CN104952926A - 结晶性层叠结构体,半导体装置 - Google Patents

结晶性层叠结构体,半导体装置 Download PDF

Info

Publication number
CN104952926A
CN104952926A CN201510144633.4A CN201510144633A CN104952926A CN 104952926 A CN104952926 A CN 104952926A CN 201510144633 A CN201510144633 A CN 201510144633A CN 104952926 A CN104952926 A CN 104952926A
Authority
CN
China
Prior art keywords
oxide film
film
crystallized oxide
thickness
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510144633.4A
Other languages
English (en)
Other versions
CN104952926B (zh
Inventor
人罗俊实
织田真也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flosfia
Flosfia Inc
Original Assignee
Flosfia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flosfia Inc filed Critical Flosfia Inc
Priority to CN201910603781.6A priority Critical patent/CN110164961B/zh
Priority to CN201910452653.6A priority patent/CN110112220A/zh
Publication of CN104952926A publication Critical patent/CN104952926A/zh
Application granted granted Critical
Publication of CN104952926B publication Critical patent/CN104952926B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Abstract

本发明的目的在于提供一种导电性出色的结晶性层叠结构体,该结晶性层叠结构体中,具有刚玉结构的结晶性氧化物薄膜即使在退火(加热)步骤后也没有高电阻化。本发明提供一由该结晶性层叠结构体组成的半导体。其中该结晶性层叠结构体具备底层基板,和直接或介由其他层设置于该底层基板上的具有刚玉结构之结晶性氧化物薄膜,所述结晶性氧化物薄膜的膜厚是1μm以上,所述结晶性氧化物薄膜的电阻率为80mΩcm以下。

Description

结晶性层叠结构体,半导体装置
【技术领域】
本发明涉及结晶性层叠结构体以及半导体装置。
【背景技术】
在被成膜样品上形成结晶性高的氧化镓系薄膜的方法有:使用雾CVD(Mist CVD)法等水微粒(water fine particles)的成膜方法(专利文献1∶日本专利特开2013-28480号公报)。在该方法中,将乙酰丙酮镓(Gallium acetylacetonate)等镓化合物溶解于盐酸等酸中而制成原料溶液。将该原料溶液微粒化,由此形成原料微粒,将该原料微粒以载气向被成膜样品的成膜面供给,使原料雾(Mist)反应而在成膜面上形成薄膜,由此在被成膜样品上形成结晶性高的氧化镓系薄膜。
为了使用氧化镓系薄膜而形成半导体设备,控制氧化镓系薄膜的导电性是必要的。专利文献1及非专利文献1[Electrical Conductive Corundum-Structuredα-Ga2O3Thin Films onSapphire with Tin-Doping Grown by Spray-Assisted Mist Chemical Vapor Deposition(JapaneseJournal of Applied Physics 51(2012)070203)]中,公开了一种向α-氧化镓薄膜掺入杂质的技术(Technologies for doping)。
【发明内容】
根据专利文献1及非专利文献1的方法,可以形成导电性出色的α-氧化镓薄膜,然而本发明人进一步研究时发现,以这些文献所述的方法形成厚300nm左右的α-氧化镓薄膜,刚刚成膜之后导电性出色,但进行500℃下的加热步骤之后再次评估导电性时,α-氧化镓薄膜呈高电阻化,失去半导体特性、导电性。在半导体设备的制造步骤中,成膜步骤之后,通常具有必要的500℃以上的加热步骤,在这样的温度区域下加热,由此导致高电阻化,这是严重的问题。
通常,半导体材料的导电性的控制主要着眼于:通过控制掺杂剂(Dopant)浓度,和掺杂(Doping)后的活性化退火(Activation annealing),从而提高活化率。按照该原则,以所述专利文献及公知文献提供的方法向α-氧化镓薄膜进行掺杂(Doping)之后,为了活性化退火及Ohmic退火(Ohmic annealing)而对半导体进行加热时,遇到的问题是:呈现高电阻化(以电阻值值计算,为2到4个数量级)。
该问题的原因有,通常,加热使得污染(Contamination)元素在结晶内移动,阻碍电子移动的位置。
从该观点出发,减少原来不应该存在的污染元素后,即使还残留微量污染元素,找到实现电非活性状态(Electrically inactive state)的最适合的退火条件,采用退火温度低温化,退火曲线(Annealing profile)最优化,控制退火环境等各种解决方法。
然而高电阻化的问题没有得到解决。
本发明鉴于上述情况,解决的技术问题是提供一种导电性出色的结晶性层叠结构体,该结晶性层叠结构体中,具有刚玉结构的结晶性氧化物薄膜即使在退火(加热)步骤后也没有高电阻化。
本发明人为了达成上述目而进行认真研究后发现,对于具有膜厚1μm以上的刚玉结构之结晶性氧化物薄膜,即使进行退火处理,电阻率不上升,而是降低,进一步进行反复研究从完成本发明。
为解决上述技术问题,本发明提供一种结晶性层叠结构体,具备底层基板(base substrate),和在该底层基板上直接或介由其他层设置于该底层基板上的具有刚玉结构的结晶性氧化物薄膜,所述结晶性氧化物薄膜的膜厚是1μm以上,所述结晶性氧化物薄膜的电阻率(electrical resistivity)为80mΩcm以下。
优选地,所述结晶性氧化物薄膜至少含有镓。
优选地,所述结晶性氧化物薄膜的表面粗糙度Ra为0.1μm以下。
优选地,所述膜厚为1~20μm。
优选地,所述底层基板是c面蓝宝石基板。
本发明还提供一种形成结晶性层叠结构体之制造方法,其中,将原料溶液微粒化而生成原料微粒,将该原料微粒以载气向成膜室供给,在配置于所述成膜室内的底层基板上形成具有刚玉结构的结晶性氧化物薄膜;并且,其中,所述结晶性氧化物薄膜的膜厚为1μm以上,所述结晶性氧化物薄膜的电阻率为80mΩcm以下;所述结晶性氧化物薄膜的膜厚形成为1μm以上之后,进行退火处理。
优选地,以600℃以下的条件进行退火处理。
本发明再次提供一种半导体装置,是由所述的结晶性层叠结构体而构成该半导体装置。
本发明取得的有益效果:就本发明的结晶性层叠结构体而言,具有刚玉结构的结晶性氧化物薄膜即使在退火处理后,也没有高电阻化,导电性出色,在半导体装置等中是有用的。
【附图说明】
【图1】表示本发明的一个实施方式的结晶性层叠结构体的构成图。
【图2】是本发明的实施例中使用的雾CVD装置的构成图。
【图3】是本发明的实施例中的,表示结晶性氧化物薄膜厚度和电阻值关系的图表。
【图4】表示试验例中的TEM像。
【图5】表示试验例中的TEM像。
【具体实施方式】
本发明的结晶性层叠结构体,具备底层基板,和直接或介由其他层设置于该底层基板上的具有刚玉结构的结晶性氧化物薄膜,所述结晶性氧化物薄膜的膜厚是1μm以上,所述结晶性氧化物薄膜的电阻率为80mΩcm以下。所谓「结晶性层叠结构体」,是含有一层以上的结晶层的结构体,也可以含有结晶层之外的层(例如∶无定形层(Amorphous layer))。并且结晶层优选为单晶层,也可以是多结晶层。所述结晶性氧化物薄膜可以是成膜后进行退火处理的,通过退火处理,在结晶性薄膜和欧姆电极(Ohmic electrode)之间也可以形成欧姆电极氧化的金属氧化物薄膜。欧姆电极有例如铟或钛等。
<底层基板>
就底层基板而言,如果成为上述结晶性氧化物薄膜的支持体的话就没有特别限定,优选为具有刚玉结构的基板。具有刚玉结构的基板有例如蓝宝石基板(例如∶c面蓝宝石基板(c-plane sapphire substrate)),或α型氧化镓基板等。另外,不具有刚玉结构的底层基板有例如具有六方晶结构(hexagonal structure)的基板(例如∶6H-SiC基板,ZnO基板,GaN基板)等。优选为在具有六方晶结构的基板上,直接或介由其他层(例如∶缓冲层)形成结晶性氧化物薄膜。底层基板的厚度在本发明中没有特别限定,优选为50~2000μm,更优选为200~800μm。
<结晶性氧化物薄膜>
就结晶性氧化物薄膜而言,如果是具有刚玉结构的结晶性氧化物的膜的话就没有特别限定,因为要成为半导体特性好的,优选为:含有具有刚玉结构的氧化物半导体作为主要成分。另外就所述结晶性氧化物薄膜而言,磁性金属(例如Fe,Co,Ni等)不作为含有的主要成分而非磁性金属(例如Ga,Ti,V,In等)作为主要成分含有,其半导体特性更加出色,是优选的。并且,所述结晶性氧化物薄膜,优选为单晶,但也可以为多结晶。就所述结晶性氧化物薄膜的组成而言,优选为所述薄膜中含有的金属元素中的镓,铟,铝及铁共计的原子比(相对于所有金属元素)为0.5以上,更加优选为金属元素中镓的原子比为0.5以上。该优选的镓原子比具体而言是例如0.5,0.6,0.7,0.8,0.9,1,也可以在上述例举的任意2个数值间的范围内。
原子比为所述优选的原子比的话,可以进行更适当的退火处理而使电阻率降低。特别是,金属元素中的镓的原子比为0.5以上时,所述结晶性氧化物薄膜的膜厚不到1μm时,该薄膜的退火处理导致的高电阻化显著,所述结晶性氧化物薄膜膜厚为1μm以上时,该薄膜的退火处理使得电阻率变得明显呈低电阻化。更具体的例子有,所述结晶性氧化物薄膜的电阻率为80mΩcm以下,更加优选为50mΩcm以下,最优选为低电阻化至25mΩcm以下。
另外,就结晶性氧化物薄膜的组成而言,例如优选为InXAlYGaZFeVO3(0≤X≤2.5,0≤Y≤2.5,0≤Z≤2.5,0≤V≤2.5,X+Y+Z+V=1.5~2.5),1≤Z。更加优选为X,Y,Z以及V,分别具体为例如0,0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5中任意一个数值。另外X+Y+Z+V优选为,具体而言例如是1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5中任意一个数值。另外所述X,Y,Z,V,以及X+Y+Z+V也可以分别在此例举的任意2个数值的范围内。另外上述一般式,表示具有刚玉结构的网格点上的原子组成,没有表示为「X+Y+Z+V=2」,这也是明显的,也可以含有非化学计量氧化物,也可以含有金属不足氧化物(metal-deficient oxide),氧不足氧化物(oxygen-deficient oxide)。
结晶性氧化物薄膜,可以直接形成于底层基板上,也可以介由其他层而形成。其他层有例如其他组成的刚玉结构结晶薄膜、刚玉结构以外的结晶薄膜或无定形(amorphous)薄膜等。
就结晶性氧化物薄膜而言,在其至少一部分(更具体而言是厚度方向的一部分)掺入杂质也是可以的,也可以是单层结构,也可以是多层结构。为多层结构时,结晶性氧化物薄膜由例如绝缘性薄膜和导电性薄膜层叠而构成,不过本发明不受其限定。另外,由绝缘性薄膜和导电性薄膜层叠而构成多层结构时,绝缘性薄膜和导电性薄膜的组成,可以相同也可以相互不同。绝缘性薄膜和导电性薄膜的厚度比没有特别限定,优选为(导电性薄膜的厚)/(绝缘性薄膜的厚)的比为0.001~100,更加优选为0.1~5。进一步优选的比具体而言例如是0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,3,4,5中任意一个数值,也可以是在此例举的任意2个值间的范围内。
导电性薄膜掺入赋予导电性的杂质也是可以的。就杂质的掺入浓度而言,根据对于导电性膜所要求的特性而适当的决定,例如为1E15/cm3~1E20/cm3。另外,对于掺入的杂质种类没有特别限定,例如为由Ge,Sn,Si,Ti,Zr及Hf中的至少1种组成的掺杂剂等。就绝缘性薄膜而言,通常不需要掺入杂质,不过也可以在不呈现导电性的程度内掺入杂质。
结晶性氧化物薄膜的厚度是1μm以上。形成的结晶性氧化物薄膜通常为300nm左右的厚度,不过形成这样的厚度时,进行加热步骤时产生的导电性薄膜高电阻化的问题不能解决。在本发明中,形成的结晶性氧化物薄膜厚为1μm以上的话,进行加热步骤时的导电性薄膜高电阻化可以得到抑制。结晶性氧化物薄膜的厚度的上限没有特别限定,不过优选为100μm,更优选为50μm,最优为选20μm。最合适的结晶性氧化物薄膜的厚度具体而言例如是1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20μm中的任意一个数值,也可以是在此例举的任意2个值间的范围内。在这样的膜厚下,可以进行更合适的退火处理从而降低电阻率。
在本发明中,将原料溶液微粒化而生成原料微粒,将该原料微粒以载气向成膜室供给,在配置于所述成膜室内的底层基板上形成具有刚玉结构的结晶性氧化物薄膜时,所述结晶性氧化物薄膜被形成为1μm以上,之后通过退火处理,所述结晶性氧化物薄膜的电阻率成为80mΩcm以下,可以制造本发明的结晶性层叠结构体。
对于结晶性氧化物薄膜的形成方法没有特别限定,可以是将例如镓化合物,铟化合物,铝化合物以及铁化合物,对应于结晶性氧化物薄膜的组成而进行组合,将得到的组合原料化合物进行酸化反应,从而可以形成。由此,在底层基板上可以从底层基板侧结晶生长出结晶性氧化物薄膜。镓化合物以及铟化合物也可以是:将镓金属或铟金属作为起始材料在刚要成膜之前变为镓化合物及铟化合物。镓化合物,铟化合物,铝化合物以及铁化合物有例如:各种金属的有机金属络合物(例如∶乙酰丙酮(Acetylacetonate)络合物)或卤化物(氟化,氯化,溴化或碘化物)。掺杂剂原料有例如:掺入的杂质之金属单体或化合物(例如卤化物,氧化物)等。为了稳定地形成厚膜,将异常粒抑制剂Br或I导入薄膜中,异常粒成长导致的表面粗糙度的恶化可以被抑制。为了控制导电性考虑Ge,Sn,Si,Ti,Zr,Hf等n型掺杂剂,但不受其限定。导入异常粒抑制剂Br或I的10倍以上的n型掺杂剂,使得荷载密度(Carrier density)容易控制。另外,也可以用异常粒抑制剂的Br或I作为n型掺杂剂可以控制导电性。
通过使用所述异常粒抑制剂,可以使所述结晶性氧化物薄膜表面粗糙度(Ra)成为0.1μm以下,可以进一步提高半导体特性。另外表面粗糙度(Ra)是根据JIS B0601测得的算术平均粗糙度。
就所述结晶性氧化物薄膜而言,其X射线的半值宽度(x-ray half-width)没有限定。特别是,相对于形成厚度不到1μm的情况,X射线半值宽度不一定被改善也是可以的。即,所述结晶性薄膜的X射线半值宽度即使不改善通过退火处理也可以达到低电阻化。
更具体而言,就结晶性氧化物薄膜而言,从溶解有原料化合物的原料溶液生成原料微粒,将该原料微粒向成膜室供应,在所述成膜室内使所述原料化合物反应,由此可以得以形成。原料溶液的溶剂优选为水,过氧化氢水(hydrogen peroxide water),有机溶剂。如果向薄膜掺杂杂质时,在掺杂剂原料的存在下,使上述原料化合物进行氧化反应即可。掺杂剂原料优选为包含于原料溶液中,且与原料化合物一起被微粒化。
另外通过上述方法,所述结晶性氧化物薄膜的膜厚可以通过调节成膜时间而成为1μm以上。
本发明中,电阻率可以通过退火处理达到80mΩcm以下。在本发明中,电阻率(mΩcm)是按照4探针法(JIS H 0602∶以单晶硅及硅晶片的4探针法进行的电阻率测量方法),采用4探针测量仪测量。在本发明中,就退火处理的温度而言,如果电阻率可以为80mΩcm以下的话,就没有特别限定,优选600℃以下,更加优选为550℃,最优选为500℃以下。通过这样优选的温度下进行退火处理,可以更适当地降低上述结晶性氧化物薄膜的电阻率。就退火处理的处理时间而言,如果不阻碍本发明的目的就没有特别限定,不过优选为10秒~10小时,更加优选为10秒~1小时。
<结晶性层叠结构体的构成例子>
本实施方式的结晶性层叠结构体及使用它的半导体装置的合适的例子如图1所示。在图1的例子中,底层基板1上形成结晶性氧化物薄膜3。就结晶性氧化物薄膜3而言,从底层基板1侧开始按顺序层积绝缘性薄膜3a和导电性薄膜3b而被构成。在导电性薄膜3b上形成栅极绝缘膜(Gate insulator film)5。在栅极绝缘膜5上形成栅电极(Gate electrode)7。并且在导电性薄膜3b上,夹住栅电极7,形成源极和漏极电极9(Source and drainelectrodes)。以这样的构成,通过施加于栅电极7的栅极电压可以控制形成于导电性薄膜3b的耗尽层(Depletion layer),晶体管工作(FET设备)成为可能。
使用本实施方式的结晶性层叠结构体所形成的半导体装置有例如MIS或HEMT等晶体管或TFT、使用半导体-金属连接的肖特基势垒二极管(Schottky barrier diode)、与其他P层组合的PN或PIN二极管、发受光元件(Light emitting and receiving element)。
【实施例】
以下说明本发明的实施例。以下的实施例中,根据雾CVD法形成掺入杂质的结晶性氧化物薄膜,不过本发明不受这些实施例的限定。
1.CVD装置
首先以图2说明本实施例中使用的CVD装置19。CVD装置19具备:安置有底层基板等被成膜样品20的样品台21、供给载气的载气源22、对于从载气源22送出的调节载气流量进行调节的流量调节阀23、收纳原料溶液24a的雾发生源24、容纳水25a的容器25、安装于容器25底面的超声振荡子26、由内径40mm的石英管组成的成膜室27、以及设置于膜室27周边的加热器28。样品台21由石英组成,安置被成膜样品20的面从水平面开始倾斜。成膜室27和样品台21均由石英制得,由此抑制了:形成于被成膜样品20上的薄膜内混入装置带来的杂质。
2.原料溶液的制造
<条件1>
调制溴化镓和氧化锗水溶液,使得锗相对于镓的原子比为1:0.05。这时为了促进溶解氧化锗,含有体积比为10%的48%溴化氢溶液。
<条件2>
调制水溶液,其中溴化镓、溴化锡的物质的量之比为1:0.01。这时为了溶解促进,含有体积比为10%的48%溴化氢溶液。
条件1~2的任意1项中,溴化镓浓度为1.0×10-2mol/L。在雾发生源24内收容有该原料溶液24a。
3.成膜准备
接着,作为被成膜样品20,边长为10mm的正方形且厚600μm的c面蓝宝石基板被设置于样品台21上,使加热器28工作,使成膜室27内的温度上升到500℃。接着,开启流量调节阀23,从载气源22向成膜室27内供给载气,成膜室27的气体环境被载气充分置换后,调节载气流量为5L/min。载气用的是氧气。
4.薄膜形成
接着,使超声振荡子26以2.4MHz的频率振荡,该振荡通过水25a传播到原料溶液24a,由此使原料溶液24a微粒化而生成原料微粒。该原料微粒由载气被导入成膜室27内,在成膜室27内反应,在被成膜样品20的成膜面中的CVD反应使得薄膜形成于被成膜样品20上。通过调节成膜时间控制膜厚。
5.评估
对于以条件1及2形成的薄膜的相进行鉴定。该鉴定使用薄膜用XRD衍射装置,以从15度到95度的角度进行2θ/ω扫描。使用CuKα线进行检测。该结果是:形成的薄膜是具有刚玉结构的α-氧化镓。
将直径0.5mm的铟电极按照1mm的端子间距离进行压接(pressure-bonded)后,在氮气环境下进行500℃下20分钟的退火处理。退火后进行XRD测量,确认结果如下:不发生相变,维持α-氧化镓的结晶结构。
另外本实施例的薄膜的膜厚以干涉式膜厚计进行测量。
图3表示:以上述条件1形成的α-氧化镓的退火前后的电阻值的变化。对于专利文献1或非专利文献1中公開的膜厚不超过0.3μm的α-氧化镓薄膜进行退火处理时,观察到:相对于电阻值上升,1μm膜厚的α-氧化镓薄膜中电阻值急剧减少。
另外,对于以条件2制造的α-氧化镓,在退火前后的电阻值的变化也进行评估,结果如表1所示。如表1所示,1μm以上的膜厚的α-氧化镓中掺杂剂为Ge、Sn的任意一种时,没有观察到高电阻化。
【表1】
表1膜厚 Ge(条件1) Sn(条件2)
0.1μm × ×
0.3μm × ×
1μm
2μm以上 -
○:由于退火电阻值降低
×:由于退火电阻值增加
-:未实施
在具有β-gallia(β-gallia-structured)结构的底层基板上,以与条件1相同的条件形成具有0.3μm以及1μm的β-gallia结构的β-氧化镓之后,在氮气环境以及500℃下进行20分钟退火处理,得的样品与上述进行α-氧化镓薄膜进行比较。结果如表2所示。就β-氧化镓而言,即使厚度为0.3μm时也不产生高电阻化,然而就α-氧化镓而言,厚度为0.3μm时产生高电阻化。其结果暗示:导电性薄膜的高电阻化是具有刚玉结构的结晶性氧化物薄的特有问题。另外表2中以「○」标记的,电阻率均为80mΩcm以下。
【表2】
表2膜厚 α-氧化镓 β-氧化镓
0.1μm × -
0.3μm ×
1μm
2μm以上 -
○:电阻降低至1.0E+5Ω以下
△:没有观察到电阻值变化
×:电阻值增加(高电阻化)至1.0E+7Ω以上
接着进行研究:在条件1下形成的α-氧化镓的电阻值根据退火条件如何变化。其结果如表3所示,膜厚为300nm(0.3μm)时,在全部的退火温度下产生了高电阻化。另外表3中以「○」标记的,电阻率均为80mΩcm以下。
【表3】
表3退火温度 0.3μm 1μm
400℃
500℃ ×
600℃ × -
○:1.0E+5Ω以下
△:1.0E+5Ω~1.0E+7Ω
×:1.0E+7Ω以上
(比较例)
除了没有进行退火处理,以及下述表4中所示为成膜条件以外,与上述条件1的实施例相同,在蓝宝石基板上层叠α-氧化镓。测量得到的结晶性层叠结构体的膜厚和比电阻(specificresistance)。
结果如表4所示。
【表4】
(试验例∶TEM像)
除了成膜温度为600℃以外,与上述条件1的实施例相同,在蓝宝石基板上层叠α-氧化镓。用TEM测量得到的结晶性层叠结构体的膜厚。TEM像如图4所示。测量的结果是膜厚为4.56μm。另外比较例中得到的结晶性层叠结构体的TEM像分别显示于图5。
本发明的结晶性层叠结构体可以用于MIS或HEMT等晶体管、TFT、使用半导体-金属连接的肖特基势垒二极管(Schottky barrier diode)、与其他P层组合的PN或PIN二极管、或发受光元件(Light emitting and receiving element)等半导体装置中。

Claims (9)

1.一种结晶性层叠结构体,其特征在于,
具备底层基板,和
直接或介由其他层设置于该底层基板上的结晶性氧化物薄膜,
且该结晶性氧化物薄膜具有刚玉结构;
所述结晶性氧化物薄膜的膜厚是1μm以上,
所述结晶性氧化物薄膜的电阻率为80mΩcm以下。
2.如权利要求1中所述的结晶性层叠结构体,其特征在于,所述结晶性氧化物薄膜至少含有镓。
3.如权利要求1中所述的结晶性层叠结构体,其特征在于,所述结晶性氧化物薄膜的表面粗糙度Ra为0.1μm以下。
4.如权利要求1~3的任意一项中所述的结晶性层叠结构体,其特征在于,所述膜厚为1~20μm。
5.如权利要求1~3的任意一项中所述的结晶性层叠结构体,其特征在于,所述底层基板是c面蓝宝石基板。
6.一种形成具有刚玉结构的结晶性氧化物薄膜的结晶性层叠结构体之制造方法,其中,将原料溶液微粒化而生成原料微粒,将该原料微粒以载气向成膜室供给,在配置于所述成膜室内的底层基板上形成具有所述刚玉结构的结晶性氧化物薄膜;并且,
其中,所述结晶性氧化物薄膜的膜厚为1μm以上,所述结晶性氧化物薄膜的电阻率为80mΩcm以下;
所述结晶性氧化物薄膜的膜厚形成为1μm以上之后,进行退火处理。
7.如权利要求6中所述的制造方法,其特征在于,形成的所述结晶性氧化物薄膜的膜厚为1~20μm。
8.如权利要求6或7中所述的制造方法,其特征在于,以600℃以下的条件进行退火处理。
9.一种半导体装置,其中,使用如权利要求1~5的任意一项中所述的结晶性层叠结构体而构成该半导体装置。
CN201510144633.4A 2014-03-31 2015-03-30 结晶性层叠结构体,半导体装置 Active CN104952926B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910603781.6A CN110164961B (zh) 2014-03-31 2015-03-30 结晶性层叠结构体,半导体装置
CN201910452653.6A CN110112220A (zh) 2014-03-31 2015-03-30 结晶性层叠结构体,半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014072779 2014-03-31
JP2014-072779 2014-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201910603781.6A Division CN110164961B (zh) 2014-03-31 2015-03-30 结晶性层叠结构体,半导体装置
CN201910452653.6A Division CN110112220A (zh) 2014-03-31 2015-03-30 结晶性层叠结构体,半导体装置

Publications (2)

Publication Number Publication Date
CN104952926A true CN104952926A (zh) 2015-09-30
CN104952926B CN104952926B (zh) 2019-08-13

Family

ID=52146227

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201910603781.6A Active CN110164961B (zh) 2014-03-31 2015-03-30 结晶性层叠结构体,半导体装置
CN201910452653.6A Pending CN110112220A (zh) 2014-03-31 2015-03-30 结晶性层叠结构体,半导体装置
CN201510144633.4A Active CN104952926B (zh) 2014-03-31 2015-03-30 结晶性层叠结构体,半导体装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201910603781.6A Active CN110164961B (zh) 2014-03-31 2015-03-30 结晶性层叠结构体,半导体装置
CN201910452653.6A Pending CN110112220A (zh) 2014-03-31 2015-03-30 结晶性层叠结构体,半导体装置

Country Status (5)

Country Link
US (3) US10109707B2 (zh)
EP (1) EP2927934B1 (zh)
JP (2) JP6379368B2 (zh)
CN (3) CN110164961B (zh)
TW (1) TWI546424B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799584A (zh) * 2016-08-31 2018-03-13 流慧株式会社 结晶性氧化物半导体膜、半导体装置及半导体系统
CN107895742A (zh) * 2016-10-03 2018-04-10 流慧株式会社 半导体装置以及包括半导体装置的半导体系统
CN111383911A (zh) * 2018-12-26 2020-07-07 株式会社Flosfia 结晶性氧化物膜、半导体装置及半导体系统
CN113677834A (zh) * 2019-04-24 2021-11-19 日本碍子株式会社 半导体膜
CN114651084A (zh) * 2019-10-31 2022-06-21 东曹株式会社 层叠膜结构体和其制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379190B2 (en) * 2014-05-08 2016-06-28 Flosfia, Inc. Crystalline multilayer structure and semiconductor device
CN108899359A (zh) 2014-07-22 2018-11-27 Flosfia 株式会社 结晶性半导体膜和板状体以及半导体装置
JP2016031953A (ja) * 2014-07-25 2016-03-07 株式会社タムラ製作所 半導体素子及びその製造方法、半導体基板、並びに結晶積層構造体
CN106158974A (zh) * 2016-08-29 2016-11-23 北京大学 一种ω型顶栅结构的鳍式场效应晶体管及其制备方法
JP6994181B2 (ja) * 2016-08-31 2022-02-04 株式会社Flosfia 結晶性酸化物半導体膜および半導体装置
JP7126082B2 (ja) * 2016-08-31 2022-08-26 株式会社Flosfia 結晶性酸化物半導体膜および半導体装置
EP3536828A4 (en) * 2016-11-07 2020-07-15 Flosfia Inc. CRYSTALLINE OXIDE SEMICONDUCTOR FILM AND SEMICONDUCTOR DEVICE
JP7248962B2 (ja) * 2017-08-24 2023-03-30 株式会社Flosfia 半導体装置
JP2019151922A (ja) 2018-02-28 2019-09-12 株式会社Flosfia 積層体および半導体装置
JP2020011859A (ja) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 成膜方法、及び、半導体装置の製造方法
JP2020011858A (ja) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 成膜方法、及び、半導体装置の製造方法
US20200083332A1 (en) * 2018-09-05 2020-03-12 Industrial Technology Research Institute Semiconductor device and method for fabricating the same
JP7315136B2 (ja) * 2018-12-26 2023-07-26 株式会社Flosfia 結晶性酸化物半導体
JP7179294B2 (ja) * 2019-04-12 2022-11-29 信越化学工業株式会社 酸化ガリウム半導体膜の製造方法
JP7306640B2 (ja) * 2019-08-28 2023-07-11 信越化学工業株式会社 結晶性酸化物膜
JP7045014B2 (ja) * 2019-08-28 2022-03-31 信越化学工業株式会社 積層構造体の製造方法
JP7078582B2 (ja) * 2019-08-29 2022-05-31 信越化学工業株式会社 積層構造体、半導体装置及び結晶性酸化膜の成膜方法
JP7078581B2 (ja) * 2019-08-29 2022-05-31 信越化学工業株式会社 積層構造体及び半導体装置並びに積層構造体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156022A1 (en) * 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20120061663A1 (en) * 2010-09-13 2012-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN103325817A (zh) * 2012-03-23 2013-09-25 索尼公司 薄膜晶体管、薄膜晶体管制造方法及电子设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132309B2 (en) * 2003-04-22 2006-11-07 Chien-Min Sung Semiconductor-on-diamond devices and methods of forming
US7015495B2 (en) * 2001-03-16 2006-03-21 Nippon Sheet Glass Co., Japan Metallic very thin film, metallic very thin film multilayer body, and method for manufacturing the metallic very thin film or the metallic very thin film laminate
WO2005054550A1 (ja) * 2003-12-01 2005-06-16 Dai Nippon Printing Co., Ltd. 人工コランダム結晶
JP2005235961A (ja) * 2004-02-18 2005-09-02 Univ Waseda Ga2O3系単結晶の導電率制御方法
US20070287221A1 (en) 2006-06-12 2007-12-13 Xerox Corporation Fabrication process for crystalline zinc oxide semiconductor layer
US7476615B2 (en) 2006-11-01 2009-01-13 Intel Corporation Deposition process for iodine-doped ruthenium barrier layers
TWI478347B (zh) * 2007-02-09 2015-03-21 Idemitsu Kosan Co A thin film transistor, a thin film transistor substrate, and an image display device, and an image display device, and a semiconductor device
JP5853350B2 (ja) 2010-03-08 2016-02-09 住友化学株式会社 電気装置
US8629438B2 (en) * 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI525818B (zh) * 2010-11-30 2016-03-11 半導體能源研究所股份有限公司 半導體裝置及半導體裝置之製造方法
US9299852B2 (en) * 2011-06-16 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5793732B2 (ja) 2011-07-27 2015-10-14 高知県公立大学法人 ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP5975466B2 (ja) 2011-09-08 2016-08-23 株式会社タムラ製作所 Ga2O3系半導体素子
WO2013035843A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
KR20130055521A (ko) * 2011-11-18 2013-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 소자, 및 반도체 소자의 제작 방법, 및 반도체 소자를 포함하는 반도체 장치
US8981368B2 (en) * 2012-01-11 2015-03-17 Sony Corporation Thin film transistor, method of manufacturing thin film transistor, display, and electronic apparatus
JP5912046B2 (ja) * 2012-01-26 2016-04-27 株式会社Shカッパープロダクツ 薄膜トランジスタ、その製造方法および該薄膜トランジスタを用いた表示装置
KR102241249B1 (ko) * 2012-12-25 2021-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 저항 소자, 표시 장치, 및 전자기기
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156022A1 (en) * 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20120061663A1 (en) * 2010-09-13 2012-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN103325817A (zh) * 2012-03-23 2013-09-25 索尼公司 薄膜晶体管、薄膜晶体管制造方法及电子设备

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799584A (zh) * 2016-08-31 2018-03-13 流慧株式会社 结晶性氧化物半导体膜、半导体装置及半导体系统
CN107799584B (zh) * 2016-08-31 2022-08-26 株式会社Flosfia 结晶性氧化物半导体膜、半导体装置及半导体系统
CN107895742A (zh) * 2016-10-03 2018-04-10 流慧株式会社 半导体装置以及包括半导体装置的半导体系统
CN111383911A (zh) * 2018-12-26 2020-07-07 株式会社Flosfia 结晶性氧化物膜、半导体装置及半导体系统
CN111383911B (zh) * 2018-12-26 2023-11-24 株式会社Flosfia 结晶性氧化物膜、半导体装置及半导体系统
CN113677834A (zh) * 2019-04-24 2021-11-19 日本碍子株式会社 半导体膜
CN114651084A (zh) * 2019-10-31 2022-06-21 东曹株式会社 层叠膜结构体和其制造方法

Also Published As

Publication number Publication date
JP6379368B2 (ja) 2018-08-29
US10535728B2 (en) 2020-01-14
JP2018203613A (ja) 2018-12-27
US20180308924A1 (en) 2018-10-25
US20150279927A1 (en) 2015-10-01
US10204978B2 (en) 2019-02-12
TWI546424B (zh) 2016-08-21
CN110164961A (zh) 2019-08-23
EP2927934A1 (en) 2015-10-07
TW201536966A (zh) 2015-10-01
EP2927934B1 (en) 2017-07-05
JP2015199648A (ja) 2015-11-12
CN104952926B (zh) 2019-08-13
US10109707B2 (en) 2018-10-23
US20190148482A1 (en) 2019-05-16
JP6539920B2 (ja) 2019-07-10
CN110164961B (zh) 2020-09-08
CN110112220A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
CN104952926A (zh) 结晶性层叠结构体,半导体装置
CN104952927B (zh) 结晶性层叠结构体,半导体装置
JP5984069B2 (ja) β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
CN110047907A (zh) 结晶性层叠结构体、半导体装置
JP2015196603A (ja) 結晶性積層構造体、半導体装置
CN105658848A (zh) n型氮化铝单晶基板以及垂直型氮化物半导体器件
Lee et al. Exploiting the nanostructural anisotropy of β-Ga2O3 to demonstrate giant improvement in titanium/gold ohmic contacts
JP2017128492A (ja) 結晶性酸化物膜
WO2018084304A1 (ja) 結晶性酸化物半導体膜および半導体装置
JP2016066756A (ja) 結晶性積層構造体の製造方法および半導体装置
JP2018035044A (ja) 結晶性酸化物半導体膜および半導体装置
JP2020073425A (ja) 結晶積層構造体、及びそれを製造する方法
Hedei et al. Growth of polycrystalline gallium oxide films in nitrogen–oxygen–nitrogen, argon, and oxygen ambient
JP2017125243A (ja) 結晶性酸化物膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No. 1 Fan 29, Yuling Dayuan, Xijing District, Kyoto City, Kyoto Prefecture, Japan

Applicant after: FLOSFIA KK

Address before: North Pavilion of Beijing Dagui Pioneering Building No. 36, Yuling Dayuan, Xijing District, Kyoto City, Kyoto City, Japan

Applicant before: FLOSFIA INC.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant