TWI550853B - 半導體裝置及其製造方法 - Google Patents

半導體裝置及其製造方法 Download PDF

Info

Publication number
TWI550853B
TWI550853B TW104124385A TW104124385A TWI550853B TW I550853 B TWI550853 B TW I550853B TW 104124385 A TW104124385 A TW 104124385A TW 104124385 A TW104124385 A TW 104124385A TW I550853 B TWI550853 B TW I550853B
Authority
TW
Taiwan
Prior art keywords
nitride semiconductor
layer
semiconductor layer
anode electrode
exposed
Prior art date
Application number
TW104124385A
Other languages
English (en)
Other versions
TW201613091A (en
Inventor
兼近□一
上田博之
富田英幹
Original Assignee
豐田自動車股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豐田自動車股份有限公司 filed Critical 豐田自動車股份有限公司
Publication of TW201613091A publication Critical patent/TW201613091A/zh
Application granted granted Critical
Publication of TWI550853B publication Critical patent/TWI550853B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0895Tunnel injectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

半導體裝置及其製造方法
本說明書是揭示在共通的氮化物半導體基板形成常閉型(normally-off type)的場效電晶體及蕭特基二極體(schottky barrier diode)的技術。
在專利文獻1中揭示有在共通的氮化物半導體基板形成藉由閘極電極的電位來控制沿著異質接合界面而產生的2次元電子氣體之場效電晶體(在本說明書是稱為HEMT(High Electron Mobility Transistor))及蕭特基二極體(在本說明書是稱為SBD(Schottky Barrier Diode))的技術。HEMT是臨界值電壓成為負電位而容易成為常開的特性。非專利文獻1是揭示為了實現容易使用的常閉的特性,而使p型的氮化物半導體層介於異質接合界面與閘極電極之間的技術。
專利文獻1是藉由SBD來保護HEMT。揭示在共通的氮化物半導體基板形成HEMT及SBD的技術,但不是利用p型層來使HEMT常閉化者。
非專利文獻1是揭示利用p型層來常閉化的HEMT,但不併用SBD。非專利文獻1是使用不須藉由二極體來保護HEMT的電路。
本說明書是揭示在共通的氮化物半導體基板形成利用p型層來常閉化的HEMT及SBD的技術。
[先行技術文獻] [專利文獻]
[專利文獻1]日本特開2011-205029號公報
[非專利文獻]
[非專利文獻1] GaN Monolithic Inverter IC Using Normally-off Gate Injection Transistors with Planar Isolation on Si Substrate, Yasuhiro Uemoto et.al, IEDM 09-165-168, 2009, IEEE
氮化物半導體的情況,難藉由注入受主雜質來變換成p型。在製造利用p型層來常閉化的HEMT時,是在結晶成長的階段利用p型層結晶成長後的層疊基板。為此,在共通的氮化物半導體基板形成利用p型層來常閉化的HEMT及SBD時,是經由利用具備p型層的層疊基 板,在形成HEMT的閘極構造的範圍以外,將型的氮化物半導體層蝕刻而除去的工程來製造。亦即在SBD的形成範圍,從p型的氮化物半導體層被蝕刻而形成異質接合界面的氮化物半導體層露出的狀態來製造SBD。
以下是將在形成閘極構造的範圍外蝕刻除去的p型的氮化物半導體層稱為氮化物半導體除去層,將除去氮化物半導體除去層的結果露出的氮化物半導體層稱為氮化物半導體殘存層。在HEMT領域,氮化物半導體殘存層會成為電子供給層。
在SBD的形成領域中氮化物半導體除去層被除去而氮化物半導體殘存層露出時,只要在該氮化物半導體殘存層形成蕭特基接合的陽極電極及歐姆接合的陰極電極,便應取得SBD。然而,做了也無法取得發揮良好的整流特性的SBD。
如專利文獻1所揭示般,雖可在共通的氮化物半導體基板形成HEMT及SBD,但若使用利用p型層來使HEMT常閉化的技術,則無法取得發揮良好的整流特性的SBD。雖非專利文獻1揭示利用p型層來使HEMT常閉化的技術,但在利用不需要二極體的電路之下,須應付一旦利用p型層結晶成長後的層疊基板則無法取得發揮良好的整流特性的SBD之問題。
本說明書是揭示在共通的氮化物半導體基板形成利用p型層來常閉化的HEMT及SBD的技術。
研究即使在藉由蝕刻p型的氮化物半導體除去層而露出的氮化物半導體殘存層的表面形成陽極電極及陰極電極也未能取得發揮良好的整流特性之SBD的原因。
其結果明確,在將氮化物半導體除去層蝕刻而氮化物半導體殘存層露出時,蝕刻損傷會被加諸於氮化物半導體殘存層的露出面,因為該蝕刻損傷而陽極電極與氮化物半導體殘存層不會蕭特基接合所致。上述明確的結果弄清,只要採用不被加諸蝕刻損傷的技術,蝕刻損傷不造成不良影響的技術、或修復蝕刻損傷的技術,便可藉由在蝕刻氮化物半導體除去層下露出的氮化物半導體殘存層的表面形成陽極電極及陰極電極來取得發揮良好的整流特性之SBD。
上述明確的結果,開發一種在共通的氮化物半導體基板形成有常閉型的HEMT及SBD的新穎的半導體裝置。該半導體裝置是具備下述的構成。
至少HEMT的閘極構造的形成範圍,氮化物半導體基板為具備第1氮化物半導體層、及結晶成長於第1氮化物半導體層的表面的第2氮化物半導體層、以及結晶成長於第2氮化物半導體層的表面的第3氮化物半導體層的層疊構造。
SBD的陽極電極的形成範圍的至少一部分,氮化物半導體基板為具備第1氮化物半導體層及第2氮化物半導體 層的層疊構造。亦即,前述的一部分範圍是不存在第3氮化物半導體層。SBD的陽極電極是接觸於第2氮化物半導體層的表面。
在上述中,第2氮化物半導體的能帶隙(Band gap)是比第1氮化物半導體的能帶隙更大,第3氮化物半導體是p型。並且,至少接觸於SBD的陽極電極的範圍,第2氮化物半導體層的表面會被精加工成第2氮化物半導體層與陽極電極為蕭特基接合的表面。
一旦第2氮化物半導體層的表面被精加工成蕭特基接合於陽極電極的表面,則可取得良好的整流特性之SBD。可取得在共通的氮化物半導體基板形成利用p型層來常閉化的HEMT及發揮良好的整流特性的SBD之半導體裝置。
例如,至少接觸於陽極電極的範圍是若AlO膜露出於第2氮化物半導體層的表面,則可將第2氮化物半導體層的表面精加工成與陽極電極蕭特基接合的表面。
或,藉由在深部層及表面層形成第2氮化物半導體層,置於表面層的能帶隙比深部層的能帶隙更大的關係,也可將第2氮化物半導體層的表面精精工成與陽極電極蕭特基接合的表面。
在將p型的第3氮化物半導體層蝕刻而使第2氮化物半導體層露出後,藉由在含氮的氣體中熱處理該氮化物半導體基板,也可將第2氮化物半導體層的表面精加工成與陽極電極蕭特基接合的表面。
在將第3氮化物半導體層蝕刻而使第2氮化物半導體層露出時,藉由採用不易對第2氮化物半導體層造成蝕刻損傷的蝕刻方法,也可將第2氮化物半導體層的表面精加工成與陽極電極蕭特基接合的表面。
只要在陽極電極的形成範圍除去第3氮化物半導體層,便可將第2氮化物半導體層的表面精加工成與陽極電極蕭特基接合的表面。例如,在第3氮化物半導體層的結晶成長時,藉由在陽極電極的形成範圍使第3氮化物半導體層不會結晶成長,可將第2氮化物半導體層的表面精加工成與陽極電極蕭特基接合的表面。
亦可在陽極電極的形成範圍的全域除去第3氮化物半導體層,但亦可在陽極電極的形成範圍的一部分,在第2氮化物半導體層的表面層疊第3氮化物半導體層。只要位於第3氮化物半導體層不存在而陽極電極與第2氮化物半導體層直接接觸的範圍之第2氮化物半導體層的表面被精加工成蕭特基接合於陽極電極,便可取得發揮良好的整流特性之SBD。存在於一部分的範圍的第3氮化物半導體層是改善SBD的耐壓特性。
本說明書亦揭示在共通的氮化物半導體基板形成有HEMT及SBD的半導體裝置的製造方法。
該製造方法是具備:使第2氮化物半導體層結晶成長於第1氮化物半導體層的表面,且使第3氮化物半導體層結晶成長於該第2氮化物半導體層的表面,而準備氮化物半導體的層疊基板之 工程;在SBD的陽極電極的形成範圍的至少一部分,除去第3氮化物半導體層而使第2氮化物半導體層露出之除去工程;及在前述的除去工程露出的第2氮化物半導體層的露出面形成SBD的陽極電極之工程。
本製造方法係具備:將在前述的除去工程露出的前述第2氮化物半導體層的露出面精加工成第2氮化物半導體層與陽極電極為蕭特基接合的表面之精加工工程。
若被附加前述精加工工程,則可製造發揮良好的整流特性之SBD。
在前述精加工工程可使用各種手法。
(1)例如,將含Al的氮化物半導體用在第2氮化物半導體層,蝕刻第3氮化物半導體層而使第2氮化物半導體層露出時,若利用使該露出面氧化的氣體,則可將第2氮化物半導體層的露出面精加工成蕭特基接合於陽極電極的面。
(2)或,若藉由能帶隙大的表面層及能帶隙小的深部層來構成第2氮化物半導體層,蝕刻第3氮化物半導體層而使表面層露出,則可將第2氮化物半導體層的露出面精加工成蕭特基接合於陽極電極的面。
(3)或,若於含氮的氣體中熱處理在除去工程露出第2氮化物半導體層的氮化物半導體基板,則可使該露出面恢復成蕭特基接合於陽極電極的面。
在除去工程中,亦可在SBD的陽極電極的形成範圍的至少一部分濕蝕刻第3氮化物半導體層而使第2氮化物半導體層露出。若濕蝕刻,則在第2氮化物半導體層的露出面產生的損傷少,一旦在該露出面形成陽極電極,則可取得蕭特基接合的表面。藉由濕蝕刻,除去工程亦可兼精加工工程用。亦即,濕蝕刻的除去工程亦作為精加工工程作用。
若根據本說明書所揭示的技術,則可在共通的氮化物半導體基板形成利用p型層來常閉化的HEMT及發揮良好的整流特性的SBD。
2‧‧‧基板
4‧‧‧緩衝層
6‧‧‧第1氮化物半導體層
8‧‧‧第2氮化物半導體層
10‧‧‧AlO膜
12‧‧‧鈍化膜
14‧‧‧源極電極
16‧‧‧閘極電極
18‧‧‧第3氮化物半導體層
18a‧‧‧殘存範圍
18b、18c‧‧‧p型的氮化物半導體層
20‧‧‧汲極電極
22‧‧‧元件分離用的絕緣領域
24‧‧‧陽極電極
26‧‧‧陰極電極
28‧‧‧氮化物半導體基板
30‧‧‧表面層
圖1是第1實施例的半導體裝置的剖面圖。
圖2是第2實施例的半導體裝置的剖面圖。
圖3是表示第2實施例的半導體裝置的製造方法的第1階段。
圖4是表示第2實施例的半導體裝置的製造方法的第2階段。
圖5是表示第2實施例的半導體裝置的製造方法的第3階段。
圖6是表示第2實施例的半導體裝置的製造方法的第 4階段。
圖7是表示第3實施例的半導體裝置的剖面圖。
圖8是表示第3實施例的半導體裝置的製造方法的第1階段。
以下,整理在本說明書所揭示的技術特徵。另外,在以下所記的事項是各單獨具有技術性的可用性。且皆含於本申請案的技術範圍中。
(第1特徵)
露出於第2氮化物半導體層的表面之AlO膜的膜厚會被調整成在陽極電極與第2氮化物半導體層之間實現蕭特基接合,在陰極電極與第2氮化物半導體層之間實現歐姆接合的厚度。
(第2特徵)
成為電子行走層的第1氮化物半導體層、及成為電子供給層的第2氮化物半導體的深部層、及使陽極電極與第2氮化物半導體蕭特基接合的第2氮化物半導體的表面層(與製造方法的關係是成為氮化物半導體殘存層)、及使HEMT常閉化的第3氮化物半導體層(與製造方法的關係是成為氮化物半導體除去層)的全部為以氮化物半導體所形成。
(第3特徵)
能帶隙的大小關係是處於第1氮化物半導體層<第2氮化物半導體的深部層<第2氮化物半導體的表面層的關係。
(第4特徵)
第2氮化物半導體的表面層的厚度是數nm,將陽極電極與第2氮化物半導體的深部層之間設為蕭特基接合,將陰極電極與第2氮化物半導體層之間設為歐姆接合。
(第5特徵)
將含Al的氮化物半導體利用在氮化物半導體殘存層,蝕刻氮化物半導體除去層時(至少在蝕刻的終了之前的期間),利用含氧的蝕刻氣體來蝕刻氮化物半導體除去層。若根據此技術,則氮化物半導體除去層會被蝕刻除去,且其結果露出的氮化物半導體殘存層的表面會被氧化,AlO膜會露出於氮化物半導體殘存層的表面。一旦AlO膜露出於氮化物半導體殘存層的表面,則蝕刻損傷所造成的不良影響會解消,藉由在AlO膜的表面形成金屬膜,可在氮化物半導體殘存層形成蕭特基接合的陽極電極。亦即,若在氮化物半導體殘存層的表面形成可由功函數來計算蕭特基接合的金屬,則如計算般可取得金屬膜與氮化物半導體殘存層會蕭特基接合的結果。
(第6特徵)
亦可利用不含氧的蝕刻氣體來蝕刻氮化物半導體除去層,將其結果露出的氮化物半導體殘存層的表面暴露於氧電漿,而取代利用含氧的蝕刻氣體來蝕刻氮化物半導體除去層。藉由暴露於氧電漿,可取得AlO膜露出於氮化物半導體殘存層的表面的狀態。
(第7特徵)
亦可在AlxGa1-xN的深部層及AlzGawIn1-z-wN的表面層形成氮化物半導體殘存層,在該表面層的表面形成陽極電極,而取代AlO膜露出於氮化物半導體殘存層的表面的手法。亦可利用其氧化物的層,取代AlzGawIn1-z-wN。在上述中,0<x<1,0<1-z-w<1。
(第8特徵)
為了取得第7特徵的構造,而在磊晶成長的階段,形成成為氮化物半導體殘存層的深部層的AlxGa1-xN層,形成在其上層疊成為氮化物半導體殘存層的表面層的AlzGawIn1-z-wN層,且在其上層疊成為氮化物半導體除去層的p型的氮化物半導體層之基板。在形成HEMT的閘極構造的範圍,使p型的氮化物半導體層殘存。其結果,在HEMT的閘極構造形成範圍,AlzGawIn1-z-wN的表面層也殘存。在SBD的陽極電極形成範圍,除去p型的氮化物 半導體層而使AlzGawIn1-z-wN的表面層殘存。若根據該製造方法,則可取得在AlxGa1-xN的深部層及AlzGawIn1-z-wN(或其氧化物)的表面層形成氮化物半導體殘存層,在該AlzGawIn1-z-wN(或其氧化物)的表面形成陽極電極之構造。
一般,若在能帶隙小的深部層及能帶隙大的表面層形成氮化物半導體殘存層,則可將藉由蝕刻氮化物半導體除去層而露出的表面層的表面精加工成蕭特基接合於陽極電極的表面。
(第9特徵)
採用在將氮化物半導體除去層蝕刻而使氮化物半導體殘存層露出時,對氮化物半導體殘存層造成的蝕刻損傷少的蝕刻方法。例如,若使用蝕刻氮化物半導體除去層而不蝕刻氮化物半導體殘存層的方法來濕蝕刻,則可一邊幾乎不對氮化物半導體殘存層造成蝕刻損傷,一邊蝕刻氮化物半導體除去層。若為如此露出的氮化物半導體殘存層,則可形成蕭特基接合於其表面的金屬膜。例如在日本特開2012-60066號公報中揭示有利用電氣化學製程的濕蝕刻方法,可利用該方法。
(第10特徵)
亦可追加修復蝕刻損傷的工程,而取代採用蝕刻損傷少的蝕刻方法。被加諸於氮化物半導體殘存層的蝕刻損傷 大多是氮原子會脫離。若將產生氮缺陷的氮化物半導體殘存層的表面暴露於含氮的氨氣體等而熱處理,則氮缺陷會被修復。然後一旦形成陽極電極,則可使蕭特基接合。
(第11特徵)
使用在閘極構造形成範圍是p型的第3氮化物半導體層會結晶成長,在陽極電極形成範圍是p型的第3氮化物半導體層不會結晶成長的氮化物半導體基板。由於在陽極電極形成範圍是不需要蝕刻,因此可將第2氮化物半導體層的表面維持在蕭特基接合於陽極電極的表面。
在本說明書所揭示的技術特徵是可如下述般彙整。
.在共通的氮化物半導體基板形成常閉型的HEMT及SBD。
.該氮化物半導體基板是具備:第1氮化物半導體層、及結晶成長於第1氮化物半導體層的表面的第2氮化物半導體層(對應於氮化物半導體殘存層)、及結晶成長於第2氮化物半導體層的表面的第3氮化物半導體層(對應於氮化物半導體除去層)的層疊構造。
.第2氮化物半導體的能帶隙是比第1氮化物半導體的能帶隙更大。
.第3氮化物半導體為p型。
.形成HEMT的閘極構造的範圍以外是第3氮化物半導體層不存在。
但正確而言,亦可在SBD的陽極電極形成範圍的一部分存在第3氮化物半導體層。
.在第2氮化物半導體層的表面形成有SBD的陽極電極。
.第2氮化物半導體層的表面是被精工成第2氮化物半導體層與陽極電極為蕭特基接合的表面。
若根據以往的技術,則由於蝕刻損傷會被加諸於第2氮化物半導體層的表面,因此表面會粗糙,即使在其表面形成陽極電極,第2氮化物半導體層與陽極電極也不會蕭特基接合。本技術為了解決該問題,而事先在表面形成一旦形成陽極電極則第2氮化物半導體層與陽極電極會蕭特基接合的表面。
[實施例]
(第1實施例)
如圖1所示般,第1實施例的半導體裝置是在同氮化物半導體基板28形成有HEMT及SBD。HEMT是被形成於範圍A,SBD是被形成於範圍B。
本實施例的氮化物半導體基板28是具備:基板2、及結晶成長於基板2的表面之緩衝層4、及結晶成長於緩衝層4的表面之第1氮化物半導體層6、及結晶成長於第1氮化物半導體層6的表面之第2氮化物半導體層8、及結晶成長於第2氮化物半導體層8的表面之第3氮 化物半導體層18的層疊構造。
圖1是表示在形成後記的閘極電極16的範圍以外,將第3氮化物半導體層18蝕刻除去後,只顯示殘存範圍18a。
第1氮化物半導體層6是成為HEMT的電子行走層的層,以氮化物半導體的結晶所形成。第2氮化物半導體層8是成為HEMT的電子供給層的層,以氮化物半導體的結晶所形成。處於第1氮化物半導體層6的能帶隙<第2氮化物半導體層8的能帶隙的關係,在沿著第1氮化物半導體層6之中的異質接合界面的領域存在2次元電子氣體。第3氮化物半導體層18是以p型的氮化物半導體的結晶所形成,如後記般,將HEMT調整成常閉的特性。
氮化物半導體基板28的使命是在於提供第1氮化物半導體層6與第2氮化物半導體層8的異質接合。緩衝層4是只要成為第1氮化物半導體層6結晶成長於緩衝層4的表面的基盤的層即可,並非一定要是氮化物半導體。基板2是只要成為緩衝層4結晶成長於基板2的表面的基盤的層即可,並非一定要是氮化物半導體。在將氮化物半導體利用於基板2時,可省略緩衝層4。利用緩衝層4時,基板2除了氮化物半導體以外,例如可使用Si基板、SiC基板、或藍寶石基板。
第3氮化物半導體層18是p型,只要是在異質接合界面形成空乏層者即可,並非一定要是氮化物半導體。 但,因為結晶成長於第2氮化物半導體層8的表面,所以使用氮化物半導體的結晶層為實際。
由上述可明確,在本說明書所謂的氮化物半導體基板是意指提供第1氮化物半導體層6、第2氮化物半導體層8及p型的第3氮化物半導體層18的基板。
本實施例是在基板2使用Si基板,在緩衝層4使用AlGaN,在第1氮化物半導體層6使用i型的GaN,在第2氮化物半導體層8使用i型的AlxGa1-xN,在第3氮化物半導體層18使用p型的AlyGa1-yN。GaN的能帶隙<AlxGa1-xN的能帶隙。0<x,y≦1。
如圖1所示般,在形成後記的閘極電極16的範圍以外,第3氮化物半導體層18會藉由蝕刻來除去,第2氮化物半導體層8的表面會露出。但,第2氮化物半導體層8是含Al,其表面會氧化。因此,在第2氮化物半導體層8的表面是AlO膜10會露出。
HEMT的形成範圍A是在表面露出AlO膜10的第2氮化物半導體層8的表面形成有源極電極14及汲極電極20。源極電極14及汲極電極20是以在第2氮化物半導體層8的表面歐姆接合的金屬膜所形成。源極電極14與汲極電極20之間的位置,亦即分開源極電極14與汲極電極20的位置,p型的第3氮化物半導體層的一部分18a會殘存,在其表面形成有閘極電極16。
如上述般,處於構成第1氮化物半導體層6的GaN的能帶隙<構成第2氮化物半導體層8的 AlxGa1-xN的能帶隙的關係,在沿著第1氮化物半導體層6的異質接合界面的範圍形成有2次元電子氣體。
p型的第3氮化物半導體層的一部分18a會殘存於與異質接合界面對向的位置。空乏層會從p型的第3氮化物半導體層18a朝第2氮化物半導體層8及第1氮化物半導體層6擴展。在閘極電極16未施加正電位的狀態,隔著p型的第3氮化物半導體層18a來與閘極電極16對向的範圍的異質接合界面會空乏化,電子無法移動於源極電極14與汲極電極20之間。源極電極14與汲極電極20之間會成為OFF。一旦在閘極電極16施加正電位,則空乏層會消失,源極電極14與汲極電極20之間會以2次元電子氣體來連接。源極電極14與汲極電極20之間會成為ON。由上述可知,在範圍A可取得常閉型的HEMT。電子所移動的第1氮化物半導體層6是i型,阻礙電子的移動的雜質少。此HEMT是通態電阻低。
SBD的形成範圍B是在表面以AlO膜10所被覆的第2氮化物半導體層8的表面形成有陽極電極24及陰極電極26。陰極電極26是以在第2氮化物半導體層8的表面歐姆接合的金屬膜所形成。相對的,陽極電極24是以在第2氮化物半導體層8的表面蕭特基接合的金屬膜所形成。藉此可取得具有良好的整流特性的SBD。順方向的電流是流動於沿著第1氮化物半導體層6的異質接合界面的位置。順方向的電壓降下小。
上述中,HEMT的源極電極14是經由AlO膜 10來接觸於第2氮化物半導體層8。AlO膜10是電阻高,一旦介入AlO膜10,則擔心HEMT的通態電阻增大。但,若使AlO膜10形成薄,則可將通態電阻的增大壓到不成問題的水準。而且,即使將AlO膜10的膜厚弄薄至不會招致通態電阻增大的程度,陽極電極24與第2氮化物半導體層8還是會蕭特基接合。有關汲極電極20也是同樣,可將AlO膜10弄薄至不會招致汲極電極20與第2氮化物半導體層8間的電阻增大的程度。有關陰極電極26也是同樣,可將AlO膜10弄薄至不會招致陰極電極26與第2氮化物半導體層8間的電阻增大的程度。即使弄薄成如此程度,還是可藉由AlO膜10來使陽極電極24與第2氮化物半導體層8蕭特基接合。
另外,亦可在源極電極14,汲極電極20,陰極電極26的形成前,先蝕刻源極電極14,汲極電極20,陰極電極26的形成範圍而除去AlO膜10。可藉由利用氟酸的濕式加工或利用氯氣的乾式加工來制定範圍除去AlO膜10。
若第2氮化物半導體層8的表面未以AlO膜10所被覆,則即使利用對於第2氮化物半導體層8蕭特基接合的材料來形成陽極電極24,也無法取得發揮良好的整流特性的蕭特基接合。在蝕刻第3氮化物半導體層18而露出第2氮化物半導體層8的表面時,蝕刻損傷會被加諸於第2氮化物半導體層8的表面,因此陽極電極24不會蕭特基接合於第2氮化物半導體層8。若AlO膜 10露出於第2氮化物半導體層8的表面,則蝕刻損傷的影響變無,陽極電極24與第2氮化物半導體層8會蕭特基接合。
(第2實施例)
以下是在與第1實施例相同的構件使用同樣的參照號碼,藉此省略重複說明。只說明相異點。
如圖2所示般,第2實施例的半導體裝置是陽極電極24與第2氮化物半導體層8的接觸部不同。此實施例是在接觸於陽極電極24的位置也使p型的第3氮化物半導體層18的一部分18b,18c殘存。亦即,設為在陽極電極24與第2氮化物半導體層8的接觸部的左右兩側存在p型的第3氮化物半導體層18b,18c的構造。
若根據上述構造,則當逆方向的電壓作用於二極體時,空乏層會從p型的第3氮化物半導體層18b,18c延伸至陽極電極24與第2氮化物半導體層8的接觸部,耐壓耐量會被改善。可實現所謂的JBC型的蕭特基二極體(Junction Barrier Controlled Schottky Diode)或被稱為浮動接合型的蕭特基二極體的構造。
(第2實施例的半導體裝置的製造方法)
圖3的階段:準備氮化物半導體基板。這具備:緩衝層4會磊晶成長於基板2的表面,第1氮化物半導體層6會磊晶成長於緩衝層4的表面,第2氮化物半導體層8會 磊晶成長於第1氮化物半導體層6的表面,第3氮化物半導體層18會磊晶成長於第2氮化物半導體層8的表面之層疊構造。氮化物半導體的情況,難注入雜質來調整成p型。若在基板的形成階段形成第3氮化物半導體層18,則可使p型的結晶層成長。
圖4的階段:在第3氮化物半導體層18的表面形成遮罩,將第3氮化物半導體層18乾式蝕刻而除去,使第2氮化物半導體層8的表面露出,該遮罩是以18a殘存於閘極電極16的形成部,18b,18c殘存於陽極電極24的形成部之方式圖案化。
乾式蝕刻時(至少第2氮化物半導體層8的表面即將露出之前的期間)是使用含氧的氣體來乾式蝕刻。如此一來,露出的第2氮化物半導體層8的表面會氧化,在其表面形成AlO膜10。第2氮化物半導體層8是以i型的AlGaN所形成,該Al會氧化而形成AlO膜10。然後,除去遮罩。
亦可取代上述,而以不含氧的氣體來乾式蝕刻第3氮化物半導體層18,使第2氮化物半導體層8的表面露出。此情況是在之後對第2氮化物半導體層8的表面照射氧電漿。藉此亦可取得在露出的第2氮化物半導體層8的表面露出AlO膜10的狀態。
圖5的階段:形成元件分離用的絕緣領域22。在此,在作為絕緣領域22的範圍中注入Fe,Zn,C,Al,Ar,N,B,P或As。絕緣領域22是形成至貫通 第2氮化物半導體層8來到達第1氮化物半導體層6的深度。藉此,HEMT形成領域A與SBD形成領域B會被絕緣、分離。
圖6的階段:在表面露出AlO膜10的第2氮化物半導體層8的表面形成源極電極14、汲極電極20、陽極電極24、陰極電極26。陽極電極24是不只第2氮化物半導體層8,也接觸於p型的氮化物半導體層18b、18c。
並且,在p型的氮化物半導體層18a的表面形成閘極電極16。
最後,形成鈍化膜12。藉由以上來製造圖2所示的構造。
另外,在源極電極14,汲極電極20,陰極電極26的形成前,亦可先除去存在於源極電極14,汲極電極20,陰極電極26的形成範圍之AlO膜10。
(第3實施例)
參照圖7來說明第3實施例的半導體裝置。本實施例的半導體裝置是如圖8所示般,使用第2氮化物半導體的表面層30會結晶成長於第2氮化物半導體的深部層8與第3氮化物半導體層18之間的基板來製造。亦即,以第2氮化物半導體的深部層8及表面層30來作為第2氮化物半導體層32。
此實施例是在第1氮化物半導體6使用GaN、在第2 氮化物半導體的深部層8使用i型的AlxGa1-xN、在第2氮化物半導體的表面層30使用AlzGawIn1-z-wN、在第3氮化物半導體層18使用p型的AlyGa1-yN。該等的能帶隙是處於第1氮化物半導體6<第2氮化物半導體的深部層8<第2氮化物半導體的表面層30的關係。有關第3氮化物半導體層18的能帶隙是未被特別地限制。在本實施例中、第3氮化物半導體層18的能帶隙是與第2氮化物半導體的深部層8的能帶隙幾乎相等。
本實施例是如圖7所示般,在p型的第3氮化物半導體層18a與第2氮化物半導體的深部層8之間介入第2氮化物半導體的表面層30。即使第2氮化物半導體的表面層30介入,藉由p型的第3氮化物半導體層18a來使HEMT的臨界值電壓朝正側拉起的效果還是會被維持,可將HEMT設為常閉。
並且,在陽極電極24與第2氮化物半導體的深部層8之間介入第2氮化物半導體的表面層30。本實施例是將第3氮化物半導體層18蝕刻而使第2氮化物半導體的表面層30的表面露出,在其表面形成陽極電極24。
如前述般,若將第3氮化物半導體層18蝕刻而使第2氮化物半導體的深部層8的表面露出,則形成於其表面的陽極電極24不會蕭特基接合。相對於此,若將第3氮化物半導體層18蝕刻而使第2氮化物半導體的表面層30的表面露出,則形成於第2氮化物半導體的表面層30的 表面的陽極電極24會蕭特基接合。在第2氮化物半導體的深部層8及第2氮化物半導體的表面層30,由於能帶隙不同,因此產生差異。
本實施例是源極電極14、汲極電極20及陰極電極26會貫通第2氮化物半導體的表面層30來直接接觸於第2氮化物半導體的深部層8的表面。
為了取得該構造,只要在源極電極14、汲極電極20及陰極電極26的形成前,在該等的形成位置將第2氮化物半導體的表面層30蝕刻而形成開口,以能夠貫通該開口的方式形成源極電極14、汲極電極20及陰極電極26即可。
亦可在第2氮化物半導體的表面層30的表面形成源極電極14、汲極電極20及陰極電極26,然後熱處理,而取代將第2氮化物半導體的表面層30蝕刻形成開口。藉由熱處理,構成源極電極14、汲極電極20及陰極電極26的金屬會擴散至第2氮化物半導體的表面層30內,可取得源極電極14、汲極電極20及陰極電極26會與第2氮化物半導體的深部層8歐姆接觸的結果。此熱處理的情況,是在熱處理後形成陽極電極24。由於陽極電極24未被熱處理,因此可取得經由第2氮化物半導體的表面層30來蕭特基接合於第2氮化物半導體的深部層8的結果。
亦可在圖7的構造中裝入圖2的構造。亦即,亦可使第3氮化物半導體層18b、18c殘存於陽極電 極24的形成範圍的一部分。此情況也是在陽極電極24的形成範圍,第2氮化物半導體的表面層30會一樣地殘存。若第3氮化物半導體層18b、18c殘存於陽極電極24的形成範圍的一部分,則洩漏電流會被抑制。若第2氮化物半導體的表面層30殘存於陽極電極24的形成範圍,則電流流動於SBD的順方向時的電壓降下會變小,順方向電流開始流動時的陽極.陰極間電壓會降下。無法設為損失少的SBD。另外,此情況,最好在第3氮化物半導體層18b、18c的表面設置歐姆接觸的電極,使第3氮化物半導體層18b、18c的電位與陽極電極24的電位一致。
(第4實施例)
在將第3氮化物半導體層18蝕刻而使第2氮化物半導體層8的表面露出時,在第2氮化物半導體層8的表面產生蝕刻損傷。蝕刻損傷的大部分是氮會從氮化物半導體脫離。於是,一邊將第3氮化物半導體層18被除去而第2氮化物半導體層8的表面露出的氮化物半導體基板暴露於氨氣體,一邊熱處理。如此一來,氮會被補給於氮化物半導體,蝕刻損傷會被修復。然後一旦形成陽極電極24,則陽極電極24與第2氮化物半導體層8會蕭特基接合。此情況,亦可採用形成AlO膜的蝕刻條件。
(第5實施例)
亦可將第3氮化物半導體18濕蝕刻而使第2氮化物 半導體層8露出。此情況,不會對第2氮化物半導體層8的表面造成蝕刻損傷。只要在濕蝕刻後露出的第2氮化物半導體層8的表面形成陽極電極24,陽極電極24與第2氮化物半導體層8便會蕭特基接合。
實施例是在第1氮化物半導體使用GaN,但亦可使用除此以外的氮化物半導體。例如可使用AlGaN等。在第1氮化物半導體使用AlGaN時,是在第2氮化物半導體使用AlInGaN等。存在符合第1氮化物半導體的能帶隙<第2氮化物半導體的能帶隙的關係的各種的組合。
又,亦可只在圖1所示的閘極電極16的形成範圍使第3氮化物半導體層18a結晶成長。或,亦可只在圖2所示的18a,18b,18c的範圍形成第3氮化物半導體層。藉由先以遮罩來覆蓋第2氮化物半導體層8的表面的局部的範圍而結晶成長,可選擇第3氮化物半導體層的結晶成長範圍。
以上,詳細說明本發明的具體例,但該等只不過是例示,並非是限定申請專利範圍者。記載於申請專利範圍的技術是包含將以上例示的具體例實施各種變形、變更者。例如,亦可在AlO膜中含有Ga。
並且,在本說明書或圖面說明的技術要素是單獨或藉由各種的組合來發揮技術的可用性者,並不限於申請時請求項記載的組合。而且,本說明書或圖面例示的技術是可同時達成複數目的者,達成其中一個目的本身持有技術的 可用性者。
2‧‧‧基板
4‧‧‧緩衝層
6‧‧‧第1氮化物半導體層
8‧‧‧第2氮化物半導體層
10‧‧‧AlO膜
12‧‧‧鈍化膜
14‧‧‧源極電極
16‧‧‧閘極電極
18a‧‧‧殘存範圍
20‧‧‧汲極電極
22‧‧‧元件分離用的絕緣領域
24‧‧‧陽極電極
26‧‧‧陰極電極
28‧‧‧氮化物半導體基板

Claims (9)

  1. 一種半導體裝置,係於共通的氮化物半導體基板形成有HEMT及SBD的半導體裝置,其特徵為:至少前述HEMT的閘極構造的形成範圍,前述氮化物半導體基板為具備第1氮化物半導體層、及結晶成長於該第1氮化物半導體層的表面之第2氮化物半導體層、及結晶成長於該第2氮化物半導體層的表面之第3氮化物半導體層的層疊構造,前述SBD的陽極電極的形成範圍的至少一部分,前述氮化物半導體基板為具備前述第1氮化物半導體層與前述第2氮化物半導體層的層疊構造,前述陽極電極係接觸於前述第2氮化物半導體層的表面,前述第2氮化物半導體的能帶隙係比前述第1氮化物半導體的能帶隙更大,前述第3氮化物半導體為p型,至少接觸於前述陽極電極的範圍,前述第2氮化物半導體層的表面係被精加工成前述第2氮化物半導體層與前述陽極電極為蕭特基接合的表面。
  2. 如申請專利範圍第1項之半導體裝置,其中,至少接觸於前述陽極電極的範圍,含Al的氧化膜露出於前述第2氮化物半導體層的表面。
  3. 如申請專利範圍第2項之半導體裝置,其中,前述含Al的氧化膜,係AlO膜。
  4. 如申請專利範圍第1項之半導體裝置,其中,前述第2氮化物半導體層係以深部層及表面層所形成,前述表面層的能帶隙係比前述深部層的能帶隙更大。
  5. 如申請專利範圍第4項之半導體裝置,其中,前述表面層係以AlGaInN、或AlGaInN的氧化物所形成。
  6. 如申請專利範圍第1~5項中的任一項所記載之半導體裝置,其中,前述陽極電極的形成範圍的一部分,係於前述第2氮化物半導體層的表面層疊有前述第3氮化物半導體層。
  7. 一種半導體裝置的製造方法,係於共通的氮化物半導體基板形成有HEMT及SBD的半導體裝置的製造方法,其特徵為具備:使第2氮化物半導體層結晶成長於第1氮化物半導體層的表面,且使第3氮化物半導體層結晶成長於該第2氮化物半導體層的表面,而準備氮化物半導體的層疊基板之工程;在前述SBD的陽極電極的形成範圍的至少一部分,除去前述第3氮化物半導體層而使前述第2氮化物半導體層露出之除去工程;將在前述除去工程露出的前述第2氮化物半導體層的露出面精加工成前述第2氮化物半導體層與前述陽極電極為蕭特基接合的表面之精加工工程;及在前述精加工工程後的前述第2氮化物半導體層的露出面形成前述陽極電極之工程, 前述第2氮化物半導體的能帶隙係比前述第1氮化物半導體的能帶隙更大,前述第3氮化物半導體為p型。
  8. 如申請專利範圍第7項之半導體裝置的製造方法,其中,在前述精加工工程實施下述的任一個,(1)利用使含Al的前述第2氮化物半導體的露出面氧化的氣體;(2)藉由能帶隙大的表面層及能帶隙小的深部層來構成第2氮化物半導體層,且藉由前述第3氮化物半導體層的蝕刻來使前述表面層露出;(3)在含氮的氣體中熱處理在前述除去工程露出前述第2氮化物半導體層的氮化物半導體基板。
  9. 如申請專利範圍第7項之半導體裝置的製造方法,其中,在前述除去工程中,將前述第3氮化物半導體層濕蝕刻而使前述陽極電極所蕭特基接合的前述第2氮化物半導體層的表面露出,前述除去工程兼前述精加工工程用。
TW104124385A 2014-07-29 2015-07-28 半導體裝置及其製造方法 TWI550853B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014153463A JP6055799B2 (ja) 2014-07-29 2014-07-29 半導体装置とその製造方法

Publications (2)

Publication Number Publication Date
TW201613091A TW201613091A (en) 2016-04-01
TWI550853B true TWI550853B (zh) 2016-09-21

Family

ID=55079737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104124385A TWI550853B (zh) 2014-07-29 2015-07-28 半導體裝置及其製造方法

Country Status (10)

Country Link
US (1) US9536873B2 (zh)
JP (1) JP6055799B2 (zh)
KR (1) KR101720422B1 (zh)
CN (1) CN105322008B (zh)
BR (1) BR102015018072A2 (zh)
DE (1) DE102015112350A1 (zh)
MX (1) MX345827B (zh)
MY (1) MY182669A (zh)
SG (1) SG10201505824YA (zh)
TW (1) TWI550853B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182016B1 (ko) * 2013-12-02 2020-11-23 엘지이노텍 주식회사 반도체 소자 및 이를 포함하는 반도체 회로
JP6685278B2 (ja) * 2015-03-11 2020-04-22 パナソニック株式会社 窒化物半導体装置
US10756084B2 (en) * 2015-03-26 2020-08-25 Wen-Jang Jiang Group-III nitride semiconductor device and method for fabricating the same
JP6299658B2 (ja) * 2015-04-22 2018-03-28 トヨタ自動車株式会社 絶縁ゲート型スイッチング素子
JP6263498B2 (ja) 2015-05-21 2018-01-17 株式会社豊田中央研究所 半導体装置とその製造方法
US10651317B2 (en) * 2016-04-15 2020-05-12 Macom Technology Solutions Holdings, Inc. High-voltage lateral GaN-on-silicon Schottky diode
CN107768248A (zh) * 2016-08-19 2018-03-06 中国科学院苏州纳米技术与纳米仿生研究所 GaN基增强型HEMT器件的制备方法
JP2018085456A (ja) 2016-11-24 2018-05-31 日機装株式会社 半導体発光素子の製造方法
TWI623967B (zh) * 2017-08-25 2018-05-11 世界先進積體電路股份有限公司 半導體裝置及其製造方法
US10032938B1 (en) 2017-10-03 2018-07-24 Vanguard International Semiconductor Corporation Semiconductor devices and methods for manufacturing the same
CN113875019A (zh) * 2020-04-30 2021-12-31 英诺赛科(苏州)半导体有限公司 半导体器件以及制造半导体器件的方法
US11942560B2 (en) 2020-08-13 2024-03-26 Innoscience (Zhuhai) Technology Co., Ltd. Semiconductor device structures and methods of manufacturing the same
EP4310918A1 (en) 2022-07-21 2024-01-24 Infineon Technologies Austria AG Semiconductor device and method of fabricating a semiconductor device
WO2024040563A1 (en) * 2022-08-26 2024-02-29 Innoscience (suzhou) Semiconductor Co., Ltd. Semiconductor device structures and methods of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110233615A1 (en) * 2010-03-26 2011-09-29 Osamu Machida Semiconductor device
US20140141580A1 (en) * 2009-06-25 2014-05-22 Francis J. Kub Transistor with enhanced channel charge inducing material layer and threshold voltage control

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164926A (ja) * 1998-11-24 2000-06-16 Sony Corp 化合物半導体の選択エッチング方法、窒化物系化合物半導体の選択エッチング方法、半導体装置および半導体装置の製造方法
JP5183913B2 (ja) 2006-11-24 2013-04-17 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
US8076699B2 (en) 2008-04-02 2011-12-13 The Hong Kong Univ. Of Science And Technology Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems
JP5299208B2 (ja) * 2009-10-09 2013-09-25 住友電気工業株式会社 半導体装置およびその製造方法
JP2012060066A (ja) 2010-09-13 2012-03-22 Toyota Motor Corp AlGaN酸化膜を有する半導体装置、及び、その製造方法
JP5776217B2 (ja) 2011-02-24 2015-09-09 富士通株式会社 化合物半導体装置
WO2013011617A1 (ja) * 2011-07-15 2013-01-24 パナソニック株式会社 半導体装置及びその製造方法
KR101882997B1 (ko) 2011-09-30 2018-07-30 삼성전기주식회사 질화물 반도체 소자 및 그 제조방법
JP5659182B2 (ja) * 2012-03-23 2015-01-28 株式会社東芝 窒化物半導体素子
JP2013232578A (ja) 2012-05-01 2013-11-14 Advanced Power Device Research Association ショットキーバリアダイオード
JP2014027187A (ja) * 2012-07-27 2014-02-06 Fujitsu Ltd 化合物半導体装置及びその製造方法
KR101922117B1 (ko) 2012-08-16 2018-11-26 삼성전자주식회사 트랜지스터를 포함하는 전자소자 및 그 동작방법
JP5794241B2 (ja) 2013-02-06 2015-10-14 信越化学工業株式会社 マイクロ構造体用樹脂構造体の製造方法及びマイクロ構造体の製造方法
EP2793255B8 (en) * 2013-04-16 2018-01-17 IMEC vzw Manufacturing method of a semiconductor device comprising a schottky diode and a high electron mobility transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140141580A1 (en) * 2009-06-25 2014-05-22 Francis J. Kub Transistor with enhanced channel charge inducing material layer and threshold voltage control
US20110233615A1 (en) * 2010-03-26 2011-09-29 Osamu Machida Semiconductor device

Also Published As

Publication number Publication date
JP2016032011A (ja) 2016-03-07
CN105322008B (zh) 2018-06-15
US20160035719A1 (en) 2016-02-04
US9536873B2 (en) 2017-01-03
JP6055799B2 (ja) 2016-12-27
SG10201505824YA (en) 2016-02-26
TW201613091A (en) 2016-04-01
CN105322008A (zh) 2016-02-10
BR102015018072A2 (pt) 2016-02-02
MY182669A (en) 2021-01-28
DE102015112350A1 (de) 2016-02-04
MX2015009178A (es) 2016-04-28
MX345827B (es) 2017-02-17
KR101720422B1 (ko) 2017-03-27
KR20160014533A (ko) 2016-02-11

Similar Documents

Publication Publication Date Title
TWI550853B (zh) 半導體裝置及其製造方法
US9018056B2 (en) Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material
US9748331B2 (en) Method for growing III-V epitaxial layers
US8900939B2 (en) Transistor with enhanced channel charge inducing material layer and threshold voltage control
JP5906004B2 (ja) 電界効果トランジスタおよびその製造方法
JP5696083B2 (ja) 窒化物半導体素子及びその製造方法
TWI420664B (zh) 增強式高電子移動率電晶體及其製造方法
US9252255B2 (en) High electron mobility transistor and method of manufacturing the same
US20190296139A1 (en) Transistor and Method for Manufacturing the Same
JP2007220895A (ja) 窒化物半導体装置およびその製造方法
JP2009141244A (ja) 窒化物半導体トランジスタ及びその製造方法
JP2010135641A (ja) 電界効果トランジスタ及びその製造方法
JP2010225765A (ja) 半導体装置及びその製造方法
JP2009231508A (ja) 半導体装置
JP2012523701A (ja) 補償型ゲートmisfet及びその製造方法
CN110021661B (zh) 半导体器件及其制作方法
JP2015065241A (ja) 半導体装置の製造方法および半導体装置
JP2015032744A (ja) 半導体装置および半導体装置の製造方法
JP2015032745A (ja) 半導体装置および半導体装置の製造方法
WO2020158394A1 (ja) 窒化物半導体装置
JPWO2019098193A1 (ja) 半導体装置
JP7052503B2 (ja) トランジスタの製造方法
JP2008118044A (ja) 電界効果トランジスタ及びその製造方法
JP5100002B2 (ja) 窒化物半導体装置
JP2011142358A (ja) 窒化物半導体装置