant separator according to the exemplary embodiment of the present disclosure may have a continuous porous structure, but may not be limited thereto.
  • the secondary battery may include a lithium secondary battery, a lithium-metal secondary battery, a lithium ion battery, a lithium polymer battery, or a lithium ion-polymer battery, but may not be limited thereto.
  • the secondary battery is a positive electrode formed by applying a positive electrode active material on both sides of the positive electrode current collector, a negative electrode formed by applying a negative electrode active material on both sides of the negative electrode current collector, and interposed between the positive electrode and the negative electrode It may include an electrically insulating separator and an electrolyte, but may not be limited thereto.
  • the cell may be a fuel cell, but may not be limited thereto.
  • the separator is a high heat resistant separator manufactured by the manufacturing method according to the first aspect of the present application, the low temperature atomic layer deposition method (Low Temperature Atomic Layer Deposition) on the surface of the porous polymer substrate and the pores It may be to include a metal oxide thin film formed through.
  • the high heat resistant separator according to the exemplary embodiment of the present disclosure may have a continuous porous structure, but may not be limited thereto.
  • the fuel cell comprises a separator, an electrolyte such as an acid or base electrolyte, a positive electrode, and a negative electrode, a device for generating electrical energy through an electrochemical reaction between the positive electrode and the negative electrode It may be, but may not be limited thereto.
  • the fuel cell is a device for generating electrical energy by electrochemically reacting fuel and oxidant.
  • the type of the fuel cell is not particularly limited.
  • a direct ethanol fuel cell (DEFC), a direct methanol fuel cell (DMFC), a polymer electrolyte fuel cell (Polymer Electrolyte Membrane Fuel) Cell, PEMFC), Alkaline Fuel Cell (AFC), Phosphoric Acid Fuel Cell (PAFC), Molten Carbonate Fuel Cell (MCFC) or Solid Oxide Fuel Cell (Solid Oxide) Fuel Cell, SOFC).
  • DEFC direct ethanol fuel cell
  • DMFC direct methanol fuel cell
  • PEMFC Polymer Electrolyte Membrane Fuel Cell
  • AFC Alkaline Fuel Cell
  • PAFC Phosphoric Acid Fuel Cell
  • MCFC Molten Carbonate Fuel Cell
  • SOFC Solid Oxide Fuel Cell
  • Such fuel cells have attracted much attention as transportation or household power sources such as next-generation automobiles because polymer electrolyte fuel cells that generate electricity by using hydrogen, which is clean energy, as fuel do not emit any pollutants in the reaction process.
  • an electrode reaction of a fuel cell is composed of a hydrogen oxidation reaction at an anode as a fuel electrode and an oxygen reduction reaction at a cathode as an oxygen electrode. Since these oxidation and reduction reactions proceed very slowly, it is essential to use a catalyst that increases the reaction rate when used for practical purposes.
  • a cathode and an anode of a fuel cell generally use a platinum catalyst, but the expensive price is a problem when using the platinum catalyst.
  • more platinum is used than the cathode because the reaction rate is slower than that of the hydrogen oxidation reaction occurring at the cathode.
  • the second and third aspects of the present disclosure relate to a high heat resistant separator manufactured according to the first aspect of the present application, and a battery including the high heat resistant separator, wherein parts overlapping with the first aspect of the present disclosure Although the detailed description is omitted, the description of the first aspect of the present application may be equally applied even if the description is omitted in each of the second and third aspects of the present application.
  • Alkyl-based compound trimethylaluminum [TMA; Al (CH 3 ) 3 , Aldrich] was used as a precursor of the Al 2 O 3 low temperature atomic layer deposition method.
  • TMA trimethylaluminum
  • a pure polyethylene separation membrane (more than about 40% of porosity, thickness of 17 ⁇ m to 18 ⁇ m, Tonen) is fixed to a jig or a substrate which is easily permeable to gas, and sealed in a sealed (ie vacuum) chamber. Fixed.
  • the surface of the separator which is hydrophobic, was then modified to an hydrophilic surface that was easy to process using oxygen plasma (pressure about 200 mTorr to about 400 mTorr, power about 115 V to about 230 V, O 2 gas velocity about 1.4 m 3 / hr for several minutes).
  • oxygen plasma pressure about 200 mTorr to about 400 mTorr, power about 115 V to about 230 V, O 2 gas velocity about 1.4 m 3 / hr for several minutes.
  • Example 2 Preparation of Membrane Coated with Al 2 O 3 as 80 nm Thickness
  • Example 2 In the same manner as in Example 1, a separator coated with Al 2 O 3 having a thickness of 80 nm was prepared by atomic layer deposition at 70 ° C.
  • Example 2 In order to compare the characteristics of the separator of Example 1 and Example 2, a pure polyethylene membrane was prepared in the same size as in Example 1 and Example 2.
  • Polymer slurry was dissolved by adding PVdF-HFP (polyvinylidene fluoride-hexafluoroethylene copolymer, 10 wt%, Kynar) to NMP (N-methyl-2 pyrrolidone, Aldrich) and dissolving at room temperature for at least 1 hour.
  • PVdF-HFP polyvinylidene fluoride-hexafluoroethylene copolymer, 10 wt%, Kynar
  • NMP N-methyl-2 pyrrolidone, Aldrich
  • a positive electrode active material slurry was prepared by adding it to ton (NMP).
  • the positive electrode active material slurry was applied to an aluminum (Al) thin film of a positive electrode current collector having a thickness of 20 ⁇ m and dried to prepare a positive electrode, and then roll press was performed.
  • N-methyl-2 pyrrolidone as a solvent using carbon powder negative electrode active material particles, polyvinylidene fluoride (PVdF) binder, and carbon black conductive agent as 96 wt%, 3 wt%, and 1 wt%, respectively.
  • NMP to prepare a negative electrode active material slurry.
  • the negative electrode active material slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, and dried to prepare a negative electrode, and then roll press was performed.
  • Cu copper
  • Coin cell type cells were assembled using the positive electrode, the negative electrode, and the separator prepared in Example 1 using the stacking method, and the electrolytic solution [ethylene carbonate (EC) / ethylmethyl carbonate (EMC) was assembled into the assembled battery.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • ) 1/2 (volume ratio) and 1 mol of lithium hexafluorophosphate (LiPF6)] were injected to prepare a lithium secondary battery.
  • Example 2 The same process as in Example 1 was carried out, but an Al 2 O 3 coated membrane was prepared by atomic layer deposition at 60 ° C. in thickness of 80 nm.
  • Example 2 The same process as in Example 1 was performed, but an 80 nm-thick Al 2 O 3 coated separator was prepared by atomic layer deposition at 80 ° C.
  • Example 2 The same method as in Example 1 was performed, but an Al 2 O 3 coated separator having a thickness of 80 nm was prepared by 100 ° C. high temperature atomic layer deposition.
  • Example 1 and Example 2 and Comparative Example 1, Comparative Example 2, and Comparative Examples 5 to 7 after storing the separation membrane for 1 hour at 160 °C was confirmed.
  • the results are shown in FIG. 2 and Table 1 below.
  • Figure 2 is a photograph showing the heat shrinkage behavior of the separator prepared according to the present embodiment.
  • Example 1 and Example 2 and Comparative Example 1 separation membrane was found to show a large difference in the heat shrinkage behavior when stored at 160 °C for 1 hour. While the membrane of Comparative Example 1 (polyethylene membrane) exhibited heat shrinkage of not less than 95% of its original shape, the membrane of Example 1 exhibited less than 2% of heat shrink at the edge of the membrane, and the membrane of Example 2 had a heat shrinkage. There was little.
  • Comparative Example 1 polyethylene membrane
  • the separator of Comparative Example 1 shows a heat shrinkage of 95%
  • the separator of Comparative Example 2 shows a heat shrinkage of 10%
  • the separator of Example 1 is 2%
  • Example 2 The separator of 0%, it can be seen that the separator according to the present embodiment has excellent heat resistance.
  • the separators of Comparative Example 5, Comparative Example 6, and Comparative Example 7 exhibited heat shrinkages of about 60%, 3%, and 40%, respectively.
  • the thickness of the separator of Comparative Example 2 after the coating is thicker than 35%, but the separator according to the present embodiment did not have a thickness change of the ⁇ m level. Based on these results, it can be predicted that the separator according to the present embodiment does not reduce the battery capacity when used in the battery.
  • manufacturing a separator coated with Al 2 O 3 having a thickness of 80 nm by a low temperature atomic layer deposition method at 70 ° C. is an ideal manufacturing method for coating the inorganic oxide layer most closely using an inorganic precursor at low temperature.
  • the secondary battery coin cells prepared in Examples 3 and 4 (that is, the coin cells using the separators prepared in Examples 1 and 2) have a discharge current of 0.2 C to 3.0 C overall. It can be seen that the behavior is improved compared to the secondary battery coin cell prepared in Comparative Example 3 (that is, the coin cell using the separator of Comparative Example 1, which reproduces the separator used conventionally).
  • the separator of Comparative Example 2 used in the secondary battery of Comparative Example 4 the thickness is increased to 23 ⁇ m considering the excellent battery performance when the separator according to the present application is used in the battery It can be seen that.
  • the separation membrane is relatively dried at 80 ° C.
  • the atomic layer deposition process performed at 70 ° C. rather than 80 ° C. most ideally causes chemical decomposition reaction of the inorganic precursor, thereby densely coating the inorganic oxide layer. It can be seen that.
  • Example 1 Example 2 Comparative Example 5 Comparative Example 6 Comparative Example 7 Heat shrinkage 2% 0% 60% 3% 40% thickness 17 ⁇ m 17 ⁇ m 17 ⁇ m 17 ⁇ m 17 ⁇ m 17 ⁇ m
  • 4 and 5 are discharges according to various discharge current densities indicating that the atomic layer deposition performed at 70 ° C. is most ideally a condition that causes the chemical decomposition reaction of the inorganic precursors to densely coat the inorganic oxide layer. It is a graph showing the result of the capacity behavior. In the case of polyethylene coated by atomic layer deposition at 70 ° C., the inorganic oxide layer was densely coated as compared to the sample at other temperature processes to reduce internal series resistance generated during battery operation.
  • Affinity with the liquid electrolyte is increased due to the decrease of the characteristics, and at the same time, the interaction with the liquid electrolyte and the lithium salt is maximized to increase the number of charge carriers, thereby increasing the capacity and power density of the battery according to the current density. It can be seen that it has a positive effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

본원은 고내열성 분리막, 상기 고내열성 분리막의 제조 방법, 및 상기 고내열성 분리막을 포함하는 전지에 관한 것이다.

Description

고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지
본원은 고내열성 분리막, 상기 고내열성 분리막의 제조 방법, 및 상기 고내열성 분리막을 포함하는 전지에 관한 것이다.
최근에, 각종 휴대전지, 전기 자동차, 코제너레이션(cogeneration) 장치 등 전지의 수요가 확대되고 있다. 각종 전지 중에서 실용적인 전지는 화학전지가 대부분을 차지하고 있고, 그러한 화학전지로서는 1 차 전지, 2 차 전지 및 연료전지가 포함된다.
일반적으로 충방전이 가능한 이차전지 (rechargeable-secondary cell)는 휴대전화, 노트북 컴퓨터, 디지털 카메라, 캠코더 등 모바일 전자 기기의 개발로 활발한 연구가 진행 중에 있다. 이러한 이차전지로는 니켈-카드뮴 전지, 니켈-메탈 하이드라이드 전지, 니켈-수소 전지, 리튬 이차전지 등을 들 수 있다. 이중에서도 리튬 이차전지는 전자기기의 전원으로 많이 사용되고 있는 니켈-카드뮴 전지 또는 니켈-메탈 하이드라이드 전지에 비하여 작동 전압 특성과 단위 중량당 에너지 밀도 특성이 뛰어나서 가장 각광받고 있으며 장래성도 매우 높은 것으로 평가받고 있다.
리튬 이차전지에는, 양극 집전체의 양면에 양극 활물질이 도포되어 형성된 양극, 음극 집전체의 양면에 음극 활물질이 도포되어 형성된 음극, 및 상기 양극과 음극 사이에 개재되어 이들을 전기적으로 절연시키는 분리막으로 이루어진 전극 구조체에, 리튬염 및 유기용매를 포함하는 액체 유기 전해질을 주입하여 제조되는 리튬 이온전지 및 고분자 전해질을 사용하여 제조되는 리튬 폴리머 전지가 있다. 리튬 이온전지는 제조가 용이하고 상온에서의 이온전도도의 향상을 가져왔지만, 전극 부식 및 발화 폭발 등 안정성의 문제가 있고, 리튬 폴리머 전지는 리튬 이온전지의 단점을 개선했지만, 고분자 전해질의 이온전도도가 상대적으로 낮기 때문에 전지 내부의 저항이 높아 대전류 방전에 불리하고 저온에서 방전 특성이 급감하는 문제가 있다.
한편, 분리막은 전지에서 양극과 음극의 물리적인 접촉을 차단하면서도 전해액 성분이 원활하게 이동할 수 있는 통로를 제공하는 역할을 수행하는 핵심 소자이다. 특히, 고용량 고전압 전지인 리튬 이온전지에 적용되는 분리막은 액체 유기 전해질의 낮은 이온전도도를 보완하기 위해서 두께가 얇으면서도 리튬 이온전지의 안전성 확보를 위해 우수한 기계적 물성을 가져야 한다 [Sheng Shui Zhang, "A review on the separators of liquid electrolyte Li-ion batteries", Journal of Power Sources, Volume 164, P 351-364, 2007]. 리튬 전지용 분리막으로는 일반적으로 폴리올레핀으로 만들어진 미세다공막이 이용된다. 그러나, 폴리올레핀계 분리막은 그 녹는점 이하에서, 셀 성능과 미세 다공 구조를 상하지 않는 선에서 열압착시 양극판과의 접착력이 약하기 때문에, 내부 저항이 높아지고 사이클 수명 및 대전류 방전특성이 악화되는 문제점이 발생한다.
대한민국 공개특허 제2006-0072065호, 제2007-0000231호 등에는 다공성 기재의 일면 또는 양면에 무기물 필러 입자와 고분자 바인더의 혼합물로 된 다공성 코팅층을 형성한 분리막이 제안되어 있다. 다공성 기재에 형성된 미세다공성 코팅층의 무기물 필러 입자들은 물리적 형태를 유지할 수 있는 일종의 패시베이션 (passivation) 역할을 함으로써 전기화학소자의 오작동에 의한 과열 시 다공성 기재가 열 수축되는 것을 억제하게 됨과 동시에, 고분자 바인더와 함께 무기물 필러 입자들 사이에는 빈 공간이 존재하여 미세 기공을 형성한다.
이와 같이, 다공성 기재에 형성된 미세다공성 코팅층은 전기화학소자의 안전성 향상에 기여한다. 종래 기술에 따라 미세다공성 코팅층 형성에 사용되는 무기 필러 입자로는 BaTiO3, Pb(Zr,Ti)O3(PZT), ZrO3, SiO2, Al2O3, TiO2, Li3PO4, LixTiy(PO4)3 (0<x<2, 0<y<3) 등의 입자를 사용하는데, 고분자 바인더와 함께 혼합되어 고온에서 소량의 고분자 바인더가 녹거나 변형을 일으킬 수 있는 내재적 문제뿐만 아니라 마이크로미터 수준의 코팅층의 두께가 수반되어 고용량화를 위한 고밀도 충전이 가능한 얇은 분리막의 특성을 충족하지 못하는 단점이 있다. 또한, 졸-겔법을 이용하여 75 ㎛ 내지 150 ㎛의 기공 크기를 가지고 있는 부직포 상에 입자를 5 ㎛ 정도의 두께로 코팅한 분리막에 관한 특허가 출원된 바 있으나 [데구사, 대한민국 공개특허 제2005-7003099호], 무기 나노 입자를 활용하여 기공제어가 어려우며 종래 고분자 분리막에 비해 인장 강도가 낮은 문제가 있다.
