CN104093871B - 耐热铁素体系不锈钢冷轧钢板、冷轧基材用铁素体系不锈钢热轧钢板及其制造方法 - Google Patents

耐热铁素体系不锈钢冷轧钢板、冷轧基材用铁素体系不锈钢热轧钢板及其制造方法 Download PDF

Info

Publication number
CN104093871B
CN104093871B CN201380006138.6A CN201380006138A CN104093871B CN 104093871 B CN104093871 B CN 104093871B CN 201380006138 A CN201380006138 A CN 201380006138A CN 104093871 B CN104093871 B CN 104093871B
Authority
CN
China
Prior art keywords
cold
stainless steel
rolled steel
ferrite
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380006138.6A
Other languages
English (en)
Other versions
CN104093871A (zh
Inventor
滨田纯
滨田纯一
小山祐司
井上宜治
小森唯志
札轩富美夫
田上利男
小野直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Publication of CN104093871A publication Critical patent/CN104093871A/zh
Application granted granted Critical
Publication of CN104093871B publication Critical patent/CN104093871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

本发明提供一种耐热铁素体系不锈钢冷轧钢板,其特征在于:以质量%计,含有C:0.02%以下、Si:0.1~1.0%、Mn:超过0.6%且在1.5%以下、P:0.01~0.05%、S:0.0001~0.0100%、Cr:13.0~20.0%、Mo:0.1~3.0%、Ti:0.005~0.20%、Nb:0.30~1.0%、B:0.0002~0.0050%、Al:0.005~0.50%、N:0.02%以下,剩余部分包括Fe和不可避免的杂质;在表层~t/4(t为板厚)的区域,{111}方位晶粒以面积率计存在20%以上,在t/4~t/2的区域,{111}方位晶粒以面积率计存在40%以上,而且在整个厚度区域,{011}方位晶粒以面积率计存在15%以下。

Description

耐热铁素体系不锈钢冷轧钢板、冷轧基材用铁素体系不锈钢 热轧钢板及其制造方法
技术领域
本发明涉及最适合使用于特别需要高温强度和耐氧化性的汽车排气系统构件等的、加工性优良的耐热铁素体系不锈钢冷轧钢板、冷轧基材用(for cold rolling rawmaterial)铁素体系不锈钢热轧钢板及其制造方法。
本申请基于2012年3月30日提出的日本专利申请第2012-081998号并主张其优先权,这里引用其全部内容。
背景技术
在汽车的排气歧管和消音器等排气系统构件中,使用要求高温强度和耐氧化性、且含有Cr的耐热钢。这些排气系统构件往往由钢板进行压力加工、或者对钢板进行管加工后采用各种成形加工来进行制造,因而要求作为基材的冷轧钢板的成形性。
另一方面,随着排放气体温度的高温化,构件的使用环境温度也逐年高温化,需要增加Cr、Mo、Nb等合金添加量而提高高温强度等。但是,如果添加元素增加,则基材钢板的加工性在单纯的制造中降低,因而对于复杂形状的构件往往不能进行压力成形。
为提高铁素体系不锈钢钢板的加工性的指标即兰克福特值(r值),采取较大的冷轧压下率是有效的,但由于上述的排气系统构件使用较厚(1.5~2.5mm左右)的冷轧钢板作为基材,因而在实施冷轧时的基材厚度受到某种程度的限制的目前的制造工序中,存在无法充分确保冷轧压下率的问题。
为解决这个问题,就不损害高温特性而用于提高压力成形性的指标即r值的成分和制造方法进行了探索。
为了提高以往的耐热铁素体系不锈钢钢板的加工性,公开了如专利文献1那样进行成分调整的方法,但仅仅这样的话,在冷轧压下率比较低的较厚材料中,存在压力加工开裂等问题。
专利文献2为提高r值,根据热轧精加工开始温度、结束温度以及Nb含量与热轧板退火温度之间的关系而规定了最适合的热轧板退火温度,但由于特别涉及Nb系析出物的其它元素(C、N、Cr、Mo等)的影响,仅仅这样的话,往往无法得到充分的加工性。
另外,专利文献3公开了一种对热轧板进行1小时以上的时效处理的方法,但在此情况下,存在工业制造效率显著降低的缺点。
专利文献4为了控制板厚中心层的结晶方位,公开了规定热轧和热轧板退火条件而得到高r值的含Cr耐热钢板的技术。不过,由于r值不只是由产品的板厚中心层的结晶方位来决定,因而往往无法得到充分的加工性。另外,由于热轧的板坯加热温度较低,为1000~1150℃,因而存在表面缺陷等问题。
专利文献5公开了一种作为加工性优良的排气部件用铁素体系不锈钢钢板,规定从最表层到板厚的1/4区域的结晶方位的技术。其特征在于提高与轧制方向成45°方向的r值和总拉伸率,而且作为其制造方法省略了热轧板退火,但即使45°方向的r值较高,压力成形性也不能得到满足,而且在省略热轧板退火的情况下,被称为皱纹状变形的表面缺陷在压力加工时成为问题,除此以外,在表面缺陷等的制造性方面还留有课题。
现有技术文献
专利文献
专利文献1:日本特开平9-279312号公报
专利文献2:日本特开2002-30346号公报
专利文献3:日本特开平8-199235号公报
专利文献4:国际公开第2004/53171号
专利文献5:日本特开2006-233278号公报
发明内容
发明所要解决的课题
本发明的目的在于,解决现有技术的问题,提供加工性优良的耐热铁素体系不锈钢冷轧钢板、冷轧基材用铁素体系不锈钢热轧钢板及其制造方法。
用于解决课题的手段
为解决上述课题,本发明人对于耐热铁素体系不锈钢冷轧钢板的加工性、特别是r值的提高,就钢组成、热轧工序和冷轧工序各自的制造过程中的组织、析出物进行了详细的研究。
解决上述课题的本发明的要点如下:
本发明的第一方式涉及一种耐热铁素体系不锈钢冷轧钢板,其特征在于:以质量%计,含有C:0.02%以下、Si:0.1~1.0%、Mn:超过0.6%且在1.5%以下、P:0.01~0.05%、S:0.0001~0.0100%、Cr:13.0~20.0%、Mo:0.1~3.0%、Ti:0.005~0.20%、Nb:0.30~1.0%、B:0.0002~0.0050%、Al:0.005~0.50%、N:0.02%以下,剩余部分包括Fe和不可避免的杂质;在将板厚设定为t的情况下,在表层(表面)~t/4的区域,{111}方位晶粒以面积率计存在20%以上,在t/4~t/2的区域,{111}方位晶粒以面积率计存在40%以上,而且在整个厚度区域,{011}方位晶粒以面积率计存在15%以下。
上述不锈钢冷轧钢板的加工性优良。在上述第一方式中,所谓表层~t/4的区域,是指从钢板表面到深度t/4的区域,所谓t/4~t/2的区域,是指从深度t/4的区域到板厚中心的区域。
本发明的第二方式涉及根据上述第一方式的耐热铁素体系不锈钢冷轧钢板,其特征在于:以质量%计,进一步含有Cu:0.4~2.0%、Ni:0.1~2.0%、W:0.1~3.0%、Zr:0.05~0.30%、Sn:0.05~0.50%、Co:0.05~0.50%、Mg:0.0002~0.0100%中的1种以上。
本发明的第三方式涉及一种冷轧基材用铁素体系不锈钢热轧钢板,其是用于制造上述第一或第二方式的耐热铁素体系不锈钢冷轧钢板的冷轧基材用铁素体系不锈钢热轧钢板,其特征在于:在将板厚设定为t′的情况下,t′/2~t′/4区域中的组织是未再结晶组织。
所谓t′/4~t′/2的区域,是指从深度t′/4的区域到板厚中心的区域。上述第三方式的铁素体系不锈钢热轧钢板具有与上述第一或第二方式的耐热铁素体系不锈钢冷轧钢板实质上相同的组成。
本发明的第四方式涉及一种冷轧基材用铁素体系不锈钢热轧钢板的制造方法,其是上述第三方式的冷轧基材用铁素体系热轧钢板的制造方法,其特征在于:进行板坯(钢坯)加热温度设定为1200~1300℃、精轧温度设定为800~950℃的热轧而制成热轧板,以500℃以下的卷取温度对所述热轧板进行卷取,之后,在925~1000℃进行所述热轧板的退火。
上述第四方式中,成为钢板基材的板坯使用具有与上述第一或第二方式中记载的钢板的组成实质上相同的组成的材料。
本发明的第五方式涉及一种上述第一或第二方式的耐热铁素体系不锈钢冷轧钢板的制造方法,其特征在于:在将板厚设定为t′的情况下,将在t′/2~t′/4的区域中的组织为未再结晶组织的冷轧基材用铁素体系热轧钢板以60%以上的压下率进行冷轧而制成冷轧板,之后,在1000~1100℃进行所述冷轧板的退火。
在上述第五方式中,成为冷轧钢板基材的热轧钢板使用具有与在上述第一或第二方式中记载的冷轧钢板的组成实质上相同的组成的材料。
上述耐热铁素体系不锈钢冷轧钢板的制造方法也可以含有冷轧基材用铁素体系热轧钢板的制造工序。即,本发明的第六方式涉及根据上述第五方式的耐热铁素体系不锈钢冷轧钢板的制造方法,也可以包含如下的工序:进行板坯加热温度设定为1200~1300℃、精轧温度设定为800~950℃的热轧而制成热轧板,以500℃以下的卷取温度对所述热轧板进行卷取,之后,在925~1000℃进行所述热轧板的退火,从而制造所述冷轧基材用铁素体系热轧钢板。在此情况下,成为钢板基材的板坯使用具有与在上述第一或第二方式中记载的钢板的组成实质上相同的组成的材料。
发明的效果
如上所述,根据本发明,在耐热铁素体系不锈钢冷轧钢板中,通过规定钢的成分组成,同时使热轧工序、冷轧工序的各条件最优化,并控制板厚方向的各区域的组织,便可以确保高r值。
特别地,在热轧工序中严格地规定卷取温度、热轧板退火温度,事先使冷轧工序前的钢组织残留有{111}织构,同时形成为抑制了再结晶的未再结晶组织,从而即使在之后的冷轧、退火工序中,也可以较多地生成对r值提高有效地起作用的具有{111}方向的晶粒,可以得到对加工性有利的再结晶组织。
附图说明
图1是表示在本实施方式的铁素体系不锈钢冷轧钢板中,表层~t/4(t:板厚)的区域中的{111}方位晶粒的面积率与平均r值之间的关系的图。
图2是表示在本实施方式的铁素体系不锈钢冷轧钢板中,t/4~t/2(t:板厚)的区域中的{111}方位晶粒的面积率与平均r值之间的关系的图。
图3是表示在本实施方式的铁素体系不锈钢冷轧钢板中,整个板厚区域中的{011}方位晶粒的面积率与平均r值之间的关系的图。
图4是表示本实施方式的热轧板退火温度T1与铁素体系不锈钢冷轧钢板(产品板)的平均r值之间的关系的图。
具体实施方式
(铁素体系不锈钢冷轧钢板)
以下,就本实施方式的铁素体系不锈钢冷轧钢板进行详细的说明。
本实施方式涉及一种铁素体系不锈钢冷轧钢板,其特征在于:以质量%计,含有C:0.02%以下、Si:0.1~1.0%、Mn:超过0.6%且在1.5%以下、P:0.01~0.05%、S:0.0001~0.0100%、Cr:13.0~20.0%、Mo:0.1~3.0%、Ti:0.005~0.20%、Nb:0.30~1.0%、B:0.0002~0.0050%、Al:0.005~0.50%、N:0.02%以下,剩余部分包括Fe和不可避免的杂质;在将板厚设定为t的情况下,在表层~t/4的区域,具有{111}方位的晶粒以面积率计存在20%以上,在t/4~t/2的区域,具有{111}方位的晶粒以面积率计存在40%以上,而且在整个厚度区域,具有{011}方位的晶粒以面积率计存在15%以下。
