CN114243212A - 一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及其制备方法 - Google Patents

一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及其制备方法 Download PDF

Info

Publication number
CN114243212A
CN114243212A CN202111336680.0A CN202111336680A CN114243212A CN 114243212 A CN114243212 A CN 114243212A CN 202111336680 A CN202111336680 A CN 202111336680A CN 114243212 A CN114243212 A CN 114243212A
Authority
CN
China
Prior art keywords
membrane
functionalized
heavy ion
heavy
ion track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111336680.0A
Other languages
English (en)
Inventor
张琦忠
姚会军
陈林景
刘建德
曹殿亮
刘杰
段敬来
胡正国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Modern Physics of CAS
Original Assignee
Institute of Modern Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Modern Physics of CAS filed Critical Institute of Modern Physics of CAS
Priority to CN202111336680.0A priority Critical patent/CN114243212A/zh
Publication of CN114243212A publication Critical patent/CN114243212A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及其制备方法。所述基于重离子径迹膜的功能化隔膜包括基膜和功能化层,基膜为重离子径迹膜,功能化层为沉积于基膜的表面和孔道壁面上的陶瓷层,重离子径迹膜的材质为聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰亚胺、聚醚酰亚胺或聚丙烯;陶瓷层的材质为三氧化二铝、二氧化硅、氮化硅、碳化硅或氧化锆。本发明功能化隔膜采用有机聚合物材质作为基膜,因此厚度很薄,因此具有较低的内阻,从而具有较高的锂离子电导率;且具有聚合物材质拥有的柔性特质,可以随意发生卷绕、折叠而不变形,因此比无机类的隔膜更具有实际应用的价值。

Description

一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及 其制备方法
技术领域
本发明涉及一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及其制备方法,属于锂金属/锂离子电池以及聚合物薄膜技术领域。
背景技术
能源对人类社会具有重要的意义,随着化石能源的消耗和随之而来的环境污染、气候变暖等问题,追求清洁和可再生能源成为人类发展的重要主题。自从1991年索尼公司发布第一款商用锂离子电池以来,锂离子电池成为各种电化学储能装置的关键研究对象之一,并已广泛应用于便携式电子设备、新能源汽车和智能电网等储能领域。然而,现有技术的锂离子电池的电极材料(特别是负极材料—石墨)的能量密度几乎达到其物理极限,远远不足以满足电动汽车和智能电网等先进储能系统的快速发展对电极材料的能量密度提出的更高要求。在所有的负极材料中,锂金属具有较高的理论比容量(3860mAh g-1,是商业化应用石墨负极的十倍)和最低的氧化还原电势(相对于标准氢电极为-3.04V),一直被认为是锂基电池的负极材料中的“圣杯”,并且是具有高能量密度的正极材料(例如硫和氧)的锂硫电池、锂空电池等高能储能系统最有前途的负极材料之一。
然而,锂金属负极的实际应用面临着巨大的挑战,主要是在锂金属重复电镀和剥离过程中,锂离子将形成异质且不稳定的沉积层,导致不可控的锂枝晶的生长,从而致使电池性能的下降,甚至会刺穿隔膜导致电池内部短路,严重时引发安全问题。为了寻求抑制锂枝晶生长的方法,近年来提出了几种模型来阐述锂枝晶的生长机理,其中电荷诱导模型得到了广泛的认可,该模型认为锂金属表面成核部位的突起具有比其他部位更高的电场,这将吸引更多的Li+,从而促进尖端锂枝晶的生长(图1)。并且高曲率的突起为不均匀的锂沉积提供了更大的表面积,进一步促进了锂枝晶的生长。从上述机理出发,在锂金属表面上实现均匀的Li+沉积对于抑制锂枝晶的生长具有重要意义(图2)。隔膜作为电池结构中的关键组件,不仅是防止两个电极直接接触的物理屏障,而且是调控锂离子在电解液中传输性能的有力工具。利用隔膜实现Li+在锂金属表面的均匀分布从而抑制锂枝晶的生长是一种简单有效、且易于大规模应用的方案。
目前商用的锂离子电池隔膜是经由干法(熔融拉伸法)或者湿法(热致相分离)拉伸后具有微孔结构的聚烯烃隔膜,由于这类隔膜具有电化学性能稳定、力学性能优异、生产成本低廉等优势,从而得到了广泛的应用。但受限于拉伸工艺自身,很难生产出孔径均一的隔膜,且孔径偏大,因此很难对Li+的空间分布进行有效调控。一些研究者们采用无机多孔膜,例如阳极氧化铝(AAO)多孔膜,作为电池隔膜,这类隔膜的孔径均一,但孔径偏大、厚度较厚、质脆易碎,不易于大面积推广。另一些研究者们基于传统聚烯烃隔膜或者阳极氧化铝隔膜,在其表面进行无机或者有机多孔材料的涂覆,例如快离子导体(LLZTO)、金属有机骨架(MOF)、氧化石墨烯(GO)、介孔二氧化硅(MSTF)等,这些涂覆层作为离子再分配器,拥有更小的孔径和更好的孔径均一性,从而能够实现Li+在空间的均匀分布。但额外增加的涂覆工艺增加了隔膜的生产成本,且涂覆后的隔膜厚度变厚,导致电池内阻的增加,且涂覆层与基膜的界面结合经常不稳固,涂覆层在长期的电池循环过程中会逐渐发生脱落,影响电池的电化学性能。因此,要实现锂离子在空间上的均匀分布,一个具有厚度较薄的、孔径较小的且孔径均一性优异的有机聚合物薄膜是必须的。
发明内容
本发明的目的是提供一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜,能够将隔膜孔径及其均一性与隔膜厚度、内阻、力学性能以及生产成本等方面统一兼顾,能够保障隔膜在液态电解液环境下长期的电化学稳定性;功能化层使隔膜拥有较强的电解液亲液性,有助于提升锂金属/锂离子电池的电化学性能;能够实现锂离子在锂金属表面的均匀分布,从而实现抑制锂枝晶生长的效果。
本发明所提供的基于重离子径迹膜的功能化隔膜,包括基膜和功能化层;
所述基膜为重离子径迹膜;
所述功能化层为沉积于所述基膜的表面和孔道壁面上的陶瓷层。
所述重离子径迹膜的材质为聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)、聚醚酰亚胺(PEI)或聚丙烯(PP);
所述陶瓷层的材质为三氧化二铝(Al2O3)、二氧化硅(SiO2)、氮化硅(Si3N4)、碳化硅(SiC)或氧化锆(ZrO2)。
所述功能化隔膜上孔道为定向排列的直通孔道;
所述功能化隔膜上孔道的孔径为6~96nm,如40±5nm、46±5nm或50±5nm;
所述功能化隔膜上孔密度为1×1010~1×1011/cm2,如1~2×1010/cm2、1×1010/cm或2×1010/cm2
所述重离子径迹膜孔道的孔径为10~100nm,如55±5nm、50±5nm或45±5nm,孔密度与所述功能化隔膜上孔密度一致;
所述重离子径迹膜的厚度为6~30μm;
所述陶瓷层的厚度为2~5nm,如2~3nm。
本发明功能化隔膜中设置功能化层,能够保障隔膜在电解液中的电化学稳定性;增强隔膜在电解液中的亲液性能,促进锂离子在纳米孔道里的输运。
本发明进一步提供了所述功能化隔膜的制备方法,包括如下步骤:
S1、采用重离子垂直辐照聚合物薄膜,得到辐照后的重离子径迹膜;
S2、将所述辐照后的离子径迹膜进行化学刻蚀,得到多孔的重离子径迹膜;
S3、在步骤S2得到的所述重离子径迹膜上沉积所述功能化层,即得到所述功能化隔膜。
上述的制备方法中,步骤S1中,所述重离子可为氙离子、铋离子或钽离子;
所述重离子的离子能量为0.1~100MeV/u,如氙离子为19.5MeV/u,钽离子为12.5MeV/u,铋离子为9.8MeV/u;
所述垂直辐照的密度为1×109~1×1011ions/cm2
上述的制备方法中,步骤S2中,所述化学刻蚀采用的刻蚀液为下述1)-5)中任一种:
1)所述聚合物薄膜为聚对苯二甲酸乙二醇酯膜或聚萘二甲酸乙二醇酯膜,所述刻蚀液为氢氧化钠溶液,摩尔浓度为1~10mol/L;
2)所述聚合物薄膜为聚酰亚胺膜或聚醚酰亚胺膜,所述刻蚀液为次氯酸钠溶液,其中有效氯的质量百分比含量为5~15%;
3)所述聚合物薄膜为聚丙烯膜,所述刻蚀液为铬酸溶液,摩尔浓度为5~15mol/L。
上述的制备方法中,步骤S2中,所述化学刻蚀的温度为30~80℃,时间为2~120min。
上述的制备方法中,步骤S3中,采用原子层沉积的方式沉积所述功能化层;
采用设有三个气体喷射部的原子层沉积装置沉积所述功能化层;
以沉积Al2O3为例,说明三体气体喷射部的作用:
在原子层沉积Al2O3时,第一气体喷射部向真空腔内喷射三甲基铝(TMA),第二气体喷射部向真空腔内喷射水蒸气(H2O),第三气体喷射部向真空腔内喷射惰性气体氮气(N2),TMA和H2O在所述基膜重离子径迹膜表面和孔道壁部位形成Al2O3沉积层。
本发明提供的基于重离子径迹膜的功能化隔膜能够应用于液态电解质锂金属/锂离子电池中。
特别注意的是,如若本发明提供的功能化隔膜应用于其他类型的储能电池中,也在本发明的保护范围之内。
本发明基于重离子径迹膜的功能化隔膜,采用具有孔径较小、孔径均一的重离子径迹膜作为基膜,该重离子径迹膜具有直通的孔道,不存在盲孔,不存在曲折孔,从而保证该膜具有较低的内阻,从而拥有较高的离子电导率;再利用ALD技术,在薄膜表面和孔道壁形成一层较薄的钝化层,该钝化层能够保障薄膜在液态电解质中的长期的电化学稳定性,从而能够保证锂金属/锂离子电池的长期循环;另外该钝化层能够增强薄膜在电解液中的亲液性,从而促进锂离子在纳米孔道里的快速输运,增强锂金属/锂离子电池的电化学性能。本发明利用多孔隔膜实现了Li+在锂金属表面的均匀分布,从而抑制了锂枝晶的生长,可使液态锂金属/锂离子电池具有优异的电化学性能和安全性能,并且制造工艺简单,可以大面积推广,从而为锂金属/锂离子电池的实际应用提供了一种优选方案。
本发明基于重离子径迹膜的功能化隔膜采用有机聚合物材质作为基膜,因此厚度很薄(6~30μm),优于目前商业化应用的聚烯烃隔膜(25μm)和基于聚烯烃隔膜的修饰(>30μm),以及传统无机隔膜(55μm)和基于传统无机隔膜的修饰(>60μm)的膜厚,因此具有较低的内阻,从而具有较高的锂离子电导率;且具有聚合物材质拥有的柔性特质,可以随意发生卷绕、折叠而不变形,因此比无机类的隔膜更具有实际应用的价值。在基膜表面和孔道壁沉积的钝化层,隔绝了电解液和基膜的直接接触,起到了保护基膜的作用;另外沉积的钝化层具有亲液的特性,这能够增强锂离子在孔道里的输运。
附图说明
图1为不均匀的锂离子流导致锂枝晶的生长示意图。
图2为均匀的锂离子流实现无枝晶的锂沉积示意图。
图3为本发明制备的功能化隔膜的剖面示意图。
图4为本发明制备的功能化隔膜的正面示意图。
图5为本发明实施例1制备的PEI重离子径迹膜的正面SEM图。
图6为本发明实施例1制备的PEI重离子径迹膜的截面SEM图。
图7为商业隔膜Celgard 2400的正面SEM图。
图8为本发明对比例1制备的PEI重离子径迹膜的SEM-EDS图。
图9为本发明实施例1制备的基于PEI重离子径迹膜的功能化隔膜的SEM-EDS图。
图10为商业隔膜Celgard 2400、本发明对比例1和本发明实施例1制备的隔膜的接触角测试结果。
图11为本发明实施例1制备的基于PEI重离子径迹膜的功能化隔膜的锂离子电池的循环性能。
图12为本发明实施例1的基于PEI重离子径迹膜的功能化隔膜的锂离子电池的首次充放电曲线。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本发明采用孔径小、均一性好、膜厚薄的重离子径迹膜作为基膜,在其表面和孔道表面沉积一层保护层,制备得到功能化的锂金属/锂离子电池隔膜,其中,功能化层的作用是:1)保障隔膜在电解液中的电化学稳定性;2)促进锂离子在纳米孔道里的输运。利用本发明公开的电池隔膜,可以实现锂离子在锂金属表面的均匀分布,保证锂金属/锂离子电池长期循环的稳定性。
图3和图4分别为本发明提供的基于重离子径迹膜的功能化隔膜的剖面示意图和正面示意图。
实施例1、
1)利用重离子加速器提供的高能重离子束流,为重离子氙(该重离子能量为19.5MeV/u),垂直辐照12μm的PEI薄膜,辐照密度为2×1010ions/cm2
2)将重离子辐照的PEI膜在60℃的水浴温度下进行化学蚀刻,蚀刻液为有效氯含量为12%的NaClO溶液,pH值用硼酸调节至10.0,并在整个蚀刻过程中维持溶液的pH值恒定,蚀刻时间为5h,得到直径为55±5nm的竖直纳米孔的PEI重离子径迹膜,孔密度为2×1010/cm2
3)将制备好的PEI基膜进行Al2O3钝化层的沉积,沉积温度为150℃,沉积时间为1min,最终获得沉积厚度为3nm的Al2O3,从而得到用于锂金属电池的基于重离子径迹膜的功能化隔膜,孔道的孔径为50±5nm。
本实施例制备的PEI重离子径迹膜的正面SEM图如图5所示,可以看出,本发明方法制备的PEI重离子径迹膜的孔径较小,孔径均一,孔密度高,从横截面SEM(图6)可以看出,该膜具有竖直分布的直通孔道,而从商业隔膜的正面SEM图(图7)可以看出商业隔膜的孔径偏大且孔径不均一。
功能化层的存在能够保障隔膜的电化学稳定性,并且可以增加隔膜的亲液性,从而有助于锂离子在孔道内的快速输运。
实施例2、
1)利用重离子加速器提供的高能重离子束流,为重离子Bi(该重离子能量为9.8MeV/u),垂直辐照12μm的PEN薄膜,辐照密度为1×1010ions/cm2
2)将重离子辐照的PEN在40℃的水浴温度下进行化学蚀刻,蚀刻液为摩尔浓度为3mol/L的NaOH水溶液,蚀刻时间为100min,得到直径为50±5nm的竖直纳米孔的PEN重离子径迹膜,孔密度为1×1010/cm2
3)将制备好的PEN基膜进行SiO2钝化层的沉积,沉积温度为100℃,沉积时间为50s,最终获得沉积厚度为2nm的SiO2,从而得到本发明用于锂金属电池的基于重离子径迹膜的功能化隔膜,功能化隔膜的孔道的孔径为46±5nm。
实施例3、
1)利用重离子加速器提供的高能重离子束流,为重离子钽(该重离子能量为12.5MeV/u),垂直辐照8μm的PI薄膜,辐照密度为2×1010ions/cm2
2)将重离子辐照的PI在40℃的水浴温度下进行化学蚀刻,蚀刻液为有效氯含量为12%的NaClO水溶液,pH值用硼酸调节至9.5,并在整个蚀刻过程中维持溶液的pH值恒定,蚀刻时间为60min,得到直径为45±5nm的竖直纳米孔的PI重离子径迹膜,孔密度为2×1010/cm2
3)将制备好的PI基膜进行Al2O3钝化层的沉积,沉积温度为150℃,沉积时间为1min,最终获得沉积厚度为3nm的Al2O3,从而得到本发明用于锂金属电池的基于重离子径迹膜的功能化隔膜,功能化隔膜的孔道的孔径为40±5nm。
对比例1、
1)利用重离子加速器提供的高能重离子束流,为重离子氙(该重离子能量为19.5MeV/u),垂直辐照12um的PEI薄膜,辐照密度为2×1010ions/cm2
2)将重离子辐照的PEI膜在60℃的水浴温度下进行化学蚀刻,蚀刻液为有效氯含量为12%的NaClO溶液,pH值用硼酸调节至10.0,并在整个蚀刻过程中维持溶液的PH值恒定,蚀刻时间为5h,得到直径为60±5nm的竖直纳米孔的PEI重离子径迹膜,孔密度为2×1010/cm2
对对比例1和实施例1制备的隔膜进行元素分析,实验结果如图8和图9所示,实验发现对比例1制备的隔膜表面无Al元素分布,而实施例1制备的隔膜表面分布着均匀、致密的Al元素,这说明成功地在对比例1所制的隔膜表面进行了Al2O3的原子层沉积。
对对比例1和实施例1制备的隔膜以及商业隔膜Celgard2400进行接触角测试,实验结果如图10所示。实验发现商业隔膜Celgard 2400的接触角为116°,对比例1制备的隔膜的接触角为68°,实施例1制备的隔膜的接触角为55°。实施例1制备的隔膜较对比例1制备的隔膜及商业隔膜Celgard 2400拥有更小的接触角,表明其拥有更好的亲液性。
将实施例1制备的隔膜组装成磷酸铁锂—锂扣式电池,在1C充放电条件下测试电池的循环性能,如图11所示,电池能够实现长期稳定循环,循环100圈时其容量保持率达95.5%。
首次充放电曲线如图12所示,首次充电比容量达137.2mAh/g,放电比容量达124.9mAh/g,库仑效率达91.1%,表现出良好的电池性能。
本发明方法制备得到的基于重离子径迹膜的功能化隔膜,功能化层能够保障隔膜在电解液环境中的电化学稳定性,并拥有较高的电解液亲液性。该隔膜可以实现锂离子在锂金属表面的均匀分布,使锂金属/锂离子电池具有优异的安全性能和电池性能。

Claims (10)

1.一种基于重离子径迹膜的功能化隔膜,包括基膜和功能化层;
所述基膜为重离子径迹膜;
所述功能化层为沉积于所述基膜的表面和孔道壁面上的陶瓷层。
2.根据权利要求1所述的功能化隔膜,其特征在于:所述重离子径迹膜的材质为聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰亚胺、聚醚酰亚胺或聚丙烯;
所述陶瓷层的材质为三氧化二铝、二氧化硅、氮化硅、碳化硅或氧化锆。
3.根据权利要求1或2所述的功能化隔膜,其特征在于:所述功能化隔膜上孔道为定向排列的直通孔道;
所述功能化隔膜上孔道的孔径为6~96nm;
所述功能化隔膜上孔密度为1×1010~1×1011/cm2
4.根据权利要求1-3中任一项所述的功能化隔膜,其特征在于:所述重离子径迹膜孔道的孔径为10~100nm;
所述重离子径迹膜的厚度为6~30μm;
所述陶瓷层的厚度为2~5nm。
5.权利要求1-4中任一项所述功能化隔膜的制备方法,包括如下步骤:
S1、采用重离子垂直辐照聚合物薄膜,得到辐照后的重离子径迹膜;
S2、将所述辐照后的离子径迹膜进行化学刻蚀,得到多孔的重离子径迹膜;
S3、在步骤S2得到的所述重离子径迹膜上沉积所述功能化层,即得到所述功能化隔膜。
6.根据权利要求5所述的制备方法,其特征在于:步骤S1中,所述重离子为氙离子、铋离子或钽离子;
所述重离子的离子能量为0.1~100MeV/u;
所述垂直辐照的密度为1×1010~1×1011ions/cm2
7.根据权利要求5或6所述的制备方法,其特征在于:步骤S2中,所述化学刻蚀采用的刻蚀液为下述1)-5)中任一种:
1)所述聚合物薄膜为聚对苯二甲酸乙二醇酯膜或聚萘二甲酸乙二醇酯膜,所述刻蚀液为氢氧化钠溶液,摩尔浓度为1~10mol/L;
2)所述聚合物薄膜为聚酰亚胺膜或聚醚酰亚胺膜,所述刻蚀液为次氯酸钠溶液,其中有效氯的质量百分比含量为5~15%,溶液的pH为8.0~12.0;
3)所述聚合物薄膜为聚丙烯膜,所述刻蚀液为铬酸溶液,摩尔浓度为5~15mol/L。
8.根据权利要求5-7中任一项所述的制备方法,其特征在于:步骤S2中,所述化学刻蚀的温度为30~80℃,时间为2~120min。
9.根据权利要求5-8中任一项所述的制备方法,其特征在于:步骤S3中,采用原子层沉积的方式沉积所述功能化层。
10.根据权利要求9所述的制备方法,其特征在于:采用设有三个气体喷射部的原子层沉积装置沉积所述功能化层。
CN202111336680.0A 2021-11-12 2021-11-12 一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及其制备方法 Pending CN114243212A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111336680.0A CN114243212A (zh) 2021-11-12 2021-11-12 一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111336680.0A CN114243212A (zh) 2021-11-12 2021-11-12 一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及其制备方法

Publications (1)

Publication Number Publication Date
CN114243212A true CN114243212A (zh) 2022-03-25

Family

ID=80749191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111336680.0A Pending CN114243212A (zh) 2021-11-12 2021-11-12 一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114243212A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629676A (zh) * 2011-02-07 2012-08-08 索尼公司 电池隔膜、制造其的方法、电池、电池组及电子设备
CN204216115U (zh) * 2014-11-19 2015-03-18 新乡市中科科技有限公司 一种锂离子电池用隔膜
US20170162855A1 (en) * 2015-12-02 2017-06-08 Sk Innovation Co., Ltd. Separator for secondary cell having excellent heat resistance and shutdown properties
CN113629353A (zh) * 2021-08-05 2021-11-09 中国科学院近代物理研究所 一种用于锂离子电池的pet基重离子径迹复合隔膜及其制备方法
CN113629354A (zh) * 2021-08-05 2021-11-09 中国科学院近代物理研究所 一种基于重离子径迹膜的适宜于液态电解质的锂离子电池隔膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629676A (zh) * 2011-02-07 2012-08-08 索尼公司 电池隔膜、制造其的方法、电池、电池组及电子设备
US20120202103A1 (en) * 2011-02-07 2012-08-09 Sony Corporation Battery separator, method of manufacturing a battery separator, battery, battery pack, and electronic apparatus
CN204216115U (zh) * 2014-11-19 2015-03-18 新乡市中科科技有限公司 一种锂离子电池用隔膜
US20170162855A1 (en) * 2015-12-02 2017-06-08 Sk Innovation Co., Ltd. Separator for secondary cell having excellent heat resistance and shutdown properties
CN113629353A (zh) * 2021-08-05 2021-11-09 中国科学院近代物理研究所 一种用于锂离子电池的pet基重离子径迹复合隔膜及其制备方法
CN113629354A (zh) * 2021-08-05 2021-11-09 中国科学院近代物理研究所 一种基于重离子径迹膜的适宜于液态电解质的锂离子电池隔膜及其制备方法

Similar Documents

Publication Publication Date Title
JP6367390B2 (ja) 大容量プリズムリチウムイオン合金アノードの製造
Choi et al. Particle size-dependent, tunable porous structure of a SiO 2/poly (vinylidene fluoride-hexafluoropropylene)-coated poly (ethylene terephthalate) nonwoven composite separator for a lithium-ion battery
KR101692687B1 (ko) 3차원 애노드 구조를 갖는 박막 전기화학 에너지 스토리지 디바이스
US9362552B2 (en) Lithium ion battery electrode materials and methods of making the same
Hu et al. In situ defect‐free vertically aligned layered double hydroxide composite membrane for high areal capacity and long‐cycle zinc‐based flow battery
CN102263257B (zh) 高能量柔性电极材料及其制备方法和在二次电池中的应用
US10756320B2 (en) Method for making a lithium-sulfur battery separator
US20130143146A1 (en) Hybrid porous materials and manufacturing methods and uses thereof
US20140126112A1 (en) Carbon nanotubes attached to metal foil
CN104377331A (zh) 一种锂离子电池用隔膜及其制备方法
JP2008098157A (ja) リチウムイオン二次電池用負極およびそれを用いるリチウムイオン二次電池
US20130252068A1 (en) Manufacturing method of high-performance silicon based electrode using polymer pattern on current collector and manufacturing method of negative electrode of rechargeable lithium battery including same
US10756381B2 (en) Lithium-sulfur battery separator and lithium-sulfur battery using the same
CN115064700A (zh) 一种无负极锂金属电池负极集流体及其制备方法和应用
CN107681113B (zh) 正极片及其制备方法以及二次电池
CN108832081B (zh) 一种使金属锂横向生长的复合金属锂负极的制备方法
CN113629353A (zh) 一种用于锂离子电池的pet基重离子径迹复合隔膜及其制备方法
CN114243212A (zh) 一种基于重离子径迹膜的锂金属/锂离子电池功能化隔膜及其制备方法
CN113629354A (zh) 一种基于重离子径迹膜的适宜于液态电解质的锂离子电池隔膜及其制备方法
US20170373295A1 (en) Separator Having Excellent Heat Resistance and Electrolyte Wetting Properties
TWI247345B (en) Nano-porous carbon composite for used as an ultracapacitor electrode material and preparation thereof
CN115207561B (zh) 一种聚烯烃复合膜及其制备方法和应用
KR20190082826A (ko) 전지 셀용 세퍼레이터 및 이를 갖는 전지 셀
CN116936751A (zh) 一种超薄高效石墨烯复合膜基锂载体及其锂金属电池应用
CN114899362A (zh) 一种具有固态电解质界面的三维锂金属负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220325