이에, 본원은 고내열성 분리막의 제조 방법, 이 제조 방법에 따라 제조되는 고내열성 분리막, 및 상기 고내열성 분리막을 포함하는 전지를 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 다공성 고분자 기재의 표면 및 기공 내부 표면에 저온 원자층 증착법 (Low Temperature Atomic Layer Deposition)을 통하여 금속산화물 박막을 형성하는 것을 포함하는, 고내열성 분리막의 제조 방법을 제공한다.
본원의 제 2 측면은, 다공성 고분자 기재의 표면 및 기공 내부 표면에 형성된 금속산화물 박막을 포함하며, 상기 본원의 제 1 측면에 따라 제조되는 고내열성 분리막을 제공한다.
본원의 제 3 측면은, 상기 본원의 제 2 측면에 따른 고내열성 분리막을 포함하는, 전지를 제공한다.
본원에 의하면, 고온에서의 열적 특성을 향상시킨 분리막을 제조할 수 있고, 아울러 내부 단락을 방지하는 고안정성의 전지 조립이 가능하다.
특히, 본원의 일 구현예에 따른 분리막의 제조방법은 고용량화를 위한 고밀도 충전이 가능한 얇은 두께의 무기물 분리막을 독립적으로 제조 가능하며, 종래 상용화된 분리막을 개량하여 적절한 기계적 물성과 이온의 이동성에 용이한 연속된 다공성 구조를 가진 우수한 이온전도도의 특성을 확보할 수 있다.
도 1은, 본원의 일 구현예에 따라 저온 원자층 증착법에 의해 금속산화물 박막이 형성된 분리막의 모식도이다.
도 2는, 본원의 일 실시예에 따라 제조된 분리막의 열수축 거동을 나타내는 사진이다.
도 3은, 본원의 일 실시예에 따라 상이한 온도별로 제조된 분리막을 나타내는 사진이다.
도 4는, 일 실시예에 따라 상이한 온도로 제조된 분리막의 C-rate에 따른 충전 용량을 나타내는 그래프이다.
도 5는, 일 실시예에 따라 상이한 온도로 제조된 분리막의 사이클 수에 따른 방전 용량을 나타내는 그래프이다.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.
본원의 제 1 측면은, 다공성 고분자 기재의 표면 및 기공 내부 표면에 저온 원자층 증착법 (Low Temperature Atomic Layer Deposition)을 통하여 금속산화물 박막을 형성하는 것을 포함하는, 고내열성 분리막의 제조 방법을 제공한다.
종래 대부분의 원자층 증착법이나 그 상위 개념인 화학기상증착법을 이용하는 경우에서는 한쪽이 밀폐된 기재를 사용한다. 그러나, 본원에서는 아예 처음부터 화합물의 분해 과정이 분리막 양면을 관통하면서 진행될 수 있고, 이를 통해 수 나노미터 두께의 박막층을 컨트롤할 수 있을 뿐만 아니라 금속산화물 층을 좀더 치밀하게 코팅시켜 종래의 30 nm 내지 400 nm 수준의 두께 이하에서도 우수한 기계적 물성과 이온의 이동성 효과를 나타낼 수 있다.
본원의 일 구현예에 있어서, 상기 금속산화물 박막 형성 전에 산소 플라즈마를 이용하여 상기 다공성 고분자 기재의 표면 및 기공 내부 표면에 친수성 작용기를 도입하는 것을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 친수성 작용기가 -OH 또는 -COOH를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 다공성 고분자 기재는 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 고분자량 폴리에틸렌, 폴리프로필렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 고분자 기재는 통상적으로 전기화학소자의 분리막의 재료인 연신 공정에 의해 제조되는 고분자의 기재 또는 나노 섬유의 교차에 의해 다공성 그물 구조로 형성되는 부직포 형태의 기재라면 제한 없이 사용될 수 있다. 예를 들어, 상기 다공성 고분자 기재는 전지에 활용 시 양 전극 같이 리튬 이온의 기동성이 용이하도록 높은 기공도 및 균일한 기공 크기 분포를 갖는 연속된 다공성 구조를 갖는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 금속산화물은, Al2O3, SiO2, ZrO2, TiO2, SnO2, CeO2, ZnO, MgO, CaO, SrO, BaO, Na2O, B2O3, Mn2O3, Y2O3, WO3, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
상기 저온 원자층 증착법에 의하여 금속 산화물 박막을 형성하기 위하여 사용되는 전구체는, TMA (Tri-methyl-Aluminum), MPTMA (methyl-Pyrrolidine-Tri-methyl-Aluminum), EPPTEA (ethyl-pyridine-triethyl-aluminum), EPPDMAH (ethyl-pyridine-dimethyl-aluminum hydridge), IPA (C3H7-O)3Al), SiCl4 (silicon tetrachloride), TEMASi (tetrakis-ethyl-methyl-amino-Silcon), TiCl4(titanium tetrachloride), TTIP (titanium-tetrakis-isoproproxide), TEMAT (tretrakis-ethyl-methyl-amino-Titanium), TDMAT (tetrakis-dimethyl-amino-titanium), TDEAT (tetrakis-diethyl-amino-titanium), TEMAH (tetrakis-ethyl-methyl-amino-hafnium), TEMAZ (Tetrakis-ethyl-methyl-amido-zirconium), TDMAH (tetrakis-dimethyl-amino-hafnium), TDMAZ (tetrakis-dimethyl-amino-zirconium), TDEAH (tetrakis-diethyl-amino-hafnium), TDEAZ (tetrakis-diethyl-amino-zirconium), HTB (hafnium tetra-tert-butoxide), ZTB (zirconium tetra-tert-butoxide), HfCl4 (hafnium tetrachloride), Ba(C5H7O2)2, Sr(C5H7O2)2, Ba(C11H19O2)2, Sr(C11H19O2)2, Ba(C5HF6O2)2, Sr(C10H10F7O2)2, Ba(C10H10F7O2)2 Sr(C10H10F7O2)2, Ba(C11H19O2)-CH3(OCH2CH2)4OCH3, Sr(C11H19O2)2-CH3(OCH2HC2)4OCH3, Ti(OC2H5)4, Ti(OC3H7)4, Ti(OC4H9)4, Ti(C11H19O2)2(OC3H7)2, Ti(C11H19O2)2(O(CH2)2OCH3)2, Pb(C5H7O2)2, Pb(C5HF6O2)2, Pb(C5H4F3O2)2, Pb(C11H19O2)2, Pb(C2H5)4, La(C5H7O2)3, La(C5HF6O2)3, La(C5H4F3O2)3, La(C11H19O2)3, Zr(OC4H9)4, Zr(C5HF6O2)4, Zr(C5H4F3O2)4, Zr(C11H19O2)4, Zr(C11H19O2)2(OCH3H7)2, TMSTEMAT [MeSiN=Ta(NEtMe)3], TBITEMAT [Me3CN=Ta(NEtMe)3], TBTDET [Me3CN=Ta(Net2)3], PEMAT [Ta((CH3)(C2H5))5], PDEAT [Ta(N(C2H5)2)5], PDMAT [Ta(N(CH3)2)5], TaF5, 및 이들의 조합들로 이루어진 군으로부터 선택되는 유무기 금속화합물 전구체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 저온 원자층 증착법이 약 25℃ 내지 약 80℃ 미만의 온도 범위에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 저온 원자층 증착법의 온도는, 예를 들어, 약 25℃ 내지 약 80℃ 미만, 약 25℃ 내지 약 75℃, 약 25℃ 내지 약 70℃, 약 25℃ 내지 약 65℃, 약 25℃ 내지 약 60℃, 약 25℃ 내지 약 55℃, 약 25℃ 내지 약 50℃, 약 50℃ 내지 약 80℃ 미만, 약 50℃ 내지 약 75℃, 약 50℃ 내지 약 70℃, 약 60℃ 내지 약 80℃ 미만, 약 60℃ 내지 약 75℃, 또는 약 60℃ 초과 내지 약 70℃일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일구현예에 따른 고내열성 분리막의 제조 방법은 비교적 저온에서 수행되므로, 고온의 공정을 수행하는 경우에서 나타날 수 있는, 다공성 고분자 기재의 기공 붕괴 및 파티클 발생을 방지할 수 있다. 본원의 일 구현예에 있어서, 상기 저온 원자층 증착법의 온도는, 바람직하게는 60℃ 초과 내지 80℃ 미만이고, 더 바람직하게는 60℃ 초과 내지 75℃ 이하, 65℃ 내지 75℃ 이하이고, 더 바람직하게는 60℃ 초과 내지 70℃ 이하이다.
본원의 일 구현예에 있어서, 상기 저온 원자층 증착법이 60℃ 초과 내지 80℃ 미만의 온도 범위에서 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
일반적인 원자증 증착법 또는 화학기상증착법에서는 사용되는 전구체의 성분특성에 따라 수행 온도가 결정되게 되는데, 무수히 많은 대부분의 전구체들은 보통 원자증 증착법 또는 화학기상증착법 이용 시 100℃에서 800℃ 사이의 온도에서 증착 공정이 수행된다.
본원의 일 구현예에 있어서, 상기 금속산화물 박막의 두께가 약 100 nm 이하일 수 있으나, 이에 제한되지 않을 수 있다. 상기 금속산화물 박막의 두께는, 예를 들어, 약 1 nm 내지 약 100 nm, 약 10 nm 내지 약 100 nm, 약 20 nm 내지 약 100 nm, 약 30 nm 내지 약 100 nm, 약 40 nm 내지 약 100 nm, 약 50 nm 내지 약 100 nm, 약 60 nm 내지 약 100 nm, 약 70 nm 내지 약 100 nm, 약 80 nm 내지 약 100 nm, 약 90 nm 내지 약 100 nm, 약 1 nm 내지 약 90 nm, 약 1 nm 내지 약 80 nm, 약 1 nm 내지 약 70 nm, 약 1 nm 내지 약 60 nm, 약 1 nm 내지 약 50 nm, 약 1 nm 내지 약 40 nm, 약 1 nm 내지 약 30 nm, 약 1 nm 내지 약 20 nm, 또는 약 1 nm 내지 약 10 nm 일 수 있으나, 이에 제한되지 않을 수 있다. 여기서, 상기 금속산화물 박막은 100 nm 이하로 그 두께를 제한함으로써 분리막의 열적 특성을 향상시키면서도, 상기 다공성 고분자 기재의 기공을 막지 않아 전기화학소자의 성능을 저하시키는 것을 방지할 수 있다.
본원의 일 구현예에 있어서, 상기 고내열성 분리막이 다공성 구조를 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원에 따른 상기 금속산화물 박막을 포함하는 고내열성 분리막은 다공성 구조를 가지므로, 전해액이 원활하게 이동할 수 있는 이동 통로로서의 역할을 할 수 있다.
본원의 일 구현예에 따른 고내열성 분리막의 제조 방법은, 우선 다공성 고분자 기재의 표면 및 기공 내부 표면에 산소 플라즈마를 처리하여 히드록시기 또는 카르복시기 층을 형성시킬 수 있다. 이어서, 상기 히드록시기 또는 카르복시기층이 형성된 상기 다공성 고분자 기재 표면 및 기공 내부 표면에 저온 원자층 증착법을 이용하여 약 100 nm 이하 두께의 금속산화물 박막을 형성시킬 수 있다. 이러한 방법으로 제조된 분리막은 고내열성 특성을 갖는다.
본원의 일 구현예에 있어서, 저온 원자층 증착법을 사용하여 다공성 고분자 기재의 표면 및 기공 내부 표면에 금속산화물 박막을 나노미터 수준의 두께로 코팅함으로써, 종래의 분리막의 우수한 기계적 물성 및 높은 이온 이동성을 보유하면서 열적 특성을 향상시키고 전지 내 작용하는 전기적 저항을 줄이면서 고밀도 충전이 가능한 얇은 두께의 분리막을 제조할 수 있다. 아울러, 이를 구비한 전지는 소자 내 한정된 전극 활물질의 부피를 증가시켜 고용량화가 가능하다.
본원의 일구현예에 있어서, 원자층 증착법은 상기 원자층 증착법 수행 온도와 관련하여 80℃ 이상의 고온의 경우, 공정 중에 분리막 자체에 손상이 가게 되고 분리막의 수축이 일어나는 반면, 저온의 경우, 분리막의 수축 현상이 나타나지 않는다. 일반적으로 100℃ 이상에서 원자층 증착법을 사용하는 종래의 공정과 달리, 저온, 즉, 75℃ 이하 또는 70℃ 이하의 저온 원자층 증착법을 사용하여 무기물 전구체의 화학분해 반응을 일으켜 무기산화물층을 기재 상에 조밀하게 잘 코팅할 수 있으며, 이러한 저온 원자층 증착법에 의하여 코팅 후 분리막의 두께 변화가 나타나지 않는다. 한편, 60℃ 이하의 원자층 증착 공정에서는 무기물 전구체의 화학분해 반응이 효과적으로 진행되지 않아서 미반응물이 다른 온도의 공정에 비해 많이 남아 있고, 이로 인하여 무기산화물의 코팅층이 조밀하게 코팅되지 않는다.
본원의 제 2 측면은, 다공성 고분자 기재의 표면 및 기공 내부 표면에 형성된 금속산화물 박막을 포함하며, 상기 본원의 제 1 측면에 따라 제조되는 고내열성 분리막을 제공한다.
도 1은, 본원의 일 구현예에 따라 저온 원자층 증착법에 의해 금속산화물 박막이 형성된 분리막의 모식도이다. 상기 본원의 제 1 측면에 따른 제조 방법에 의하여 고내열성 분리막은 다공성 고분자 기재 표면 및 기공 내부에 저온 원자층 증착법 (Low Temperature Atomic Layer Deposition)을 통하여 형성된 금속산화물 박막을 포함하는 것일 수 있다. 본원에 따른 고내열성 분리막은 연속된 다공성 구조를 갖는다.
본원의 일 구현예에 있어서, 상기 다공성 고분자 기재는 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 고분자량 폴리에틸렌, 폴리프로필렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 고분자 기재는 통상적으로 전기화학소자의 분리막의 재료인 연신 공정에 의해 제조되는 고분자의 기재 또는 나노 섬유의 교차에 의해 다공성 그물 구조로 형성되는 부직포 형태의 기재라면 제한 없이 사용될 수 있다. 예를 들어, 상기 다공성 고분자 기재는 전지에 활용 시 양 전극 같이 리튬 이온의 기동성이 용이하도록 높은 기공도 및 균일한 기공 크기 분포를 갖는 연속된 다공성 구조를 갖는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 금속산화물은, Al2O3, SiO2, ZrO2, TiO2, SnO2, CeO2, ZnO, MgO, CaO, SrO, BaO, Na2O, B2O3, Mn2O3, Y2O3, WO3, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 금속산화물 박막의 두께가 약 100 nm 이하일 수 있으나, 이에 제한되지 않을 수 있다. 상기 금속산화물 박막의 두께는, 예를 들어, 약 1 nm 내지 약 100 nm, 약 10 nm 내지 약 100 nm, 약 20 nm 내지 약 100 nm, 약 30 nm 내지 약 100 nm, 약 40 nm 내지 약 100 nm, 약 50 nm 내지 약 100 nm, 약 60 nm 내지 약 100 nm, 약 70 nm 내지 약 100 nm, 약 80 nm 내지 약 100 nm, 약 90 nm 내지 약 100 nm, 약 1 nm 내지 약 90 nm, 약 1 nm 내지 약 80 nm, 약 1 nm 내지 약 70 nm, 약 1 nm 내지 약 60 nm, 약 1 nm 내지 약 50 nm, 약 1 nm 내지 약 40 nm, 약 1 nm 내지 약 30 nm, 약 1 nm 내지 약 20 nm, 또는 약 1 nm 내지 약 10 nm 일 수 있으나, 이에 제한되지 않을 수 있다. 여기서, 상기 금속산화물 박막은 100 nm 이하로 그 두께를 제한함으로써 분리막의 열적 특성을 향상시키면서도, 상기 다공성 고분자 기재의 기공을 막지 않아 전기화학소자의 성능을 저하시키는 것을 방지할 수 있다.
본원의 일 구현예에 있어서, 상기 고내열성 분리막이 다공성 구조를 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원에 따른 상기 금속산화물 박막을 포함하는 고내열성 분리막은 다공성 구조를 가지므로, 전해액이 원활하게 이동할 수 있는 이동 통로로서의 역할을 할 수 있다.
본원의 제 3 측면은, 상기 본원의 제 2 측면에 따른 고내열성 분리막을 포함하는, 전지를 제공한다.
본원의 일 구현예에 있어서, 상기 전지는 이차 전지일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 이차전지는, 양극, 음극, 분리막 및 전해질을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 분리막은 상기 본원의 제 1 측면에 따른 제조 방법에 의하여 제조된 고내열성 분리막으로서, 다공성 고분자 기재 표면 및 기공 내부에 저온 원자층 증착법 (Low Temperature Atomic Layer Deposition)을 통하여 형성된 금속산화물 박막을 포함하는 것일 수 있다. 본원의 일 구현예에 따른 상기 고내열성 분리막은 연속된 다공성 구조를 가질 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 이차 전지는 리튬 이차전지, 리튬-금속 이차전지, 리튬이온전지, 리튬 폴리머 전지, 또는 리튬 이온-폴리머 전지 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 이차 전지는 양극 집전체의 양면에 양극 활물질이 도포되어 형성된 양극, 음극 집전체의 양면에 음극 활물질이 도포되어 형성된 음극, 및 상기 양극과 음극 사이에 개재되어 이들을 전기적으로 절연시키는 분리막 및 전해질을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 전지는 연료 전지인 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 분리막은 상기 본원의 제 1 측면에 따른 제조 방법에 의하여 제조된 고내열성 분리막으로서, 다공성 고분자 기재 표면 및 기공 내부에 저온 원자층 증착법 (Low Temperature Atomic Layer Deposition)을 통하여 형성된 금속산화물 박막을 포함하는 것일 수 있다. 본원의 일 구현예에 따른 상기 고내열성 분리막은 연속된 다공성 구조를 가질 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 연료 전지는 분리막, 산 또는 염기 전해질과 같은 전해질, 양극 전극, 및 음극 전극을 포함하며, 상기 양극 및 음극 사이의 전기 화학적 반응을 통해 전기 에너지를 발생하는 장치일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 연료 전지는 연료와 산화제를 전기화학적으로 반응시켜 전기에너지를 발생시키는 장치이다. 상기 연료 전지의 종류는 특별히 제한되지 않으며, 예를 들어, 직접에탄올 연료 전지(Direct Ethanol Fuel Cell, DEFC), 직접메탄올 연료전지(Direct Methanol Fuel Cell, DMFC), 고분자전해질 연료 전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC), 알칼리형 연료 전지(Alkaline Fuel Cell, AFC), 인산형 연료 전지(Phosphoric Acid Fuel Cell, PAFC), 용융탄산염 연료 전지(Molten Carbonate Fuel Cell, MCFC) 또는 고체산화물 연료 전지 (Solid Oxide Fuel Cell, SOFC) 등이 있다.
이러한 연료 전지는 청정에너지인 수소를 연료로 사용하여 전기를 발생시키는 고분자 전해질 연료 전지는 반응 과정에서 어떠한 공해 물질도 배출하지 않기 때문에 차세대 자동차와 같은 수송용이나 가정용 전원 공급원으로 많은 관심을 끌고 있다.
일반적으로, 연료 전지의 전극반응은 연료전극인 음극(anode)에서의 수소 산화반응 및 산소전극인 양극(cathode)에서의 산소 환원반응으로 구성된다. 이들 산화 및 환원반응은 매우 느리게 진행되므로 실용적인 목적으로 사용할 경우 반응속도를 증가시키는 촉매의 사용이 필수적이다. 연료 전지의 음극 및 양극은 일반적으로 백금 촉매를 사용하고 있으나, 이와 같이 백금 촉매를 이용하는 경우 비싼 가격이 문제이다. 특히, 양극에서 일어나는 산소 환원 반응의 경우는 음극에서 일어나는 수소 산화 반응보다 반응 속도가 느리기 때문에 음극보다 많은 백금이 사용되고 있다.
본원의 제 2 측면 및 제 3 측면은 각각 본원의 제 1 측면에 따른 따라 제조되는 고내열성 분리막, 및 상기 고내열성 분리막을 포함하는 전지에 관한 것으로서, 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면 및 제 3 측면 각각에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.
[실시예]
[실시예 1: Al2O3가 20 nm 두께로서 코팅된 분리막의 제조]
알킬계열 화합물 트리메틸알루미늄 [TMA; Al(CH3)3, 알드리치]을 Al2O3 저온 원자층 증착법의 전구체로서 사용하였다. 이때 순수한 폴리에틸렌 분리막 (기공도 약 40% 이상, 두께 17 ㎛ ~ 18 ㎛, Tonen)을 가스 투과가 용이한 지그 (jig) 또는 기판에 고정시켜 밀폐된 (즉, 진공이 잡힌) 용기 (chamber)에 고정시켰다. 그런 다음 소수성인 상기 분리막의 표면을 산소플라즈마를 사용하여 공정에 용이한 친수성 표면으로 개질시켰다 (압력 약 200 mTorr 내지 약 400 mTorr, 파워 약 115 V 내지 약 230 V, O2 가스 속도 약 1.4 m3/hr, 수 분 동안 처리). 이후 70℃의 환경에서 상기 TMA의 분해 과정을 거쳐 폴리에틸렌 분리막에 20 nm 두께의 Al2O3 박막을 증착시켰다 (1.22 Å/cycle). 그 결과, Al2O3가 20 nm 두께로서 코팅된 분리막이 수득되었다.
[실시예 2: Al2O3가 80 nm 두께로서 코팅된 분리막의 제조]
상기 실시예 1에서와 동일한 방법에 의하여 70℃에서 원자층 증착법에 의하여 80 nm 두께의 Al2O3가 코팅된 분리막을 제조하였다.
[비교예 1: 순수한 폴리에틸렌 분리막]
상기 실시예 1 및 실시예 2의 분리막의 특성과 비교하기 위하여 순수한 폴리에틸렌 막을 실시예 1 및 실시예 2와 동일한 크기로 준비하였다.
[비교예 2: Al2O3가 400 nm 두께로서 코팅된 PVdF-HFP 분리막의 제조]
PVdF-HFP (폴리비닐리덴플로라이드-헥사플로로에틸렌 공중합체, 10 중량%, Kynar)를 NMP (N-메틸-2 피롤리돈, 알드리치)에 첨가하여 상온에서 약 1 시간 이상 용해시켜 고분자 슬러리를 제조하였다. 상기 제조된 고분자 슬러리를 유리 기판에 닥터블레이드 (doctor blade)를 이용하여 캐스팅 (casting)한 후 80℃ 오븐에서 건조시키고, 이후 상분리법을 이용하여 PVdF-HFP 분리막을 제조하였다. 400 nm 두께의 Al2O3 코팅은 상기 실시예 1과 동일한 방법으로 수행되었고, 그 크기 또한 동일하게 준비하였다.
[실시예 3: 이차전지의 제조]
양극 제조
양극 활물질 입자로서 리튬 코발트 복합산화물 92 중량%, 도전재로서 카본 블랙 (carbon black) 4 중량%, 및 결합제로서 폴리비닐리덴플로라이드(PVdF) 4 중량%를, 용제인 N-메틸-2 피롤리돈 (NMP)에 첨가하여 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20 ㎛ 인 양극 집전체의 알루미늄 (Al) 박막에 도포하고 건조하여 양극을 제조한 후, 롤 프레스 (roll press)를 실시하였다.
음극 제조
탄소 분말 음극 활물질 입자, 폴리비닐리덴플로라이드 (PVdF) 결합제, 카본 블랙 (carbon black) 도전제를 각각 96 중량%, 3 중량%, 1 중량%로 하여 용제인 N-메틸-2 피롤리돈 (NMP)에 첨가하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10 ㎛ 인 음극 집전체인 구리 (Cu) 박막에 도포, 건조하여 음극을 제조한 후, 롤 프레스 (roll press)를 실시하였다.
전지의 제조
전술한 방법으로 제조한 양극, 음극 및 상기 실시예 1에서 제조된 분리막을 스태킹 방식을 이용하여 코인셀 타입의 셀을 조립하였고, 조립된 전지에 전해액 [에틸렌카보네이트 (EC)/에틸메틸카보네이트 (EMC) = 1/2 (부피비), 리튬헥사플로로포스페이트 (LiPF6) 1 몰]을 주입하여, 리튬 이차전지를 제조하였다.
[실시예 4: 이차전지의 제조]
상기 실시예 3의 양극 제조 및 음극 제조 방법과 동일하게 양극 및 음극을 제조한 후, 상기 전지의 제조에 있어서 실시예 1의 분리막 대신에 상기 실시예 2에서 제조된 분리막을 사용하여 동일한 방법으로 리튬 이차전지를 제조하였다.
[비교예 3: 이차전지의 제조]
상기 실시예 3의 양극 제조 및 음극 제조 방법과 동일하게 양극 및 음극을 제조한 후, 상기 전지의 제조에 있어서 실시예 1의 분리막 대신에 상기 비교예 1에서 제조된 분리막을 사용하여 동일한 방법으로 리튬 이차전지를 제조하였다.
[비교예 4: 이차전지의 제조]
상기 실시예 3의 양극 제조 및 음극 제조 방법과 동일하게 양극 및 음극을 제조한 후, 상기 전지의 제조에 있어서 실시예 1의 분리막 대신에 상기 비교예 2에서 제조된 분리막을 사용하여 동일한 방법으로 리튬 이차전지를 제조하였다.
[비교예 5: 60℃에서 Al2O3-코팅된 분리막의 제조]
상기 실시예 1에서와 동일한 방법에 의하여 수행하되, 60℃에서 원자층 증착법에 의하여 80 nm 두께의 Al2O3가 코팅된 분리막을 제조하였다.
[비교예 6: 80℃에서 Al2O3-코팅된 분리막의 제조]
상기 실시예 1에서와 동일한 방법에 의하여 수행하되, 80℃에서 원자층 증착법에 의하여 80 nm 두께의 Al2O3가 코팅된 분리막을 제조하였다.
[비교예 7: 100℃에서 Al2O3-코팅된 분리막의 제조]
상기 실시예 1에서와 동일한 방법에 의하여 수행하되, 100℃ 고온 원자층 증착법에 의하여 80 nm 두께의 Al2O3 코팅된 분리막을 제조하였다.
[실험예 1: 열수축 거동 실험]
실시예 1 및 실시예 2, 그리고 비교예 1, 비교예 2, 및 비교예 5 내지 7의 분리막을 160℃에서 1 시간 동안 보관한 후의 열수축 거동을 확인하였다. 그 결과를 도 2 및 하기 표 1에 나타내었다.
[실험예 2: 분리막의 두께 측정]
실시예 1 및 실시예 2, 그리고 비교예 1, 비교예 2, 및 비교예 5 내지 7의 분리막의 두께를 측정하여, 그 결과를 하기 표 1에 나타내었다.
표 1
실시예 1 실시예 2 비교예 1 비교예 2 비교예 5 비교예 6 비교예 7
열수축율 2% 0% 95% 10% 60% 3% 40%
두께 17 ㎛ 17 ㎛ 17 ㎛ 23 ㎛ 17 ㎛ 17 ㎛ 17 ㎛
상기 실험 결과와 관련하여, 도 2는, 본 실시예에 따라 제조된 분리막의 열수축 거동을 나타내는 사진이다. 도 2에 나타난 바와 같이, 실시예 1 및 실시예 2, 그리고 비교예 1 분리막은 160℃에 1 시간 보관 시 열수축 거동에 있어서, 큰 차이를 보임을 알 수 있었다. 비교예 1의 분리막 (폴리에틸렌 분리막)은 원래 형태를 알아볼 수 없을 정도로 95% 이상의 열수축을 보인 반면, 실시예 1의 분리막은 분리막 가장자리에서 열수축이 2% 미만 나타났고, 실시예 2의 분리막은 열수축이 거의 없었다.
아울러, 표 1에 나타난 바와 같이, 비교예 1의 분리막은 95%의 열수축율을 보이고, 비교예 2의 분리막은 10%의 열수축율을 나타내는 반면, 실시예 1의 분리막은 2%, 실시예 2의 분리막은 0%로, 본 실시예에 따른 분리막은 우수한 내열 특성을 가짐을 알 수 있다. 한편, 비교예 5, 비교예 6, 및 비교예 7의 분리막은 각각 60%, 3%, 및 40% 정도의 열수축율을 보였다. 두께는 비교예 2의 분리막이 코팅 후, 35% 이상 두꺼워지지만, 본 실시예에 따른 분리막은 ㎛ 수준의 두께 변화가 없었다. 이러한 결과에 따라 본 실시예에 따른 분리막이 전지에 활용 시 전지 용량을 감소시키지 않는다는 것을 예측할 수 있다. 또한 70℃ 저온 원자층 증착법에 의하여 80 nm 두께의 Al2O3가 코팅된 분리막을 제조하는 것이 저온에서 무기전구체를 이용하여 무기산화물층을 가장 촘촘하게 코팅할 수 있는 이상적인 제조 방법임을 예측할 수 있다.
[실험예 3: 분리막을 이용한 코인셀의 용량거동 실험]
실시예 3, 실시예 4, 비교예 3, 비교예 4의 전지, 및 비교예 5 내지 7의 분리막을 이용하여 제조된 전지의 용량거동을 확인하기 위하여, 0.2 C 내지 3.0 C의 방전전류에서 방전용량 수치를 측정하였고, 그 결과를 하기 표 2에 나타내었다. 이때, 하기 표 2에서 실시예들 및 비교예들의 방전용량 수치의 단위는 mAh/g로서, 양극 활물질 질량 대비 용량을 나타낸다.
표 2
방전전류 실시예 3 실시예 4 비교예 3 비교예 4 비교예 5 비교예 6 비교예 7
0.2 C 146 147 143 141 143 145 140
0.5 C 143 145 141 140 141 142 138
1 C 140 142 140 138 140 139 132
1.5 C 120 123 120 85 120 120 110
2 C 109 113 103 40 107 111 98
3 C 70 72 53 10 64 67 52
상기 표 2에 나타난 바와 같이, 실시예 3 및 실시예 4에서 제조된 이차전지 코인셀 (즉, 실시예 1 및 실시예 2에서 제조된 분리막을 이용한 코인셀)은 방전전류 0.2 C 내지 3.0 C 전반에 걸쳐 비교예 3에서 제조된 이차전지 코인셀 (즉, 종래 이용되고 있는 분리막을 재현한 비교예 1,의 분리막을 이용한 코인셀)에 비교하여 향상된 거동을 나타냄을 알 수 있었다. 이러한 결과에 더불어 상기 표 1에 나타난 바와 같이, 비교예 4의 이차전지에 이용된 비교예 2의 분리막은 그 두께가 23 ㎛로 증가한 것을 감안하면 본원에 따른 분리막이 전지에 활용 시 더욱 우수한 전지 성능을 나타냄을 알 수 있다. 또한, 비교예 5, 비교예 6, 및 비교예 7의 분리막을 이용하여 제조된 전지들을 실시예 3 및 실시예 4의 전지의 방전용량 거동과 비교해 볼 때, 70℃ 저온 원자층 증착법에 의하여 80 nm 두께의 Al2O3가 코팅된 분리막을 제조하는 것이 저온에서 무기전구체를 이용하여 무기산화물층을 가장 촘촘하게 코팅할 수 있어 무기산화물층 또는 무기물 입자의 코팅 효과를 가장 이상적으로 구현해 내는 제조 방법임을 알 수 있다.
[실험예 4: 온도에 따른 분리막의 열수축 특성 비교]
실시예 1, 실시예 2, 및 비교예 5 내지 비교예 7에서 제조된 분리막의 온도에 따른 분리막의 열수축 특성을 비교하기 위하여, 각각의 데미지 정도를 관찰하였다. 하기 표 3 및 도 3에 나타낸 바와 같이, 100℃의 고온 ALD에서는 공정중에 분리막 자체에 종래의 기공이 막히는 등의 데미지가 수반 되면서 무기물 전구체의 화학분해 반응이 정상적으로 이루어졌음에도 불구하고, 무기산화물 코팅층이 고르게 코팅되지 못하는 결함이 발생하였다. 한편, 60℃에서의 원자층 증착 공정에서는 무기물 전구체의 화학분해 반응이 효과적으로 진행되지 않아서 미반응물이 다른 온도의 공정에 비해 많이 남아 있고, 이로 인하여 무기산화물의 코팅층이 조밀하게 코팅되지 않았다. 한편, 80℃의 경우 상대적으로 분리막이 말려지는 것으로 보아, 80℃보다 70℃에서 진행되는 원자층 증착 공정의 경우가 가장 이상적으로 무기물 전구체의 화학분해 반응을 일으켜 무기산화물층을 조밀하게 코팅되는 조건임을 알 수 있다.
표 3
실시예 1 실시예 2 비교예 5 비교예 6 비교예 7
열수축율 2% 0% 60% 3% 40%
두께 17 ㎛ 17 ㎛ 17 ㎛ 17 ㎛ 17 ㎛
도 4 및 도 5는, 70℃에서 수행된 원자층 증착의 경우가 가장 이상적으로 무기물 전구체의 화학분해 반응을 일으켜 무기산화물층을 조밀하게 잘 코팅되게끔 하는 조건임을 나타내는 다양한 방전 전류밀도에 따른 방전 용량 거동의 결과를 나타내는 그래프이다. 70℃ 공정의 원자층 증착에 의하여 코팅된 폴리에틸렌의 경우, 다른 온도 공정의 샘플에 비해 무기산화물층이 조밀하게 잘 코팅되어 전지 구동 중에 발생되는 내부의 직렬 저항을 감소시켜 주었으며, 폴리에틸렌의 소수성의 표면 특성 감소에 따른 액체 전해질과의 친화성이 증가하고, 동시에 액체 전해질 및 리튬염과의 상호작용을 극대화시켜 전하 캐리어 수 증가 등의 효과로 전류밀도에 따른 전지의 용량 및 전력 밀도(power density)에 긍정적인 영향을 주는 것을 알 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (18)

  1. 다공성 고분자 기재의 표면 및 기공 내부 표면에 저온 원자층 증착법 (Low Temperature Atomic Layer Deposition)을 통하여 금속산화물 박막을 형성하는 것
    을 포함하는, 고내열성 분리막의 제조 방법.
  2. 제 1 항에 있어서,
    상기 금속산화물 박막 형성 전에 산소 플라즈마를 이용하여 상기 다공성 고분자 기재의 표면 및 기공 내부 표면에 친수성 작용기를 도입하는 것을 추가 포함하는, 고내열성 분리막의 제조 방법.
  3. 제 2 항에 있어서,
    상기 친수성 작용기가 -OH 또는 -COOH를 포함하는 것인, 고내열성 분리막의 제조 방법.
  4. 제 1 항에 있어서,
    상기 다공성 고분자 기재는 폴리에틸렌, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 고분자량 폴리에틸렌, 폴리프로필렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 고내열성 분리막의 제조 방법.
  5. 제 1 항에 있어서,
    상기 금속산화물은, Al2O3, SiO2, ZrO2, TiO2, SnO2, CeO2, ZnO, MgO, CaO, SrO, BaO, Na2O, B2O3, Mn2O3, Y2O3, WO3, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 고내열성 분리막의 제조 방법.
  6. 제 1 항에 있어서,
    상기 저온 원자층 증착법에 의하여 박막을 형성하기 위하여 사용되는 전구체는, TMA (Tri-methyl-Aluminum), MPTMA (methyl-Pyrrolidine-Tri-methyl-Aluminum), EPPTEA (ethyl-pyridine-triethyl-aluminum), EPPDMAH (ethyl-pyridine-dimethyl-aluminum hydridge), IPA (C3H7-O)3Al), SiCl4 (silicon tetrachloride), TEMASi (tetrakis-ethyl-methyl-amino-Silcon), TiCl4(titanium tetrachloride), TTIP (titanium-tetrakis-isoproproxide), TEMAT (tretrakis-ethyl-methyl-amino-Titanium), TDMAT (tetrakis-dimethyl-amino-titanium), TDEAT (tetrakis-diethyl-amino-titanium), TEMAH (tetrakis-ethyl-methyl-amino-hafnium), TEMAZ (Tetrakis-ethyl-methyl-amido-zirconium), TDMAH (tetrakis-dimethyl-amino-hafnium), TDMAZ (tetrakis-dimethyl-amino-zirconium), TDEAH (tetrakis-diethyl-amino-hafnium), TDEAZ (tetrakis-diethyl-amino-zirconium), HTB (hafnium tetra-tert-butoxide), ZTB (zirconium tetra-tert-butoxide), HfCl4 (hafnium tetrachloride), Ba(C5H7O2)2, Sr(C5H7O2)2, Ba(C11H19O2)2, Sr(C11H19O2)2, Ba(C5HF6O2)2, Sr(C10H10F7O2)2, Ba(C10H10F7O2)2 Sr(C10H10F7O2)2, Ba(C11H19O2)-CH3(OCH2CH2)4OCH3, Sr(C11H19O2)2-CH3(OCH2HC2)4OCH3, Ti(OC2H5)4, Ti(OC3H7)4, Ti(OC4H9)4, Ti(C11H19O2)2(OC3H7)2, Ti(C11H19O2)2(O(CH2)2OCH3)2, Pb(C5H7O2)2, Pb(C5HF6O2)2, Pb(C5H4F3O2)2, Pb(C11H19O2)2, Pb(C2H5)4, La(C5H7O2)3, La(C5HF6O2)3, La(C5H4F3O2)3, La(C11H19O2)3, Zr(OC4H9)4, Zr(C5HF6O2)4, Zr(C5H4F3O2)4, Zr(C11H19O2)4, Zr(C11H19O2)2(OCH3H7)2, TMSTEMAT [MeSiN=Ta(NEtMe)3], TBITEMAT [Me3CN=Ta(NEtMe)3], TBTDET [Me3CN=Ta(Net2)3], PEMAT [Ta((CH3)(C2H5))5], PDEAT [Ta(N(C2H5)2)5], PDMAT [Ta(N(CH3)2)5], TaF5, 및 이들의 조합들로 이루어진 군으로부터 선택되는 유무기 금속화합물 전구체를 포함하는 것인, 고내열성 분리막의 제조 방법.
  7. 제 1 항에 있어서,
    상기 저온 원자층 증착법이 25℃ 내지 80℃ 미만의 온도 범위에서 수행되는 것인, 고내열성 분리막의 제조 방법.
  8. 제 1 항에 있어서,
    상기 저온 원자층 증착법이 60℃ 초과 내지 80℃ 미만의 온도 범위에서 수행되는 것인, 고내열성 분리막의 제조 방법.
  9. 제 1 항에 있어서,
    상기 금속산화물 박막의 두께가 100 nm 이하인, 고내열성 분리막의 제조 방법.
  10. 제 1 항에 있어서,
    상기 고내열성 분리막이 다공성 구조를 가지는 것인, 고내열성 분리막의 제조 방법.
  11. 다공성 고분자 기재의 표면 및 기공 내부 표면에 형성된 금속산화물 박막을 포함하며, 제 1 항 내지 제 10 항 중 어느 한 항의 방법에 따라 제조되는, 고내열성 분리막.
  12. 제 11 항에 있어서,
    상기 다공성 고분자 기재는 폴리에틸렌, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 고분자량 폴리에틸렌, 폴리프로필렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 고내열성 분리막.
  13. 제 11 항에 있어서,
    상기 금속산화물은, Al2O3, SiO2, ZrO2, TiO2, SnO2, CeO2, ZnO, MgO, CaO, SrO, BaO, Na2O, B2O3, Mn2O3, Y2O3, WO3, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 고내열성 분리막.
  14. 제 11 항에 있어서,
    상기 금속산화물 박막의 두께가 100 nm 이하인, 고내열성 분리막.
  15. 제 11 항에 있어서,
    상기 고내열성 분리막이 다공성 구조를 가지는 것인, 고내열성 분리막.
  16. 제 11 항에 따른 고내열성 분리막을 포함하는, 전지.
  17. 제 16 항에 있어서,
    상기 전지는 이차 전지인 것인, 전지.
  18. 제 16 항에 있어서,
    상기 전지는 연료 전지인 것인, 전지.
PCT/KR2014/007505 2013-08-12 2014-08-12 고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지 WO2015023116A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0095186 2013-08-12
KR20130095186 2013-08-12
KR10-2014-0104677 2014-08-12
KR1020140104677A KR101499787B1 (ko) 2013-08-12 2014-08-12 고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지

Publications (1)

Publication Number Publication Date
WO2015023116A1 true WO2015023116A1 (ko) 2015-02-19

Family

ID=52468459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007505 WO2015023116A1 (ko) 2013-08-12 2014-08-12 고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지

Country Status (1)

Country Link
WO (1) WO2015023116A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067528A (zh) * 2015-04-23 2016-11-02 Sk新技术株式会社 复合分离膜及其制备方法
CN106960933A (zh) * 2015-12-02 2017-07-18 Sk新技术株式会社 耐热性及关闭特性优异的二次电池用隔膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090137043A1 (en) * 2007-11-27 2009-05-28 North Carolina State University Methods for modification of polymers, fibers and textile media
KR20120039334A (ko) * 2010-10-15 2012-04-25 성균관대학교산학협력단 전기화학소자용 분리막 및 이의 제조방법
JP2012181921A (ja) * 2011-02-07 2012-09-20 Sony Corp 電池用セパレータ、電池用セパレータの製造方法、電池、電池パックおよび電子機器
KR20130012492A (ko) * 2011-07-25 2013-02-04 한국과학기술원 극성용매 및 폴리도파민-코팅 분리막을 포함하는 리튬이차전지 및 분리막 코팅방법
EP2559806A1 (en) * 2011-08-17 2013-02-20 Center of Excellence Polymer Materials and Technologies (Polimat) Method for increasing the hydrophilicity of polymeric materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090137043A1 (en) * 2007-11-27 2009-05-28 North Carolina State University Methods for modification of polymers, fibers and textile media
KR20120039334A (ko) * 2010-10-15 2012-04-25 성균관대학교산학협력단 전기화학소자용 분리막 및 이의 제조방법
JP2012181921A (ja) * 2011-02-07 2012-09-20 Sony Corp 電池用セパレータ、電池用セパレータの製造方法、電池、電池パックおよび電子機器
KR20130012492A (ko) * 2011-07-25 2013-02-04 한국과학기술원 극성용매 및 폴리도파민-코팅 분리막을 포함하는 리튬이차전지 및 분리막 코팅방법
EP2559806A1 (en) * 2011-08-17 2013-02-20 Center of Excellence Polymer Materials and Technologies (Polimat) Method for increasing the hydrophilicity of polymeric materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067528A (zh) * 2015-04-23 2016-11-02 Sk新技术株式会社 复合分离膜及其制备方法
CN106960933A (zh) * 2015-12-02 2017-07-18 Sk新技术株式会社 耐热性及关闭特性优异的二次电池用隔膜
US11139542B2 (en) 2015-12-02 2021-10-05 Sk Innovation Co., Ltd. Separator for secondary cell having excellent heat resistance and shutdown properties

Similar Documents

Publication Publication Date Title
WO2012050406A2 (ko) 전기화학소자용 분리막 및 이의 제조방법
Luiso et al. Lithium-ion battery separators: Recent developments and state of art
KR101283487B1 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
EP2328220B1 (en) Separator furnished with porous coating layer, method of manufacturing same, and electrochemical device furnished therewith
US20090169984A1 (en) Composite separator films for lithium-ion batteries
US10741878B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
KR20180035168A (ko) 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2015037867A1 (ko) 리튬 전극 및 그를 포함하는 리튬 이차전지
WO2012165758A1 (ko) 리튬 이차전지
WO2013058421A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자
WO2010027203A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
KR101499787B1 (ko) 고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지
KR20070069188A (ko) 리튬 2차 전지
US11394052B2 (en) Composite cathode and lithium-air battery including the same
WO2018016737A1 (ko) 리튬 코발트 산화물을 합성하기 위한 양극 활물질을 포함하는 리튬 이차전지, 이의 제조방법
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2016111605A1 (ko) 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지
WO2015023116A1 (ko) 고내열성 분리막, 이의 제조 방법, 및 이를 포함하는 전지
EP4024503A1 (en) Lithium secondary battery
WO2015105223A1 (ko) 유기-무기 복합 다공성 분리막, 이의 제조 방법, 및 이를 포함하는 전기화학소자
WO2015105224A1 (ko) 유기-무기 복합 다공성 분리막, 이의 제조 방법, 및 이를 포함하는 전기화학소자
KR101455114B1 (ko) 유기-무기 복합 다공성 분리막, 상기의 제조 방법, 및 상기를 포함하는 전기화학소자
WO2014157987A1 (ko) 이차전지용 전극 조립체 및 이를 이용한 이차전지
KR101315941B1 (ko) 유기-무기 복합 다공성 분리막, 상기의 제조 방법, 및 상기를 포함하는 전기화학소자
WO2024085574A1 (ko) 전기화학소자용 분리막 및 이를 구비하는 전기화학소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836670

Country of ref document: EP

Kind code of ref document: A1