在此,所谓表层~t/4的区域,是指从钢板表面到深度t/4的区域,所谓t/4~t/2的区域,是指从深度t/4的区域到板厚中心的区域。
所谓具有{111}方位的晶粒({111}方位晶粒),是指{111}面与板面(钢板表面)平行的晶粒。所谓具有{011}方位的晶粒({011}方位晶粒),是指{011}面与板面平行的晶粒。上述的面积率可以表示为与板面垂直、且平行于轧制方向的面中的{111}方位晶粒的面积率以及{011}方位晶粒的面积率。此外,上述的面积率例如可以通过在钢板的断面,采用电子背散射衍射图像方法测量结晶方位的分布而求出。
以下,就本发明的铁素体系不锈钢冷轧钢板的钢组成的限定理由进行说明。此外,关于组成的%的标记,在没有特别说明的情况下是指质量%。
碳(C):以质量%计为0.02%以下
C由于使加工性、耐蚀性和耐氧化性恶化,因而其含量越少越好,因此将上限设定为0.02%。但是,过度的减少由于导致精炼成本的增加,因而将下限优选设定为0.001%。再者,考虑到制造成本和耐蚀性,C含量优选为0.002%~0.01%。
硅(Si):以质量%计为0.1%~1.0%
Si除了有时作为脱氧元素添加以外,也是提高钢的耐氧化性和高温强度的元素。另外,由于是促进Laves相析出的元素,因而通过添加0.1%以上而在热轧板退火时析出粗大的Laves相,有助于冷轧板退火时的{111}方位晶粒的发达和{011}方位晶粒的抑制,从而有助于r值的提高。另一方面,过度的添加由于降低常温延展性而使加工性恶化,因而将上限设定为1.0%。再者,考虑到材质和氧化特性,Si含量优选为0.2%~0.5%。
锰(Mn):以质量%计超过0.6%且在1.5%以下
Mn在高温下形成MnCr2O4和MnO,从而提高氧化皮附着力。其效果在超过0.6%时表现出来,因而将下限设定为超过0.6%。另一方面,由于增加氧化增量,因而通过添加超过1.5%的量而容易产生异常氧化。在排气歧管等排气部件中,如果产生氧化皮剥离和异常氧化,则例如对催化剂和消音器等后续的部件产生障碍,或者由于板厚减少而使作为构造体的可靠性降低。再者,考虑到加工性和制造性,Mn含量优选为0.7%~1.1%。
磷(P):以质量%计为0.01%~0.05%
P与Si同样地是固溶强化元素,但由于是对钢的耐蚀性和韧性有害的元素,因而材质上其含量越少越好,将上限设定为0.05%。但是,过度的减少由于导致精炼成本的增加,因而将下限设定为0.01%。再者,考虑到制造成本和耐氧化性,P含量优选为0.015%~0.025%。
硫(S):以质量%计为0.0001%~0.0100%
S从材质、耐蚀性和耐氧化性的角度考虑越少越好,因而将上限设定为0.0100%。特别地,过度的S的添加导致与Ti的化合物的生成,促进热轧退火板的再结晶和晶粒生长,从而在热轧钢板中无法确保未再结晶组织,结果使r值恶化。但是,过度的减少由于导致精炼成本的增加,因而将下限设定为0.0001%。再者,考虑到制造成本和耐蚀性,S含量优选为0.0010%~0.0050%。
铬(Cr):以质量%计为13.0%~20.0%
Cr为了提高高温强度和耐氧化性而需要添加13%以上,但20%以上的添加除了因韧性恶化而使钢板的制造性变差以外,材质也发生恶化。因此,Cr的范围设定为13.0~20.0%。再者,从成本和耐蚀性的角度考虑,Cr含量优选为15.0%~19.0%。
钼(Mo):以质量%计为0.1%~3.0%
Mo在提高耐蚀性的同时,还带来因固溶Mo引起的钢的高温强度和热疲劳特性的提高。其效果在0.1%以上时表现出来,因而将下限设定为0.1%。但是,过度的添加造成韧性恶化和拉伸率的降低。另外,在热轧板退火工序和冷轧板退火工序中,除了过于生成Laves相而使{011}方位晶粒变得容易生成,从而带来r值的降低以外,由于在超过3.0%的添加时使耐氧化性恶化,因而将上限设定为3.0%。再者,考虑到长时间暴露于高温中后的高温特性,特别是高温强度、热疲劳特性和高温高周疲劳特性以及制造成本和制造性,Mo含量优选为1.5%~1.8%。
钛(Ti):以质量%计为0.005%~0.20%
Ti是为了与C、N、S结合、进一步提高耐蚀性、耐晶界腐蚀性和深拉深性而添加的元素。特别是由于提高r值的{111}结晶方位的发达在0.005%以上的Ti的添加时表现出来,因而将下限设定为0.005%。由于因0.20%以上的Ti的添加而使韧性和2次加工性恶化,因而将上限设定为0.2%。再者,考虑到制造成本、表面缺陷和氧化皮剥离性,Ti含量优选为0.06%~0.15%。
铌(Nb):以质量%计为0.30%~1.0%
Nb由于通过固溶强化和析出强化而使高温强度和高温疲劳特性得以提高,因而是必要元素。另外,将C和N以碳氮化物的形式固定下来,使冷轧钢板(产品板)的再结晶织构发达,同时形成称为Laves相的Fe和Nb的金属间化合物,并通过其体积率和尺寸而对再结晶织构的形成产生影响,从而有助于r值的提高。
这些作用在Nb的添加量为0.30%以上时表现出来,因而将下限设定为0.30%。另一方面,由于过度的Nb的添加造成硬质化,导致常温延展性的降低,因而将上限设定为1.0%。再者,考虑到成本和制造性,Nb含量优选为0.40%~0.60%。
氮(N):以质量%计为0.02%以下
N与C同样地使钢的加工性和耐氧化性恶化,因而其含量越少越好。因此,将上限设定为0.02%。但是,过度的降低由于导致精炼成本的增加,因而考虑到成本,N含量优选为0.005%~0.015%。
硼(B):以质量%计为0.0002%~0.0050%
B是提高产品的压力加工时的2次加工性的元素,而且也使中温区域的高温强度得以提高。这些效果在B的添加量为0.0002%以上时表现出来,因而将下限设定为0.0002%。另一方面,因超过0.0050%的B的添加,除了生成Cr2B等B化合物,从而使晶界腐蚀性和疲劳特性恶化以外,还引起{011}方位晶粒的增加,从而发生低r值化。因此,将上限设定为0.0050%。再者,考虑到焊接性和制造性,B含量优选为0.0003%~0.0020%。
铝(Al):以质量%计为0.005%~0.50%
Al除了有时作为脱氧元素添加以外,还使钢的高温强度和耐氧化性得以提高。其作用从0.005%开始表现出来,因而将下限设定为0.005%。另一方面,超过0.50%以上的Al的添加,除了引起不锈钢的拉伸率降低和焊接性及表面质量的恶化以外,还因Al氧化物促进{011}方位晶粒的生成,钢板的r值降低,因而将上限设定为0.50%。再者,考虑到精炼成本,Al含量优选为0.01%~0.15%。
另外,在本实施方式中,除了上述元素以外,钢板以质量%计,优选进一步含有Cu:0.4~2.0%、Ni:0.1~2.0%、W:0.1~3.0%、Zr:0.05~0.30%、Sn:0.05~0.50%、Co:0.05~0.50%、Mg:0.0002~0.0100%中的1种以上。
铜(Cu):以质量%计为0.4%~2.0%
Cu提高不锈钢的耐蚀性,同时是因ε-Cu析出而特别使中温区域的高温强度得以提高的元素,因而根据需要添加到钢材中。其效果通过添加0.4%以上而表现出来,因而将下限设定为0.4%。另一方面,因添加超过2.0%而造成钢材的韧性恶化和拉伸率的极端降低,而且在热轧过程中ε-Cu过剩地析出,从而生成{011}方位晶粒而发生低r值化。因此,将Cu的添加量的上限设定为2.0%。再者,考虑到耐氧化性和制造性,Cu含量优选为0.5%~1.5%。
镍(Ni):以质量%计为0.1%~2.0%
Ni由于是提高韧性和耐蚀性的元素,因而根据需要添加。对韧性的作用在0.1%以上时表现出来,因而将下限设定为0.1%。另一方面,因超过2.0%的添加,生成奥氏体相而发生低r值化,因而将上限设定为2.0%。再者,考虑到成本,Ni含量优选为0.1%~0.5%。
钨(W):以质量%计为0.1%~3.0%
W是因提高高温强度而根据需要添加的元素,其作用从0.1%开始表现出来。因此,将W添加量的下限设定为0.1%。但是,过度的添加造成钢材的韧性恶化和拉伸率的降低。另外,Laves相过于生成而使{011}方位晶粒容易生成,造成r值的降低,因而将上限设定为3.0%。再者,考虑到制造成本和制造性,W含量优选为0.1%~2.0%。
锆(Zr):以质量%计为0.05%~0.30%
Zr是提高耐氧化性的元素,可根据需要添加。其作用由于在Zr含量为0.05%以上时表现出来,因而将下限设定为0.05%。但是,超过0.30%的量的添加使韧性和酸洗性等制造性显著恶化,而且使Zr与碳以及氮的化合物粗大化,从而使热轧退火板组织粗粒化,以致成为低r值,因而将上限设定为0.30%。再者,考虑到制造成本,Zr含量优选为0.05%~0.20%。
锡(Sn):以质量%计为0.05%~0.50%
Sn由于偏析于晶界而提高高温强度,因而是根据需要添加的元素。其作用在Sn的含量为0.05%以上时表现出来,因而将下限设定为0.05%。但是,因超过0.5%的添加而产生Sn偏析,在偏析部产生{011}方位晶粒,从而发生低r值化,因而将上限设定为0.50%。再者,考虑到高温特性和制造成本以及韧性,Sn含量优选为0.10%~0.30%。
钴(Co):以质量%计为0.05%~0.50%
Co是提高高温强度的元素,根据需要添加0.05%以上。但是,过度的添加由于使加工性恶化,因而将上限设定为0.50%。再者,考虑到制造成本,Co含量优选为0.05%~0.30%。
镁(Mg):以质量%计为0.0002%~0.0100%
Mg除了在钢水中与Al一起形成Mg氧化物而作为脱氧剂而起作用以外,微细结晶析出的Mg氧化物成为晶核,从而Nb和Ti系析出物微细析出。如果Nb和Ti系析出物在热轧工序微细析出,则在热轧工序和热轧板退火工序中,微细析出物抑制再结晶和{011}方位晶粒的形成,从而有助于未再结晶组织的形成。其作用表现出来从0.0002%开始,因而将下限设定为0.0002%。但是,过度的Mg的添加由于造成钢材的耐氧化性的恶化和焊接性的降低等,因而将上限设定为0.0100%。再者,考虑到精炼成本,Mg含量优选为0.0003%~0.0020%。
下面就本实施方式的铁素体系不锈钢冷轧钢板的织构进行说明。
本实施方式的铁素体系不锈钢冷轧钢板的织构重要的是,在将板厚设定为t的情况下,在表层~t/4的区域(从表面到深度t/4的区域),具有{111}方位的晶粒(以下简称为{111}方位晶粒)以面积率计为20%以上,在t/4~t/2的区域(从深度t/4到板厚中心的区域),{111}方位晶粒以面积率计为40%以上。再者,重要的还有在板厚的整个厚度区域,具有{011}方位的晶粒(以下简称为{011}方位晶粒)以面积率计为15%以下。
另外,所谓具有{111}方位的晶粒,是指结晶的方位用面指数{111}表示的晶粒,也就是说,是指{111}面与板面(钢板表面)平行的晶粒。所谓具有{011}方位的晶粒,是指结晶的方位用面指数{011}表示的晶粒,也就是说,是指{011}面与板面平行的晶粒。
{111}方位晶粒和{011}方位晶粒的面积率能够以垂直于钢板表面且平行于轧制方向的面中的各方位的晶粒的面积率的形式求出。
下面就本实施方式的织构的限定理由进行说明。
加工性的提高指标即兰克福特值(r值)与再结晶织构相关联是众所周知的事实。一般地说,为人所知的有通过增加具有{111}方位的晶粒的比率来提高r值。不过,结晶方位的分布在板厚方向是不均匀的,只是控制特定部位的结晶方位,高r值的确保未必是不充分的。
于是,本发明就冷轧钢板(产品板)的板厚方向的结晶方位分布与r值之间的关系,考虑板厚方向的不均匀性而进行了详细的研究。其结果判明:在表层~t/4(t为板厚)和t/4~t/2的各自的区域,{111}方位晶粒以面积率计,分别需要存在20%以上和40%以上。而且还判明:在整个厚度中,{011}方位晶粒以面积率计需要存在15%以下。此外,为了更加稳定地确保r值,{111}方位晶粒在表层~t/4的区域优选存在25%以上,在t/4~t/2的区域优选存在45%以上,{011}方位晶粒优选设定为10%以下。
图1~3表示了各结晶方位的面积率(比率)与产品板的平均r值之间的关系。
在此,r值是从冷轧退火板上采集JIS13号B拉伸试验片,在与轧制方向成45°方向、与轧制方向成90°方向施加14.4%的应变后,用下述(1)式和下述(2)式算出平均r值。
r=ln(W0/W)/ln(t0/t) (1)
在此,W0是拉伸前的板宽,W是拉伸后的板宽,t0是拉伸前的板厚,t是拉伸后的板厚。
平均r值=(r0+2r45+r9)/4 (2)
在此,r0是轧制方向的r值、r45是与轧制方向成45°方向的r值,r90是与轧制方向成直角方向的r值。
此外,对于要求复杂形状的排气部件,如果平均r值为1.2以上,则具有能够进行充分加工的特性。因此,在本实施方式中,只有平均r值为1.2以上,就判断为具有优良的加工性。
另外,结晶方位的测量是从产品板上与板面垂直地切取与轧制方向成平行方向的面,用结晶方位分析装置EBSP(Electron Back Scatter diffraction Pattern)遍及整个板厚区域鉴定晶粒的方位,从而决定{111}方位晶粒和{011}方位晶粒的面积率。由这些结果表明:在本发明中,由结晶方位控制产生的高r值化必须考虑板厚方向的{111}方位晶粒频率的变动,而且必须考虑{011}方位晶粒。
图1是表示在本实施方式的铁素体系不锈钢冷轧钢板中,表层~t/4的区域中的{111}方位晶粒的面积率与平均r值之间的关系的图,图2是表示t/4~t/2的区域中的{111}方位晶粒的面积率与平均r值之间的关系的图。
由图1、图2可知:{111}方位晶粒的比率越高,平均r值也越大,加工性越会提高。进而可知:为了确保平均r值在1.2以上,在钢板表层~t/4的区域确保{111}方位晶粒为20%以上,在t/4~t/2的区域确保{111}方位晶粒为40%是很重要的。
此外,为调查图1、图2所示的关系而使用的铁素体系不锈钢冷轧钢板的钢成分是:0.007%C-0.27%Si-0.94%Mn-0.03%P-0.0006%S-17.3%Cr-1.8%Mo-0.08%Ti-0.47%Nb-0.01%N-0.001%B-0.03%Al(剩余部分为Fe和不可避免的杂质)。
图3是表示在本实施方式的铁素体系不锈钢冷轧钢板中,整个板厚区域中的{011}方位晶粒的面积率与平均r值之间的关系的图。
由图3可知:在整个板厚中,{011}方位晶粒的比率越高,平均r值越降低,加工性越会恶化。进而可知:为了确保平均r值为1.2以上,在整个厚度中将{011}方位晶粒设定为15%以下是很重要的。
此外,为调查图3所示的关系而使用的铁素体系不锈钢冷轧钢板的钢成分是:0.007%C-0.27%Si-0.94%Mn-0.03%P-0.0006%S-17.3%Cr-1.8%Mo-0.08%Ti-0.47%Nb-0.01%N-0.001%B-0.03%Al(剩余部分为Fe和不可避免的杂质)。
下面就成为上述铁素体系不锈钢冷轧钢板基材的冷轧基材用铁素体系不锈钢热轧钢板进行说明。
在本发明中,除了上述的冷轧钢板(冷轧板)的织构和成分组成之外,对制造方法也进行了研究,结果发现,通过作为上述冷轧钢板基材的热轧钢板(冷轧基材热轧板)的组织,使冷轧板的织构受到影响,也使冷轧板的r值受到影响。
即发现:在冷轧基材热轧板的t′/4~t′/2(t′是冷轧基材热轧板的板厚)区域的组织为未再结晶组织的情况下,由那样的冷轧基材热轧板制造的冷轧钢板成为高r值。此外,所谓t′/4~t′/2区域,是指从距钢板表面的深度t′/4到板厚中心的区域。
如果具体地进行说明,则如上所述,在冷轧板中为提高r值,确保具有{111}方位的晶粒是有效的。因此,在作为冷轧板基材的热轧钢板中,事先使{111}织构发达,而且不使这样的织构再结晶而形成为未再结晶组织是非常重要的。也就是说,在未再结晶组织中,在平行于热轧钢板的轧制方向且垂直于板面的断面,晶粒表现出以面指数{111}表示的取向性({111}面与板面平行的取向性)。
下面就这样的冷轧基材用铁素体系不锈钢热轧钢板的制造方法进行说明。
(冷轧基材用铁素体系不锈钢热轧钢板的制造方法)
下面就本实施方式的冷轧基材用铁素体系不锈钢热轧钢板的制造方法进行说明。
本实施方式的冷轧基材用铁素体系不锈钢热轧钢板的制造方法是:冶炼具有上述钢组成的铁素体系不锈钢,炼钢后,对于铸造而成的钢坯(板坯),将板坯加热温度设定为1200~1300℃、精轧温度设定为800~950℃而进行热轧,从而制成热轧板,接着,以500℃以下的卷取温度对所述热轧板进行卷取,之后,在925~1000℃进行热轧板退火。
在热轧中,当板坯加热温度低于1200℃时,除了过度地引入由轧制产生的热轧应变,从而使之后的组织控制变得困难以外,由于表面缺陷也成为问题,因而将下限设定为1200℃。另一方面,如果加热温度超过1300℃,则热轧以后的组织粗粒化而使{111}织构的发达受到抑制,同时由于组织往往成为再结晶组织,因而将上限设定为1300℃。再者,考虑到生产率,优选为1230~1280℃。
在热轧时,板坯加热后,继多个道次的粗轧后,实施多个道次的精轧,然后卷取成卷材状。此时,精轧温度低于800℃时,由于表面缺陷成为问题,因而将精轧温度的下限设定为800℃。另一方面,在超过950℃时,热轧以后的组织粗粒化而使{111}织构的发达受到抑制,同时由于组织往往成为再结晶组织,因而将上限设定为950℃。再者,考虑到生产率,精轧温度优选为850~930℃。
关于卷取温度,从抑制热轧组织的恢复和热轧板韧性的角度考虑,设定为500℃以下。即在本发明中,这样地通过使卷取温度为500℃以下的低温,可以不使由热轧工序所得到的{111}织构恢复而维持该织构的状态不变地继续进行后续工序。再者,考虑到生产率、韧性和卷材形状,优选为400~480℃。在卷取温度超过500℃的情况下,随后进行的热轧板退火工序的退火温度即使适当,在板厚的表层部附近产生的起因于热轧剪切应变的{110}方位晶粒也会在从热轧卷取后冷却到常温的过程中生长,在其后的退火工序中通过蚕食其它方位而残留于产品板中。该{110}方位晶粒由于造成r值的降低,因而卷取温度设定为500℃以下。另外,为了抑制在从热轧精轧后到卷取的期间的{110}方位晶粒的生长,优选以50℃/sec以上的冷却速度进行冷却。
热轧后的热轧板退火一般在得到再结晶组织的温度下进行热处理。不过,在板厚方向产生组织的不均匀性。
本发明发现:该板厚方向的组织不均匀性极大地影响产品板的r值,如前所述,获得了如下的见解:在t′/4~t′/2(t′为板厚)区域的组织为未再结晶组织的情况下,在冷轧钢板即产品板中,可以得到高r值。
图4表示了热轧板退火温度和产品板的平均r值之间的关系。在此,钢A(图中的符号●和○)具有0.007%C-0.25%Si-0.95%Mn-0.03%P-0.0006%S-17.3%Cr-1.8%Mo-0.08%Ti-0.47%Nb-0.01%N-0.0010%B-0.03%Al(剩余部分为Fe和不可避免杂质)的组成,钢B(图中的符号▲和△)具有0.003%C-0.89%Si-0.65%Mn-0.02%P-0.0010%S-13.5%Cr-0.1%Mo-0.008%Ti-0.40%Nb-0.01%N-0.0005%B-0.07%Al(剩余部分为Fe和不可避免杂质)的组成。在图中,也表示了热轧板退火后的t′/4~t′/2区域的组织状态,符号●和▲为未再结晶组织,符号○和△是再结晶组织。
再结晶温度随钢成分的不同而不同,但在本发明的组成中,可以在925~1000℃的范围发现适当的热轧板退火温度。即可以发现成为对冷轧基材热轧板适当的组织的、在t′/4~t′/2(t′为冷轧基材热轧板板厚)成为未再结晶组织(不成为完全再结晶组织)的温度。通过使用这样的冷轧基材热轧板作为冷轧钢板的基材,可以得到平均r值为1.2以上的高加工材料。
在此,在采用通常制造法使冷轧基材热轧板的t′/4~t′/2区域再结晶组织化的情况下,成为随机的结晶方位分布,在其后的冷轧中的织构的发达并不充分,从而在冷轧板退火后,{111}方位晶粒不会充分生成。另一方面,如本发明那样,如果使冷轧基材热轧板的t′/4~t′/2区域成为未再结晶组织,则由于使在热轧板中发达的{111}织构保持残留的状态不变而进行冷轧,因而即使在其后的冷轧板退火中,也会大量生成{111}方位晶粒,从而有助于高r值。
不过,如果热轧板退火温度过于低温或者省略热轧板退火,则在板厚的表层部附近产生的起因于热轧剪切应变的{110}方位晶粒大量残留在冷轧退火后的产品板中。该方位晶粒由于造成r值的降低,因而热轧板退火必须在800℃以上。此外,本发明为了更加抑制对r值的提高施加不良影响的{110}方位晶粒的生长,同时使平均r值为1.2以上,热轧板退火温度的下限设定为925℃。
另一方面,如果热轧板退火设定为超过1000℃,则t′/4~t′/2区域的组织成为再结晶组织,在使表层的再结晶晶粒粗大化的同时,由于热轧板退火后被称为Laves相的Fe和Nb的化合物(Fe2Nb)完全溶解,因而r值得以降低。此外,因热轧板退火而粗大地生成的Laves相由于成为冷轧板退火时的再结晶织构的晶核生成点,因而优选在冷轧基材中事先使其析出。
考虑到这些方面,热轧板退火温度的上限设定为1000℃。再者,因高温退火带来的晶粒粗大化和氧化皮的生成的促进由于分别会造成板断裂和氧化皮残余等表面质量的降低,因而考虑到热轧板韧性和酸洗性,优选为925~980℃。
(铁素体系不锈钢冷轧钢板的制造方法)
接着,将这样的冷轧基材热轧板冷轧到厚度2mm,根据钢成分的不同,在1000~1100℃进行热处理,使得结晶粒度号码为5~7,从而制成产品板。
具体来说,首先,为在冷轧板中得到在{111}方位结晶生长的再结晶核,冷轧压下率设定为60%以上。也就是说,如果冷轧压下率过低,则不能通过后续的退火工序而充分生成用于再结晶为{111}方位晶粒的再结晶核,从而产品板的r值的提高并不充分,因此,将压下率设定为60%以上是很重要的。再者,考虑到生产率和各向异性,压下率优选为60~80%。
其次,对于使生长为{111}方位结晶的再结晶核得以生成的冷轧板,在1000~1100℃进行冷轧板退火。通常为了得到再结晶组织,冷轧板的退火按照钢成分来决定热处理温度,但在低于1000℃时,因本发明的钢成分而成为未再结晶组织,因而将下限设定为1000℃。另一方面,在超过1100℃时,由于晶粒粗大化,加工时产生表面粗糙,成为开裂的原因,因而将上限设定为1100℃。再者,考虑到拉伸率和酸洗性,优选为1010~1070℃。
如上所述,可以得到一种铁素体系不锈钢冷轧钢板,其提高了{111}方位晶粒的面积率,同时抑制了{011}方位晶粒,从而加工性优良。
另外,板坯厚度、热轧板厚度等可以适宜设计。另外,在冷轧时,使用的工作轧辊的轧辊粗糙度、轧辊直径、还有轧制油、轧制道次数、轧制速度、轧制温度等也可以适宜选择。另外,冷轧板退火只要需要,可以是在氢气或氮气等非氧化气氛中进行退火的光亮退火,也可以在大气中进行退火。
实施例
以下,根据实施例就本发明的效果进行说明,但本发明并不限定于以下的实施例所使用的条件。
(实施例1)
在本实施例中,首先熔炼表1所示的成分组成的钢并铸造成板坯,热轧板坯,将其制成5.0mm厚度的热轧板。其后,在对热轧板进行连续退火处理后,进行酸洗,冷轧至2.0mm厚度,并实施连续退火-酸洗而制成产品板。此外,在表1所示的成分组成中,钢No.1~13在本发明范围外,钢No.14~32在发明范围外,关于偏离本发明的成分组成,标注下划线来表示。
热轧条件全部在本发明的范围内,将板坯加热温度设定为1200~1300℃,将精轧温度设定为800~950℃,将卷取温度设定为500℃以下。另外,关于热轧板退火条件,在使退火温度为800~1000℃且在t′/2~t′/4(t′:热轧板的板厚)成为未再结晶组织的温度下进行。其后,以60%的压下率实施冷轧。冷轧板退火根据钢成分的不同在1000~1100℃进行,从而使其成为再结晶组织。
接着,从这样得到的产品板上采集试验片,测量{111}方位晶粒和{011}方位晶粒的比率(面积率),同时评价了平均r值、高温强度和氧化特性。下面就具体的测量和评价方法进行说明。
结晶方位晶粒的比率和平均r值的测量方法与前述的方法相同。从得到的产品板上垂直于板面地切取与轧制方向成平行方向的面,用结晶方位分析装置EBSP遍及整个板厚区域而鉴定晶粒的方位,决定{111}方位晶粒和{011}方位晶粒的面积率。
另外,平均r值是从得到的产品板上采集JIS 13号B拉伸试验片,按照JIS Z 2254,在轧制方向、与轧制方向成45°方向、与轧制方向成90°方向分别施加14.4%应变后,用上述(1)式和上述(2)式计算出来。此外,关于加工性的评价,将平均r值为1.2以上评价为良好。
接着,高温强度是从得到的产品板上在轧制方向采集高温拉伸试验片,按照JIS G0567,在900℃实施高温拉伸试验,测量0.2%屈服强度。
另外,耐氧化性的试验按照JIS Z 2281,在大气中于900℃下进行200小时的连续氧化试验,评价有无异常氧化和氧化皮剥离的发生。
另外,在900℃的高温强度以0.2%屈服强度计为20MPa以上的情况下,而且在大气中连续氧化中不产生异常氧化的情况下,可以满足作为汽车用排气部件的性能。因此,将0.2%屈服强度低于20MPa评价为不合格。而且将不产生异常氧化和氧化皮剥离的情况设定为A(良好),将产生的情况设定为B(不良)。
以上的评价结果如表2所示。
由表1、表2表明:可知具有本发明规定的成分组成的钢与比较例相比,其平均r值较高,加工性优良。另外,高温强度也较高,耐氧化性也优良。另一方面,比较钢No14、15、17、18、20~31由于钢成分偏离本发明,因而产品板的结晶方位比率处于本发明外,产品板的平均r值低于1.2。在使用这些材料加工成复杂形状的部件的情况下,有可能产生开裂。另外,比较钢No.16、19、32尽管满足r值,但耐氧化性和高温强度不足,在应用作为排气部件的情况下,使用时有可能发生破坏。
(实施例2)
接着,对于表1所示的本发明钢No.1和6,使制造条件进行各种变化时的特性如表3所示。此外,所谓再结晶状态,是指t′/2~t′/4区域的组织状态。
可知全部满足本发明规定的制造条件的试验编号P33、P34与比较例相比,平均r值较高,且加工性优良。
另一方面,还可知在偏离本发明规定的制造条件的比较例(试验编号P35~P44)的情况下,产品板的结晶方位比率处于本发明外,并不满足平均r值为1.2以上,从而加工性恶化。因此,在将这样的产品板加工为复杂形状的部件的情况下,有可能产生开裂。另外,在偏离热轧的加热温度或精轧温度的下限值的情况下,尽管r值满足1.2以上,但发生了表面缺陷。
根据这些结果,可以确认上述的见解,而且限定上述各钢组成和构成的根据可以得到证实。
产业上的可利用性
由以上的说明表明:根据本发明,不需要特别的新设备而可以有效率地提供加工性优良的耐热铁素体系不锈钢钢板。因此,通过将适用本发明的冷轧钢板特别地应用于排气用构件,可以使制造成本降低等社会性贡献度得以提高。也就是说,本发明充分具有产业上的可利用性。

Claims (7)

1.一种耐热铁素体系不锈钢冷轧钢板,其特征在于:以质量%计,含有C:0.02%以下、Si:0.1~1.0%、Mn:超过0.6%且在1.5%以下、P:0.01~0.05%、S:0.0001~0.0100%、Cr:13.0~20.0%、Mo:0.5~3.0%、Ti:0.005~0.20%、Nb:0.30~1.0%、B:0.0002~0.0050%、Al:0.005~0.50%、N:0.02%以下,剩余部分由Fe和不可避免的杂质构成;在将板厚设定为t的情况下,在表层~t/4的区域,{111}方位晶粒以面积率计存在20%以上,在t/4~t/2的区域,{111}方位晶粒以面积率计存在40%以上,而且在整个厚度区域,{011}方位晶粒以面积率计存在15%以下。
2.一种耐热铁素体系不锈钢冷轧钢板,其特征在于:以质量%计,含有C:0.02%以下、Si:0.1~1.0%、Mn:超过0.6%且在1.5%以下、P:0.01~0.05%、S:0.0001~0.0100%、Cr:13.0~20.0%、Mo:0.5~3.0%、Ti:0.005~0.20%、Nb:0.30~1.0%、B:0.0002~0.0050%、Al:0.005~0.50%、N:0.02%以下,并进一步含有Cu:0.4~2.0%、Ni:0.1~2.0%、W:0.1~3.0%、Zr:0.05~0.30%、Sn:0.05~0.50%、Co:0.05~0.50%、Mg:0.0002~0.0100%中的1种以上,剩余部分由Fe和不可避免的杂质构成;在将板厚设定为t的情况下,在表层~t/4的区域,{111}方位晶粒以面积率计存在20%以上,在t/4~t/2的区域,{111}方位晶粒以面积率计存在40%以上,而且在整个厚度区域,{011}方位晶粒以面积率计存在15%以下。
3.根据权利要求1或2所述的耐热铁素体系不锈钢冷轧钢板,其特征在于:以质量%计,含有Cr:15.0~19.0%、Mo:1.5~1.8%、Ti:0.06~0.15%、Nb:0.40~0.60%中的1种以上。
4.一种冷轧基材用铁素体系不锈钢热轧钢板,其是用于制造权利要求1~3中任一项所述的耐热铁素体系不锈钢冷轧钢板的冷轧基材用铁素体系不锈钢热轧钢板,其特征在于:在将板厚设定为t′的情况下,t′/2~t′/4区域中的组织是未再结晶组织。
5.一种冷轧基材用铁素体系不锈钢热轧钢板的制造方法,其是权利要求4所述的冷轧基材用铁素体系热轧钢板的制造方法,其特征在于:进行板坯加热温度设定为1200~1300℃、精轧温度设定为800~950℃的热轧而制成热轧板,以500℃以下的卷取温度对所述热轧板进行卷取,之后,在925~980℃进行所述热轧板的退火。
6.一种耐热铁素体系不锈钢冷轧钢板的制造方法,其是权利要求1~3中任一项所述的耐热铁素体系不锈钢冷轧钢板的制造方法,其特征在于:在将板厚设定为t′的情况下,将在t′/2~t′/4的区域中的组织为未再结晶组织的冷轧基材用铁素体系热轧钢板以60%以上的压下率进行冷轧而制成冷轧板,之后,在1000~1100℃进行所述冷轧板的退火。
7.一种耐热铁素体系不锈钢冷轧钢板的制造方法,其是权利要求6所述的耐热铁素体系不锈钢冷轧钢板的制造方法,其特征在于:包含如下的工序:进行板坯加热温度设定为1200~1300℃、精轧温度设定为800~950℃的热轧而制成热轧板,以500℃以下的卷取温度对所述热轧板进行卷取,之后,在925~980℃进行所述热轧板的退火,从而制造出所述冷轧基材用铁素体系热轧钢板。
CN201380006138.6A 2012-03-30 2013-03-26 耐热铁素体系不锈钢冷轧钢板、冷轧基材用铁素体系不锈钢热轧钢板及其制造方法 Active CN104093871B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-081998 2012-03-30
JP2012081998A JP5793459B2 (ja) 2012-03-30 2012-03-30 加工性に優れた耐熱フェライト系ステンレス冷延鋼板、冷延素材用フェライト系ステンレス熱延鋼板及びそれらの製造方法
PCT/JP2013/058856 WO2013146815A1 (ja) 2012-03-30 2013-03-26 耐熱フェライト系ステンレス冷延鋼板、冷延素材用フェライト系ステンレス熱延鋼板及びそれらの製造方法

Publications (2)

Publication Number Publication Date
CN104093871A CN104093871A (zh) 2014-10-08
CN104093871B true CN104093871B (zh) 2016-12-14

Family

ID=49260066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380006138.6A Active CN104093871B (zh) 2012-03-30 2013-03-26 耐热铁素体系不锈钢冷轧钢板、冷轧基材用铁素体系不锈钢热轧钢板及其制造方法

Country Status (7)

Country Link
US (2) US20150020933A1 (zh)
JP (1) JP5793459B2 (zh)
KR (1) KR101602088B1 (zh)
CN (1) CN104093871B (zh)
CA (1) CA2866136C (zh)
MX (2) MX2014011517A (zh)
WO (1) WO2013146815A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013004905A1 (de) * 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer Vergütungsstahl und Verfahren zur Herstellung eines zunderarmen Bauteils aus diesem Stahl
JP6093210B2 (ja) * 2013-03-13 2017-03-08 新日鐵住金ステンレス株式会社 低温靭性に優れた耐熱フェライト系ステンレス鋼板およびその製造方法
JP5904306B2 (ja) * 2014-02-05 2016-04-13 Jfeスチール株式会社 フェライト系ステンレス熱延焼鈍鋼板、その製造方法およびフェライト系ステンレス冷延焼鈍鋼板
JP5908936B2 (ja) * 2014-03-26 2016-04-26 新日鐵住金ステンレス株式会社 フランジ用フェライト系ステンレス鋼板とその製造方法およびフランジ部品
KR20160076792A (ko) * 2014-12-23 2016-07-01 주식회사 포스코 페라이트계 스테인리스강 및 그 제조방법
KR20160078589A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 가공성이 우수한 페라이트계 스테인리스 강재 및 그 제조방법
JP6959650B2 (ja) * 2015-08-21 2021-11-02 アルデイラ セラピューティクス, インコーポレイテッド アルデヒドコンジュゲートおよびその使用
US20180363089A1 (en) * 2016-02-02 2018-12-20 Nisshin Steel Co., Ltd. HOT-ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD-ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME
DE102016110661A1 (de) * 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines kaltgewalzten Stahlbandes aus einem hochfesten, manganhaltigen Stahl
JP6665936B2 (ja) * 2016-12-21 2020-03-13 Jfeスチール株式会社 フェライト系ステンレス鋼
JP6841150B2 (ja) * 2017-04-28 2021-03-10 日本製鉄株式会社 耐熱部材用フェライト系ステンレス鋼板
JP6851269B2 (ja) * 2017-06-16 2021-03-31 日鉄ステンレス株式会社 フェライト系ステンレス鋼板、鋼管および排気系部品用フェライト系ステンレス部材ならびにフェライト系ステンレス鋼板の製造方法
KR102020514B1 (ko) * 2017-12-20 2019-09-10 주식회사 포스코 확관 가공성이 향상된 페라이트계 스테인리스강 및 그 제조방법
JP7013301B2 (ja) * 2018-03-27 2022-01-31 日鉄ステンレス株式会社 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材
JP6986135B2 (ja) * 2018-03-30 2021-12-22 日鉄ステンレス株式会社 フェライト系ステンレス鋼板、およびその製造方法ならびにフェライト系ステンレス部材
KR102135158B1 (ko) * 2018-09-19 2020-07-17 주식회사 포스코 가공성과 고온강도가 우수한 페라이트계 스테인리스강 및 그 제조방법
CN113227414B (zh) * 2018-12-21 2023-08-11 日铁不锈钢株式会社 耐氢脆性优异的Cr系不锈钢板
CN113614269B (zh) * 2019-03-26 2022-10-25 杰富意钢铁株式会社 铁素体系不锈钢板及其制造方法
MX2022003956A (es) * 2019-10-02 2022-04-25 Nippon Steel Stainless Steel Corp Hoja de acero inoxidable ferritico, metodo de produccion de la misma y miembro de acero inoxidable ferritico.
CN112410683A (zh) * 2020-09-27 2021-02-26 甘肃酒钢集团宏兴钢铁股份有限公司 一种汽车废气再循环冷却器用铁素体不锈钢材料及其制造方法
KR20220088157A (ko) * 2020-12-18 2022-06-27 주식회사 포스코 내열성이 우수한 페라이트계 스테인리스강 및 그 제조방법
JP7468470B2 (ja) 2021-06-28 2024-04-16 Jfeスチール株式会社 フェライト系ステンレス鋼板およびその製造方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694574B2 (ja) * 1986-12-26 1994-11-24 川崎製鉄株式会社 プレス成形性のきわめて優れたフエライト系ステンレス鋼板の製造方法
JP2696584B2 (ja) 1990-03-24 1998-01-14 日新製鋼株式会社 低温靭性,溶接性および耐熱性に優れたフエライト系耐熱用ステンレス鋼
JP3219099B2 (ja) 1991-07-26 2001-10-15 日新製鋼株式会社 耐熱性, 低温靭性および溶接性に優れたフエライト系耐熱用ステンレス鋼
JP3152576B2 (ja) 1995-01-19 2001-04-03 川崎製鉄株式会社 Nb含有フェライト鋼板の製造方法
JP3451830B2 (ja) * 1996-03-29 2003-09-29 Jfeスチール株式会社 耐リジング性および加工性に優れたフェライト系ステンレス鋼板およびその製造方法
JPH09279312A (ja) 1996-04-18 1997-10-28 Nippon Steel Corp 高温特性、耐食性及び加工性に優れたフェライト系ステンレス鋼
JP3926492B2 (ja) * 1998-12-09 2007-06-06 新日鐵住金ステンレス株式会社 断続加熱時の高温強度に優れ、断続加熱時にも剥離し難い酸化スケールを有するフェライト系ステンレス鋼板
TW480288B (en) * 1999-12-03 2002-03-21 Kawasaki Steel Co Ferritic stainless steel plate and method
JP2001181808A (ja) * 1999-12-17 2001-07-03 Nippon Steel Corp リジング特性と深絞り性に優れたフェライト系ステンレス鋼板及びその製造方法
JP4598219B2 (ja) * 2000-02-23 2010-12-15 ツカサ工業株式会社 粉粒体用スライド式ゲートバルブ
JP3448542B2 (ja) * 2000-04-13 2003-09-22 新日本製鐵株式会社 成形性とリジング特性に優れたフェライト系ステンレス鋼板及びその製造方法
US6426039B2 (en) 2000-07-04 2002-07-30 Kawasaki Steel Corporation Ferritic stainless steel
JP3804408B2 (ja) 2000-07-13 2006-08-02 Jfeスチール株式会社 成形性に優れたCr含有耐熱耐食鋼板の製造方法
JP3769479B2 (ja) * 2000-08-07 2006-04-26 新日鐵住金ステンレス株式会社 プレス成形性に優れた燃料タンク用フェライト系ステンレス鋼板
JP3932020B2 (ja) * 2001-11-19 2007-06-20 日新製鋼株式会社 深絞り性に優れ面内異方性の小さいフェライト系ステンレス鋼及びその製造方法
EP1514949B1 (en) * 2002-06-17 2015-05-27 JFE Steel Corporation FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
DE60312038T2 (de) 2002-12-12 2007-11-29 Nippon Steel & Sumikin Stainless Steel Corp. BLECH AUS Cr-HALTIGEM HITZEBESTÄNDIGEM STAHL MIT HERVORRAGENDER BEARBEITBARKEIT UND HERSTELLUNGSVERFAHREN DAFÜR
JP4309140B2 (ja) 2003-01-15 2009-08-05 新日鐵住金ステンレス株式会社 自動車排気系機器用フェライト系ステンレス鋼
JP4519505B2 (ja) 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 成形性に優れるフェライト系ステンレス鋼板およびその製造方法
CN1331978C (zh) 2004-12-09 2007-08-15 中国石油天然气股份有限公司 一种钻井液用聚合醇润滑抑制剂及其应用
JP4721917B2 (ja) * 2005-01-24 2011-07-13 新日鐵住金ステンレス株式会社 成形時の面内異方性が小さく耐リジング性及び耐肌荒れ性に優れた低炭素低窒素フェライト系ステンレス鋼薄板及びその製造方法
JP4498950B2 (ja) * 2005-02-25 2010-07-07 新日鐵住金ステンレス株式会社 加工性に優れた排気部品用フェライト系ステンレス鋼板およびその製造方法
JP4727601B2 (ja) * 2007-02-06 2011-07-20 新日鐵住金ステンレス株式会社 耐すきま腐食性に優れたフェライト系ステンレス鋼
JP5000281B2 (ja) 2006-12-05 2012-08-15 新日鐵住金ステンレス株式会社 加工性に優れた高強度ステンレス鋼板およびその製造方法
JP4948998B2 (ja) 2006-12-07 2012-06-06 日新製鋼株式会社 自動車排ガス流路部材用フェライト系ステンレス鋼および溶接鋼管
JP5010301B2 (ja) 2007-02-02 2012-08-29 日新製鋼株式会社 排ガス経路部材用フェライト系ステンレス鋼および排ガス経路部材
JP5297630B2 (ja) * 2007-02-26 2013-09-25 新日鐵住金ステンレス株式会社 耐熱性に優れたフェライト系ステンレス鋼板
JP4949124B2 (ja) * 2007-05-22 2012-06-06 新日鐵住金ステンレス株式会社 形状凍結性に優れた高強度複相ステンレス鋼板及びその製造方法
JP5012243B2 (ja) 2007-06-19 2012-08-29 Jfeスチール株式会社 高温強度、耐熱性および加工性に優れるフェライト系ステンレス鋼
US20110061777A1 (en) 2007-08-20 2011-03-17 Jfe Steel Corporation Ferritic stainless steel sheet having superior punching workability and method for manufacturing the same
JP5396752B2 (ja) 2007-10-02 2014-01-22 Jfeスチール株式会社 靭性に優れたフェライト系ステンレス鋼およびその製造方法
JP5178157B2 (ja) 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
JP5025671B2 (ja) 2008-02-13 2012-09-12 新日鐵住金ステンレス株式会社 高温強度に優れたフェライト系ステンレス鋼板およびその製造方法
JP5141296B2 (ja) 2008-02-25 2013-02-13 Jfeスチール株式会社 高温強度と靭性に優れるフェライト系ステンレス鋼
JP5125600B2 (ja) 2008-02-25 2013-01-23 Jfeスチール株式会社 高温強度、耐水蒸気酸化性および加工性に優れるフェライト系ステンレス鋼
JP5274074B2 (ja) 2008-03-28 2013-08-28 新日鐵住金ステンレス株式会社 耐酸化性に優れた耐熱性フェライト系ステンレス鋼板
JP5588868B2 (ja) * 2008-07-23 2014-09-10 新日鐵住金ステンレス株式会社 尿素水タンク用フェライト系ステンレス鋼
JP2011068948A (ja) 2009-09-25 2011-04-07 Nisshin Steel Co Ltd スターリングエンジンの熱交換器
JP4831256B2 (ja) * 2010-01-28 2011-12-07 Jfeスチール株式会社 靭性に優れた高耐食性フェライト系ステンレス熱延鋼板
CN102741445B (zh) 2010-02-02 2014-12-17 杰富意钢铁株式会社 韧性优异的高耐腐蚀性铁素体系不锈钢冷轧钢板及其制造方法
JP5658893B2 (ja) * 2010-03-11 2015-01-28 新日鐵住金ステンレス株式会社 耐熱性に優れたフェライト系ステンレス鋼板およびその製造方法
WO2011111871A1 (ja) 2010-03-11 2011-09-15 新日鐵住金ステンレス株式会社 耐酸化性に優れたフェライト系ステンレス鋼板並びに耐熱性に優れたフェライト系ステンレス鋼板及びその製造方法
JP2011190524A (ja) * 2010-03-17 2011-09-29 Nisshin Steel Co Ltd 耐酸化性、二次加工脆性および溶接部の靭性に優れたフェライト系ステンレス鋼
JP2010156059A (ja) 2010-03-19 2010-07-15 Jfe Steel Corp 温間金型潤滑成形用鉄基粉末混合物
EP2554701B1 (en) 2010-03-29 2016-06-29 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet superior in surface glossiness and corrosion resistance and method for producing same
JP5793283B2 (ja) * 2010-08-06 2015-10-14 新日鐵住金ステンレス株式会社 ブラックスポットの生成の少ないフェライト系ステンレス鋼
JP5703075B2 (ja) 2011-03-17 2015-04-15 新日鐵住金ステンレス株式会社 耐熱性に優れたフェライト系ステンレス鋼板

Also Published As

Publication number Publication date
US10260134B2 (en) 2019-04-16
US20150020933A1 (en) 2015-01-22
CA2866136A1 (en) 2013-10-03
US20160097114A1 (en) 2016-04-07
JP2013209726A (ja) 2013-10-10
KR20140117586A (ko) 2014-10-07
WO2013146815A1 (ja) 2013-10-03
CA2866136C (en) 2019-09-24
JP5793459B2 (ja) 2015-10-14
CN104093871A (zh) 2014-10-08
KR101602088B1 (ko) 2016-03-17
MX2019009899A (es) 2019-10-02
MX2014011517A (es) 2015-01-16

Similar Documents

Publication Publication Date Title
CN104093871B (zh) 耐热铁素体系不锈钢冷轧钢板、冷轧基材用铁素体系不锈钢热轧钢板及其制造方法
CN102918174B (zh) 弯曲性和焊接性优良的高强度热镀锌钢板及其制造方法
US10752968B2 (en) Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
CN103827338B (zh) 低密度高强度钢及制备所述钢的方法
US9435013B2 (en) Cold-rolled steel sheet and process for production thereof
CN105473748A (zh) 超高强度钢板及其制造方法
JP5219689B2 (ja) 加工肌荒れの小さいフェライト系ステンレス鋼板およびその製造方法
CN112752862B (zh) 具有高扩孔性的高强度冷轧钢板、高强度热浸镀锌钢板及它们的制造方法
JP6906688B2 (ja) フェライト系ステンレス鋼板およびその製造方法
JP5362582B2 (ja) 耐食性及び張出成形性に優れたフェライト系ステンレス鋼及びその製造方法
CN102791897A (zh) 耐氧化性优异的铁素体系不锈钢板和耐热性优异的铁素体系不锈钢板及其制造方法
JP6093210B2 (ja) 低温靭性に優れた耐熱フェライト系ステンレス鋼板およびその製造方法
CN105734412A (zh) 材质偏差小且成型性及耐蚀性优异的热压成型用热轧钢板及利用其的成型品及其制造方法
CN114502760B (zh) 铁素体系不锈钢钢板及其制造方法、以及铁素体系不锈钢构件
CN103562425A (zh) 高碳薄钢板及其制造方法
CN107250406A (zh) 高强度冷轧钢板及其制造方法
CN105378133A (zh) 高碳热轧钢板及其制造方法
CN110199044A (zh) 热冲压用钢板
US20230010877A1 (en) Method of making a cold formable high strength steel strip and steel strip
CN107406939A (zh) 高强度冷轧钢板及其制造方法
JP2018502213A (ja) 冷間圧延高強度低合金鋼
JP2008291314A (ja) 高強度合金化溶融亜鉛めっき鋼板とその製造方法
TWI688666B (zh) 鋼板及鋼板的製造方法
TWI688664B (zh) 鋼板及鋼板的製造方法
CN114080463B (zh) 高强度钢板及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: NIPPON STEEL & SUMIKIN STAINLESS STEEL Corp.

Address before: Tokyo, Japan

Patentee before: Nippon Steel & Sumikin Stainless Steel Corp.

CP01 Change in the name or title of a patent holder