WO2018084304A1 - 結晶性酸化物半導体膜および半導体装置 - Google Patents

結晶性酸化物半導体膜および半導体装置 Download PDF

Info

Publication number
WO2018084304A1
WO2018084304A1 PCT/JP2017/040039 JP2017040039W WO2018084304A1 WO 2018084304 A1 WO2018084304 A1 WO 2018084304A1 JP 2017040039 W JP2017040039 W JP 2017040039W WO 2018084304 A1 WO2018084304 A1 WO 2018084304A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
crystalline oxide
film
semiconductor film
plane
Prior art date
Application number
PCT/JP2017/040039
Other languages
English (en)
French (fr)
Inventor
勲 ▲高▼橋
四戸 孝
梨絵 徳田
真也 織田
俊実 人羅
Original Assignee
株式会社Flosfia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Flosfia filed Critical 株式会社Flosfia
Priority to KR1020197013085A priority Critical patent/KR20190074288A/ko
Priority to KR1020227029502A priority patent/KR102564830B1/ko
Priority to JP2018549106A priority patent/JP7391290B2/ja
Priority to US16/347,360 priority patent/US11393906B2/en
Priority to CN201780068749.1A priority patent/CN109952392A/zh
Priority to EP17867324.0A priority patent/EP3536828A4/en
Priority to CN202210758521.8A priority patent/CN115101587A/zh
Publication of WO2018084304A1 publication Critical patent/WO2018084304A1/ja
Priority to US17/832,984 priority patent/US11967618B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/227Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds further characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8086Thin film JFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Recrystallisation Techniques (AREA)
  • Liquid Crystal (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

電気特性に優れた結晶性酸化物半導体膜を提供する。ミストCVD装置を用いて、ドーパントを含む原料溶液を霧化または液滴化し、得られたミストまたは液滴をキャリアガスで成膜室内のa面又はm面コランダム構造結晶基板近傍に搬送し、ついで成膜室内で前記ミストまたは液滴を熱反応させることによって、結晶基板上に、コランダム構造を有し、主面がa面又はm面であり、前記ドーパントがn型ドーパントである結晶性酸化物半導体膜を得る。

Description

結晶性酸化物半導体膜および半導体装置
 本発明は、半導体装置に有用な結晶性酸化物半導体膜並びに前記結晶性半導体酸化物膜を用いた半導体装置及びシステムに関する。
 高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。しかも、広いバンドギャップからLEDやセンサー等の受発光装置としての応用も期待されている。当該酸化ガリウムは非特許文献1によると、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶することによりバンドギャップ制御することが可能であり、InAlGaO系半導体として極めて魅力的な材料系統を構成している。ここでInAlGaO系半導体とはInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)を示し、酸化ガリウムを内包する同一材料系統として俯瞰することができる。
 特許文献1には、c面サファイア基板上にSnをドーピングした結晶性の高い導電性α―Ga薄膜が記載されている。特許文献1に記載の薄膜は、X線回析法のロッキングカーブ半値幅が約60arcsecと結晶性の高いα―Ga薄膜であるものの、十分な耐圧性を維持することができず、また、移動度も1cm/Vs以下と、半導体特性も満足のいくものではなく、半導体装置に用いることがまだまだ困難であった。
 また、特許文献2では、c面サファイア基板上にGeをドーピングしたα―Ga膜が記載されており、特許文献1に記載の薄膜よりも電気特性に優れたα―Ga薄膜が得られているが、移動度は3.26cm/Vsと、半導体装置に用いるにはまだまだ満足のいくものではなかった。
 非特許文献2では、c面サファイア基板上にSnをドーピングしたα―Ga膜を作製し、次いでアニール処理してこれをアニールバッファ層とし、その後アニールバッファ層上にSnをドープしたα―Ga膜を成膜することにより、移動度を向上させている。また、Snのドーピングによって、Snがサーファクタント的な効果を果たすことにより、α―Ga薄膜の表面粗さや結晶性が改善し、移動度が向上するという結果も得られている。しかしながら、アニール処理により、高抵抗化または絶縁化する問題があり、半導体装置に用いるにはまだまだ課題が残されていた。また、得られた膜は依然として転位が多く、転位散乱の影響が強いため、電気特性に支障をきたす問題があった。さらに、クラックも多い問題もあり、工業的に有用なα―Ga膜が待ち望まれていた。
特開2013-028480号公報 特開2015-228495号公報
金子健太郎、「コランダム構造酸化ガリウム系混晶薄膜の成長と物性」、京都大学博士論文、平成25年3月 赤岩和明、「コランダム構造酸化ガリウム系半導体の電気特性制御とデバイス応用」、京都大学博士論文、平成28年3月
 本発明は、電気特性、特に移動度に優れた結晶性酸化物半導体膜を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意検討した結果、特定の条件下で、ミストCVD法を用いて成膜すると、驚くべきことに、高抵抗化処理も絶縁化処理も行うことなく、また、半値幅が、例えば、100arcsec以上であっても、移動度に優れた結晶性酸化物半導体膜が得られ、さらに、得られた結晶性酸化物半導体膜は、クラックが低減されたものであることを見出し、この結晶性酸化物半導体膜が上記した従来の問題を一挙に解決できるものであることを知見した。
 また、本発明者らは、上記知見を得た後、さらに検討を重ねて本発明を完成させるに至った。
 すなわち、本発明は、以下の発明に関する。
[1] コランダム構造を有する結晶性酸化物半導体を主成分として含み、さらにドーパントを含む結晶性酸化物半導体膜であって、主面がa面又はm面であり、前記ドーパントがn型ドーパントであることを特徴とする結晶性酸化物半導体膜。
[2] キャリア密度が1.0×1018/cm以上である請求項1記載の結晶性酸化物半導体膜。
[3] 移動度が30cm/Vs以上である前記[1]又は[2]に記載の結晶性酸化物半導体膜。
[4] 半値幅が300arcsec以上である前記[1]~[3]のいずれかに記載の結晶性酸化物半導体膜。
[5] 抵抗率が50mΩcm以下である前記[1]~[4]のいずれかに記載の結晶性酸化物半導体膜。
[6] オフ角を有する前記[1]~[5]のいずれかに記載の結晶性酸化物半導体膜。
[7] 前記ドーパントが、スズ、ゲルマニウム又はケイ素である前記[1]~[6]のいずれかに記載の結晶性酸化物半導体膜。
[8] 前記ドーパントがスズである前記[1]~[7]のいずれかに記載の結晶性酸化物半導体膜。
[9] 前記結晶性酸化物半導体が、ガリウム、インジウム又はアルミニウムを含む前記[1]~[8]のいずれかに記載の結晶性酸化物半導体膜。
[10] 前記結晶性酸化物半導体が、ガリウムを少なくとも含む前記[1]~[9]のいずれかに記載の結晶性酸化物半導体膜。
[11] 半導体層と電極とを少なくとも含む半導体装置であって、前記半導体層として、前記[1]~[10]のいずれかに記載の結晶性酸化物半導体膜が用いられている半導体装置。
[12] 半導体装置を備える半導体システムであって、前記半導体装置が、前記[11]記載の半導体装置である半導体システム。
 本発明の結晶性酸化物半導体膜は、電気特性、特に移動度に優れている。
実施例において用いられる成膜装置(ミストCVD装置)の概略構成図である。 ショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。 高電子移動度トランジスタ(HEMT)の好適な一例を模式的に示す図である。 金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な一例を模式的に示す図である。 接合電界効果トランジスタ(JFET)の好適な一例を模式的に示す図である。 絶縁ゲート型バイポーラトランジスタ(IGBT)の好適な一例を模式的に示す図である。 発光素子(LED)の好適な一例を模式的に示す図である。 発光素子(LED)の好適な一例を模式的に示す図である。 電源システムの好適な一例を模式的に示す図である。 システム装置の好適な一例を模式的に示す図である。 電源装置の電源回路図の好適な一例を模式的に示す図である。 実施例におけるXRD測定結果を示す図である。 試験例におけるホール効果測定結果を示す図である。なお、縦軸が移動度(cm/Vs)であり、横軸がキャリア密度(/cm)である。 試験例における温度可変ホール効果測定結果を示す図である。なお、縦軸が移動度(cm/Vs)であり、横軸が温度(K)である。 実施例において用いられる成膜装置(ミストCVD装置)の概略構成図である。 実施例および比較例における抵抗値の測定結果を示す図である。
 本発明の結晶性酸化物半導体膜は、コランダム構造を有する結晶性酸化物半導体を主成分として含み、さらにドーパントを含む結晶性酸化物半導体膜であって、主面がa面又はm面であり、前記ドーパントがn型ドーパントであることを特長とする。また、本発明の結晶性酸化物半導体膜は、キャリア密度が約1.0×1018/cm以上であるのが好ましい。前記主面は、a面又はm面であれば特に限定されないが、本発明においては、m面が好ましい。また、前記キャリア密度は、ホール効果測定にて得られる半導体膜中のキャリア密度をいう。前記キャリア密度の上限は特に限定されないが、約1.0×1023/cm以下が好ましく、約1.0×1022/cm以下がより好ましい。また、前記結晶性酸化物半導体膜は、移動度が30cm/Vs以上であるのが好ましく、50cm/Vs以上であるのがより好ましく、100cm/Vs以上であるのが最も好ましい。なお、前記移動度は、ホール効果測定にて得られる移動度をいう。また、本発明においては、前記結晶性酸化物半導体膜の抵抗率は、50mΩcm以下であるのが好ましく、10mΩcm以下であるのがより好ましく、5mΩcm以下であるのが最も好ましい。
 また、前記結晶性酸化物半導体膜は、オフ角を有するのが好ましい。「オフ角」とは、所定の結晶面(主面)を基準面として形成される傾斜角をいい、通常、所定の結晶面(主面)と結晶成長面とのなす角度をいう。前記オフ角の傾斜方向は特に限定されないが、本発明においては、前記主面がm面である場合には、基準面からa軸方向に向けて傾斜角が形成されているのが好ましい。前記オフ角の大きさは特に限定されないが、0.2°~12.0°が好ましく、0.5°~4.0°であるのがより好ましく、0.5°~3.0°であるのが最も好ましい。好ましいオフ角を有することにより、結晶性半導体膜の半導体特性、特に移動度がさらにより優れたものになる。
 また、本発明においては、前記結晶性酸化物半導体が、インジウム、ガリウムまたはアルミニウムを含むのが好ましく、InAlGaO系半導体を含むのがより好ましく、ガリウムを少なくとも含むのが最も好ましい。なお、「主成分」とは、例えば結晶性酸化物半導体がα―Gaである場合、膜中の金属元素中のガリウムの原子比が0.5以上の割合でα―Gaが含まれていればそれでよい。本発明においては、前記膜中の金属元素中のガリウムの原子比が0.7以上であることが好ましく、0.8以上であるのがより好ましい。また、結晶性酸化物半導体膜の厚さは、特に限定されず、1μm以下であってもよいし、1μm以上であってもよい。また、前記結晶性酸化物半導体膜の形状等は特に限定されず、四角形状(正方形状、長方形状を含む)であっても、円形状(半円形状を含む)であっても、多角形状であってもよい。前記結晶性酸化物半導体膜の表面積は、特に限定されず、3mm角以上であるのが好ましく、5mm角以上であるのがより好ましく、直径50mm以上であるのが最も好ましい。本発明においては、前記結晶性酸化物半導体膜が、膜表面の光学顕微鏡による観察において、中心3mm角領域にクラックを有しないのが好ましく、中心5mm角領域にクラックを有しないのがより好ましく、中心9.5mm角領域にクラックを有しないのが最も好ましい。また、前記結晶性酸化物半導体膜は、単結晶膜であってもよいし、多結晶膜であってもよいが、単結晶膜であるのが好ましい。
 前記結晶性酸化物半導体膜は、ドーパントを含んでいるが、前記ドーパントは、n型ドーパントであれば、特に限定されず、公知のものであってよい。前記ドーパントとしては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム、ニオブ、または鉛等のn型ドーパントなどが挙げられる。本発明においては、前記ドーパントが、スズ、ゲルマニウム、またはケイ素であるのが好ましく、スズまたはゲルマニウムであるのがより好ましく、スズであるのが最も好ましい。ドーパントの含有量は、前記結晶性酸化物半導体膜の組成中、0.00001原子%以上であるのが好ましく、0.00001原子%~20原子%であるのがより好ましく、0.00001原子%~10原子%であるのが最も好ましい。このような好ましい範囲とすることで、前記結晶性酸化物半導体膜の電気特性をより向上させることができる。
 また、前記結晶性酸化物半導体膜は、X線回析法のロッキングカーブ半値幅が100arcsec以上であるのが好ましく、300arcsec以上であるのがより好ましい。前記半値幅の上限は、特に限定されないが、好ましくは1300arcsecであり、より好ましくは1100arcsecである。このような好ましい半値幅とすることにより、得られる結晶性酸化物半導体膜の移動度をより優れたものとすることができる。
 上記「半値幅」とは、XRD(X-ray diffraction:X線回折法)によりロッキングカーブ半値幅を測定した値を意味する。測定面方位としては、特に限定されないが、例えば、[11―20]、または[30―30]などが挙げられる。
 以下、前記結晶性酸化物半導体膜の好ましい製造方法について説明するが、本発明はこれら好ましい製造方法に限定されない。
 前記結晶性酸化物半導体膜の好ましい製造方法としては、例えば図1のようなミストCVD装置を用いて、ドーパントを含む原料溶液を霧化または液滴化し(霧化・液滴化工程)、得られたミストまたは液滴をキャリアガスで成膜室内に搬送し(搬送工程)、ついで成膜室内で前記ミストまたは液滴を熱反応させることによって、結晶基板上に、結晶性酸化物半導体膜を成膜する(成膜工程)方法において、主面がa面又はm面であるコランダム構造を有している結晶基板を用いることなどが挙げられる。本発明においては、主面がa面又はm面であるコランダム構造を有している結晶基板であって、バッファ層が形成されていてもよい結晶基板を用いることが好ましく、主面がa面又はm面であるコランダム構造を有している結晶基板であって、ドーパントを含まないバッファ層が形成されていてもよい結晶基板を用いることが、移動度がより向上するので、より好ましい。
(結晶基板)
 前記結晶基板としては、特に限定されないが、主面の全部または一部にコランダム構造を有している基板であって、当該主面がa面又はm面である基板が好適な例として挙げられ、このような好適な基板が、結晶成長面側の主面の全部または一部にコランダム構造を有している基板であるのが好ましく、結晶成長面側の主面の全部にコランダム構造を有している基板であるのがより好ましい。また、本発明においては、前記結晶基板がオフ角を有しているのが、より電気特性を向上させることができるので好ましい。なお、前記結晶基板の主面がm面である場合には、基準面からa軸方向に向けて傾斜角が形成されているのが好ましい。また、前記結晶基板のオフ角の大きさは、特に限定されないが、0.2°~12.0°が好ましく、0.5°~4.0°であるのがより好ましく、0.5°~3.0°であるのが最も好ましい。前記結晶基板の基板形状は、板状であって、前記結晶性酸化物半導体膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、導電性基板であってもよいが、前記結晶基板が、絶縁体基板であるのが好ましく、また、表面に金属膜を有する基板であるのも好ましい。前記基板の形状は、特に限定されず、略円形状(例えば、円形、楕円形など)であってもよいし、多角形状(例えば、3角形、正方形、長方形、5角形、6角形、7角形、8角形、9角形など)であってもよく、様々な形状を好適に用いることができる。本発明においては、前記基板の形状を好ましい形状にすることにより、基板上に形成される膜の形状を設定することができる。また、本発明においては、大面積の基板を用いることもでき、このような大面積の基板を用いることによって、前記結晶性酸化物半導体膜の面積を大きくすることができる。前記結晶基板の基板材料は、本発明の目的を阻害しない限り、特に限定されず、公知のものであってよい。前記のコランダム構造を有する基板材料は、例えば、α―Al(サファイア基板)またはα―Gaが好適に挙げられ、主面がa面であるa面サファイア基板、主面がm面であるm面サファイア基板やα酸化ガリウム基板(主面がa面又はm面)などがより好適な例として挙げられる。
 前記のドーパントを含まないバッファ層としては、例えば、α―Fe、α―Ga、α―Al及びこれらの混晶などが挙げられる。本発明においては、前記バッファ層が、α―Gaであるのが好ましい。前記バッファ層の積層手段は特に限定されず、公知の積層手段であってよく、前記結晶性酸化物半導体膜の成膜手段と同様であってもよい。
(霧化・液滴化工程)
 霧化・液滴化工程は、前記原料溶液を霧化または液滴化する。前記原料溶液の霧化手段または液滴化手段は、前記原料溶液を霧化または液滴化できさえすれば特に限定されず、公知の手段であってよいが、本発明においては、超音波を用いる霧化手段または液滴化手段が好ましい。超音波を用いて得られたミストまたは液滴は、初速度がゼロであり、空中に浮遊するので好ましく、例えば、スプレーのように吹き付けるのではなく、空間に浮遊してガスとして搬送することが可能なミストであるので衝突エネルギーによる損傷がないため、非常に好適である。液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは0.1~10μmである。
(原料溶液)
 前記原料溶液は、ミストCVDにより、前記結晶性酸化物半導体が得られる溶液であって、前記ドーパントを含んでいれば特に限定されない。前記原料溶液としては、例えば、金属の有機金属錯体(例えばアセチルアセトナート錯体等)やハロゲン化物(例えばフッ化物、塩化物、臭化物またはヨウ化物等)の水溶液などが挙げられる。前記金属は、半導体を構成可能な金属であればそれでよく、このような金属としては、例えば、ガリウム、インジウム、アルミニウム、鉄等が挙げられる。本発明においては、前記金属が、ガリウム、インジウムまたはアルミニウムを少なくとも含むのが好ましく、ガリウムを少なくとも含むのがより好ましい。原料溶液中の金属の含有量は、本発明の目的を阻害しない限り特に限定されないが、好ましくは、0.001モル%~50モル%であり、より好ましくは0.01モル%~50モル%である。
 また、原料溶液には、通常、ドーパントが含まれている。原料溶液にドーパントを含ませることにより、イオン注入等を行わずに、結晶構造を壊すことなく、結晶性酸化物半導体膜の導電性を容易に制御することができる。前記ドーパントとしては、例えば前記金属が少なくともガリウムを含む場合には、スズ、ゲルマニウム、ケイ素または鉛などのn型ドーパント等が挙げられる。本発明においては、前記ドーパントがスズ、ゲルマニウム、またはケイ素であるのが好ましく、スズ、またはゲルマニウムであるのがより好ましく、スズであるのが最も好ましい。前記ドーパントの濃度は、通常、約1×1016/cm~1×1022/cmであってもよいし、また、ドーパントの濃度を例えば約1×1017/cm以下の低濃度にしてもよいし、ドーパントを約1×1020/cm以上の高濃度で含有させてもよい。本発明においては、ドーパントの濃度が1×1020/cm以下であるのが好ましく、5×1019/cm以下であるのがより好ましい。
 原料溶液の溶媒は、特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明においては、前記溶媒が水を含むのが好ましく、水または水とアルコールとの混合溶媒であるのがより好ましく、水であるのが最も好ましい。前記水としては、より具体的には、例えば、純水、超純水、水道水、井戸水、鉱泉水、鉱水、温泉水、湧水、淡水、海水などが挙げられるが、本発明においては、超純水が好ましい。
(搬送工程)
 搬送工程では、キャリアガスでもって前記ミストまたは前記液滴を成膜室内に搬送する。前記キャリアガスは、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスが好適な例として挙げられる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、流量を下げた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、0.01~20L/分であるのが好ましく、0.5~10L/分であるのがより好ましい。希釈ガスの場合には、希釈ガスの流量が、0.001~2L/分であるのが好ましく、0.1~1L/分であるのがより好ましい。
(成膜工程)
 成膜工程では、成膜室内で前記ミストまたは液滴を熱反応させることによって、基体上に、結晶性酸化物半導体膜を成膜する。熱反応は、熱でもって前記ミストまたは液滴が反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程においては、前記熱反応を、通常、溶媒の蒸発温度以上の温度で行うが、高すぎない温度(例えば1000℃)以下が好ましく、650℃以下がより好ましく、400℃~650℃が最も好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが好ましい。なお、膜厚は、成膜時間を調整することにより、設定することができる。
 上記のようにして得られた結晶性酸化物半導体膜は、電気特性、特に移動度に優れているだけでなく、クラックが低減されており、工業的に有用なものである。このような結晶性酸化物半導体膜は、半導体装置等に好適に用いることができ、とりわけ、パワーデバイスに有用である。例えば、前記結晶性酸化物半導体膜は、前記半導体装置のn型半導体層(n+型半導体層、n-型半導体層を含む)に用いられる。また、本発明においては、前記結晶性酸化物半導体膜を、そのままで用いてもよいし、前記基板等から剥離する等の公知の手段を用いた後に、半導体装置等に適用してもよい。
 また、前記半導体装置は、電極が半導体層の片面側に形成された横型の素子(横型デバイス)と、半導体層の表裏両面側にそれぞれ電極を有する縦型の素子(縦型デバイス)に分類することができ、本発明においては、横型デバイスにも縦型デバイスにも好適に用いることができるが、中でも、縦型デバイスに用いることが好ましい。前記半導体装置としては、例えば、ショットキーバリアダイオード(SBD)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)または発光ダイオード(LED)などが挙げられる。
 以下、本発明の結晶性酸化物半導体膜をn型半導体層(n+型半導体やn-半導体層等)に適用した場合の好適な例を、図面を用いて説明するが、本発明は、これらの例に限定されるものではない。なお、以下に例示する半導体装置において、本発明の目的を阻害しない限り、さらに他の層(例えば絶縁体層、半絶縁体層、導体層、半導体層、緩衝層またはその他中間層等)などが含まれていてもよいし、また、緩衝層(バッファ層)なども適宜省いてもよい。
 図2は、本発明に係るショットキーバリアダイオード(SBD)の一例を示している。図2のSBDは、n-型半導体層101a、n+型半導体層101b、ショットキー電極105aおよびオーミック電極105bを備えている。
 ショットキー電極およびオーミック電極の材料は、公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化レニウム、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物並びに積層体などが挙げられる。
 ショットキー電極およびオーミック電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。より具体的に例えば、前記金属のうち2種類の第1の金属と第2の金属とを用いてショットキー電極を形成する場合、第1の金属からなる層と第2の金属からなる層を積層させ、第1の金属からなる層および第2の金属からなる層に対して、フォトリソグラフィの手法を利用したパターニングを施すことにより行うことができる。
 図2のSBDに逆バイアスが印加された場合には、空乏層(図示せず)がn型半導体層101aの中に広がるため、高耐圧のSBDとなる。また、順バイアスが印加された場合には、オーミック電極105bからショットキー電極105aへ電子が流れる。このようにして前記半導体構造を用いたSBDは、高耐圧・大電流用に優れており、スイッチング速度も速く、耐圧性・信頼性にも優れている。
(HEMT)
 図3は、本発明に係る高電子移動度トランジスタ(HEMT)の一例を示している。図3のHEMTは、バンドギャップの広いn型半導体層121a、バンドギャップの狭いn型半導体層121b、n+型半導体層121c、半絶縁体層124、緩衝層128、ゲート電極125a、ソース電極125bおよびドレイン電極125cを備えている。
(MOSFET)
 本発明の半導体装置がMOSFETである場合の一例を図4に示す。図4のMOSFETは、トレンチ型のMOSFETであり、n-型半導体層131a、n+型半導体層131b及び131c、ゲート絶縁膜134、ゲート電極135a、ソース電極135bおよびドレイン電極135cを備えている。
(JFET)
 図5は、n-型半導体層141a、第1のn+型半導体層141b、第2のn+型半導体層141c、p型半導体層142、ゲート電極145a、ソース電極145bおよびドレイン電極145cを備えている接合電界効果トランジスタ(JFET)の好適な一例を示す。
(IGBT)
 図6は、n型半導体層151、n-型半導体層151a、n+型半導体層151b、p型半導体層152、ゲート絶縁膜154、ゲート電極155a、エミッタ電極155bおよびコレクタ電極155cを備えている絶縁ゲート型バイポーラトランジスタ(IGBT)の好適な一例を示す。
(LED)
 本発明の半導体装置が発光ダイオード(LED)である場合の一例を図7に示す。図7の半導体発光素子は、第2の電極165b上にn型半導体層161を備えており、n型半導体層161上には、発光層163が積層されている。そして、発光層163上には、p型半導体層162が積層されている。p型半導体層162上には、発光層163が発生する光を透過する透光性電極167を備えており、透光性電極167上には、第1の電極165aが積層されている。なお、図7の半導体発光素子は、電極部分を除いて保護層で覆われていてもよい。
 透光性電極の材料としては、インジウム(In)またはチタン(Ti)を含む酸化物の導電性材料などが挙げられる。より具体的には、例えば、In、ZnO、SnO、Ga、TiO、CeOまたはこれらの2以上の混晶またはこれらにドーピングされたものなどが挙げられる。これらの材料を、スパッタリング等の公知の手段で設けることによって、透光性電極を形成できる。また、透光性電極を形成した後に、透光性電極の透明化を目的とした熱アニールを施してもよい。
 図7の半導体発光素子によれば、第1の電極165aを正極、第2の電極165bを負極とし、両者を介してp型半導体層162、発光層163およびn型半導体層161に電流を流すことで、発光層163が発光するようになっている。
 第1の電極165a及び第2の電極165bの材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化レニウム、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ-ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。電極の製膜法は特に限定されることはなく、印刷方式、スプレー法、コ-ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ-ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式、などの中から前記材料との適性を考慮して適宜選択した方法に従って前記基板上に形成することができる。
 なお、発光素子の別の態様を図8に示す。図8の発光素子では、基板169上にn型半導体層161が積層されており、p型半導体層162、発光層163およびn型半導体層161の一部を切り欠くことによって露出したn型半導体層161の半導体層露出面上の一部に第2の電極165bが積層されている。
 前記半導体装置は、例えば電源装置を用いたシステム等に用いられる。前記電源装置は、公知の手段を用いて、前記半導体装置を配線パターン等に接続するなどして作製することができる。図9に電源システムの例を示す。図9は、複数の前記電源装置と制御回路を用いて電源システムを構成している。前記電源システムは、図10に示すように、電子回路と組み合わせてシステム装置に用いることができる。なお、電源装置の電源回路図の一例を図11に示す。図11は、パワー回路と制御回路からなる電源装置の電源回路を示しており、インバータ(MOSFETA~Dで構成)によりDC電圧を高周波でスイッチングしACへ変換後、トランスで絶縁及び変圧を実施し、整流MOSFETで整流後、DCL(平滑用コイルL1,L2)とコンデンサにて平滑し、直流電圧を出力する。この時に電圧比較器で出力電圧を基準電圧と比較し、所望の出力電圧となるようPWM制御回路でインバータ及び整流MOSFETを制御する。
 以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
(実施例1)
1.成膜装置
 図1を用いて、本実施例で用いたミストCVD装置を説明する。ミストCVD装置19は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28とを備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。
2.原料溶液の作製
 ガリウムアセチルアセトナートと塩化スズ(II)を超純水に混合し、ガリウムに対するスズの原子比が1:0.002およびガリウム0.05モル/Lとなるように水溶液を調整し、この際、塩酸を体積比で1.5%を含有させ、これを原料溶液24aとした。
3.成膜準備
 上記2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、基板20として、表面にバッファ層として、α―Ga膜(ノンドープ)が積層されているm面サファイア基板をサセプタ21上に設置し、ヒーター28を作動させて成膜室27内の温度を460℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを成膜室27内に供給し、成膜室27の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1.0L/minに、キャリアガス(希釈)の流量を0.5L/minにそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
4.半導体膜形成
 次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを微粒子化させて原料微粒子を生成した。この原料微粒子が、キャリアガスによって成膜室27内に導入され、大気圧下、460℃にて、供給管27内でミストが反応して、基板20上に半導体膜が形成された。なお、膜厚は2.5μmであり、成膜時間360分間であった。
(実施例2~実施例4)
 基板として、オフ角を有するm面サファイア基板を用いたこと以外は、実施例1と同様にして、結晶性酸化物半導体膜を得た。なお、オフ角は、実施例2が0.5°であり、実施例3が2.0°であり、実施例4が3.0°であった。得られた結晶性酸化物半導体膜の膜厚は、それぞれ、実施例2が3.0μmであり、実施例3が2.9μmであり、実施例4が3.3μmであった。
(実施例5)
 再現性を確認するために、実施例4と同様にして、結晶性酸化物半導体膜を得た。得られた結晶性酸化物半導体膜の膜厚は、3.4μmであった。なお、再現性の確認は下記試験例にて行った。そして、表1から明らかな通り、再現性が良好であることを確認した。また、膜厚からも再現性が良好であることがわかる。
(実施例6)
 原料溶液として臭化ガリウムと臭化スズを超純水に混合し、ガリウムに対するスズの原子比が1:0.08及びガリウム0.1モル/Lとなるように水溶液を調整し、この際、臭化水素酸を体積比10%含有させた水溶液を用いたこと、基板として、表面にバッファ層としてα―Ga膜(ノンドープ)が積層されているm面サファイア基板に代えて、表面にバッファ層が積層されていないa面サファイア基板を用いたこと、及び成膜時間を10分としたこと以外は、実施例1と同様にして、結晶性酸化物半導体膜を得た。
(実施例7)
 基板として、表面にバッファ層が積層されていないa面サファイア基板に代えて、表面にバッファ層としてα―Ga膜(ノンドープ)が積層されているa面サファイア基板を用いたこと以外は、実施例6と同様にして、結晶性酸化物半導体膜を得た。得られた結晶性酸化物半導体膜の膜厚は、0.3μmであった。
(実施例8)
 再現性を確認するために、実施例7と同様にして、結晶性酸化物半導体膜を得た。得られた結晶性酸化物半導体膜の膜厚は、0.3μmであった。なお、再現性の確認は下記試験例にて行った。そして、表1から明らかな通り、再現性が良好であることを確認した。また、膜厚からも再現性が良好であることがわかる。
(実施例9)
 基板として、表面にバッファ層としてα―Ga膜(ノンドープ)が積層されているm面サファイア基板に代えて、表面にバッファ層としてα―Ga膜(Snドープ)が積層されているa面サファイア基板を用いたこと、及び成膜時間を180分としたこと以外は、実施例1と同様にして、結晶性酸化物半導体膜を得た。
(実施例10)
 基板として、表面にバッファ層としてα―Ga膜(ノンドープ)が積層されているa面サファイア基板を用いたこと、及び原料溶液におけるガリウムとスズの原子比が、1:0.0002となるように原料溶液を調整したこと以外は、実施例9と同様にして、結晶性酸化物半導体膜を得た。得られた結晶性酸化物半導体膜の膜厚は、1.0μmであった。
(実施例11)
 基板として、表面にバッファ層としてα―Ga膜(Snドープ)が積層されているa面サファイア基板に代えて、表面にバッファ層が積層されていないa面サファイア基板を用いたこと以外は、実施例9と同様にして、結晶性酸化物半導体膜を得た。得られた結晶性酸化物半導体膜の膜厚は、0.9μmであった。
(実施例12)
 原料溶液として、臭化ガリウムと酸化ゲルマニウムを超純水に混合し、ガリウムに対するゲルマニウムの原子比が1:0.01およびガリウム0.1モル/Lとなるように原料溶液を調整し、この際、臭化水素酸を体積比で20%含有させた水溶液を用いたこと、及び成膜時間を30分としたこと以外は、実施例6と同様にして、結晶性酸化物半導体膜を得た。
(実施例13)
 成膜時間を720分としたこと以外は、実施例3と同様にして、結晶性酸化物半導体膜を得た。得られた結晶性酸化物半導体膜の膜厚は、3.8μmであった。
(比較例1)
 基板として、表面にバッファ層としてα―Ga膜(ノンドープ)が積層されているm面サファイア基板に代えて、表面にバッファ層が積層されていないc面サファイア基板を用いたこと以外は、実施例1と同様にして、結晶性酸化物半導体膜を得た。
(比較例2)
 臭化ガリウムと酸化ゲルマニウムを超純水に混合し、ガリウムに対するゲルマニウムの原子比が1:005となるように原料溶液を調整したこと、及び基板として、表面にバッファ層が積層されていないa面サファイア基板に代えて、表面にバッファ層が積層されていないc面サファイア基板を用いたこと以外は、実施例6と同様にして結晶性酸化物半導体膜を得た。
(比較例3)
 ガリウムに対するスズの原子比が1:0.005となるように原料溶液を調整したこと、及び基板として、表面にバッファ層が積層されていないa面サファイア基板に代えて、表面にバッファ層が積層されていないc面サファイア基板を用いたこと以外は、実施例6と同様にして結晶性酸化物半導体膜を得た。
(試験例1)
 X線回析装置を用いて、実施例1~13及び比較例1~3において得られた結晶性酸化物半導体膜につき、相の同定を行った。同定は、XRD回析装置を用いて、15度から95度の角度で2θ/ωスキャンを行うことにより行った。測定は、CuKα線を用いて行った。その結果、実施例1~5及び実施例13において得られた結晶性酸化物半導体膜は、全てm面α-Gaであった。また、実施例6~12において得られた膜は、全てa面α-Gaであり、比較例1~3において得られた膜は、全てc面α-Gaであった。また、実施例1、2、4、7~12、及び比較例1で得られた結晶性酸化物半導体膜のロッキングカーブ半値幅を測定した結果を、表1~3に示す。
(試験例2)
 実施例1~13及び比較例1~3において得られた結晶性酸化物半導体膜につき、van der pauw法により、ホール効果測定を実施した。実施例1~13及び比較例1~3において得られた結晶性酸化物半導体膜のキャリア密度、移動度、及び抵抗率を表1~3に示す。表1~3からわかるように、本発明の結晶性酸化物半導体膜は、電気特性、特に移動度に優れていることが分かる。
(試験例3)
 実施例1~13及び比較例1~3において得られた結晶性酸化物半導体膜につき、光学顕微鏡を用いて膜表面の観察を行った。観察において、膜表面の中心3mm角領域にクラックが見られなかった場合を○、中心3mm角領域にクラックが見られた場合を×として、表1~3に観察結果を示す。表1~3から、本発明の結晶性酸化物半導体膜は、クラックが低減されたものであることが分かる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施例14)
 ドーパント原料として、臭化ケイ素を用いたこと以外は、実施例6と同様にして、結晶性酸化物半導体膜を得た。その結果、実施例1において得られた結晶性酸化物半導体膜と同等の性能を示していることが分かった。
(実施例15)
 実施例1と同様にして結晶性酸化物半導体膜を得た。なお、得られた膜厚は2.3μmであった。
(実施例16)
 基板として、a軸に向かって2°のオフ角を有するm面サファイア基板を用いたこと以外は、実施例1と同様にして、結晶性酸化物半導体膜を得た。なお、得られた膜厚は3.2μmであった。
(実施例17)
 実施例16と同様にして、結晶性酸化物半導体膜を得た。なお、得られた膜厚は2.2μmであった。
(実施例18)
 基板として、表面にバッファ層としてα―Ga膜(ノンドープ)が積層されていない、a軸に向かって2°のオフ角を有するm面サファイア基板を用いたこと以外は、実施例1と同様にして、結晶性酸化物半導体膜を得た。なお、得られた膜厚は2μmであった。
(実施例19)
 基板として、a軸に向かって4°のオフ角を有するm面サファイア基板を用いたこと以外は、実施例1と同様にして、結晶性酸化物半導体膜を得た。なお、得られた膜厚は2.6μmであった。
(実施例20)
 ガリウムアセチルアセトナートと塩化スズ(II)を超純水に混合する際に、ガリウムに対するスズの原子比が1:0.0002およびガリウム0.05モル/Lとなるように水溶液を調整したこと以外、実施例18と同様にして、結晶性酸化物半導体膜を得た。なお、得られた膜厚は1.8μmであった。
(実施例21)
 ガリウムアセチルアセトナートと塩化スズ(II)を超純水に混合する際に、ガリウムに対するスズの原子比が1:0.0002およびガリウム0.05モル/Lとなるように水溶液を調整したこと以外、実施例18と同様にして、結晶性酸化物半導体膜を得た。なお、得られた膜厚は1.8μmであった。
(試験例4)
 実施例15~21において得られた結晶性酸化物半導体膜につき、試験例1と同様にして相の同定を行ったところ、実施例15~21において得られた結晶性酸化物半導体膜は、全てm面α-Gaであった。なお、参考までに実施例20及び実施例21にて得られた結晶性半導体膜のXRD測定結果を図12に示す。また、実施例15~21において得られた結晶性酸化物半導体膜につき、試験例1~3と同様にして、キャリア密度、移動度、半値幅およびクラックの有無を評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(試験例5)
 m面サファイア基板上のSnドープしたα-Ga膜につき、van  der  Pauw法によるホール効果測定を実施し、移動度とキャリア密度を評価した。なお、α-Ga膜については、ガリウムアセチルアセトナートと塩化スズ(II)二水和物とを、塩酸を少量加えながら、溶解するまで混合し、得られた溶液を原料溶液として用いたこと、基板としてm面サファイア基板を用いたこと、および成膜温度を500℃としたこと以外、実施例1と同様にしてα-Ga膜を得た。この際、キャリア密度が1×1018/cm前後となるように、塩化スズ(II)二水和物の配合割合を適宜変更して複数の原料溶液を用意して複数のα-Ga膜を得て本評価に用いた。
 ホール効果測定の結果を図13に示す。図13から明らかなように、キャリア密度が1×1018/cmよりも低い低キャリア密度域(プロットエリア内の小さな点)では、キャリア密度の低下と共に移動度が著しく低下する傾向があるが、キャリア密度が1×1018/cm以上の高キャリア密度域(プロットエリア内の大きな点)では、そのようなことがなく、良好な電気特性を示すことがわかる。
(試験例6)
 また、試験例1にて得られたキャリア密度1.1×1018cm-3のα-Ga膜につき、温度可変ホール効果測定装置を用いて、移動度の温度特性を調べた。結果を図14に示す。図14から明らかなとおり、低温域でも移動度が40cm/Vs以上あり、また、高温域でも電気特性が良好であることがわかる。
(実施例22)
1.成膜装置
 図15を用いて、本実施例で用いたミストCVD装置1を説明する。ミストCVD装置1は、キャリアガスを供給するキャリアガス源2aと、キャリアガス源2aから送り出されるキャリアガス流量を調節するための流量調節弁3aと、キャリアガス(希釈)を供給するキャリアガス(希釈)源2bと、キャリアガス(希釈)源2bから送り出されるキャリアガス(希釈)の流量を調節するための流量調節弁3bと、原料溶液4aが収容されるミスト発生源4と、水5aが入れられる容器5と、容器5の底面に取り付けられた超音波振動子6と、成膜室7と、ミスト発生源4から成膜室7までをつなぐ供給管9と、成膜室7内に設置されたホットプレート8と、熱反応後のミスト、液滴および排気ガスを排出する排気口11とを備えている。なお、ホットプレート8上には、基板10が設置されている。
2.原料溶液の作製
 臭化ガリウムと塩化スズを超純水に混合し、ガリウムに対するスズの原子比が1:0.08およびガリウム0.1モル/Lとなるように水溶液を調整し、この際、臭化水素酸を体積比20%含有させ、これを原料溶液とした。
3.成膜準備
 上記2.で得られた原料溶液4aをミスト発生源4内に収容した。次に、基板10として、表面にバッファ層として、α―Ga膜(ノンドープ)が積層されているm面サファイア基板(オフ角2.0°)をホットプレート8上に設置し、ホットプレート8を作動させて基板温度を410℃にまで昇温させた。次に、流量調節弁3a、3bを開いて、キャリアガス源であるキャリアガス供給手段2a、2bからキャリアガスを成膜室7内に供給し、成膜室7の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を0.6L/min、キャリアガス(希釈)の流量を1.0L/minにそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
4.半導体膜形成
 次に、超音波振動子6を2.4MHzで振動させ、その振動を、水5aを通じて原料溶液4aに伝播させることによって、原料溶液4aを霧化させてミスト4bを生成させた。このミスト4bが、キャリアガスによって、供給管9内を通って、成膜室7内に導入され、大気圧下、410℃にて、基板10上でミストが熱反応して、基板10上に膜が形成された。なお、膜厚は2.0μmであり、成膜時間は150分であった。
(比較例4)
 基板として、表面にバッファ層としてα―Ga(ノンドープ)が積層されているm面サファイア基板に代えて、表面にバッファ層が積層されていないc面サファイア基板(オフ角0.2°)を用いたこと以外は、実施例22と同様にして、結晶性酸化物半導体膜を得た。得られた膜の膜厚は、2.0μmであった。
(実施例23) キャリアガスの流量を0.9L/minとしたこと以外は、実施例22と同様にして、結晶性酸化物半導体膜を得た。
(比較例5)
 基板として、表面にバッファ層としてα―Ga(ノンドープ)が積層されているm面サファイア基板に代えて、表面にバッファ層が積層されていないc面サファイア基板(オフ角0.2°)を用いたこと以外は、実施例23と同様にして、結晶性酸化物半導体膜を得た。
(試験例7)
 実施例22~23および比較例4~5にて得られた結晶性酸化物半導体膜につき、試験例1と同様にして相の同定を行ったところ、実施例22~23において得られた結晶性酸化物半導体膜は、どちらもm面α-Gaであり、比較例4~5において得られた結晶性酸化物半導体膜は、どちらもc面α-Gaであった。実施例22~23および比較例4~5で得られた結晶性酸化物半導体膜につき、テスターを用いて、抵抗値の測定を行った。その結果を図16に示す。図16から明らかなように、n型ドーパント(スズ)を含むc面α-Gaよりも、n型ドーパント(スズ)を含むm面α-Gaの方が、電気特性に優れていることがわかる。
(実施例24)
 原料溶液として、臭化ガリウムと酸化ゲルマニウムを超純水に混合し、ガリウムに対するゲルマニウムの原子比が1:0.01およびガリウム0.1モル/Lとなるように水溶液を調整し、この際、臭化水素酸を体積比10%含有させた水溶液を用いたこと、およびキャリアガス流量を1.0L/minとしたこと以外は、実施例22と同様にして、結晶性酸化物半導体膜を得た。得られた膜の膜厚は、2.0μmであった。
(比較例6)
 基板として、表面にバッファ層としてα―Ga(ノンドープ)が積層されているm面サファイア基板に代えて、c面サファイア基板(オフ角0.2°)を用いたこと以外は、実施例24と同様にして、結晶性酸化物半導体膜を得た。
 実施例24および比較例6にて得られた結晶性酸化物半導体膜につき、試験例1と同様にして相の同定を行ったところ、実施例24において得られた結晶性酸化物半導体膜はm面α-Gaであり、比較例6において得られた結晶性酸化物半導体膜はc面α-Gaであった。実施例24および比較例6で得られた結晶性酸化物半導体膜につき、試験例7と同様にして、抵抗値の測定を行った。その結果、試験例7における結果と同様の傾向がみられ、n型ドーパント(ゲルマニウム)を含むc面α-Gaよりも、n型ドーパント(ゲルマニウム)を含むm面α-Gaの方が、電気特性に優れていることがわかった。
 本発明の結晶性酸化物半導体膜は、半導体装置(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、特に、半導体装置等に有用である。
  1  ミストCVD装置
  2a キャリアガス源
  2b キャリアガス(希釈)源
  3a 流量調節弁
  3b 流量調節弁
  4  ミスト発生源
  4a 原料溶液
  4b ミスト
  5  容器
  5a 水
  6  超音波振動子
  7  成膜室
  8  ホットプレート
  9  供給管
 10  基板
 11  排気口
 19  ミストCVD装置
 20  基板
 21  サセプタ
 22a キャリアガス供給手段
 22b キャリアガス(希釈)供給手段
 23a 流量調節弁
 23b 流量調節弁
 24  ミスト発生源
 24a 原料溶液
 25  容器
 25a 水
 26  超音波振動子
 27  供給管
 28  ヒーター
 29  排気口
101a n-型半導体層
101b n+型半導体層
102  p型半導体層
103  半絶縁体層
104  絶縁体層
105a ショットキー電極
105b オーミック電極
121a バンドギャップの広いn型半導体層
121b バンドギャップの狭いn型半導体層
121c n+型半導体層
123  p型半導体層
124  半絶縁体層
125a ゲート電極
125b ソース電極
125c ドレイン電極
128  緩衝層
131a n-型半導体層
131b 第1のn+型半導体層
131c 第2のn+型半導体層
132  p型半導体層
134  ゲート絶縁膜
135a ゲート電極
135b ソース電極
135c ドレイン電極
141a n-型半導体層
141b 第1のn+型半導体層
141c 第2のn+型半導体層
142  p型半導体層
145a ゲート電極
145b ソース電極
145c ドレイン電極
151  n型半導体層
151a n-型半導体層
151b n+型半導体層
152  p型半導体層
154  ゲート絶縁膜
155a ゲート電極
155b エミッタ電極
155c コレクタ電極
161  n型半導体層
162  p型半導体層
163  発光層
165a 第1の電極
165b 第2の電極
167  透光性電極
169  基板

 

Claims (12)

  1.  コランダム構造を有する結晶性酸化物半導体を主成分として含み、さらにドーパントを含む結晶性酸化物半導体膜であって、主面がa面又はm面であり、前記ドーパントがn型ドーパントであることを特徴とする結晶性酸化物半導体膜。
  2.  キャリア密度が1.0×1018/cm以上である請求項1記載の結晶性酸化物半導体膜。
  3.  移動度が30cm/Vs以上である請求項1又は2に記載の結晶性酸化物半導体膜。
  4.  半値幅が300arcsec以上である請求項1~3のいずれかに記載の結晶性酸化物半導体膜。
  5.  抵抗率が50mΩcm以下である請求項1~4のいずれかに記載の結晶性酸化物半導体膜。
  6.  オフ角を有する請求項1~5のいずれかに記載の結晶性酸化物半導体膜。
  7.  前記ドーパントが、スズ、ゲルマニウム又はケイ素である請求項1~6のいずれかに記載の結晶性酸化物半導体膜。
  8.  前記ドーパントがスズである請求項1~7のいずれかに記載の結晶性酸化物半導体膜。
  9.  前記結晶性酸化物半導体が、ガリウム、インジウム又はアルミニウムを含む請求項1~8のいずれかに記載の結晶性酸化物半導体膜。
  10.  前記結晶性酸化物半導体が、ガリウムを少なくとも含む請求項1~9のいずれかに記載の結晶性酸化物半導体膜。
  11.  半導体層と電極とを少なくとも含む半導体装置であって、前記半導体層として、請求項1~10のいずれかに記載の結晶性酸化物半導体膜が用いられている半導体装置。
  12.  半導体装置を備える半導体システムであって、前記半導体装置が、請求項11記載の半導体装置である半導体システム。
PCT/JP2017/040039 2016-11-07 2017-11-07 結晶性酸化物半導体膜および半導体装置 WO2018084304A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020197013085A KR20190074288A (ko) 2016-11-07 2017-11-07 결정성 산화물 반도체막 및 반도체 장치
KR1020227029502A KR102564830B1 (ko) 2016-11-07 2017-11-07 결정성 산화물 반도체막 및 반도체 장치
JP2018549106A JP7391290B2 (ja) 2016-11-07 2017-11-07 結晶性酸化物半導体膜および半導体装置
US16/347,360 US11393906B2 (en) 2016-11-07 2017-11-07 Crystalline oxide semiconductor film and semiconductor device
CN201780068749.1A CN109952392A (zh) 2016-11-07 2017-11-07 结晶性氧化物半导体膜及半导体装置
EP17867324.0A EP3536828A4 (en) 2016-11-07 2017-11-07 CRYSTALLINE OXIDE SEMICONDUCTOR FILM AND SEMICONDUCTOR DEVICE
CN202210758521.8A CN115101587A (zh) 2016-11-07 2017-11-07 结晶性多层结构、半导体装置及多层结构
US17/832,984 US11967618B2 (en) 2016-11-07 2022-06-06 Crystalline oxide semiconductor film and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-217661 2016-11-07
JP2016217661 2016-11-07
JP2017137447 2017-07-13
JP2017-137447 2017-07-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/347,360 A-371-Of-International US11393906B2 (en) 2016-11-07 2017-11-07 Crystalline oxide semiconductor film and semiconductor device
US17/832,984 Continuation US11967618B2 (en) 2016-11-07 2022-06-06 Crystalline oxide semiconductor film and semiconductor device

Publications (1)

Publication Number Publication Date
WO2018084304A1 true WO2018084304A1 (ja) 2018-05-11

Family

ID=62076824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040039 WO2018084304A1 (ja) 2016-11-07 2017-11-07 結晶性酸化物半導体膜および半導体装置

Country Status (6)

Country Link
US (2) US11393906B2 (ja)
EP (1) EP3536828A4 (ja)
JP (1) JP7391290B2 (ja)
KR (2) KR20190074288A (ja)
CN (2) CN115101587A (ja)
WO (1) WO2018084304A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011859A (ja) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 成膜方法、及び、半導体装置の製造方法
JP2020011858A (ja) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 成膜方法、及び、半導体装置の製造方法
WO2020217564A1 (ja) * 2019-04-24 2020-10-29 日本碍子株式会社 半導体膜
WO2021044489A1 (ja) * 2019-09-02 2021-03-11 日本碍子株式会社 半導体膜
JP2021127262A (ja) * 2020-02-12 2021-09-02 株式会社デンソー 半導体装置とその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028480A (ja) 2011-07-27 2013-02-07 Kochi Univ Of Technology ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP2015228495A (ja) 2014-05-08 2015-12-17 株式会社Flosfia 結晶性積層構造体、半導体装置
WO2016035696A1 (ja) * 2014-09-02 2016-03-10 株式会社Flosfia 積層構造体およびその製造方法、半導体装置ならびに結晶膜
JP2016082232A (ja) * 2014-10-09 2016-05-16 株式会社Flosfia 導電性積層構造体および半導体装置ならびに剥離方法
JP2016201540A (ja) * 2015-04-10 2016-12-01 株式会社Flosfia 結晶性酸化物半導体膜および半導体装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8822263B2 (en) * 2008-06-30 2014-09-02 National University Corporation Tokyo University Of Agriculture And Technology Epitaxial growth method of a zinc oxide based semiconductor layer, epitaxial crystal structure, epitaxial crystal growth apparatus, and semiconductor device
JP5212283B2 (ja) * 2009-07-08 2013-06-19 日立電線株式会社 Iii族窒化物半導体自立基板の製造方法、iii族窒化物半導体自立基板、iii族窒化物半導体デバイスの製造方法及びiii族窒化物半導体デバイス
US20120045661A1 (en) 2010-08-19 2012-02-23 Raveen Kumaran Rare-earth-doped aluminum-gallium-oxide films in the corundum-phase and related methods
WO2013035843A1 (ja) 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
US10109707B2 (en) * 2014-03-31 2018-10-23 Flosfia Inc. Crystalline multilayer oxide thin films structure in semiconductor device
CN108899359A (zh) * 2014-07-22 2018-11-27 Flosfia 株式会社 结晶性半导体膜和板状体以及半导体装置
CN105826433A (zh) * 2016-05-23 2016-08-03 中国科学院长春光学精密机械与物理研究所 一种β-氧化镓纳米线阵列薄膜及其制备方法
US10804362B2 (en) * 2016-08-31 2020-10-13 Flosfia Inc. Crystalline oxide semiconductor film, crystalline oxide semiconductor device, and crystalline oxide semiconductor system
US11488821B2 (en) * 2018-06-26 2022-11-01 Flosfia Inc. Film forming method and crystalline multilayer structure
TW202018819A (zh) * 2018-07-12 2020-05-16 日商Flosfia股份有限公司 半導體裝置和半導體系統

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028480A (ja) 2011-07-27 2013-02-07 Kochi Univ Of Technology ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP2015228495A (ja) 2014-05-08 2015-12-17 株式会社Flosfia 結晶性積層構造体、半導体装置
WO2016035696A1 (ja) * 2014-09-02 2016-03-10 株式会社Flosfia 積層構造体およびその製造方法、半導体装置ならびに結晶膜
JP2016082232A (ja) * 2014-10-09 2016-05-16 株式会社Flosfia 導電性積層構造体および半導体装置ならびに剥離方法
JP2016201540A (ja) * 2015-04-10 2016-12-01 株式会社Flosfia 結晶性酸化物半導体膜および半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKAIWAKAZUAKI: "Dissertation", March 2016, KYOTO UNIV., article "Conductivity control and device applications of corundum-structured gallium oxide-based semiconductor"
KANEKOKENTARO: "Dissertation", March 2013, KYOTO UNIV., article "Fabrication and physical properties of corundum structured alloys based on gallium oxide"

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011859A (ja) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 成膜方法、及び、半導体装置の製造方法
JP2020011858A (ja) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 成膜方法、及び、半導体装置の製造方法
WO2020217564A1 (ja) * 2019-04-24 2020-10-29 日本碍子株式会社 半導体膜
JP6784871B1 (ja) * 2019-04-24 2020-11-11 日本碍子株式会社 半導体膜
CN113677834A (zh) * 2019-04-24 2021-11-19 日本碍子株式会社 半导体膜
EP3960915A4 (en) * 2019-04-24 2022-12-21 NGK Insulators, Ltd. SEMICONDUCTOR FILM
JP7461851B2 (ja) 2019-04-24 2024-04-04 日本碍子株式会社 半導体膜
WO2021044489A1 (ja) * 2019-09-02 2021-03-11 日本碍子株式会社 半導体膜
JPWO2021044489A1 (ja) * 2019-09-02 2021-03-11
JP7289357B2 (ja) 2019-09-02 2023-06-09 日本碍子株式会社 半導体膜
JP2021127262A (ja) * 2020-02-12 2021-09-02 株式会社デンソー 半導体装置とその製造方法
JP7315927B2 (ja) 2020-02-12 2023-07-27 株式会社デンソー 半導体装置とその製造方法

Also Published As

Publication number Publication date
CN109952392A (zh) 2019-06-28
US11393906B2 (en) 2022-07-19
JP7391290B2 (ja) 2023-12-05
US11967618B2 (en) 2024-04-23
EP3536828A1 (en) 2019-09-11
US20190305091A1 (en) 2019-10-03
CN115101587A (zh) 2022-09-23
JPWO2018084304A1 (ja) 2019-11-07
KR20190074288A (ko) 2019-06-27
EP3536828A4 (en) 2020-07-15
KR20220123338A (ko) 2022-09-06
KR102564830B1 (ko) 2023-08-07
US20220302263A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
CN107799584B (zh) 结晶性氧化物半导体膜、半导体装置及半导体系统
KR102329576B1 (ko) p형 산화물 반도체 및 그 제조 방법
JP6994181B2 (ja) 結晶性酸化物半導体膜および半導体装置
WO2018084304A1 (ja) 結晶性酸化物半導体膜および半導体装置
KR102467802B1 (ko) 산화물 반도체 막 및 그 제조 방법
JP7358718B2 (ja) 結晶性酸化物半導体膜および半導体装置
JP6904517B2 (ja) 結晶性酸化物半導体膜およびその製造方法
KR20200074277A (ko) 결정성 반도체막 및 판상체 및 반도체장치
TW201543581A (zh) 結晶性層疊結構體、半導體裝置
JP7014355B2 (ja) 積層構造体および半導体装置
JP2020107636A (ja) 結晶性酸化物膜
JP2020107635A (ja) 結晶性酸化物半導体
TWI831755B (zh) p型氧化物半導體膜及其形成方法
CN112424947A (zh) 半导体装置及包含半导体装置的半导体系统
JP7065440B2 (ja) 半導体装置の製造方法および半導体装置
JP7011219B2 (ja) 積層構造体および半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018549106

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20197013085

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017867324

Country of ref document: EP

Effective date: 20190607