CN105408006A - 氧化亚氮分解催化剂 - Google Patents

氧化亚氮分解催化剂 Download PDF

Info

Publication number
CN105408006A
CN105408006A CN201480042078.8A CN201480042078A CN105408006A CN 105408006 A CN105408006 A CN 105408006A CN 201480042078 A CN201480042078 A CN 201480042078A CN 105408006 A CN105408006 A CN 105408006A
Authority
CN
China
Prior art keywords
catalyst
weight
oxide
alkali metal
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480042078.8A
Other languages
English (en)
Other versions
CN105408006B (zh
Inventor
S·戈帕尔
A·克勒姆特
R·施里克
M·R·潘查格努拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN105408006A publication Critical patent/CN105408006A/zh
Application granted granted Critical
Publication of CN105408006B publication Critical patent/CN105408006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • B01J35/30
    • B01J35/31
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

本发明提供一种用于分解氧化亚氮的催化剂,所述催化剂包含钴、锌和铝的氧化物以及碱金属助催化剂。

Description

氧化亚氮分解催化剂
发明领域
本发明涉及用于分解氧化亚氮(N2O)的催化剂、用于产生所述催化剂的方法和用于在所述催化剂存在下分解氧化亚氮的方法。
发明背景
氧化亚氮(N2O)是一种温室气体,其具有每单位重量比二氧化碳大310倍的影响。其在许多工业过程(包括生产化学品如硝酸)中作为副产物而产生。
在许多国家,已经设定了对氧化亚氮排放的限制,并努力着眼于开发从烟道气除去氧化亚氮的方法。许多这些努力着眼于确定适合用于催化分解氧化亚氮的催化剂。
沸石负载的铁催化剂,任选还包含贵金属如Pt或Ru,已经描述在例如US5171553,WO2005/110582和JournalofCatalysis243(2006),340-349中。这些催化剂的主要缺点在于它们的有限的操作窗口。在低于400℃的温度下,基于沸石的催化剂的活性被进料中存在的水所抑制。而且,在高于约600℃的温度下,沸石的水热稳定性被不利地影响。
其它已知的氧化亚氮分解催化剂包括基于碱金属氧化物如Co3O4的那些,如US5705136中所描述的。其它金属如镍、锰、锌或镁可引入碱金属氧化物结构中,如CatalysisCommunications4(2003)505-509中所描述的。添加碱金属助催化剂以进一步提高这些材料的催化活性描述在下面的文献中:AppliedCatalysisB:Environmental78(008)242-249;J.Mater.Sci.46(2011),797-805;WO2009142520,CatalystLetters,130(2009),637-641;CatalysisToday,176(2011),365-368;CatalysisToday120,(2007),145-150;CatalysisCommunications,10(2008),132-136和CatalysisCommunications10(2009),1062-1065。碱金属氧化物克服了一些与基于沸石的催化剂相关的操作窗口问题。然而,它们可具有高的体积密度,导致非常高且经济上没有吸引力的每单位反应器体积所需的催化剂质量。
因此,期望提供一种适合用于氧化亚氮分解的催化剂,其可在宽范围的温度下使用,具有良好的稳定性和寿命,其还对于宽范围的应用具有良好的机械性质。
发明内容
因此,本发明提供一种用于分解氧化亚氮的催化剂,所述催化剂包含钴、锌和铝的氧化物,以及碱金属助催化剂。
本发明还提供了一种用于制备所述催化剂的方法,所述方法包括以下步骤:
i)提供包含锌、钴和铝的金属盐的水溶液;
ii)使用水性碱溶液沉淀本体(bulk)金属氧化物;
iii)干燥所沉淀的物质;
iv)从所沉淀的物质形成催化剂颗粒;和
v)煅烧由此形成的催化剂颗粒,
其中在步骤i)至v)中的至少一个期间或之后添加碱金属助催化剂。
本发明还提供了用于分解气体流中的氧化亚氮的方法,所述方法包括以下步骤:
i)提供包含50ppmw至50重量%范围内氧化亚氮的气体流;
ii)将所述气体流与本发明的催化剂在250-750℃范围内的温度下接触。
附图说明
图1至图8是显示本文中所述实施例的结果的图。
具体实施方式
本发明人已经令人惊讶地发现包含至少钴、锌和铝作为金属并用碱金属助催化的本体金属氧化物催化剂提供了以下的出色组合:在分解氧化亚氮中的高活性,在低温(低于400℃)和在高温(高于650℃)下的良好活性,并甚至在提高浓度的水和氨存在下的高稳定性,以及良好的物理性质。本发明的催化剂对气体流中存在的水具有高的耐受性,且还在待处理的气体流中一定范围浓度的NO和NO2下较好地工作。该催化剂比之前描述的用于分解氧化亚氮的本体金属氧化物催化剂具有更低的体积密度和更高的强度。该催化剂还具有改进的挤出性质。
本发明的催化剂在混合金属氧化物内包含至少钴、锌和铝。该催化剂包含至少20重量%的钴、优选至少30重量%的钴、更优选至少35重量%的钴和最多75重量%的钴,优选最多70重量%的钴、更优选最多60重量%的钴,当视为总催化剂中的元素时。
催化剂包含至少3重量%的锌、优选至少5重量%的锌、更优选至少7重量%的锌和最多20重量%的锌、优选最多15重量%的锌、更优选最多12重量%的锌,当视为总催化剂中的元素时。
关于催化剂中存在的作为沉淀的氧化物的铝,该催化剂包含至少2重量%的这样的铝、优选至少3重量%的这样的铝和最多20重量%的这样的铝、最多15重量%的这样的铝,当视为总催化剂中的元素时。最终催化剂中可存在其它铝,如以粘合剂形式存在的铝。
钴、锌和铝以混合金属氧化物的形式存在。所述混合金属氧化物可包含许多不同的氧化物质,每一种含有至少一种金属。混合金属氧化物的至少一部分将具有尖晶石型结构。
碱金属助催化剂优选选自锂、钠、钾、铯及其混合物。更优选地,碱金属助催化剂选自钠、钾、铯及其混合物。甚至更优选地,碱金属助催化剂选自铯、钾及其混合物。甚至更优选地,碱金属助催化剂包含钾。最优选地,碱金属助催化剂是钾。
合适地,碱金属助催化剂在催化剂中的存在量为至少0.1重量%、优选量为至少0.2重量%、更优选量为至少0.5重量%、最优选量为至少0.9重量%,当视为总催化剂中的元素时。合适地,碱金属助催化剂在催化剂中的存在量为最多5重量%、优选量为最多4重量%、最优选量为最多3重量%,当视为总催化剂中的元素时。
除了本体金属氧化物和助催化剂,本发明的催化剂还可包含其它材料如粘合剂。如果存在,该粘合剂可选自碱土金属氧化物、稀土金属氧化物、氧化铝、氧化锌、氧化镁、二氧化硅及其混合物。优选地,粘合剂选自氧化铝、氧化锌、氧化镁和二氧化硅及其混合物。更优选地,粘合剂是氧化铝。
如果粘合剂存在,其合适地以总催化剂的最多40重量%、优选最多25重量%、更优选最多20重量%的量存在。如果粘合剂存在,其优选以总催化剂的至少2重量%、更优选至少5重量%、最优选至少10重量%的量存在。
本发明的催化剂的体积密度优选在0.4-2.0g/ml的范围内、更优选在0.6-1.5g/ml的范围内。
当成形为挤出物时,本发明的催化剂的压碎强度优选为至少2N/mm、更优选至少4N/mm且最大40N/mm、更优选最大30N/mm。
当成形为片(tablet)时,本发明的催化剂的顶压碎强度(基于3mm×3mm片)优选为至少40N/片、更优选至少60N/片且优选最大600N/片、更优选最大300N/片。
此外,当成形为片时,本发明的催化剂的侧压碎强度(基于3mm×3mm片)优选为至少10N/片、更优选至少20N/片且优选最大300N/片、更优选最大150N/片。
本发明的催化剂可通过本领域已知的任何合适的方法来产生。一种合适的方法包括以下步骤:i)提供包含锌、钴和铝的金属盐的水溶液;ii)使用水性碱溶液沉淀本体金属氧化物;iii)干燥所沉淀的物质;iv)从所沉淀的物质形成催化剂颗粒;和v)煅烧由此形成的催化剂颗粒。碱金属助催化剂可在这些步骤中的任何一个期间或之后添加。
在该方法的步骤i)中,提供水溶液。所述水溶液包含钴、锌和铝的每一种的至少一种盐。每种金属可存在于单独的盐内,或者水溶液也可以包含所列举金属的任何两种或更多种的混合盐,或其任何组合。
可通过单独地或与酸溶液如硝酸或乙酸一起溶解钴、锌和铝或通过在水或稀酸中溶解合适的可溶性钴、锌和铝化合物来制备水溶液。优选的可溶性钴和锌化合物是乙酸盐和硝酸盐、特别是硝酸盐。合适的可溶性铝化合物是铝酸钠和硝酸铝。优选地,如果需要,可调节溶液的pH以防止过早沉淀。
可通过将所有盐溶解在单一水溶液中来形成所述水溶液。或者,可提供许多溶液(每一种包含一种或多种盐)并混合在一起。
一旦已经提供包含所有所需盐的水溶液,该水溶液就用水性碱溶液处理以沉淀出所期望的本体金属氧化物。碱溶液可以是有机碱和/或无机碱的溶液。有机碱包括四烷基氢氧化铵、胺、吡啶或烷醇胺。无机碱包括氨水、碳酸铵、碳酸氢铵和/或I族或II族金属氢氧化物、碳酸氢盐或碳酸盐如氢氧化钠、碳酸钠、碳酸氢钠、氢氧化钾或碳酸钾。优选无机碱。各组分的浓度典型地在0.1-5摩尔/升的范围内,并可使用本领域技术人员已知的知识来合适地选择以适合操作设备和规模。
然后干燥所沉淀的物质。作为第一步骤,沉淀的物质可从水溶液的主体中移出。这可通过任何合适的方法如过滤、离心分离来进行。沉淀的物质然后可用例如水、特别是去离子水洗涤许多次。然后可通过热处理除去剩余的水。优选地,沉淀的物质被加热至50-150℃范围内、更优选60-130℃范围内的温度,并保持在这样的温度下1-24小时范围内、优选5-15小时范围内的时间。或者,沉淀的物质可在施加真空下加热至较低的温度。本领域技术人员将能够容易地确定用于这样的方法中的合适的温度和压力组合。
一旦沉淀的物质是干燥的,就需要一些步骤来提供期望的催化剂。这些是步骤iv)形成催化剂颗粒;和v)煅烧所形成的催化剂颗粒。然而,在这些步骤之前、之间、期间或之后可进行其它步骤。
在已经沉淀本体金属氧化物之后,碱金属助催化剂可在单独的步骤中被引入催化剂中。该步骤可包括可通过例如孔体积/初湿含浸法进行的浸渍。其它合适的浸渍/沉积法将是本领域技术人员已知的。在这样的方法中的合适的助催化剂来源包括但不限于待使用的碱金属的碳酸盐、硝酸盐、氢氧化物和乙酸盐。该步骤可在步骤iii)至v)的任何一个之前或之后应用到沉淀物质。此外,可在浸渍之后施加单独的干燥和煅烧步骤。
在本发明的一个可替代实施方式中,碱金属助催化剂可在共研磨步骤中被引入催化剂材料中。例如,碱金属盐可在干燥后与沉淀物质和任选的待引入的粘合剂一起共研磨。
或者,碱金属助催化剂可在沉淀步骤期间引入。在该实施方式中,待作为助催化剂引入的碱金属可作为单独的材料或作为沉淀物本身或二者来提供。
粘合剂(如果存在)可与沉淀物质在步骤iii)之前或之后进行组合。
来自步骤iii)的干燥的沉淀物质中的至少一部分还可能在与粘合剂组合之后、在步骤iv)中形成催化剂颗粒之前经受进一步的煅烧步骤。
沉淀物质可通过本领域已知的任何合适的手段形成为催化剂颗粒,所述手段包括但不限于粒化和挤出。催化剂颗粒可以是球形、丸状、圆柱形、环形、或多孔丸状,其可以是多叶的或沟纹的,如四叶或三叶型横截面。
催化剂颗粒的长优选在1-20mm范围内。
步骤v)和任何其它点处的煅烧优选在300-800℃范围内、更优选在350-700℃范围内的温度下进行。
本发明还提供了一种用于分解气体流中的氧化亚氮的方法。待提供的气体流是包含基于所述流的总重量50ppmv至50体积%氧化亚氮的任何气体流。优选地,气体流包含50ppmv至40体积%的氧化亚氮。优选地,气体流是化学工艺的尾气流。尾气含有氧化亚氮的通常的化学工艺是用于生产硝酸、己内酰胺和己二酸的那些化学工艺。尾气流中可存在氧化亚氮的其它工艺包括化石燃料的燃烧、尤其是煤和废物焚烧。
优选地,气体流包含最多35重量%的水、更优选最多20重量%的水、甚至更优选最多16重量%的水、最优选最多10重量%的水。
优选地,气体流包含1ppmv至10体积%的一氧化氮和二氧化氮(NOx)、更优选5ppmv至5体积%的NOx
气体流可还包含氧,其优选在0.1体积%至10体积%范围内、更优选在0.25体积%至6体积%的范围内。
气体流优选包含最多50ppmv的氨、更优选最多35ppmv的氨、甚至更优选最多20ppmv的氨。
气体流在与本发明的催化剂接触之前可已经经受其它处理。例如,气体流可已经经受催化脱硝(DeNOx)步骤。脱硝是本领域熟知的用于除去式NOx(例如NO、NO2)的氮氧化物的术语。
气体流与本发明的催化剂在至少250℃、优选至少300℃、最优选至少320℃的温度下接触。温度优选最高750℃、更优选最高700℃。
合适的气时空速(GHSV)在1000-200000h-1内、优选GHSV在2000-150000h-1内。
优选地,气体与催化剂在至少大气压的压力下接触。压力优选最大20巴、更优选最大15巴。
优选地,本发明的用于分解氧化亚氮的方法除去气体流中的至少90重量%、更优选至少95重量%且最优选至少98重量%的氧化亚氮。
本发明现在将通过下面的实施例进行说明,所述实施例不旨在限制本发明。
实施例1(比较催化剂前体)
Co:Zn摩尔比为6:1的氢氧化钴和碳酸锌使用氢氧化钠沉淀以得到混合氧化物。沉淀物质被过滤、用去离子水洗涤并在120℃下干燥,之后在500℃煅烧、磨碎和筛分。对于该材料,氧化铝以在最终材料中得到10重量%的量混合。然后,材料被研磨并成形为挤出物。挤出物在120℃下干燥并在300℃下煅烧3小时。该材料称作催化剂1。该材料的体积密度为1.17kg/l。
实施例2(本发明催化剂前体)
在容器中,将7.5升的去离子水和540g的氢氧化钠在连续搅拌下混合并升高温度到80℃。将6升去离子水、1025ml硝酸(701.5g硝酸/升)和300ml的硝酸铝溶液添加到该混合物。硝酸铝溶液通过将勃姆石溶解在硝酸中来制备,并含有112.4g氧化铝/L和29g/L游离硝酸。将450g氢氧化钴和100g碳酸锌逐渐添加到该混合物。所得溶液的pH保持恒定在10.0,且该溶液在80℃下在连续搅拌下老化4小时。
所得沉淀物质被过滤并用10升60℃的温去离子水洗涤。该物质然后在120℃下干燥至少6小时并磨碎至小于0.15mm粒度。其然后被研磨并形成为挤出物。该挤出物在120℃下干燥并在500℃下煅烧3小时。该材料的体积密度为0.78kg/l。该材料称作催化剂2。
实施例3
催化剂1和2各自负载在石英反应管中并测试在氧化亚氮分解反应中的活性。基于压碎且筛分的颗粒的GHSV为8000h-1。进料组成如下:N2O:1300ppmv,NO:50ppmv,O2:2.5体积%,H2O:0.75体积%,NH3:5ppmv,其余为氩气。压力保持在6巴且温度以20℃梯度增加。
该实施例的结果显示在图1中。
实施例4
催化剂1和2使用碳酸钾的溶液浸渍(孔体积浸渍至初湿)以得到1.0重量%的目标钾负荷。钾浸渍后,催化剂在120℃下干燥2小时并在500℃下煅烧4小时。催化剂1和2的钾浸渍的形式分别称作催化剂3和4。
实施例5
催化剂3(比较)和催化剂4(本发明)的尺寸范围为40-80目的压碎并筛分的颗粒各自负载在石英反应管中并测试在氧化亚氮分解反应中的活性。基于压碎且筛分的催化剂颗粒的GHSV为8000h-1。进料组成如下:N2O:1300ppmv,NO:50ppmv,O2:2.5体积%,H2O:0.75体积%,NH3:5ppmv,其余为氩气。反应器压力保持在6巴。催化剂的氧化亚氮分解活性在260-560℃的温度下通过以20℃梯度增加温度进行测量。使用质谱测量的气体组成来计算氧化亚氮转化。结果显示在图2中。
对于本发明催化剂(催化剂4),与不含添加的碱金属助催化剂的催化剂2相比,90%氧化亚氮分解的温度降低超过100℃。相比之下,通过添加钾至催化剂1而制备的催化剂3(比较)对于氧化亚氮的分解完全无活性。
通过将氧化铝源添加至钴-锌前体沉淀混合物而制备的材料与没有氧化铝源添加而制备的钴-锌材料在机械和催化性质二者方面非常不同。在沉淀过程中添加氧化铝源提供了可被挤出的材料(实施例4)并具有比实施例3中的材料实质上更低的体积密度。通过将钾作为助催化剂引入,催化剂4对于氧化亚氮分解具有高度活性。
实施例6(本发明)
根据实施例2中所述的沉淀、洗涤和干燥步骤制备混合氧化物物质。一部分沉淀物质被煅烧并与干燥的物质混合,使得干燥的:煅烧的物质的质量比率为60:40。将15重量%的氧化铝、挤出助剂和胶溶剂添加到该混合物中,并在研磨机中混合,通过模具压实并挤出以获得2.5mm的三叶型。挤出物在120℃下干燥至少12小时并在450℃下煅烧3小时。
挤出物的体积密度为1.03kg/L。侧压碎强度为9.8N/mm。
挤出物用碳酸钾溶液浸渍以得到1.0重量%的K负荷。浸渍的物质通过吹热空气进行干燥并在450℃下煅烧3小时。该材料称作催化剂5。其具有的体积密度为1.01kg/L以及侧压碎强度为8.09N/mm。
实施例7(本发明)
根据实施例2中所述的沉淀、洗涤和干燥步骤制备混合氧化物物质。在与3重量%石墨干燥混合后,干燥的物质被压制成3×3mm尺寸的片。所述片然后在500℃下煅烧3小时。顶压碎强度测定为84N/片。
一部分材料通过用碳酸钾溶液进行孔体积浸渍而进行浸渍,以得到1.0重量%的目标钾负荷。钾浸渍后,材料在120℃下干燥2小时,并在500℃下煅烧4小时。该材料称作催化剂6。
单独部分材料通过用氢氧化铯溶液进行孔体积浸渍而进行浸渍,以得到2.0重量%的目标铯负荷。铯浸渍后,材料在120℃下干燥2小时,并在500℃下煅烧4小时。该材料称作催化剂7。
实施例8(本发明)
根据实施例2中所述的沉淀、洗涤和干燥步骤制备混合氧化物物质。干燥材料与10重量%的氧化铝、3重量%的石墨混合并压制成3×3mm的片。所述片然后在450℃下煅烧3小时。片的体积密度为1.09kg/L以及侧压碎强度为12.64N/mm。
所述片用碳酸钾溶液浸渍以得到1重量%的钾负荷。浸渍的材料通过吹热空气来干燥并在450℃下煅烧3小时。该材料称作催化剂8。其体积密度为1.09kg/L,以及侧压碎强度为13.08N/mm。
实施例9(本发明)
根据实施例2中所述的沉淀、洗涤和干燥步骤制备混合氧化物物质。一部分沉淀物质被煅烧并与干燥的物质混合,使得干燥的:煅烧的物质的质量比率为60:40。该混合物进一步与10重量%氧化铝、3重量%石墨混合并压制成3×3mm片。所述片然后在450℃下煅烧3小时。所述片的体积密度为1.05kg/L,以及顶压碎强度为130N。
所述片用碳酸钾溶液浸渍以得到1重量%的K负荷。浸渍的材料通过吹热空气来干燥并在450℃下煅烧3小时。该材料体积密度为1.05kg/L并称作催化剂9。
实施例10(本发明)
催化剂5-9的尺寸范围为40-80目的压碎并筛分的颗粒各自负载在石英反应管中并测试在氧化亚氮分解反应中的活性。基于压碎且筛分的颗粒的GHSV为8000h-1。进料组成如下:N2O:1300ppmv,NO:50ppmv,O2:2.5体积%,H2O:0.75体积%,NH3:5ppmv,其余为氩气。反应器压力保持在6巴。催化剂的氧化亚氮分解活性在260-560℃的温度下通过以20℃梯度增加温度进行测量。
对于催化剂5的结果显示在图3中,对于催化剂6和7的结果显示在图4中。对于催化剂8和9的结果显示在图5中。
实施例11(本发明)
催化剂6的尺寸范围为40-80目的压碎并筛分的颗粒各自负载在石英反应管中并测试在氧化亚氮分解反应中的活性。基于压碎且筛分的颗粒的GHSV为8000h-1。进料组成如下:N2O:1300ppmv,NO:50ppmv,O2:2.5体积%,H2O:6.0体积%,NH3:5ppmv,其余为氩气。反应器处于大气压下。催化剂的氧化亚氮分解活性在260-560℃的温度下通过以20℃梯度增加温度进行测量。
催化剂6还在相同条件下但是在6.0体积%的水浓度下测试。
在这些条件和进料下测试的来自催化剂6的结果显示在图6中。
结果表明本发明的催化剂即使在进料中增加的水浓度下也表现良好。
实施例12
催化剂5、6、8和9以与实施例10相似的方式测试,压力和GHSV保持相同,除了进料组成为以下:N2O:1300ppmv;NO:1000ppmv;NO2:500ppmv;O2:2.5体积%;H2O:0.75体积%;NH3:0ppmv;其余为氩气。
图7中显示的结果证实了即使当进料中存在高浓度的NO和NO2时,所述催化剂也是有活性的。
实施例13
测试了催化剂6在高温下在进料中存在水的情况下的稳定性。基于压碎且筛分的颗粒的GHSV为100,000h-1。进料组成如下:N2O:750ppmv、NO:50ppmv、O2:2.8体积%、H2O:3.0体积%、NH3:0ppmv、其余为氩气。反应器压力保持在10巴。反应器温度保持在675℃下大约140小时,每小时测量催化剂上的氧化亚氮转化率。
该测试的结果显示在图8中。观察到氧化亚氮的完全转化,且催化剂6在整个该测试期间没有显示出氧化亚氮分解活性的下降,表明该催化剂即使在进料中存在3体积%水、在675℃的温度下也是高度稳定的。

Claims (13)

1.一种用于分解氧化亚氮的催化剂,所述催化剂包含钴、锌和铝的氧化物以及碱金属助催化剂。
2.根据权利要求1所述的催化剂,其中所述碱金属助催化剂基于所述催化剂的总重量以至少0.1重量%存在。
3.根据权利要求1或权利要求2所述的催化剂,其中所述碱金属助催化剂选自钾、铯及其混合物。
4.根据权利要求1至3任一项所述的催化剂,其中所述催化剂还包含粘合剂,其选自碱土金属氧化物、稀土金属氧化物、氧化铝、氧化锌、氧化镁、二氧化硅及其混合物。
5.根据权利要求1至4任一项所述的催化剂,其中所述钴基于所述催化剂的总重量以至少20重量并最多75重量%的量存在。
6.根据权利要求1至5任一项所述的催化剂,其中所述锌基于所述催化剂的总重量以至少3重量并最多20重量%的量存在。
7.根据权利要求1至6任一项所述的催化剂,其中除所述粘合剂中存在的任何铝之外的所述铝基于所述催化剂的总重量以至少2重量并最多20重量%的量存在。
8.根据权利要求1至7任一项所述的催化剂,其中所述催化剂为挤出物形式并具有2-40N/mm的侧压碎强度。
9.根据权利要求1至7任一项所述的催化剂,其中所述催化剂为片的形式,并具有至少40N/片至最大300N/片范围内的顶压碎强度(基于3mmx3mm片)。
10.用于制备根据权利要求1至9任一项所述的催化剂的方法,所述方法包括以下步骤:
i)提供包含锌、钴和铝的金属盐的水溶液;
ii)使用水性碱溶液沉淀本体金属氧化物;
iii)干燥所沉淀的物质;
iv)从所沉淀的物质形成催化剂颗粒;和
v)煅烧由此形成的催化剂颗粒,
其中在步骤i)至v)中的至少一个期间或之后添加碱金属助催化剂。
11.根据权利要求10所述的方法,其中碱金属助催化剂在步骤ii)过程中被引入所述沉淀的物质中。
12.根据权利要求10或权利要求11所述的方法,其中碱金属助催化剂通过浸渍法引入所述沉淀的物质中。
13.用于分解气体流中的氧化亚氮的方法,所述方法包括以下步骤:
i)提供包含50ppmw至50重量%范围内氧化亚氮的气体流;
ii)将所述气体流与根据权利要求1-9中任一项所述或根据权利要求10-12任一项所述的方法中制得的催化剂在250-750℃范围内的温度下接触。
CN201480042078.8A 2013-07-31 2014-07-29 氧化亚氮分解催化剂 Active CN105408006B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN3457/CHE/2013 2013-07-31
IN3457CH2013 2013-07-31
PCT/EP2014/066317 WO2015014863A1 (en) 2013-07-31 2014-07-29 Nitrous oxide decomposition catalyst

Publications (2)

Publication Number Publication Date
CN105408006A true CN105408006A (zh) 2016-03-16
CN105408006B CN105408006B (zh) 2019-11-01

Family

ID=51300710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480042078.8A Active CN105408006B (zh) 2013-07-31 2014-07-29 氧化亚氮分解催化剂

Country Status (9)

Country Link
US (1) US9782722B2 (zh)
EP (1) EP3027296A1 (zh)
JP (2) JP6786388B2 (zh)
KR (1) KR102300976B1 (zh)
CN (1) CN105408006B (zh)
AU (1) AU2014298498B2 (zh)
CA (1) CA2918039C (zh)
RU (1) RU2684908C2 (zh)
WO (1) WO2015014863A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115245828A (zh) * 2021-12-17 2022-10-28 中国石油天然气股份有限公司 一种一氧化二氮分解催化剂

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL237044B1 (pl) * 2015-03-13 2021-03-08 Inst Nowych Syntez Chemicznych Nośnikowy katalizator do redukcji emisji tlenku azotu(I) z instalacji kwasu azotowego oraz sposób jego wytwarzania
US20180326354A1 (en) 2015-11-18 2018-11-15 Shell Oil Company Improved process for removing nox from exhaust gas
CZ2018398A3 (cs) * 2018-08-07 2019-10-02 Vysoká Škola Báňská - Technická Univerzita Ostrava Způsob přípravy katalyzátoru pro odstranění oxidu dusného z odpadních průmyslových plynů a katalyzátor připravený tímto způsobem
EP4126310A1 (en) * 2020-04-01 2023-02-08 Topsoe A/S A process for the removal of nox and dinitrogen oxide in process off-gas
CN113617373B (zh) * 2021-08-06 2023-07-25 大连海事大学 一种去除可挥发性有机物催化剂及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407652A (en) * 1993-08-27 1995-04-18 Engelhard Corporation Method for decomposing N20 utilizing catalysts comprising calcined anionic clay minerals

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2402519C3 (de) * 1974-01-19 1980-10-09 Kali-Chemie Ag, 3000 Hannover Autoabgasreinigungs-Katalysator
US3988263A (en) * 1974-10-02 1976-10-26 Union Oil Company Of California Thermally stable coprecipitated catalysts useful for methanation and other reactions
US4077995A (en) 1975-11-28 1978-03-07 Battelle Development Corporation Process for synthesizing low boiling aliphatic hydrocarbons from carbon monoxide and hydrogen
US3997582A (en) * 1975-12-08 1976-12-14 Battelle Development Corporation Process and catalyst for synthesizing a gaseous hydrocarbon mixture having a high methane content from carbon monoxide and hydrogen
US4039302A (en) 1976-01-05 1977-08-02 Battelle Development Corporation Process and catalyst for synthesizing low boiling (C1 to C3) aliphatic hydrocarbons from carbon monoxide and hydrogen
US5171553A (en) 1991-11-08 1992-12-15 Air Products And Chemicals, Inc. Catalytic decomposition of N2 O
US5242882A (en) * 1992-05-11 1993-09-07 Scientific Design Company, Inc. Catalyst for the production of nitric acid by oxidation of ammonia
FR2718371B1 (fr) * 1994-04-08 1996-05-03 Rhone Poulenc Chimie Catalyseurs de réduction des oxydes d'azote à base de spinelles.
DE4419486C2 (de) * 1994-06-03 1996-09-05 Daimler Benz Ag Katalysator, Verfahren zu dessen Herstellung sowie Verwendung des Katalysators
DE4420932A1 (de) * 1994-06-16 1996-01-11 Basf Ag Material zur katalytischen Reduktion von Stickoxiden
US5502019A (en) * 1994-07-15 1996-03-26 Philip Morris Incorporated Conversion of carbon monoxide using cobalt-based metal oxide catalysts
US6069111A (en) * 1995-06-02 2000-05-30 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas and method of manufacturing thereof
US5705136A (en) 1995-11-13 1998-01-06 University Of Florida Research Foundation, Inc. Catalyzed decomposition of nitrogen oxides on metal oxide supports
DE19546481C2 (de) * 1995-12-13 1998-08-13 Daimler Benz Ag Katalysator und Verfahren zu dessen Herstellung und Verwendung desselben
DE19546612A1 (de) * 1995-12-13 1997-06-19 Basf Ag Verfahren zur Reduktion von NOx aus Abgasen
JP2934838B2 (ja) * 1996-12-11 1999-08-16 工業技術院長 亜酸化窒素分解用触媒及び亜酸化窒素の除去方法
JPH11165818A (ja) 1997-12-03 1999-06-22 Murata Mach Ltd ラック
JP5072136B2 (ja) * 1998-07-24 2012-11-14 千代田化工建設株式会社 多孔性スピネル型複合酸化物の製造方法
JP4573320B2 (ja) * 2000-09-08 2010-11-04 昭和電工株式会社 亜酸化窒素分解触媒、その製造方法及び亜酸化窒素の分解方法
JP4513372B2 (ja) * 2004-03-23 2010-07-28 日産自動車株式会社 排ガス浄化用触媒及び排ガス浄化触媒
NL1026207C2 (nl) 2004-05-17 2005-11-21 Stichting Energie Werkwijze voor de decompositie van N2O, katalysator daarvoor en bereiding van deze katalysator.
US7605108B2 (en) * 2004-07-08 2009-10-20 Nissan Motor Co., Ltd. Catalyst, exhaust gas purification catalyst, and method for manufacturing same
US8088708B2 (en) * 2007-04-10 2012-01-03 Idemitsu Kosan Co., Ltd. Catalyst precursor substance, and catalyst using the same
WO2008142765A1 (ja) * 2007-05-18 2008-11-27 Nippon Shokubai Co., Ltd. 亜酸化窒素分解用触媒および亜酸化窒素含有ガスの浄化方法
WO2009073785A1 (en) * 2007-12-04 2009-06-11 Albemarle Netherlands, B.V. Bulk catalyst composition comprising bulk metal oxide particles
WO2009142520A1 (en) 2008-05-21 2009-11-26 Uniwersytet Jagiellonski Catalyst for low-temperature decomposition of dinitrogen oxide and a process for the preparation thereof
RU2430782C1 (ru) * 2010-08-09 2011-10-10 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Катализатор, способ его приготовления и способ окисления аммиака
GB201014950D0 (en) * 2010-09-08 2010-10-20 Johnson Matthey Plc Catalyst manufacturing method
JP2013071071A (ja) * 2011-09-28 2013-04-22 Nippon Shokubai Co Ltd 排ガス処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407652A (en) * 1993-08-27 1995-04-18 Engelhard Corporation Method for decomposing N20 utilizing catalysts comprising calcined anionic clay minerals
US5472677A (en) * 1993-08-27 1995-12-05 Engelhard Corporation Method for decomposing N2 O utilizing catalysts comprising calcined anionic clay minerals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115245828A (zh) * 2021-12-17 2022-10-28 中国石油天然气股份有限公司 一种一氧化二氮分解催化剂

Also Published As

Publication number Publication date
JP6922046B2 (ja) 2021-08-18
CA2918039C (en) 2022-07-12
KR102300976B1 (ko) 2021-09-10
US20160199817A1 (en) 2016-07-14
EP3027296A1 (en) 2016-06-08
CN105408006B (zh) 2019-11-01
US9782722B2 (en) 2017-10-10
KR20160037916A (ko) 2016-04-06
JP6786388B2 (ja) 2020-11-18
CA2918039A1 (en) 2015-02-05
AU2014298498A1 (en) 2016-03-10
RU2684908C2 (ru) 2019-04-16
RU2016106650A (ru) 2017-09-01
JP2020182945A (ja) 2020-11-12
WO2015014863A1 (en) 2015-02-05
RU2016106650A3 (zh) 2018-03-02
JP2016529099A (ja) 2016-09-23
AU2014298498B2 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
CN105408006A (zh) 氧化亚氮分解催化剂
JP6381131B2 (ja) アンモニア分解触媒及び該触媒の製造方法並びに該触媒を用いたアンモニアの分解方法
ES2221235T3 (es) Catalizador de fischer-trosch a base de cobalto.
JP7352487B2 (ja) アンモニア分解触媒
JP3553066B2 (ja) 純粋のもしくはガス混合物中に含有されている一酸化二窒素の接触分解の方法
EP3006404A1 (en) Ceria-zirconia mixed oxide and method for producing same
JP2014159031A (ja) 水素製造触媒およびそれを用いた水素製造方法
CN106902814A (zh) 一种催化燃烧用稀土基有序介孔整体式催化剂及其制备方法
CN106277020A (zh) 一种大比表面积微米氧化铈制备方法
RU2710375C2 (ru) Способ приготовления катализатора
JP3163374B2 (ja) メタノール合成用触媒
JPH11179204A (ja) 一酸化炭素及び二酸化炭素を含有するガスのメタン化触媒及びその製造方法
CN104495906A (zh) 一种γ-氧化铝掺杂稀土氧化物的制备方法
CN112717914B (zh) 一种甲烷二氧化碳重整催化剂及制备方法与应用
JP2013237045A (ja) アンモニアを窒素と水素に転化する触媒、当該触媒の製造方法及び当該触媒を用いたアンモニアの転化方法
CN109158120B (zh) 一种基于吸附增强作用的co2加氢催化剂及其制备方法
CN112007625A (zh) 一种α-氧化铝载体及制备方法和银催化剂与应用
JP3376380B2 (ja) メタノール合成用触媒
EP3318326B1 (en) A method for obtaining promoted cobalt catalysts for ammonia synthesis
JP2009254979A (ja) アンモニア分解触媒の製造方法
JP3275027B2 (ja) 銅系触媒の製造方法
JP2802415B2 (ja) メタノール合成用触媒
RU2554949C1 (ru) Медьцинковый катализатор для низкотемпературной конверсии оксида углерода водяным паром
JP2020179331A (ja) 水素製造用触媒の製造方法
JP5853620B2 (ja) 水素化触媒の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant