CN106750434A - 一种聚酰亚胺多孔薄膜的制备方法 - Google Patents

一种聚酰亚胺多孔薄膜的制备方法 Download PDF

Info

Publication number
CN106750434A
CN106750434A CN201611206092.4A CN201611206092A CN106750434A CN 106750434 A CN106750434 A CN 106750434A CN 201611206092 A CN201611206092 A CN 201611206092A CN 106750434 A CN106750434 A CN 106750434A
Authority
CN
China
Prior art keywords
pore
forming substance
porous
film
polyamic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611206092.4A
Other languages
English (en)
Other versions
CN106750434B (zh
Inventor
冯羽风
汪英
黄孙息
青双桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin Electrical Equipment Scientific Research Institute Co Ltd
Original Assignee
Guilin Electrical Equipment Scientific Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin Electrical Equipment Scientific Research Institute Co Ltd filed Critical Guilin Electrical Equipment Scientific Research Institute Co Ltd
Priority to CN201611206092.4A priority Critical patent/CN106750434B/zh
Publication of CN106750434A publication Critical patent/CN106750434A/zh
Application granted granted Critical
Publication of CN106750434B publication Critical patent/CN106750434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种聚酰亚胺多孔薄膜的制备方法,该方法采用多孔填料作为成孔物质,将成孔物质均匀分散于聚酰胺酸树脂溶液中,所得混合溶液经脱泡、铺膜、亚胺化,得到聚酰胺酸/成孔物质复合薄膜,所得聚酰亚胺/成孔物质复合薄膜置于刻蚀液中刻蚀除去成孔物质,经洗涤、干燥后得到多孔聚酰亚胺薄膜。与现有技术相比,本发明选用特定粒径大小且内部有孔的多孔填料作为成孔物质,在将聚酰亚胺/成孔物质复合薄膜置于刻蚀液中进行刻蚀时,一方面,刻蚀液可以非常容易地渗透进入复合薄膜内部,从而能够彻底除去成孔物质,进而有效提高所得多孔薄膜的孔隙率和透气率;另一方面,对成孔物质的粒径的限定也有效地控制了所得多孔薄膜中孔径的大小。

Description

一种聚酰亚胺多孔薄膜的制备方法
技术领域
本发明涉及聚酰亚胺薄膜,具体涉及一种聚酰亚胺多孔薄膜的制备方法。
背景技术
聚酰亚胺(PI)具有优异的耐热性、耐化学腐蚀性,机械性能好,广泛应用于航空航天、电子和微电子行业。在聚酰亚胺基体中引入孔洞制成聚酰亚胺多孔薄膜,可用于高温过滤、锂离子电池隔膜等领域。
国内外制备聚酰亚胺多孔薄膜,主要采用热降解法和化学溶剂法:
(1)热降解法,通过引入可热降解的组分从而产生孔洞,但这种方法存在力学性能大幅降低、且热降解时产生的孔洞会重新闭合的问题。
(2)化学溶剂法,通过添加成孔剂(成孔物质)制得复合材料,然后采用化学反应或萃取溶解的方法将成孔剂除去以产生孔洞。如公开号为CN104910409A的发明专利,公开了一种多孔低介电聚酰亚胺薄膜的制备方法,该方法包括将含有聚酰胺酸、成孔物质CaCO3和增强填料纳米SiO2的溶液成膜并热固化,然后用稀盐酸除去CaCO3。由于CaCO3与PI不相容,为了得到力学性能良好的PI/CaCO3复合膜,需加入增强填料改善复合膜的力学性能;另一方面,PI薄膜内部的CaCO3不能接触盐酸,很难除去。又如公开号为CN1760241A的发明专利,公开了一种低介电常数纳米多孔聚酰亚胺薄膜的制备方法,该方法采用溶胶-凝胶法制备聚酰亚胺/纳米SiO2复合薄膜,然后将复合薄膜浸泡在氢氟酸中,纳米SiO2被氢氟酸刻蚀除去,得到聚酰亚胺纳米发泡薄膜。这种方法制备的聚酰亚胺多孔薄膜孔径难以控制,并且孔隙率较低。
上述化学溶剂法大多采用盐酸、硫酸等有机酸或有机溶剂除去成孔剂,而化学溶剂本身并不容易渗透进入材料内部,再加上现有技术中采用的成孔物质均为内部无孔的无机物质,因而存在处理时间长、成孔物质去除率低以及得到的多孔膜孔隙率低的不足。
发明内容
本发明要解决的技术问题是提供一种可以彻底去除成孔物质,从而有效提高所得多孔薄膜的孔隙率和透气率的聚酰亚胺多孔薄膜的制备方法。
本发明所述的聚酰亚胺多孔薄膜的制备方法,是将成孔物质均匀分散于聚酰胺酸树脂溶液中,所得混合溶液经脱泡、铺膜、亚胺化,得到聚酰胺酸/成孔物质复合薄膜,所得聚酰亚胺/成孔物质复合薄膜置于刻蚀液中刻蚀除去成孔物质,经洗涤、干燥后得到多孔聚酰亚胺薄膜;与现有技术不同的是:
所述的成孔物质为选自多孔二氧化硅、介孔分子筛、多孔二氧化钛、多孔碳酸钙和多孔氧化铝中的一种或两种以上的组合;
所述成孔物质的内部孔径为2~1000nm;
所述成孔物质的平均粒径为10~2500nm。
本发明通过选用特定粒径大小且内部有孔的多孔填料作为成孔物质,在将聚酰亚胺/成孔物质复合薄膜置于刻蚀液中进行刻蚀时,一方面,刻蚀液可以非常容易地渗透进入复合薄膜内部,从而能够彻底除去成孔物质,进而有效提高所得多孔薄膜的孔隙率和透气率;另一方面,对成孔物质的粒径的限定也有效地控制了所得多孔薄膜中孔径的大小。
上述制备方法中,所述成孔物质的内部孔径优选为10~500nm,所述成孔物质的平均粒径优选为100~1500nm。所述成孔物质的用量与现有技术相同,本申请中优选为聚酰胺酸树脂溶液固含量的20~120%。
上述制备方法中,所述的聚酰胺酸树脂溶液通过现有常规方法进行制备,具体可以是:将二元胺溶解于极性非质子溶剂中,然后边搅拌边缓慢地往混合溶液中加入二元酐,反应一定时间得到聚酰胺酸树脂溶液。其中:
所述的二元胺为现有技术中的常规选择,具体可以是选自4,4’-二氨基二苯醚(ODA)、3,4’-二氨基二苯醚、3,3’-二氨基二苯醚、1,4-二氨基苯(p-PDA)、1,3-二氨基苯(m-PDA)、1,2-二氨基苯(o-PDA)、4,4’-二氨基联苯(DBZ)、3,3’-二甲基-4,4’-二氨基联二苯(OTD)、2,2’-二甲基-4,4’-二氨基联二苯(MTD)中的一种或任意两种以上的组合。当二元胺的选择为上述两种以上的组合时,它们之间的配比可以为任意配比。
所述的二元酐为现有技术中的常规选择,具体可以是选自均苯四酸二酐(PMDA)、3,3’,4,4’-联苯四羧酸二酐(s-BPDA)、2,3,3’,4’-联苯四羧酸二酐(a-BPDA)、3,3’,4,4’-二苯醚四羧酸二酐(ODPA)、2,3,3’,4’-二苯醚四羧酸二酐、3,3’,4,4’-二苯甲酮四酸二酐(BTDA)和2,3,3’,4’-二苯甲酮四羧酸二酐中的一种或任意两种以上的组合。当二元酐的选择为上述两种以上的组合时,它们之间的配比可以为任意配比。
在二元酐和二元胺进行反应时,所述二元酐和二元胺的摩尔比及缩聚反应的温度与时间均与现有技术相同,具体地,所述芳香族二胺和四羧酸二酐的摩尔比可以是0.9~1.1:1,优选为0.95~1.05:1,更优选为0.99~1.01:1;所述缩聚反应的温度可以是0~80℃,优选0~60℃,更优选0~50℃,反应的时间通常为3~24h,优选5~12h。
所述的极性非质子溶剂为现有技术中的常规选择,具体可以是选自N,N-二甲基乙酰胺(DMAC)、N,N-二甲基甲酰胺(DMF)、N-甲基-2-吡咯烷酮(NMP)、中的一种或任意两种以上的的组合。当极性非质子溶剂的选择为上述两种以上的组合时,它们之间的配比可以为任意配比。所述极性非质子溶剂的用量具体可以是当二元胺、二元酐和极性非质子溶剂反应形成聚酰胺酸树脂溶液时,该聚酰胺酸树脂溶液中的固含量控制在8~50wt%,优选10~35wt%,进一步优选为12~20wt%。
上述制备方法中,通常是用搅拌或超声的方式将成孔物质均匀分散于聚酰胺酸树脂溶液中。为了使成孔物质更好的分散于聚酰胺酸树脂溶液中,优选是先将成孔物质用极性非质子溶剂分散后再加入到聚酰胺酸树脂溶液中,该所述的极性非质子溶剂的选择与前述相同,其用量为能够将成孔物质均匀分散的适宜用量,通常为成孔物质重量的5~20倍。
上述制备方法中,所述的刻蚀液为氢氟酸、浓硫酸(热)或浓盐酸。当刻蚀液选用氢氟酸时,其质量浓度为5~40%,优选10~30%。所述聚酰亚胺/成孔物质复合薄膜在刻蚀液中浸泡的时间通常为1~20h,优选2~10h。
与现有技术相比,本发明选用特定粒径大小且内部有孔的多孔填料作为成孔物质,在将聚酰亚胺/成孔物质复合薄膜置于刻蚀液中进行刻蚀时,一方面,刻蚀液可以非常容易地渗透进入复合薄膜内部,从而能够彻底除去成孔物质,进而有效提高所得多孔薄膜的孔隙率和透气率;另一方面,对成孔物质的粒径的限定也有效地控制了所得多孔薄膜中孔径的大小。
具体实施方式
下面结合具体实施例对本发明作进一步的详述,以更好地理解本发明的内容,但本发明并不限于以下实施例。
实施例1:
1)在三口烧瓶中加入10.8g ODA溶解于127.5g N,N-二甲基乙酰胺中,然后分批次加入总量为11.7g的PMDA,在室温下合成6h,得到聚酰胺酸树脂溶液;
2)称取4.5g多孔二氧化硅(内部孔径为25~50nm,平均粒径为300nm)置于烧杯中,并加入45.0g N,N-二甲基乙酰胺,用玻璃棒快速搅拌并超声分散15min,所得分散液加入到步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散2h,得到聚酰胺酸/多孔二氧化硅混合溶液;
3)将聚酰胺酸/多孔二氧化硅混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用质量浓度为10%的氢氟酸浸泡10h除去多孔二氧化硅,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
实施例2:
1)在三口烧瓶中加入12.3g ODA溶解于123.0g N,N-二甲基乙酰胺中,然后分批次加入总量为10.7g的PMDA,待其完全溶解后,再加入3.9g BTDA,在室温下合成5h,得到聚酰胺酸树脂溶液;
2)称取10.8g多孔二氧化钛(内部孔径为45~100nm,平均粒径为450nm)置于烧杯中,并加入108.0g N,N-二甲基乙酰胺中,用玻璃棒快速搅拌并超声分散20min,所得分散液加入步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散2h,得到聚酰胺酸/多孔二氧化钛混合溶液;
3)将聚酰胺酸/多孔二氧化钛混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用60℃的浓硫酸浸泡2h除去多孔二氧化钛,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
实施例3:
1)在三口烧瓶中加入14.4g ODA溶解于80.0g N-甲基-2-吡咯烷酮和40.0g N,N-二甲基甲酰胺中,然后分批次加入总量为15.6g的PMDA,在室温下合成5h,得到聚酰胺酸树脂溶液;
2)称取15.0g多孔二氧化硅(内部孔径为100~150nm,平均粒径为670nm)置于烧杯中,并加入150.0g N-甲基-2-吡咯烷酮,用玻璃棒快速搅拌并超声分散15min,所得分散液加入步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散2h,得到聚酰胺酸/多孔二氧化硅混合溶液;
3)将聚酰胺酸/多孔二氧化硅混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用质量浓度为20%的氢氟酸浸泡2h除去多孔二氧化硅,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
实施例4:
1)在三口烧瓶中加入11.8g ODA和4.5g p-PDA溶解于112.5g N-甲基-2-吡咯烷酮,然后分批次加入总量为21.4g的PMDA,在室温下合成5h,得到聚酰胺酸树脂溶液;
2)称取18.8g多孔二氧化硅(内部孔径为2~6nm,平均粒径为10nm)置于烧杯中,并加入188.0g N-甲基-2-吡咯烷酮,用玻璃棒快速搅拌并超声分散15min,所得分散液加入步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散2h,得到聚酰胺酸/多孔二氧化硅混合溶液;
3)将聚酰胺酸/多孔二氧化硅混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用质量浓度为15%的氢氟酸浸泡3h除去多孔二氧化硅,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
实施例5:
1)在三口烧瓶中加入15.2g ODA溶解于112.5g N,N-二甲基乙酰胺中,然后分批次加入总量为22.3g的a-BPDA,在室温下合成5h,得到聚酰胺酸树脂溶液;
2)称取22.5g多孔二氧化硅(内部孔径为50~350nm,平均粒径为980nm)置于烧杯中,并加入225.0g N,N-二甲基乙酰胺,用玻璃棒快速搅拌并超声分散15min,所得分散液加入步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散2h,得到聚酰胺酸/多孔二氧化硅混合溶液;
3)将聚酰胺酸/多孔二氧化硅混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用质量浓度为15%的氢氟酸浸泡3.5h除去多孔二氧化硅,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
实施例6:
1)在三口烧瓶中加入18.0g ODA溶解于112.5g N,N-二甲基乙酰胺中,然后分批次加入总量为19.5g的PMDA,在室温下合成5h,得到聚酰胺酸树脂溶液;
2)称取426.3g多孔二氧化硅(内部孔径为25~80nm,平均粒径为350nm)置于烧杯中,并加入325.0g N,N-二甲基乙酰胺中,用玻璃棒快速搅拌并超声分散15min,所得分散液加入步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散2h,得到聚酰胺酸/多孔二氧化硅混合溶液;
3)将聚酰胺酸/多孔二氧化硅混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用质量浓度为30%的氢氟酸浸泡2h除去多孔二氧化硅,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
实施例7:
1)在三口烧瓶中加入15.2g ODA溶解于112.5g N,N-二甲基乙酰胺中,然后分批次加入总量为22.3g的s-BPDA,在室温下合成5h,得到聚酰胺酸树脂溶液;
2)称取26.3g多孔二氧化硅(内部孔径为150~500nm,平均粒径为1260nm)置于烧杯中,并加入394.4g N,N-二甲基乙酰胺中,用玻璃棒快速搅拌并超声分散15min,所得分散液加入步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散2h,得到聚酰胺酸/多孔二氧化硅混合溶液;
3)将聚酰胺酸/多孔二氧化硅混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用质量浓度为11%的氢氟酸浸泡7h除去多孔二氧化硅,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
实施例8:
1)在三口烧瓶中加入17.6g ODA溶解于105.0g N,N-二甲基甲酰胺中,然后分批次加入总量为27.4g的ODPA,在室温下合成5h,得到聚酰胺酸树脂溶液;
2)称取31.5g多孔二氧化硅(内部孔径为700~1000nm,平均粒径为2500nm)置于烧杯中,并加入315.0g N,N-二甲基甲酰胺中,用玻璃棒快速搅拌并超声分散15min,所得分散液加入步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散2h,得到聚酰胺酸/多孔二氧化硅混合溶液;
3)将聚酰胺酸/多孔二氧化硅混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用质量浓度为25%的氢氟酸浸泡6h除去多孔二氧化硅,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
实施例9:
1)在三口烧瓶中加入20.6g DBZ溶解于70.0g N,N-二甲基乙酰胺和35.0g N,N-二甲基甲酰胺中,然后分批次加入总量为24.5g的PMDA,在室温下合成5h,得到聚酰胺酸树脂溶液;
2)称取36.0g多孔二氧化硅(内部孔径为200~500nm,平均粒径为1100nm)置于烧杯中,并加入360.0g N,N-二甲基乙酰胺中,用玻璃棒快速搅拌并超声分散15min,所得分散液加入步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散2h,得到聚酰胺酸/多孔二氧化硅混合溶液;
3)将聚酰胺酸/多孔二氧化硅混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用质量浓度为22%的氢氟酸浸泡8h除去多孔二氧化硅,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
实施例10:
1)在三口烧瓶中加入25.2g ODA溶解于97.5g N,N-二甲基乙酰胺中,然后分批次加入总量为27.3g的PMDA,在室温下合成5h,得到聚酰胺酸树脂溶液;
2)称取52.5g多孔氧化铝(内部孔径为80~200nm,平均粒径为500nm)置于烧杯中,并加入420.0g N,N-二甲基乙酰胺中,用玻璃棒快速搅拌并超声分散20min,所得分散液加入步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散3h,得到聚酰胺酸/多孔氧化铝混合溶液;
3)将聚酰胺酸/多孔氧化铝混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用浓盐酸浸泡5h除去多孔氧化铝,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
实施例11:
1)在三口烧瓶中加入25.2g ODA溶解于97.5g N,N-二甲基乙酰胺中,然后分批次加入总量为27.3g的PMDA,在室温下合成5h,得到聚酰胺酸树脂溶液;
2)称取63.0g多孔碳酸钙(内部孔径为20~65nm,平均粒径为180nm)置于烧杯中,并加入420.0g N,N-二甲基乙酰胺中,用玻璃棒快速搅拌并超声分散20min,所得分散液加入步骤1)合成的聚酰胺酸树脂溶液中,同时采用机械搅拌和超声分散3h,得到聚酰胺酸/多孔二氧化硅混合溶液;
3)将聚酰胺酸/多孔二氧化硅混合溶液真空脱气泡,然后在干净的玻璃板上铺膜,放入烘箱中热亚胺化,按照80℃/1h、140℃/1h、220℃/1h、300℃/1h的程序阶段式升温固化;
4)待冷却至室温后,将薄膜揭下,用浓盐酸浸泡9h除去多孔碳酸钙,冲洗干净后烘干水分,制得聚酰亚胺多孔薄膜。
对比例1
重复实施例1,不同的是用无孔二氧化硅代替多孔二氧化硅。
对比例2
重复实施例2,不同的是用无孔二氧化钛代替多孔二氧化钛。
对比例3
重复实施例10,不同的是用无孔氧化铝代替多孔氧化铝。
对上述实施例1~11和对比例1~3制得的聚酰亚胺多孔薄膜的性能进行测试,结果如下述表1所示。
表1:
由该表可见,按本发明方法制得的聚酰亚胺多孔薄膜与对比例中的聚酰亚胺多孔薄膜相比,孔隙率明显提高,填料残留率明显降低。由此可见,多孔填料可以更加彻底的被去除,作为成孔剂可以制得孔隙率更高的聚酰亚胺薄膜。

Claims (5)

1.一种聚酰亚胺多孔薄膜的制备方法,是将成孔物质均匀分散于聚酰胺酸树脂溶液中,所得混合溶液经脱泡、铺膜、亚胺化,得到聚酰胺酸/成孔物质复合薄膜,所得聚酰亚胺/成孔物质复合薄膜置于刻蚀液中刻蚀除去成孔物质,经洗涤、干燥后得到多孔聚酰亚胺薄膜;其特征在于:
所述的成孔物质为选自多孔二氧化硅、介孔分子筛、多孔二氧化钛、多孔碳酸钙和多孔氧化铝中的一种或两种以上的组合;
所述成孔物质的内部孔径为2~1000nm;
所述成孔物质的平均粒径为10~2500nm。
2.根据权利要求1所述的制备方法,其特征在于:所述成孔物质的内部孔径为10~500nm。
3.根据权利要求1所述的制备方法,其特征在于:所述成孔物质的平均粒径为100~1500nm。
4.根据权利要求1~3中任一项所述的制备方法,其特征在于:将成孔物质用极性非质子溶剂分散后再加入到聚酰胺酸树脂溶液中。
5.根据权利要求1~3中任一项所述的制备方法,其特征在于:所述的刻蚀液为氢氟酸、浓硫酸或浓盐酸。
CN201611206092.4A 2016-12-23 2016-12-23 一种聚酰亚胺多孔薄膜的制备方法 Active CN106750434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611206092.4A CN106750434B (zh) 2016-12-23 2016-12-23 一种聚酰亚胺多孔薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611206092.4A CN106750434B (zh) 2016-12-23 2016-12-23 一种聚酰亚胺多孔薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN106750434A true CN106750434A (zh) 2017-05-31
CN106750434B CN106750434B (zh) 2020-02-21

Family

ID=58919744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611206092.4A Active CN106750434B (zh) 2016-12-23 2016-12-23 一种聚酰亚胺多孔薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106750434B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107253710A (zh) * 2017-06-28 2017-10-17 徐昌霞 一种以二氧化硅为模板制备聚酰亚胺基多孔碳膜及其制备方法
CN110204718A (zh) * 2019-06-19 2019-09-06 中山职业技术学院 一种聚酰亚胺薄膜及其制备方法与一种覆铜板
CN111070668A (zh) * 2019-12-18 2020-04-28 华中科技大学鄂州工业技术研究院 采用熔融沉积成型技术制备孔径可控型纳米多孔结构制件的方法
CN111154336A (zh) * 2020-01-03 2020-05-15 中国科学院兰州化学物理研究所 一种多孔聚酰亚胺墨水及其制备方法以及一种直书写3d打印制备多孔聚酰亚胺的方法
CN111716845A (zh) * 2020-04-30 2020-09-29 江阴申隆包装材料有限公司 一种用于呼吸保鲜果蔬包装膜
CN111849016A (zh) * 2020-06-16 2020-10-30 裕克施乐塑料制品(太仓)有限公司 一种隔热材料及其制备方法
WO2023162644A1 (ja) * 2022-02-25 2023-08-31 株式会社カネカ グラファイトシート用のポリイミドフィルム、グラファイトシートおよびそれらの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194032A (zh) * 2014-08-26 2014-12-10 桂林电器科学研究院有限公司 一种以纳米级锌粉或锰粉为成孔物质的多孔聚酰亚胺薄膜的制备方法
CN104194034A (zh) * 2014-08-26 2014-12-10 桂林电器科学研究院有限公司 一种以纳米级铝粉和/或镁粉为成孔物质的多孔聚酰亚胺薄膜的制备方法
CN104927082A (zh) * 2015-05-06 2015-09-23 无锡顺铉新材料有限公司 一种多孔低介电聚酰亚胺薄膜
US20160111696A1 (en) * 2013-06-27 2016-04-21 Jiangsu Huadong Institute Of Li-Ion Battery Co. Ltd. Method for making polyimide microporous separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111696A1 (en) * 2013-06-27 2016-04-21 Jiangsu Huadong Institute Of Li-Ion Battery Co. Ltd. Method for making polyimide microporous separator
CN104194032A (zh) * 2014-08-26 2014-12-10 桂林电器科学研究院有限公司 一种以纳米级锌粉或锰粉为成孔物质的多孔聚酰亚胺薄膜的制备方法
CN104194034A (zh) * 2014-08-26 2014-12-10 桂林电器科学研究院有限公司 一种以纳米级铝粉和/或镁粉为成孔物质的多孔聚酰亚胺薄膜的制备方法
CN104927082A (zh) * 2015-05-06 2015-09-23 无锡顺铉新材料有限公司 一种多孔低介电聚酰亚胺薄膜

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107253710A (zh) * 2017-06-28 2017-10-17 徐昌霞 一种以二氧化硅为模板制备聚酰亚胺基多孔碳膜及其制备方法
CN110204718A (zh) * 2019-06-19 2019-09-06 中山职业技术学院 一种聚酰亚胺薄膜及其制备方法与一种覆铜板
CN110204718B (zh) * 2019-06-19 2022-01-07 中山职业技术学院 一种聚酰亚胺薄膜及其制备方法与一种覆铜板
CN111070668A (zh) * 2019-12-18 2020-04-28 华中科技大学鄂州工业技术研究院 采用熔融沉积成型技术制备孔径可控型纳米多孔结构制件的方法
CN111154336A (zh) * 2020-01-03 2020-05-15 中国科学院兰州化学物理研究所 一种多孔聚酰亚胺墨水及其制备方法以及一种直书写3d打印制备多孔聚酰亚胺的方法
CN111154336B (zh) * 2020-01-03 2021-05-07 中国科学院兰州化学物理研究所 一种多孔聚酰亚胺墨水及其制备方法以及一种直书写3d打印制备多孔聚酰亚胺的方法
CN111716845A (zh) * 2020-04-30 2020-09-29 江阴申隆包装材料有限公司 一种用于呼吸保鲜果蔬包装膜
CN111716845B (zh) * 2020-04-30 2022-09-23 江阴申隆包装材料有限公司 一种用于呼吸保鲜果蔬包装膜
CN111849016A (zh) * 2020-06-16 2020-10-30 裕克施乐塑料制品(太仓)有限公司 一种隔热材料及其制备方法
CN111849016B (zh) * 2020-06-16 2022-12-20 裕克施乐塑料制品(太仓)有限公司 一种隔热材料及其制备方法
WO2023162644A1 (ja) * 2022-02-25 2023-08-31 株式会社カネカ グラファイトシート用のポリイミドフィルム、グラファイトシートおよびそれらの製造方法

Also Published As

Publication number Publication date
CN106750434B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN106750434A (zh) 一种聚酰亚胺多孔薄膜的制备方法
CN104211980B (zh) 一种低介电常数聚酰亚胺薄膜及其制备方法
CN103772981B (zh) 低介电常数聚合物/氟化石墨烯复合材料及其制备方法
TWI593726B (zh) 用於使用多孔質粒子來製備聚醯亞胺之方法及具有低介電常數之聚醯亞胺膜
CN101665580B (zh) 一种聚酰亚胺多孔膜及包括该多孔膜的锂离子电池
CN101656306B (zh) 一种复合隔膜及其制备方法和包括该复合隔膜的电池
CN102516582B (zh) 多孔化聚酰亚胺薄膜的制造方法
JP5347306B2 (ja) シームレスベルト
CN102716680B (zh) 一种聚酰亚胺微孔膜及其制备方法
CN109929129A (zh) 一种羧基化碳纳米管/聚酰亚胺复合薄膜及其制备方法
CN108365151A (zh) 一种聚酰亚胺耐高温锂电池隔膜及其制备方法
CN108530673A (zh) 一种线型聚酰亚胺气凝胶及其制备方法
KR101874728B1 (ko) 폴리아마이드 이미드 용액, 다공질 폴리아마이드 이미드 필름, 및 그의 제조 방법
CN105348551B (zh) 一种聚酰亚胺多孔膜及其制备方法
CN108172740A (zh) 高孔隙率聚酰亚胺隔膜制备方法及其产品
CN103319892A (zh) 一种聚酰亚胺泡沫复合材料及其制备方法
CN108003375A (zh) 高透气率的聚酰亚胺隔膜的制备方法及其产品
CN101638490B (zh) 一种聚酰亚胺多孔膜及其制备方法以及锂离子电池
CN110903505A (zh) 石墨烯增强的聚酰亚胺复合薄膜及其制备方法和人工石墨膜
CN108586780A (zh) 一种多孔性聚酰亚胺薄膜及其制备方法
JP2013109842A (ja) リチウムイオン電池用セパレータの製造方法
JP2018053099A (ja) ポリイミドゲル状組成物、ポリイミド多孔質体、その製造方法、断熱材
CN105601921B (zh) 低介电常数增强氧化石墨烯/聚酰亚胺复合膜的制备方法
CN101659753B (zh) 拉伸的聚酰亚胺多孔膜及其制备方法和锂离子电池
JP6403389B2 (ja) イミド系多孔質フィルムの製造方法およびイミド系多孔質フィルム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant