CN105322008B - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN105322008B
CN105322008B CN201510446730.9A CN201510446730A CN105322008B CN 105322008 B CN105322008 B CN 105322008B CN 201510446730 A CN201510446730 A CN 201510446730A CN 105322008 B CN105322008 B CN 105322008B
Authority
CN
China
Prior art keywords
semiconductor layer
nitride semiconductor
nitride
layer
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510446730.9A
Other languages
English (en)
Other versions
CN105322008A (zh
Inventor
兼近将
兼近将一
上田博之
富田英干
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Publication of CN105322008A publication Critical patent/CN105322008A/zh
Application granted granted Critical
Publication of CN105322008B publication Critical patent/CN105322008B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0895Tunnel injectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及半导体器件及其制造方法。HEMT和SBD两者形成在氮化物半导体衬底上。氮化物半导体衬底包括HEMT栅结构区和阳极电极区。第一层叠结构至少形成在HEMT栅结构区中,且包括第一至第三氮化物半导体层。至少在阳极电极区的一部分中形成第二层叠结构,且包括第一和第二氮化物半导体层。阳极电极接触第二氮化物半导体层的正面。至少在其中第二氮化物半导体层的正面接触阳极电极的接触区中,第二氮化物半导体层的正面被精加工成第二氮化物半导体层与阳极电极形成肖特基结的表面。

Description

半导体器件及其制造方法
相关申请的交叉引用
本申请要求于2014年7月29日提交的日本专利申请No.2014-153463的优先权,在此其公开内容通过引用并入本申请。
技术领域
本文公开了一种在公共氮化物半导体衬底上形成常关场效应晶体管和肖特基势垒二极管的技术。
背景技术
专利文献1(日本专利申请公布No.2011-205029)公开了一种利用控制沿异质结界面产生的二维电子气的栅电极电势在公共氮化物半导体衬底上形成肖特基势垒二极管(以下被称为SBD(肖特基势垒二极管))以及场效应晶体管(以下被称为HEMT(高电子迁移率晶体管))的技术。
HEMT容易展现常开特性,因为阈值电压用作负电势。非专利文献1(“采用具有Si衬底上的平面隔离的常关栅注入晶体管的GaN单片反相器IC”,Yasuhiro Uemoto等人,IEDM09-165-168,2009,IEEE)公开了一种在异质结界面和栅电极之间插入p型氮化物半导体层以实现常关特性的技术,其更容易控制。
在专利文献1中,HEMT由SBD保护。虽然专利文献1公开了在公共氮化物半导体衬底上形成HEMT和SBD的技术,但是该技术不采用p型层实现HEMT的常关。
虽然非专利文献1公开了通过采用p型层使HEMT常关,但是其中没有将SBD与HEMT一起使用。非专利文献1公开了使用其中HEMT不必由二极管保护的电路。
本说明书公开了一种技术,其在公共氮化物半导体衬底上形成通过采用p型层而常关HEMT和SBD。
发明内容
氮化物半导体不能容易地通过在其中注入受主杂质而转变为p型半导体。因此,当制造通过采用p型层而常关的HEMT时,采用其中p型层已经在结晶生长阶段进行结晶生长的层叠衬底。为此,在制造常关HEMT和SBD的过程中,当SBD和通过采用p型层而常关的HEMT形成在公共氮化物半导体衬底上时,准备包括p型层的层叠衬底,且随后在除其中形成HEMT的栅结构的区域之外的区域中执行p型氮化物半导体层的蚀刻和移除。更具体地,在形成SBD的区域中,从其中p型氮化物半导体层已经被蚀刻且已经暴露形成异质结界面的氮化物半导体层的状态制造SBD。
在以下说明中,在除其中形成栅结构的区域之外的区域中被蚀刻和移除的p型氮化物半导体层被称为“氮化物半导体移除层”,且在移除氮化物半导体移除层之后暴露的氮化物半导体层被称为“氮化物半导体保留层”。在HEMT区域中,氮化物半导体保留层用作电子供应层。
在形成SBD的区域中移除氮化物半导体移除层由此暴露氮化物半导体保留层的情况下,如果与氮化物半导体保留层形成肖特基结的阳极电极以及与氮化物半导体保留层形成欧姆结的阴极电极形成在氮化物半导体保留层上,则应获得SBD。但是,即使实际执行上述操作,也不能获得展现优选的整流特性的SBD。
如专利文献1中公开的,能在公共氮化物半导体衬底上形成HEMT和SBD。但是如果实现通过使用p型层而使HEMT常关的技术,则不能获得展现优选的整流特性的SBD。虽然非专利文献1公开了通过采用p型层使HEMT常关的技术,但是采用了不需要二极管的电路,以便应对在采用其中p型层已经结晶生长的层叠衬底时不能获得展现优选的整流特性的SBD的问题。
本说明书公开了一种在公共氮化物半导体衬底上形成通过采用p型层而常关的HEMT以及SBD两者的技术。
对即使阳极电极和阴极电极形成在通过蚀刻p型氮化物半导体移除层而暴露的氮化物半导体保留层的正面上,也不能获得展现优选的整流特性的SBD的原因进行研究。
研究结果发现,当通过蚀刻氮化物半导体移除层暴露氮化物半导体保留层时,对氮化物半导体保留层的暴露表面造成蚀刻损伤,且蚀刻损伤阻碍肖特基结形成在阳极电极和氮化物半导体保留层之间。结果进一步发现,如果实现防止蚀刻损伤出现的技术,防止蚀刻损伤不利地影响暴露表面的技术,和/或修复蚀刻损伤的技术,则变得能够通过在已经通过蚀刻氮化物半导体移除层而暴露的氮化物半导体保留层的正面上形成阳极电极和阴极电极而获得展现优选的整流特性的SBD。
由于这种发现,因此已经研发了其中在公共氮化物半导体衬底上形成常关HEMT和SBD两者的新颖的半导体器件。该半导体器件可包括如下结构。
氮化物半导体衬底可包括:其中形成HEMT的栅结构的HEMT栅结构区;以及其中形成SBD的阳极电极的阳极电极区。氮化物半导体衬底还可包括:至少在HEMT栅结构区中形成的层叠结构,且包括第一氮化物半导体层,结晶生长在第一氮化物半导体层的正面上的第二氮化物半导体层,以及结晶生长在第二氮化物半导体层的正面上的第三氮化物半导体层。
氮化物半导体衬底可还包括至少形成在阳极电极区的一部分中的层叠结构,且包括第一氮化物半导体层和第二氮化物半导体层。更具体地,第三氮化物半导体层至少不存在于阳极电极区的该部分中。SBD的阳极电极可接触第二氮化物半导体层的正面。
在上述说明中,第二氮化物半导体的带隙可大于第一氮化物半导体的带隙,且第三氮化物半导体可以是p型。至少在其中第二氮化物半导体层的正面接触阳极电极的接触区中,第二氮化物半导体层的正面可精加工成第二氮化物半导体层与阳极电极形成肖特基结的表面。
当第二氮化物半导体层的正面被精加工成与阳极电极形成肖特基结的正面时,可获得展现优选的整流特性的SBD。可获得其中在公共氮化物半导体衬底上形成通过采用p型层而常关的HEMT以及展现优选的整流特性的SBD的半导体器件。
例如,当AlO膜暴露在第二氮化物半导体层的正面上时,至少在第二氮化物半导体层的正面接触阳极电极的接触区中,第二氮化物半导体层的正面可精加工成与阳极电极形成肖特基结的正面。
可替选地,也通过形成包括深层和表面层的第二氮化物半导体层并建立表面层的带隙大于深层的带隙的关系,第二氮化物半导体层的正面可精加工成与阳极电极形成肖特基结的正面。
在通过在包括氮气的气体中对半导体衬底执行热处理,通过蚀刻第三氮化物半导体层暴露第二氮化物半导体层之后,第二氮化物半导体层的正面也可精加工成与阳极电极形成肖特基结的正面。
可替选地,可通过采用难以对第二氮化物半导体层造成蚀刻损伤的蚀刻方法蚀刻第三氮化物半导体层以暴露第二氮化物半导体层。同样在这种情况下,第二氮化物半导体层的正面可精加工成与阳极电极形成肖特基结的正面。
如果在形成阳极电极的阳极电极区中没有移除第三氮化物半导体层,则第二氮化物半导体层的正面可精加工成与阳极电极形成肖特基结的正面。例如,在第三氮化物半导体层的结晶生长过程中,通过防止第三氮化物半导体层在将要形成阳极电极的区域中结晶生长,第二氮化物半导体层的正面可精加工成与阳极电极形成肖特基结的正面。
可在其中形成阳极电极的区域的整个区域中移除第三氮化物半导体层。可替选地,在其中形成阳极电极的区域的一部分中,第三氮化物半导体层可层叠在第二氮化物半导体层的正面上。当存在于其中不存在第三氮化物半导体层且阳极电极和第二氮化物半导体层彼此直接接触的接触区中的第二氮化物半导体层的正面被精加工成与阳极电极形成肖特基结的正面时,可获得展现优选的整流特性的SBD。可存在于其中形成了阳极电极的阳极电极区的该部分中的第三氮化物半导体层改善SBD的击穿电压特性。
本说明书还公开了一种制造包括了形成在公共氮化物半导体衬底上的HEMT和SBD的半导体器件的方法。制造方法可包括:准备包括结晶生长在第一氮化物半导体层的正面上的第二氮化物半导体层,以及结晶生长在第二氮化物半导体层的正面上的第三氮化物半导体层的氮化物半导体的层叠衬底;通过至少在其中将要形成SBD的阳极电极的区域中移除第三氮化物半导体层而暴露第二氮化物半导体层;以及在移除中暴露的第二氮化物半导体层的暴露表面上形成HEMT的阳极电极。这种制造方法还包括精加工移除中暴露的第二氮化物半导体层的暴露表面以便第二氮化物半导体层的暴露表面与阳极电极形成肖特基结。
在包括上述精加工的情况下,展现优选的整流特性的SBD的制造变成可能。
如下,各种方法可用于精加工。
(1)例如,包括Al的氮化物半导体可用作第二氮化物半导体层。在这种情况下,当蚀刻第三氮化物半导体层以暴露第二氮化物半导体层时,可采用氧化第二氮化物半导体层的暴露表面的气体。在这种情况下,第二氮化物半导体层的暴露表面可被精加工成与阳极电极形成肖特基结的正面。
(2)可替选地,第二氮化物半导体层可由具有较大带隙的表面层和具有较小带隙的深层构成。可蚀刻第三氮化物半导体层以暴露表面层。在这种情况下,第二氮化物半导体层的暴露表面可被精加工成与阳极电极形成肖特基结的正面。
(3)可替选地,可在含氮的气体中对具有通过移除而暴露的第二氮化物半导体层的氮化物半导体衬底执行热处理。在这种情况下,暴露表面可恢复成与阳极电极形成肖特基结的正面。
可替选地,在将要形成SBD的阳极电极的至少一部分区域中,可在第三氮化物半导体层的移除中湿蚀刻第三氮化物半导体层以暴露第二氮化物半导体层。当湿蚀刻第三氮化物半导体层时,可更小的损伤第二氮化物半导体层的暴露表面。由此,在阳极电极形成在暴露表面上时可获得形成肖特基结的正面。而且,可在暴露中包括精加工。这意味着通过湿蚀刻的暴露用于精加工以及暴露的目的。
根据本说明书,通过采用p型层而常关的HEMT以及展现优选的整流特性的SBD可形成在公共氮化物半导体衬底上。
附图说明
图1是根据第一实施例的半导体器件的截面图;
图2是根据第二实施例的半导体器件的截面图;
图3示出制造根据第二实施例的半导体器件的方法的第一步;
图4示出制造根据第二实施例的半导体器件的方法的第二步;
图5示出制造根据第二实施例的半导体器件的方法的第三步;
图6示出制造根据第二实施例的半导体器件的方法的第四步;
图7是根据第三实施例的半导体器件的截面图;以及
图8示出制造根据第三实施例的半导体器件的方法的第一步。
具体实施方式
将列出本说明书中公开的技术的特征。将在下文说明的条款分别具有独立的技术适用性。所有的单独或组合的条款都涵盖在本申请的技术范围内。
(第一特征)将第二氮化物半导体层的正面上暴露的AlO膜的厚度调整为在阳极电极和第二氮化物半导体层之间实现肖特基结以及在阴极电极和第二氮化物半导体层之间实现欧姆结的厚度。
(第二特征)所有作为电子传输层的第一氮化物半导体层,作为电极供应层的第二氮化物半导体层的深层,在阳极电极和第二氮化物半导体之间形成肖特基结的第二氮化物半导体的表面层(其可用作与制造方法有关的氮化物半导体保留层),以及使HEMT常关的第三氮化物半导体层(其可用作与制造方法有关的氮化物半导体移除层)都由氮化物半导体制成。
(第三特征)带隙的大小关系满足如下关系:第一氮化物半导体层<第二氮化物半导体的深层<第二氮化物半导体的表面层。
(第四特征)第二氮化物半导体的表面层的厚度为几纳米,通过其在阳极电极和第二氮化物半导体的深层之间形成肖特基结,且在阴极电极和第二氮化物半导体层之间形成欧姆结。
(第五特征)包含Al的氮化物半导体用作氮化物半导体保留层。当蚀刻氮化物半导体移除层时,通过采用包含氧的蚀刻气体蚀刻氮化物半导体移除层(至少在蚀刻终止前的周期期间)。根据这种技术,蚀刻并移除氮化物半导体移除层,且氧化通过蚀刻暴露的氮化物半导体保留层的正面,且AlO膜暴露在氮化物半导体保留层的正面上。当AlO膜暴露在氮化物半导体保留层的正面上时,消除了蚀刻损伤的不利影响,且与氮化物半导体保留层形成肖特基结的阳极电极可通过在AlO膜的表面上形成金属膜而形成。即,当具有可计算为能形成肖特基结的功函数的金属形成在氮化物半导体保留层的正面上时,可根据计算获得金属膜和氮化物半导体保留层之间形成肖特基结的结果。
(第六特征)替代通过采用含氧的蚀刻气体的氮化物半导体移除层的蚀刻,可通过采用不含氧的蚀刻气体蚀刻氮化物半导体移除层,且由于蚀刻而暴露的氮化物半导体保留层的正面可暴露于氧等离子体。通过将氮化物半导体保留层的正面暴露于氧等离子体,可获得其中AlO膜暴露在氮化物半导体保留层的正面上的状态。
(第七特征)替代暴露氮化物半导体保留层的正面上的AlO膜的方法,可通过AlxGa1-xN的深层以及AlzGawIn1-z-wN的表面层形成氮化物半导体保留层,且阳极电极可形成在表面层的正面上。替代AlzGawIn1-z-wN,可采用AlzGawIn1-z-wN的氧化物的层。在上述说明书中,满足0<x<1且0<1-z-w<1。
(第八特征)为了获得第七特征的结构,在外延生长步骤中,形成其中形成用作氮化物半导体保留层的深层的AlxGa1-xN层,在其上层叠用作氮化物半导体保留层的表面层的AlzGawIn1-z-wN层,并且在其上层叠用作氮化物半导体保留层的表面层的p型氮化物半导体层的衬底。在其中形成HEMT的栅结构的栅结构区中,保持p型氮化物半导体层。因此,在其中形成HEMT的栅结构的区域中,也保留AlzGawIn1-z-wN的表面层。在其中形成SBD的阳极电极的阳极电极区中,移除p型氮化物半导体层并保留AlzGawIn1-z-wN的表面层。根据制造方法,可获得其中通过AlxGa1-xN的深层以及AlzGawIn1-z-wN的表面层(或其氧化物)形成的氮化物半导体保留层,且阳极电极形成在AlzGawIn1-z-wN的正面(或其氧化物)上的结构。
通常,当通过具有较小的带隙的深层以及具有较大的带隙的表面层形成氮化物半导体保留层时,通过蚀刻氮化物半导体移除层暴露的表面层的正面可精加工成与阳极电极形成肖特基结的正面。
(第九特征)在通过蚀刻氮化物半导体移除层而暴露氮化物半导体保留层时,可采用对氮化物半导体保留层造成较小损伤的蚀刻方法。例如,当通过采用蚀刻氮化物半导体移除层且不蚀刻氮化物半导体保留层的条件来湿蚀刻氮化物半导体移除层时,在可以蚀刻氮化物半导体移除层的同时很难对氮化物半导体保留层造成蚀刻损伤。当以此方式已经暴露氮化物半导体保留层时,形成肖特基结的金属膜可形成在氮化物半导体保留层的正面上。例如,已经通过引用并入本文的日本专利申请公布No.2012-60066的公开内容公开了采用电化学法的湿蚀刻方法,其可被采用。
(第十特征)替代施加较小蚀刻损伤的蚀刻方法的采用,可增加修复蚀刻损伤作为其替换。在对氮化物半导体保留层造成的许多蚀刻损伤中,氮原子从氮化物半导体保留层中脱离。当其上已经产生氮缺陷的氮化物半导体保留层的正面被热处理,同时暴露在含氮的氨气等时,可修复氮缺陷。随后形成阳极电极以及形成肖特基结。
(第十一特征)采用其中p型第三氮化物半导体层结晶生长在栅结构区中且p型第三氮化物半导体层没有结晶生长在阳极电极区中的氮化物半导体衬底。因为在阳极电极区中不必执行蚀刻,因此第二氮化物半导体层的正面可保持为与阳极电极形成肖特基结的正面。
本说明书中公开的某些技术特征可如下归纳。常关HEMT以及SBD形成在公共氮化物半导体衬底上。
公共氮化物半导体衬底具有包括第一氮化物半导体层,结晶生长在第一氮化物半导体层的正面上的第二氮化物半导体层(对应于氮化物半导体保留层),以及结晶生长在第二氮化物半导体层的正面上的第三氮化物半导体层(对应于氮化物半导体移除层)的层叠结构。
第二氮化物半导体层的带隙大于第一氮化物半导体层的带隙。
第三氮化物半导体层是p型。
第三氮化物半导体层不存在于除其中形成HEMT的栅结构的区域之外的区域中。但是,更具体地,第三氮化物半导体层可存在于其中形成SBD的阳极电极的区域的一部分中。
SBD的阳极电极形成在第二氮化物半导体层的正面上。
第二氮化物半导体层的正面已经精加工成在第二氮化物半导体层和阳极电极之间形成肖特基结的正面。
根据常规技术,对第二氮化物半导体层的正面赋予蚀刻损伤以粗糙化正面。由于此,即使阳极电极形成在粗糙的正面上,肖特基结也不会形成在第二氮化物半导体层和阳极电极之间。在本说明书的技术中,为了解决该问题,当阳极电极形成在正面上时,在第二氮化物半导体层和阳极电极之间形成肖特基结的正面在阳极电极的实际形成之前形成。
具体实施方式
(第一实施例)
如图1中所示,在根据第一实施例的半导体器件中,HEMT以及SBD形成在一个相同的氮化物半导体衬底28上。HEMT形成在区域A中,且SBD形成在区域B中。
根据该实施例的氮化物半导体衬底28包括由衬底2,结晶生长在衬底2的正面上的缓冲层4,结晶生长在缓冲层4的正面上的第一氮化物半导体层6,结晶生长在第一氮化物半导体层6的正面上的第二氮化物半导体层8,以及结晶生长在第二氮化物半导体层8的正面上的第三氮化物半导体层18构造的层叠结构。
图1示出在除其中形成栅电极16(将在下文说明)的区域之外的区域中蚀刻并移除第三氮化物半导体层18之后的状态,并仅示出保留区18a。
第一氮化物半导体层6是用作HEMT的电子传输层的层,且由氮化物半导体晶体制成。第二氮化物半导体层8是用作HEMT的电子供应层的层,且由氮化物半导体晶体制成。第一氮化物半导体层6的带隙小于第二氮化物半导体层8的带隙,且二维电子气存在于沿第一氮化物半导体层6的异质结界面的区域中。第三氮化物半导体层18由p型氮化物半导体晶体制成,并控制HEMT以便HEMT具有常关特性(将在下文说明)。
氮化物半导体衬底28的一个目的是提供第一氮化物半导体层6和第二氮化物半导体层8之间的异质结。缓冲层4可以是用作基底的层,通过其第一氮化物半导体层6可结晶生长在缓冲层4的正面上,且不必为氮化物半导体。衬底2可以是用作基底的层,通过其缓冲层4可结晶生长在衬底2的正面上,且不必为氮化物半导体。如果氮化物半导体用作衬底2,则缓冲层4可被省略。当采用缓冲层4时,除氮化物半导体衬底之外的Si衬底、SiC衬底或蓝宝石衬底可用作衬底2。
第三氮化物半导体层18可以是p型层,其在异质结界面上形成耗尽层,且不必是氮化物半导体。但是,因为层18将结晶生长在第二氮化物半导体层8的正面上,因此氮化物半导体的晶体层的采用是实用的。
从上述说明中显而易见的,说明书中提及的氮化物半导体衬底是提供第一氮化物半导体层6、第二氮化物半导体层8以及p型第三氮化物半导体层18的衬底。
在本实施例中,Si衬底用作衬底2,AlGaN用作缓冲层4,i型GaN用作第一氮化物半导体层6,i型AlxGa1-xN用作第二氮化物半导体层8,且p型AlyGa1-yN用作第三氮化物半导体层18。GaN的带隙小于AlxGa1-xN的带隙,其中满足0<x且y≤1。
如图1中所示,在除其中形成栅电极16(将在下文说明)的区域的整个区域中,通过蚀刻移除第三氮化物半导体层18,且暴露第二氮化物半导体层8的正面。特别地,第二氮化物半导体层8包含Al,且氧化第二氮化物半导体层8的表面。为此,AlO膜10暴露在第二氮化物半导体层8的正面上。
在HEMT形成区A中,在其上暴露AlO膜10的第二氮化物半导体层8的正面上,形成源电极14以及漏电极20。源电极14和漏电极20各由与第二氮化物半导体层8的正面形成欧姆结的金属膜制成。在源电极14和漏电极20之间的中间位置,即源电极14和漏电极20彼此隔离的位置,p型第三氮化物半导体层的部分18a保留,且栅电极16形成在部分18a的正面上。
如上所述,构成第一氮化物半导体层6的GaN的带隙小于构成第二氮化物半导体层8的AlxGa1-xN的带隙,且二维电子气形成在沿第一氮化物半导体层6的异质结界面的区域中。
P型第三氮化物半导体层的部分18a保留在面对异质结界面的位置处。耗尽层从p型第三氮化物半导体层18a朝向第二氮化物半导体层8和第一氮化物半导体层6延伸。当没有正电势施加至栅电极16时,面对栅电极16的区域中的异质结界面通过p型第三氮化物半导体层18a耗尽,且电子不能在源电极14和漏电极20之间移动。在源电极14和漏电极20之间设定截止状态。当正电势施加至栅电极16时,消除耗尽层,由此源电极14和漏电极20通过二维电子气彼此连接。在源电极14和漏电极20之间设定导通状态。根据上述说明,理解可在区域A中获得常关HEMT。其中移动电子的第一氮化物半导体层6是i型,且包含阻碍电子移动的少量杂质。因此HEMT具有低导通电阻。
在SBD形成区B中,阳极电极24和阴极电极26形成在其表面由AlO膜10覆盖的第二氮化物半导体层8的正面上。阴极电极26由与第二氮化物半导体层8的正面形成欧姆结的金属膜制成。与此相反,阳极电极24由与第二氮化物半导体层8的正面形成肖特基结的金属膜制成。以此方式,可获得具有优选的整流特性的SBD。正电流在沿第一氮化物半导体层6的异质结界面的区域中流动。正电压降小。
在上述说明中,HEMT的源电极14通过AlO膜10与第二氮化物半导体层8接触。因为AlO膜10具有高电阻,因此由于其间的AlO膜10的存在而会增加HEMT的导通电阻上升的风险。但是,当减小AlO膜10的厚度时,可将导通电阻的增加抑制为可忽略的水平。即使减小AlO膜10的厚度以便不增加导通电阻,肖特基结也会形成在阳极电极24和第二氮化物半导体层8之间。与上述相同的情况也适用于漏电极20,且可减小AlO膜10以不致使漏电极20和第二氮化物半导体层8之间电阻的增大。与上述相同的情况也适用于阴极电极26,且可减小AlO膜10的厚度以增大阴极电极26和第二氮化物半导体层8之间的电阻。即使在AlO膜10的厚度足够小以避免电阻增大时,肖特基结也可通过AlO膜10形成在阳极电极24和第二氮化物半导体层8之间。
应当注意,在源电极14、漏电极20以及阴极电极26的形成之前,可通过其中将要形成源电极14、漏电极20以及阴极电极26的区域蚀刻而预先移除AlO膜10。设置在预定区域中的AlO膜可通过采用氟化酸的湿法处理和/或采用氯气的干法处理而移除。
如果第二氮化物半导体层8的正面没有覆盖AlO膜10,则即使通过采用能与第二氮化物半导体层8形成肖特基结的材料形成阳极电极24,也不能获得展现优选的整流特性的肖特基结。当蚀刻第三氮化物半导体层18以暴露第二氮化物半导体层8的正面时,对第二氮化物半导体层8的正面造成蚀刻损伤。为此,阳极电极24不与第二氮化物半导体层8形成肖特基结。与此相反,当AlO膜10暴露在第二氮化物半导体层8的正面上时,没有蚀刻损伤,且阳极电极24与第二氮化物半导体层8形成肖特基结。
(第二实施例)
第二实施例中与第一实施例中相同的附图标记表示相同构件,省略相同的说明。将在下文仅说明第一实施例和第二实施例之间的不同方面。
如图2中所示,在根据第二实施例的半导体器件中,阳极电极24和第二氮化物半导体层8之间的接触部不同于第一实施例。在第二实施例中,即使在与阳极电极24接触的位置,也保留p型第三氮化物半导体层18的部分18b和18c。更具体地,创建其中p型第三氮化物半导体层18b和18c位于阳极电极24和第二氮化物半导体层8之间的接触部的左和右侧上的结构。
根据该结构,当反向电压施加至二极管时,耗尽层从p型第三氮化物半导体层18b以及18c朝向阳极电极24和第二氮化物半导体层8之间的接触部延伸,且提高击穿电压的电阻率。可实现所谓的JBC型肖特基二极管(结势垒可控肖特基二极管)或浮置结型肖特基二极管的结构。
(制造根据第二实施例的半导体器件的方法)
如下准备图3中的状态:准备氮化物半导体衬底。氮化物半导体衬底2包括其中缓冲层4外延生长在衬底2的正面上,第一氮化物半导体层6外延生长在缓冲层4的正面上,第二氮化物半导体层8外延生长在第一氮化物半导体层6的正面上以及第三氮化物半导体层18外延生长在第二氮化物半导体层8的正面上的层叠结构。难以通过将杂质注入氮化物半导体而将氮化物半导体调整为p型。如果第三氮化物半导体层18在衬底形成期间形成,则可生长晶体层。
如下准备图4中的状态:掩模形成在第三氮化物半导体层18的正面上,掩模已经被图案化以便第三氮化物半导体层18a保留在其中将要设置栅电极16的部分中,以及第三氮化物半导体层18b和18c保留在其中将要设置阳极电极24的部分中。随后,干法蚀刻并移除第三氮化物半导体层18的正面以暴露第二氮化物半导体层8的正面。
在干法蚀刻期间(至少第二氮化物半导体层8的正面暴露之前的周期),含氧气体用于干法蚀刻。由于此,氧化第二氮化物半导体层8的暴露表面,且AlO膜10形成在暴露表面上。因为i型AlxGa1-xN用作第二氮化物半导体层8,因此由于Al的氧化而形成AlO膜10。随后移除掩模。
替代上述操作,不含氧的气体可用于干法蚀刻第三氮化物半导体层18以暴露第二氮化物半导体层8的正面。在这种情况下,在干法蚀刻之后,在第二氮化物半导体层8的正面上照射氧等离子体。而且根据此,可获得其中AlO膜10暴露在第二氮化物半导体层8的暴露的正面上的状态。
如下准备图5中的状态:形成用于元件隔离的绝缘区22。这里,将Fe,Zn,C,Al,Ar,N,B,P或As注入用作绝缘区22的区域中。绝缘区22形成为具有一深度以便绝缘区22延伸穿过第二氮化物半导体层8以到达第一氮化物半导体层6。由于此,HEMT形成区A和SBD形成区B彼此绝缘并隔离。
如下准备图6中的状态:在其上暴露AlO膜10的第二氮化物半导体层8的表面上,形成源电极14、漏电极20、阳极电极24以及阴极电极26。阳极电极24不仅与第二氮化物半导体层8接触,而且还与p型氮化物半导体层18b和18c接触。
而且,栅电极16形成在p型氮化物半导体层18a的正面上。
最后,形成钝化膜12。如上所述,制造图2中所示的结构。
特别地,存在于其中将要形成源电极14、漏电极20以及阴极电极26的区域中的AlO膜10可在形成源电极14、漏电极20以及阴极电极26之前移除。
(第三实施例)
将在下文参考图7说明根据第三实施例的半导体器件。根据本实施例的半导体器件,如图8中所示,通过采用其中第二氮化物半导体的表面层30(以下称为‘第二氮化物半导体表面层30’)结晶生长在第二氮化物半导体的深层8(以下称为‘第二氮化物半导体深层8’)和第三氮化物半导体层18之间的衬底而制造。即,第二氮化物半导体层32由第二氮化物半导体深层8和第二氮化物半导体表面层30构造。
在本实施例中,GaN用作第一氮化物半导体层6,i型AlxGa1-xN用作第二氮化物半导体深层8,AlzGawIn1-z-wN用作第二氮化物半导体表面层30,且p型AlyGa1-yN用作第三氮化物半导体层18。其带隙满足如下关系:第一氮化物半导体6<第二氮化物半导体深层8<第二氮化物半导体表面层30。没有特别限制第三氮化物半导体层18的带隙。在本实施例中,第三氮化物半导体层18的带隙几乎等于第二氮化物半导体深层8的带隙。
在本实施例中,如图7中所示,第二氮化物半导体表面层30插入p型第三氮化物半导体层18a和第二氮化物半导体深层8之间。即使插入第二氮化物半导体表面层30,也能保持HEMT的阈值电压通过p型第三氮化物半导体层18a升至正值的有利效果,且可使HEMT常关。
而且,第二氮化物半导体表面层30插入阳极电极24和第二氮化物半导体深层8之间。在本实施例中,蚀刻第三氮化物半导体层18以暴露第二氮化物半导体表面层30的正面,且阳极电极24形成在第二氮化物半导体表面层30的正面上。
如上所述,当蚀刻第三氮化物半导体层18以暴露第二氮化物半导体深层8的正面时,形成在第二氮化物半导体深层8的正面上的阳极电极24不会与第二氮化物半导体深层8的正面形成肖特基结。与此相反,当蚀刻第三氮化物半导体层18以暴露第二氮化物半导体表面层30的正面时,形成在第二氮化物半导体表面层30的表面上的阳极电极24与第二氮化物半导体表面层30的表面形成肖特基结。不管形成肖特基结与否,因为第二氮化物半导体深层8和第二氮化物半导体表面层30具有不同带隙,因此产生这种差异。
在本实施例中,源电极14、漏电极20以及阴极电极26贯穿第二氮化物半导体表面层30,且直接与第二氮化物半导体深层8的正面接触。
为了获得这种结构,在源电极14、漏电极20以及阴极电极26形成之前,可在将要沉积这些电极的位置处蚀刻第二氮化物半导体表面层30,由此形成开口,且随后将源电极14、漏电极20以及阴极电极26形成为分别贯穿开口。
开口可不通过蚀刻第二氮化物半导体表面层30形成。替代此,源电极14、漏电极20以及阴极电极26可形成在第二氮化物半导体表面层30的表面上且随后经历热处理。通过执行热处理,构成源电极14、漏电极20以及阴极电极26的金属扩散进入第二氮化物半导体表面层30中,由此源电极14、漏电极20以及阴极电极26可因此与第二氮化物半导体深层8欧姆接触。当执行热处理时,在热处理之后形成阳极电极24。因为阳极电极24没有热处理,因此阳极电极24可因此通过第二氮化物半导体表面层30与第二氮化物半导体深层8形成肖特基结。
图2中的结构可并入图7中的结构。更具体地,在阳极电极24的形成区的一部分中,可保留第三氮化物半导体层18b和18c。也在这种情况下,第二氮化物半导体表面层30类似地保留在阳极电极24的形成区中。当第三氮化物半导体层18b和18c保留在阳极电极24的形成区的该部分中时,可抑制泄漏电流。当第二氮化物半导体表面层30保留在阳极电极24的形成区中时,电流在SBD的正向上流动时发生的电压降降低,由此正向电流开始流动时的阳极和阴极之间的电压降低。不能获得具有小损耗的SBD。特别地,在这种情况下,与第三氮化物半导体层18b和18c的表面欧姆接触的电极优选形成为使第三氮化物半导体层18b和18c的电势等于阳极电极24的电势。
(第四实施例)
当蚀刻第三氮化物半导体层18以暴露第二氮化物半导体层8的表面时,第二氮化物半导体层8的表面上发生蚀刻损伤。在多数蚀刻损伤中,氮原子从氮化物半导体脱离。为此,在氨气存在的情况下对其中移除了第三氮化物半导体层18且第二氮化物半导体层8的表面已经由此暴露的氮化物半导体衬底执行热处理。此时,氮提供至氮化物半导体以修复蚀刻损伤。此后,当形成阳极电极24时,肖特基结形成在阳极电极24和第二氮化物半导体层8之间。在这种情况下,可不采用形成AlO膜的蚀刻条件。
(第五实施例)
可湿法蚀刻第三氮化物半导体18以暴露第二氮化物半导体层8。在这种情况下,对第二氮化物半导体层8的正面不造成蚀刻损伤。当阳极电极24形成在湿法蚀刻之后暴露的第二氮化物半导体层8的正面上时,肖特基结形成在阳极电极24和第二氮化物半导体层8之间。
在实施例中,虽然GaN用作第一氮化物半导体,但是也可采用其它氮化物半导体。例如,可采用AlGaN等。当AlGaN用作第一氮化物半导体时,AlInGaN等用作第二氮化物半导体。存在满足如下关系的各种组合:第一氮化物半导体的带隙<第二氮化物半导体的带隙。
而且,第三氮化物半导体层18a可仅结晶生长在图1中所示的栅电极16的形成区中。可替选地,第三氮化物半导体层可仅形成在第三氮化物半导体层18a、18b和18c的区域中。通过在第二氮化物半导体层8的表面的目标局部区域已经被掩模覆盖之后执行结晶生长以选择第三氮化物半导体层结晶生长的位置。
已经详细说明了本发明教导的具体实例,但是这些仅为示例性表示且因此不限制权利要求的范围。权利要求中说明的技术包括上文具体实例的改进和变型。例如,AlO膜可包括Ga。
说明书和附图中说明的技术特征可在技术上单独或以各种组合使用,且不限于原始要求保护的组合。而且,说明书和附图中说明的技术可同时实现多个目标,且其技术重要性在于实现这些目标的任一个。

Claims (7)

1.一种半导体器件,包括:
氮化物半导体衬底,在该氮化物半导体衬底中形成有高电子迁移率晶体管(HEMT)和肖特基势垒二极管(SBD)这两者,
其中,
所述氮化物半导体衬底包括:
HEMT栅结构区,在该HEMT栅结构区形成所述HEMT的栅结构;以及
阳极电极区,在该阳极电极区形成所述SBD的阳极电极,
其中,
至少在所述HEMT栅结构区中形成第一层叠结构,并且所述第一层叠结构包括第一氮化物半导体层、结晶生长在所述第一氮化物半导体层的正面上的第二氮化物半导体层、以及结晶生长在所述第二氮化物半导体层的正面上的第三氮化物半导体层,
至少在所述阳极电极区的一部分中形成第二层叠结构,并且所述第二层叠结构包括所述第一氮化物半导体层和所述第二氮化物半导体层,
所述阳极电极与所述第二氮化物半导体层的所述正面相接触,
所述第二氮化物半导体层的带隙大于所述第一氮化物半导体层的带隙,
所述第三氮化物半导体层是p型,以及
至少在所述第二氮化物半导体层的所述正面与所述阳极电极相接触的接触区中,将所述第二氮化物半导体层的所述正面精加工成这样的表面,所述第二氮化物半导体层通过该表面与所述阳极电极形成肖特基结,
其中,
所述第二氮化物半导体层包括含Al的氧化膜,至少在所述接触区中的所述第二氮化物半导体层的所述正面上暴露该氧化膜。
2.根据权利要求1所述的半导体器件,其中,
所述含Al的氧化膜是AlO膜。
3.一种半导体器件,包括:
氮化物半导体衬底,在该氮化物半导体衬底中形成有高电子迁移率晶体管(HEMT)和肖特基势垒二极管(SBD)这两者,
其中,
所述氮化物半导体衬底包括:
HEMT栅结构区,在该HEMT栅结构区形成所述HEMT的栅结构;以及
阳极电极区,在该阳极电极区形成所述SBD的阳极电极,
其中,
至少在所述HEMT栅结构区中形成第一层叠结构,并且所述第一层叠结构包括第一氮化物半导体层、结晶生长在所述第一氮化物半导体层的正面上的第二氮化物半导体层、以及结晶生长在所述第二氮化物半导体层的正面上的第三氮化物半导体层,
至少在所述阳极电极区的一部分中形成第二层叠结构,并且所述第二层叠结构包括所述第一氮化物半导体层和所述第二氮化物半导体层,
所述阳极电极与所述第二氮化物半导体层的所述正面相接触,
所述第二氮化物半导体层的带隙大于所述第一氮化物半导体层的带隙,
所述第三氮化物半导体层是p型,以及
至少在所述第二氮化物半导体层的所述正面与所述阳极电极相接触的接触区中,将所述第二氮化物半导体层的所述正面精加工成这样的表面,所述第二氮化物半导体层通过该表面与所述阳极电极形成肖特基结,
其中,
所述第二氮化物半导体层包括深层和表面层,以及
所述表面层的带隙大于所述深层的带隙。
4.根据权利要求3所述的半导体器件,其中,
所述表面层是由AlGaInN或者AlGaInN的氧化物来构造的。
5.根据权利要求1至4中的任一项所述的半导体器件,其中,
在所述阳极电极区的所述一部分中,将所述第三氮化物半导体层层叠在所述第二氮化物半导体层的所述正面上。
6.一种用于制造半导体器件的方法,所述半导体器件包括形成在公共的氮化物半导体衬底上的高电子迁移率晶体管(HEMT)和肖特基势垒二极管(SBD),所述方法包括:
准备氮化物半导体的层叠衬底,该层叠衬底包括第一氮化物半导体层、结晶生长在所述第一氮化物半导体层的正面上的第二氮化物半导体层、以及结晶生长在所述第二氮化物半导体层的正面上的第三氮化物半导体层,其中,所述第二氮化物半导体层的带隙大于所述第一氮化物半导体层的带隙,并且所述第三氮化物半导体层是p型;
通过至少在将要形成所述SBD的阳极电极的区域中移除所述第三氮化物半导体层,来暴露所述第二氮化物半导体层;
对在所述移除中暴露出的所述第二氮化物半导体层的被暴露的正面进行精加工,使得所述第二氮化物半导体层的所述被暴露的正面与所述阳极电极形成肖特基结;以及
在所述精加工之后的所述第二氮化物半导体层的所述被暴露的正面上,形成所述阳极电极,
其中,
所述精加工包括以下(1)至(3)中的一项或多项:
(1)使用用于对包含Al的所述第二氮化物半导体层的所述被暴露的正面进行氧化的气体;
(2)通过具有较大带隙的表面层和具有较小带隙的深层来构造所述第二氮化物半导体层,并且通过蚀刻所述第三氮化物半导体层来暴露所述表面层;以及
(3)在含氮的气体中,对具有通过所述移除而暴露出的所述第二氮化物半导体层的所述氮化物半导体衬底执行热处理。
7.一种用于制造半导体器件的方法,所述半导体器件包括形成在公共的氮化物半导体衬底上的高电子迁移率晶体管(HEMT)和肖特基势垒二极管(SBD),所述方法包括:
准备氮化物半导体的层叠衬底,该层叠衬底包括第一氮化物半导体层、结晶生长在所述第一氮化物半导体层的正面上的第二氮化物半导体层、以及结晶生长在所述第二氮化物半导体层的正面上的第三氮化物半导体层,其中,所述第二氮化物半导体层的带隙大于所述第一氮化物半导体层的带隙,并且所述第三氮化物半导体层是p型;
通过至少在将要形成所述SBD的阳极电极的区域中移除所述第三氮化物半导体层,来暴露所述第二氮化物半导体层;
对在所述移除中暴露出的所述第二氮化物半导体层的被暴露的正面进行精加工,使得所述第二氮化物半导体层的所述被暴露的正面与所述阳极电极形成肖特基结;以及
在所述精加工之后的所述第二氮化物半导体层的所述被暴露的正面上,形成所述阳极电极,
其中,
所述暴露包括:湿法蚀刻所述第三氮化物半导体层,以暴露将与所述阳极电极形成所述肖特基结的所述第二氮化物半导体层的所述正面,以及
在所述暴露中执行所述精加工。
CN201510446730.9A 2014-07-29 2015-07-27 半导体器件及其制造方法 Active CN105322008B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-153463 2014-07-29
JP2014153463A JP6055799B2 (ja) 2014-07-29 2014-07-29 半導体装置とその製造方法

Publications (2)

Publication Number Publication Date
CN105322008A CN105322008A (zh) 2016-02-10
CN105322008B true CN105322008B (zh) 2018-06-15

Family

ID=55079737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510446730.9A Active CN105322008B (zh) 2014-07-29 2015-07-27 半导体器件及其制造方法

Country Status (10)

Country Link
US (1) US9536873B2 (zh)
JP (1) JP6055799B2 (zh)
KR (1) KR101720422B1 (zh)
CN (1) CN105322008B (zh)
BR (1) BR102015018072A2 (zh)
DE (1) DE102015112350A1 (zh)
MX (1) MX345827B (zh)
MY (1) MY182669A (zh)
SG (1) SG10201505824YA (zh)
TW (1) TWI550853B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182016B1 (ko) * 2013-12-02 2020-11-23 엘지이노텍 주식회사 반도체 소자 및 이를 포함하는 반도체 회로
JP6685278B2 (ja) * 2015-03-11 2020-04-22 パナソニック株式会社 窒化物半導体装置
US10756084B2 (en) * 2015-03-26 2020-08-25 Wen-Jang Jiang Group-III nitride semiconductor device and method for fabricating the same
JP6299658B2 (ja) * 2015-04-22 2018-03-28 トヨタ自動車株式会社 絶縁ゲート型スイッチング素子
JP6263498B2 (ja) 2015-05-21 2018-01-17 株式会社豊田中央研究所 半導体装置とその製造方法
US10651317B2 (en) * 2016-04-15 2020-05-12 Macom Technology Solutions Holdings, Inc. High-voltage lateral GaN-on-silicon Schottky diode
CN107768248A (zh) * 2016-08-19 2018-03-06 中国科学院苏州纳米技术与纳米仿生研究所 GaN基增强型HEMT器件的制备方法
JP2018085456A (ja) 2016-11-24 2018-05-31 日機装株式会社 半導体発光素子の製造方法
TWI623967B (zh) * 2017-08-25 2018-05-11 世界先進積體電路股份有限公司 半導體裝置及其製造方法
US10032938B1 (en) 2017-10-03 2018-07-24 Vanguard International Semiconductor Corporation Semiconductor devices and methods for manufacturing the same
CN113875019A (zh) * 2020-04-30 2021-12-31 英诺赛科(苏州)半导体有限公司 半导体器件以及制造半导体器件的方法
US11942560B2 (en) 2020-08-13 2024-03-26 Innoscience (Zhuhai) Technology Co., Ltd. Semiconductor device structures and methods of manufacturing the same
EP4310918A1 (en) 2022-07-21 2024-01-24 Infineon Technologies Austria AG Semiconductor device and method of fabricating a semiconductor device
WO2024040563A1 (en) * 2022-08-26 2024-02-29 Innoscience (suzhou) Semiconductor Co., Ltd. Semiconductor device structures and methods of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325828A (zh) * 2012-03-23 2013-09-25 株式会社东芝 氮化物半导体元件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164926A (ja) * 1998-11-24 2000-06-16 Sony Corp 化合物半導体の選択エッチング方法、窒化物系化合物半導体の選択エッチング方法、半導体装置および半導体装置の製造方法
JP5183913B2 (ja) 2006-11-24 2013-04-17 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
US8076699B2 (en) 2008-04-02 2011-12-13 The Hong Kong Univ. Of Science And Technology Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems
US8384129B2 (en) * 2009-06-25 2013-02-26 The United States Of America, As Represented By The Secretary Of The Navy Transistor with enhanced channel charge inducing material layer and threshold voltage control
JP5299208B2 (ja) * 2009-10-09 2013-09-25 住友電気工業株式会社 半導体装置およびその製造方法
JP5056883B2 (ja) 2010-03-26 2012-10-24 サンケン電気株式会社 半導体装置
JP2012060066A (ja) 2010-09-13 2012-03-22 Toyota Motor Corp AlGaN酸化膜を有する半導体装置、及び、その製造方法
JP5776217B2 (ja) 2011-02-24 2015-09-09 富士通株式会社 化合物半導体装置
WO2013011617A1 (ja) * 2011-07-15 2013-01-24 パナソニック株式会社 半導体装置及びその製造方法
KR101882997B1 (ko) 2011-09-30 2018-07-30 삼성전기주식회사 질화물 반도체 소자 및 그 제조방법
JP2013232578A (ja) 2012-05-01 2013-11-14 Advanced Power Device Research Association ショットキーバリアダイオード
JP2014027187A (ja) * 2012-07-27 2014-02-06 Fujitsu Ltd 化合物半導体装置及びその製造方法
KR101922117B1 (ko) 2012-08-16 2018-11-26 삼성전자주식회사 트랜지스터를 포함하는 전자소자 및 그 동작방법
JP5794241B2 (ja) 2013-02-06 2015-10-14 信越化学工業株式会社 マイクロ構造体用樹脂構造体の製造方法及びマイクロ構造体の製造方法
EP2793255B8 (en) * 2013-04-16 2018-01-17 IMEC vzw Manufacturing method of a semiconductor device comprising a schottky diode and a high electron mobility transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325828A (zh) * 2012-03-23 2013-09-25 株式会社东芝 氮化物半导体元件

Also Published As

Publication number Publication date
JP2016032011A (ja) 2016-03-07
US20160035719A1 (en) 2016-02-04
US9536873B2 (en) 2017-01-03
JP6055799B2 (ja) 2016-12-27
SG10201505824YA (en) 2016-02-26
TW201613091A (en) 2016-04-01
CN105322008A (zh) 2016-02-10
BR102015018072A2 (pt) 2016-02-02
MY182669A (en) 2021-01-28
DE102015112350A1 (de) 2016-02-04
TWI550853B (zh) 2016-09-21
MX2015009178A (es) 2016-04-28
MX345827B (es) 2017-02-17
KR101720422B1 (ko) 2017-03-27
KR20160014533A (ko) 2016-02-11

Similar Documents

Publication Publication Date Title
CN105322008B (zh) 半导体器件及其制造方法
CN104011865B (zh) 在GaN材料中制造浮置保护环的方法及系统
CN103579327B (zh) 高电子迁移率晶体管及其形成方法
JP2022106775A (ja) 加工基板と統合された電子パワーデバイス
CN100557815C (zh) InA1N/GaN异质结增强型高电子迁移率晶体管结构及制作方法
CN101252088B (zh) 一种增强型A1GaN/GaN HEMT器件的实现方法
CN109004027A (zh) 氮极性iii族/氮化物磊晶结构及其主动元件与其积体化的极性反转制作方法
CN103337516B (zh) 增强型开关器件及其制造方法
CN102318047A (zh) 半导体装置及其制造方法
TW202137568A (zh) 改良之氮化鎵結構
JP2021526308A (ja) 半導体デバイス及びその製造方法
JP2007317794A (ja) 半導体装置およびその製造方法
US8981428B2 (en) Semiconductor device including GaN-based compound semiconductor stacked layer and method for producing the same
JP2008078526A (ja) 窒化物半導体装置及びその製造方法
JP6402746B2 (ja) 半導体基板と、その調整方法と、半導体装置
CN102903760B (zh) 半导体装置
CN107039268A (zh) 碳化硅半导体装置及碳化硅半导体装置的制造方法
CN107240605A (zh) 一种GaN MIS沟道HEMT器件及制备方法
CN108198855A (zh) 半导体元件、半导体基底及其形成方法
JP5694096B2 (ja) 炭化珪素半導体装置の製造方法
CN102132388A (zh) 双极型半导体装置及其制造方法
CN109417098A (zh) 半导体装置及其制造方法
JP4869563B2 (ja) 窒化物半導体装置及びその製造方法
JP2006134935A (ja) 半導体装置およびその製造方法
CN207068860U (zh) 一种GaN MIS沟道HEMT器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant