CN103950253A - 亲水性薄膜以及使用该亲水性薄膜的构件和结构物 - Google Patents

亲水性薄膜以及使用该亲水性薄膜的构件和结构物 Download PDF

Info

Publication number
CN103950253A
CN103950253A CN201410145783.2A CN201410145783A CN103950253A CN 103950253 A CN103950253 A CN 103950253A CN 201410145783 A CN201410145783 A CN 201410145783A CN 103950253 A CN103950253 A CN 103950253A
Authority
CN
China
Prior art keywords
tungsten oxide
film
scope
hydrophilic
superficial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410145783.2A
Other languages
English (en)
Other versions
CN103950253B (zh
Inventor
中野佳代
佐藤光
白川康博
日下隆夫
笠松伸矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Publication of CN103950253A publication Critical patent/CN103950253A/zh
Application granted granted Critical
Publication of CN103950253B publication Critical patent/CN103950253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/687Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • C03C2217/452Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/75Hydrophilic and oleophilic coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

亲水性薄膜包括基材薄膜以及至少存在于基材薄膜的表面的微粒。微粒由选自氧化钨微粒和氧化钨复合材料微粒的至少1种构成。微粒的平均粒径在1nm以上200nm以下的范围内,且微粒的长宽比在1以上3.5以下的范围内。

Description

亲水性薄膜以及使用该亲水性薄膜的构件和结构物
本发明专利申请是国际申请号为PCT/JP2009/004627,国际申请日为2009年09月16日,进入中国国家阶段的申请号为200980136969.9,名称为“亲水性薄膜以及使用该亲水性薄膜的构件和结构物”的发明专利申请的分案申请。
技术领域
本发明涉及亲水性薄膜以及使用该亲水性薄膜的构件和结构物。
背景技术
表面赋予了亲水性的构件被用于防雾、防结露、防污、水性涂料的印刷等各种领域。人们开发出使用氧化钛类的光催化膜的亲水性构件,将其应用于外壁、窗玻璃、汽车的后视镜等。当太阳光中所含的紫外线照射时,氧化钛膜的表面状态发生变化而亲水性化,且具有光催化作用的膜可将附着于表面的有机物氧化分解而显示出高亲水性。对于采用光催化膜的建材或窗玻璃,利用雨水来除去附着于表面的污染物,藉此获得防污效果。
采用通过光来实现亲水性化的构件的情况下,没有光的照射的状态成为问题。氧化钛膜的亲水性在短时间内下降,因此例如应用于汽车用的后视镜的防雾剂的情况下,在夜间或保管于车库的状态下防雾效果不足。对于一部分的构件,进行了在氧化钛中混合氧化硅之类的亲水性氧化物来延长亲水性的持续时间的努力,但未能获得足够的性能。使用紫外线作为激发光的情况下,在阴天或室内激发光可能会不足。为了弥补激发光的不足,在氧化钛中添加氮或硫或者进行铂承载来实施可见光响应,但可使用的光的波长范围并不很大,因此在室内用途中无法获得足够的性能。亲水性效果的持续性也与现有的氧化钛相同,在暗处的亲水性在短时间内下降。
已知氧化钨可用作电子器件用电介质材料、光学元件用材料、电致变色材料、气体传感器材料,还可用作可见光响应型光催化材料。氧化钨的带隙为2.5~2.8eV;氧化钛只能利用380nm以下的紫外线,相对地,氧化钨可使用最大为450nm附近的可见光作为激发光。因此,氧化钨可在室内用的荧光灯或电灯泡的光的波长范围内用作光催化剂。还已知氧化钨通过光照而显示出亲水性,已报道了主要通过真空蒸镀法、溅射法、激光烧蚀法、溶胶-凝胶法等制成的膜。
专利文献1中记载的在基材上通过溅射形成氧化钨膜而得的光催化材料,主要使用具有三斜晶系的晶体结构的氧化钨。专利文献1中揭示了用可见光激发氧化钨膜来获得亲水性的技术方案。具体而言,据文中记载,通过溅射形成的氧化钨膜与水的接触角(初始值)在10~30°的范围内,对其照射紫外线约2分钟后与水的接触角变为5°以下。据非专利文献1中记载,通过热蒸镀法或溶胶-凝胶法成膜后于400℃进行热处理而得的氧化钨膜显示出亲水性。
现有的氧化钨膜在用光激发时显示出亲水性,因此光不足的状态下的性能成为问题。采用加热进行亲水性化的情况下,基材的耐热性成为问题,对于面积较大的构件,加热方法也成为问题。采用溅射法、热蒸镀法、溶胶-凝胶法等的情况下,形成氧化钨膜的基材也存在限制。通过光照或加热之类的后处理来进行亲水性化的情况下,存在持续时间缩短的倾向,需要在短时间内进行定期的光照或加热。而且,因为仅通过亲水性作用无法除去有机物,所以表面附着有油成分等有机物的情况下,必须用足量的雨水或水洗等来除去,使用环境存在限制。因此,需要通过光催化作用将有机物氧化分解的性能,但现有的氧化钨膜无法获得足够的光催化性能。
为了用氧化钨粉末形成均匀的膜,需要微细的粉末。专利文献2中,作为微细的氧化钨粉末的制造方法,记载了将仲钨酸铵(APT)在空气中加热而获得三氧化钨粉末的方法,获得了一次粒径为0.01μm(BET比表面积=82m2/g)的三氧化钨粉末。专利文献3中,作为高效地获得氧化钨微粉的方法,记载了热等离子体处理法,获得了粒径为1~200nm的微粉。但是,即使将采用这些方法制成的氧化钨微粉直接使用,采用光的亲水性化也不充分,无法长期维持亲水性。如上所述,现状是无法获得显示出可用于实际应用的亲水性的氧化钨膜。
专利文献1:日本专利特开2001-152130号公报
专利文献2:日本专利特开2002-293544号公报
专利文献3:日本专利特开2006-102737号公报
非专利文献1:J.Phys.D:Appl.Phys.40(2007)1134-1137
发明的揭示
本发明的目的在于提供无论有无光照都显示出良好的亲水性、并且可长时间维持该性能的亲水性薄膜以及使用该亲水性薄膜的构件和结构物。
本发明的亲水性薄膜的特征在于,包括基材薄膜以及至少存在于所述基材薄膜的表面的选自氧化钨微粒和氧化钨复合材料微粒的至少1种微粒;所述微粒的平均粒径在1nm以上200nm以下的范围内,且所述微粒的长宽比在1以上3.5以下的范围内。
本发明的构件的特征在于,包括本发明的亲水性薄膜。本发明的结构物的特征在于,包括本发明的亲水性薄膜。
本发明的亲水性薄膜无论有无光照都显示出亲水性,可长时间维持该性能。因此,通过使用该亲水性薄膜,可提供能长时间保持亲水性能的构件和结构物。
实施发明的最佳方式
下面,对用于实施本发明的方式进行说明。本发明的实施方式的亲水性薄膜包括基材薄膜以及至少存在于基材薄膜的表面的选自氧化钨微粒和氧化钨复合材料微粒的至少1种微粒(以下记作氧化钨类微粒)。氧化钨类微粒具有1~200nm范围内的平均粒径和1~3.5范围内的长宽比。氧化钨类微粒可存在于基材薄膜的任意表面。
基材薄膜无特别限定,只要是薄膜状的构件即可。基材薄膜可以由有机材料和无机材料中的任一种构成。作为基材薄膜的主要构成材料,可例举聚对苯二甲酸乙二醇酯、氯乙烯、丙烯酸、聚碳酸酯、聚烯烃、聚乙烯、聚丙烯、聚苯乙烯、聚四氟乙烯等树脂材料(有机材料)。基材薄膜也可以由硅酸之类的无机材料形成或者由纸张或纤维等形成。基材薄膜的厚度较好是在10~250μm的范围内。
本实施方式的亲水性薄膜中,存在于基材薄膜表面的微粒不局限于氧化钨微粒,也可以是氧化钨复合材料微粒。氧化钨复合材料是指在作为主要成分的氧化钨中含有过渡金属元素或其它金属元素的材料。过渡金属元素是指原子序数21~29、39~47、57~79、89~109的元素。通过使用氧化钨和金属元素的复合材料,可提高微粒的性能。
氧化钨复合材料可以金属元素的单体、含金属元素的化合物、金属元素和氧化钨的复合化合物等的形态含有金属元素。氧化钨复合材料中所含的金属元素本身也可以与其它元素形成化合物。作为金属元素的典型形态,可例举氧化物。氧化钨和金属元素的复合方法无特别限定,可采用将粉末彼此混合的混合法、浸渍法、承载法等各种复合方法。金属元素也能以单体或化合物的形态承载于氧化钨。
亲水性薄膜中所用的氧化钨类微粒具有1~200nm范围内的平均粒径。氧化钨类微粒的BET比表面积较好是在4.1~820m2/g的范围内。氧化钨类微粒的平均粒径通过如下方法求得:用SEM或TEM观察用于形成亲水性薄膜的微粒或存在于基材薄膜表面的微粒,对它们的放大照片进行图像分析。平均粒径是取粒子的长径和短径的平均值((长径+短径)/2)作为粒径,基于n=50个以上的粒子的体积基准的累积直径的平均直径(D50)求得的值。平均粒径(D50)也可以与由比表面积换算而得的平均粒径一致。
为了获得亲水性良好的表面,较好是使氧化钨类微粒以均匀的状态存在。因此,氧化钨类微粒的平均一次粒径越小越好,比表面积越大越好。氧化钨类微粒的平均粒径大于200nm或BET比表面积小于4.1m2/g的情况下,无法获得足够的特性(亲水性等)。氧化钨类微粒的平均粒径小于1nm或BET比表面积大于820m2/g的情况下,粒子过小,作为粉末的处理性和分散性下降。因此,难以使氧化钨类微粒均匀地分散于基材薄膜的表面,无法发挥出足够的亲水性。
此外,一般来说,比表面积越大,一次粒径越小,则光催化剂粉末的性能越高。对于具有光催化性能的氧化钨类微粒,平均粒径大于200nm或BET比表面积小于4.1m2/g的情况下,微粒的光催化性能下降,并且难以形成均匀且稳定的表面。另外,氧化钨类微粒的一次粒径过小的情况下,分散性下降,无法均匀地分散于基材薄膜的表面。由于这些原因,光催化性能也下降。
氧化钨类微粒的平均粒径更好是在2.7~75nm的范围内,进一步更好是在5.5~51nm的范围内。氧化钨类微粒的BET比表面积更好是在11~300m2/g的范围内,进一步更好是在16~150m2/g的范围内。使用包含氧化钨类微粒的分散液或涂料来形成膜或混于基材中使用的情况下,如果一次粒径过小,则氧化钨类微粒的分散性下降。从对这一点进行改善的角度来看,较好是使用平均粒径在5.5nm以上的氧化钨类微粒。
另外,构成亲水性薄膜的表面的氧化钨类微粒中,各个粒子的长宽比在1~3.5的范围内。长宽比是粒子的长径相对于短径的比值(长径/短径),如果粒子的形状为球状,则长宽比为1。粒子的长宽比大于3.5的情况下,由于粒子的细长形状,基材薄膜表面的微粒的分散状态变得不均匀。因此,薄膜表面的亲水性下降。氧化钨类微粒的长宽比更好是在1~2的范围内。氧化钨类微粒的长宽比与平均粒径的测定同样,通过对微粒的SEM照片或TEM照片进行图像分析而求得。
还有,亲水性薄膜中所用的氧化钨类微粒(粉末)也可以含有作为杂质的金属元素。作为杂质的金属元素的含量较好是在2质量%以下。作为杂质的金属元素是钨矿石中通常含有的元素或者在制造用作原料的钨化合物时混入的污染元素,可例举例如Fe、Mo、Mn、Cu、Ti、Al、Ca、Ni、Cr、Mg等。将这些元素用作复合材料的构成元素的情况下,不限定于此。
本实施方式的亲水性薄膜采用如下方法制成:在基材薄膜上形成含有氧化钨类微粒的层(表面层)的方法;将氧化钨类微粒混入基材薄膜中的方法;在基材薄膜的成形工序中形成含有氧化钨类微粒的层的方法;将含有氧化钨类微粒的转印薄膜转印至基材薄膜的方法等等。这些方法可根据基材薄膜的种类和形状等适当选择。因为可容易地获得亲水性的表面,所以较好是采用在基材薄膜上形成含有氧化钨类微粒的表面层的方法。
亲水性薄膜的表面中的氧化钨类微粒的量较好是在0.1~95质量%的范围内。使微粒存在于表面层中的情况下,氧化钨类微粒的量表示层中的微粒的含量;将微粒混入基材薄膜中的情况下,氧化钨类微粒的量表示基材薄膜的表面附近部分的微粒的含量。微粒的含量低于0.1质量%的情况下,可能会无法充分发挥出氧化钨类微粒所具有的亲水性。氧化钨类微粒的含量更好是在5质量%以上。氧化钨类微粒的含量如果高于95质量%,则亲水性薄膜表面的强度可能会降低。
含有氧化钨类微粒的表面层的厚度较好是在2nm以上50μm以下的范围内。表面层的厚度小于2nm的情况下,难以形成均匀的层。表面层的厚度如果大于50μm,则表面层产生裂纹,与基材薄膜的密合力降低,容易剥离。表面层的厚度更好是在4nm以上5μm以下的范围内,进一步更好是在10nm以上1μm以下的范围内。将氧化钨类微粒混入基材薄膜中的情况下,只要至少在要赋予亲水性的表面有氧化钨类微粒露出即可。
含有氧化钨类微粒的表面层通过如下方法形成:使氧化钨类微粒分散于水或醇等分散介质中而得到分散液,采用旋涂法、浸涂法、喷涂法、棒涂法等涂布法将所得分散液涂布于基材薄膜上。本实施方式中所用的氧化钨类微粒在pH为1~7的范围内的水类分散液中的ζ-电位为负值,因此可实现良好的分散状态。因此,可将氧化钨类微粒以较小的厚度无偏差地涂布于基材薄膜上。
涂布于基材薄膜上的液体也可以是在氧化钨类微粒的分散液中添加选自无机粘合剂和有机粘合剂的至少1种粘合剂成分而得的混合液(涂料)。粘合剂成分的含量较好是在5~99.9质量%的范围内。通过将这样的涂料涂布于基材薄膜上而形成表面层,可将表面层的强度、硬度、与基材薄膜的密合力等调整至所要的状态。
作为无机粘合剂,可使用例如将硅酸烷基酯、卤化硅及它们的部分水解产物等水解性硅化合物分解而得的生成物,有机聚硅氧烷化合物及其缩聚物,二氧化硅,胶态二氧化硅,水玻璃、硅化合物,磷酸锌之类的磷酸盐,氧化锌、氧化铝、氧化锆等金属氧化物,磷酸二氢盐,水泥,石膏,石灰,搪瓷用玻璃料等。作为有机粘合剂,可使用例如氟类树脂、有机硅类树脂、丙烯酸树脂、环氧树脂、聚酯树脂、三聚氰胺树脂、聚氨酯树脂、醇酸树脂等。粘合剂的种类可根据基材薄膜的材质和目标特性适当选择。
上述的粘合剂成分中,选自二氧化硅(SiO2)、氧化铝(Al2O3)、氧化锆(ZrO2)的至少1种显示出亲水性,因此是优选的材料。特别是二氧化硅显示出高亲水性。通过使用由上述金属氧化钨构成的无机粘合剂,亲水性薄膜的亲水性保持时间得到改善。氧化钨类微粒具有光催化性能的情况下,可通过有机物的分解效果来使构件表面清洁化。为了长期维持基于光催化性能的亲水性,作为粘合剂成分的金属氧化物的含量较好是在10~50质量%的范围内。
特别是对于二氧化硅,因为透明性也良好,所以在表面层中的含量可以在10~80质量%的范围内。将亲水性薄膜用于窗玻璃或镜子等的表面的情况下,对亲水性薄膜要求透明性。将亲水性薄膜应用于上述玻璃制品的情况下,理想的是使表面层的折射率接近于玻璃。虽然氧化钨的折射率较高,但通过与低折射率的二氧化硅(SiO2)混合,表面层的折射率降低。藉此,可提高使用亲水性薄膜的玻璃制品的透明性。二氧化硅的含量低于10质量%的情况下,无法充分获得降低折射率的效果,如果高于80质量%,则表面层的强度容易降低。
亲水性薄膜的表面层较好是隔着基底层形成于基材薄膜上。在光的照射量较多的地点使用的亲水性薄膜中,可能会因氧化钨类微粒而导致有机物等的氧化分解,由此发生基材薄膜的剥离或白垩化。通过在表面层和基材薄膜之间设置基底层,可提高亲水性薄膜的耐久性。还可利用基底层来提高基材薄膜与表面层的密合性。
基底层较好是由与基材薄膜和表面层(氧化钨类微粒)的亲和性都较高的材料形成。基底层的厚度较好是在10~200nm的范围内。作为基底层的构成材料,可例举丙烯酸改性有机硅树脂或有机硅改性丙烯酸树脂化合物之类的有机硅改性树脂、对有机溶胶中的胶态二氧化硅粒子进行硅烷处理并使其与丙烯酸树脂或有机硅树脂反应而得的树脂之类的含胶态二氧化硅的树脂、将烷氧基硅烷类或其缩聚物(硅酸烷基酯)混合而得的含聚硅氧烷的树脂等有机硅树脂类。
基底层通过涂布包含上述树脂化合物的溶液而形成。作为涂布液,可使用使树脂分散于甲苯、二甲苯、酮、醇等溶剂而得的液体或水类乳液型液体。将基底层涂布于基材薄膜的方法无特别限定,可采用刷毛涂布法、喷涂法、旋涂法、浸涂法、辊涂法、凹版涂布法、棒涂法等各种涂布方法。基底层也可以是通过蒸镀法等形成的二氧化硅膜或氧化铝膜。
亲水性薄膜也可以具有粘接剂层,该粘接剂层设置于基材薄膜的形成有表面层的面的相反侧的面。利用具有粘接剂层的亲水性薄膜,可将亲水性薄膜容易地粘贴于各种构件或制品的表面。藉此,不受设置亲水性薄膜的构件或制品的特性和形状的限制,可容易地赋予各种构件或制品以亲水性。
粘接剂层的材质可适当选择,例如可使用包含丙烯酸树脂、丙烯酸改性有机硅树脂化合物、有机硅改性丙烯酸树脂化合物作为主要成分的含有有机硅改性树脂、胶态二氧化硅、乙醇或丙醇等醇类、水的材料。粘接剂层的厚度无特别限定,较好是在0.2μm以上。形成粘接剂层的方法无特别限定,可采用刷毛涂布法、喷涂法、旋涂法、浸涂法、辊涂法、凹版涂布法、棒涂法等各种涂布方法。
本实施方式的亲水性薄膜较好是具有透光性。具体而言,较好是波长550nm处的光透射率在50%以上。波长550nm处的光透射率在50%以上就表示薄膜的透明性高。利用这样的亲水性薄膜,在用于透明构件时不会影响构件的透明性。光透射率低于50%的情况下,光的透射率不足,在用于透明构件时会使透明构件的透明性下降。
基于具有上述的平均粒径和长宽比的氧化钨类微粒,无论有无光照,无论是何种种类的光,本实施方式的亲水性薄膜的表面(具有氧化钨类微粒的表面)都显示出良好的亲水性。这里所述的光是指所有类型的光,包括荧光灯、太阳光、白色LED、电灯泡、卤素灯、氙灯之类的普通照明光,以蓝色LED、蓝色激光器等作为光源而照射的可见光,在紫外区域内具有波长的光等。利用具有这样的表面的亲水性薄膜,可大幅延长亲水性的保持时间。特别是可提高暗处或低照度的光照下的亲水性及其保持时间。
存在于亲水性薄膜表面的氧化钨类微粒的晶体取向(日文:結晶方位)较好是未取向。表面的晶体取向的取向状态可通过进行X射线衍射或背散射电子衍射(日文:後方散乱電子線回折)来确认。例如,X射线衍射中,将2θ在22~25°范围内的峰中的强度最大的衍射峰记作A、将强度第二大的衍射峰记作B、将强度第三大的衍射峰记作C时,满足下述条件(1)~(3)中的任一项的情况下,可确认晶体取向未取向。峰强度的测定是以曲线的高点作为峰,读取其高度作为强度。存在肩的情况下,读取其高度作为峰强度。
(1)存在3个峰的情况下,峰B相对于峰A的强度比(B/A)在0.3以上,且峰C相对于峰A的强度比(C/A)在0.3以上。
(2)存在2个峰的情况下,将峰A和峰B之间的谷的最低强度记作D时,峰B相对于峰A的强度比(B/A)在0.3以上,强度D大于峰B的强度的1/2(D>B/2)。
(3)只存在1个峰的情况下,峰的半高宽在1°以上。
存在于亲水性薄膜表面的氧化钨类微粒具有非晶态结构的情况下,无法获得所要的特性。因此,要使亲水性薄膜的表面存在具有晶体结构的氧化钨类微粒。特别是通过使用结晶性好的氧化钨类微粒,可提高暗处或低照度的光照下的亲水性及其保持时间。但是,如上所述,观察整个表面的情况下,较好是使氧化钨类微粒存在于表面,以使氧化钨的晶体取向不会变成已取向的状态。
氧化钨的代表性的晶体结构是ReO3结构,因此具有氧的反应活性高的结晶面容易暴露于表面的最外层。因此吸附水而显示出高亲水性。通过蒸镀法、溅射法、溶胶-凝胶法制成的氧化钨膜在成膜时容易变成非晶态而难以亲水化。对于这样的膜,如果实施热处理来提高结晶性,也能成为亲水性表面。但是,如果提高热处理温度,则结晶发生取向,同时亲水性下降。认为这是因为表面上的难以显示出亲水性的结晶面增多。
与之相对,实施方式的亲水性薄膜中,用氧化钨类微粒构成表面。因此,可以使表面存在结晶性高的氧化钨或氧化钨复合材料,而且可获得显示出亲水性的结晶面朝向任意方向的状态。而且,基于氧化钨类微粒的平均粒径和长宽比,可使氧化钨类微粒均匀地存在于基材薄膜的整个表面,因此与其它成膜方法相比,可获得显示出更高的亲水性的表面。而且无论有无光照都可表现出亲水性。
本实施方式的亲水性薄膜较好是在可见光的照射下显示出光催化性能。一般来说,可见光是波长在380~830nm的区域内的光,是荧光灯、太阳光、白色LED、电灯泡、卤素灯、氙灯等普通照明光或者以蓝色LED、蓝色激光器等作为光源而照射的光。光催化性能是指如下作用:吸收光,相对于一个光子激发出一对电子和空穴,激发出的电子和空穴通过氧化还原将位于表面的羟基或酸活化,通过该活化而产生活性氧物质,利用该活性氧物质将有机气体等氧化分解,还可发挥亲水性、抗菌-除菌性能、抗病毒性能等。本实施方式的亲水性薄膜较好是在普通的室内环境下显示出光催化性能。
亲水性薄膜的光催化性能、即有机物的分解性能例如通过在表面涂布油酸、在照射可见光的同时测定水接触角随时间的变化来评价。具有光催化性能的情况下,例如即使在刚涂布油酸后水接触角增大,通过基于可见光的照射而发挥出光催化性能,油酸被分解,因而水接触角减小,最终显示出亲水性。
为了赋予亲水性薄膜的表面以光催化性能,用具有光催化性能的氧化钨类微粒构成表面。例如,通过使用具有选自单斜晶或三斜晶的至少1种(单斜晶、三斜晶或单斜晶和三斜晶的混晶)晶体结构或者在其中混杂有斜方晶的晶体结构的三氧化钨或以三氧化钨为基础的复合材料的微粒,可获得高光催化性能。三氧化钨的晶体结构为单斜晶和三斜晶的混晶或者单斜晶、三斜晶和斜方晶的混晶的情况下,还可进一步提高光催化性能。
赋予亲水性薄膜以光催化性能等时,使用氧化钨复合材料微粒作为微粒也是有效的。过渡金属元素或其它金属元素可以单体、以氧化物为代表的化合物、复合化合物等的形态与氧化钨复合。复合形态可采用上述的各种形态。所复合的金属元素只要和氧化钨一起存在于表面层中即可。作为与氧化钨复合的金属元素,可例举选自例如Ti、Zr、Mn、Fe、Pd、Pt、Cu、Ag、Ce、Zn等的至少1种元素。氧化钨复合材料中的金属元素的含量较好是在0.001~50质量%的范围内。
金属元素的含量如果高于50质量%,则氧化钨微粒所具有的特性可能会下降。金属元素的含量更好是在10质量%以下,进一步更好是在5质量%以下。金属元素的含量的下限值无特别限定,从有效地表现出所复合的金属元素的效果的角度来看,其含量较好是在0.001质量%以上。金属元素的含量更好是在0.01质量%以上,进一步更好是在0.1质量%以上。
与氧化钨复合的过渡金属元素中,Ti有利于光催化性能的提高。通过使氧化钛(TiO2)存在于表面层中,可提高有太阳光等含紫外线的光照射的环境下的性能。氧化钨复合材料中的氧化钛的含量较好是在0.01~50质量%的范围内。通过使氧化钛的含量在0.01质量%以上,可有效地发挥出氧化钛的效果。氧化钛的含量高于50质量%的情况下,氧化钨微粒的量相对减少,因此暗处的亲水性可能会下降。
氧化钛并不局限于以氧化钨复合材料的形式存在于表面层中,例如也可以在基材薄膜上形成由含有氧化钛的层和含有氧化钨类微粒的表面层构成的层叠膜。此时,含有氧化钨类微粒的表面层隔着含有氧化钛的层形成于基材薄膜上。利用这样的层结构,可以在不制备包含氧化钨类微粒和氧化钛的涂布液的情况下容易地获得存在有氧化钨类微粒和氧化钛的表面。藉此,可提高亲水性薄膜的光催化性能。
作为亲水性薄膜,使用含有选自Cu、Ag和Zn的至少1种元素的氧化钨复合材料也是有效的。利用这些具有抗菌性的元素,可提供进一步提高了抗菌性能、抗霉菌性能、抗病毒性能等的多功能的亲水性薄膜。选自Cu、Ag和Zn的至少1种元素的含量较好是在0.001~1质量%的范围内。通过使这些元素的含量在0.001质量%以上,可有效地发挥出抗菌性能和抗病毒性能等。即使这些元素的含量高于1质量%,也只是成本升高,几乎观察不到提高性能的效果。从兼顾性能和成本的角度来看,其含量有效的是在0.01~0.1质量%的范围内。
本实施方式的亲水性薄膜的表面(存在氧化钨类微粒的表面)较好是具有满足如下条件的表面粗糙度:将基准长度设为100μm时的算数平均粗糙度Ra在1~1000nm的范围内。算数平均粗糙度Ra是由JIS B0601(2001)定义的值,可根据用表面形状测定装置、扫描型探针显微镜、电子显微镜等观察并测得的界面曲线算出。
为了获得高亲水性能,较好是表面平滑,而为了延长亲水性能的保持时间,表面上需要有一些凹凸。因此,表面的算术平均粗糙度Ra较好是在1nm以上。将基准长度设为100μm时的算数平均粗糙度Ra大于1000nm的情况下,要赋予亲水性的表面的凹凸过大。因此,可能会无法充分获得基于亲水性的原有的效果,即防雾、防污等效果。算术平均粗糙度Ra如果大于1000nm,则表面白浊,因表面的凹凸而容易污染,而且难以除去由水导致的污染。
另外,存在氧化钨或氧化钨复合材料的粗大粒子等、即氧化钨类微粒不均匀地存在于表面的情况下,算术平均粗糙度Ra也增大。这样的情况下,氧化钨类微粒的活性受损,亲水性能下降。表面的算术平均粗糙度Ra明显较大的情况下,作为亲水性的评价方法的水接触角的测定本身变得困难。亲水性薄膜的表面的将基准长度设为100μm时的算数平均粗糙度Ra更好是在2~100nm的范围内。
亲水性薄膜的表面的将基准长度设为100μm时的轮廓曲线要素(粗糙度曲线要素)的平均长度RSm较好是在算术平均粗糙度Ra的2倍以上。如果RSm相对于Ra在2倍以上,则表面更平滑,可发挥出高亲水性。如果RSm不到Ra的2倍,则表面的凹凸增大。表面的轮廓曲线要素的平均长度RSm更好是在算术平均粗糙度Ra的3倍以上。
本实施方式的亲水性薄膜中所用的氧化钨类微粒(粉末)例如如下所述制造。氧化钨微粒较好是采用升华工序来制造。将升华工序与热处理工序组合也是有效的。利用上述方法,可稳定地获得具有上述的平均粒径(D50)、长宽比、晶体结构的三氧化钨类微粒。而且,平均粒径(D50)接近于根据BET比表面积换算而得的值,可稳定地获得粒径的偏差小的微粒。
升华工序是通过使金属钨的粉末或成形品、钨化合物的粉末或成形品或者钨化合物溶液在氧气气氛中升华来获得三氧化钨微粒的工序。升华是指不经过液相就发生从固化到气相或者从气相到固相的状态变化的现象。通过在使作为原料的金属钨粉末、钨化合物粉末、钨化合物溶液等升华的同时使其氧化,可获得微粒状的氧化钨粉末。
制造氧化钨复合材料微粒时,除了钨原料外,也可以金属、化合物、复合化合物等的形态混合过渡金属元素或其它元素。通过同时对氧化钨和其它元素进行处理,可获得氧化钨和其它元素的复合氧化物等复合化合物微粒。氧化钨复合材料微粒也可通过将氧化钨微粒与其它金属元素的单体粒子或化合物粒子混合、承载而获得。氧化钨和其它金属元素的复合方法无特别限定,可采用各种公知的方法。
作为在升华工序中使钨原料在氧气气氛中升华的方法,可例举选自电感耦合型等离子体处理、电弧放电处理、激光处理、电子射线处理和气体燃烧器处理的处理。这些处理中,激光处理或电子射线处理中,对原料照射激光或电子射线来实施升华工序。由于激光或电子射线照射斑直径小,所以为了一次性处理大量的原料,需要一定时间,但具有无需对原料粉末的粒径和供给量的稳定性进行严格控制的优点。
电感耦合型等离子体处理或电弧放电处理虽然需要调整等离子体或电弧放电的发生区域,但可以一次性使大量的原料粉末在氧气气氛中进行氧化反应。此外,可以控制一次所能处理的原料的量。气体燃烧器处理虽然动力费用比较便宜,但难以大量地处理原料粉末或原料溶液。因此,气体燃烧器处理在生产性方面不佳。气体燃烧器只要具有足以实现升华的能量即可,无特别限定。可使用丙烷气体燃烧器或乙炔气体燃烧器等。
升华工序采用电感耦合型等离子体处理的情况下,通常采用使用氩气或氧气来产生等离子体、向该等离子体中供给金属钨粉末或钨化合物粉末的方法。作为向等离子体中供给钨原料的方法,可例举例如将金属钨粉末或钨化合物粉末与载气一起通入的方法,通入使金属钨粉末或钨化合物粉末分散于规定的液态分散介质中而得的分散液的方法等。
本实施方式的亲水性薄膜中所用的氧化钨类微粒也可以仅通过上述升华工序获得,但对升华工序中制成的氧化钨类微粒实施热处理工序也是有效的。热处理工序是在氧化气氛中以规定的温度和时间对升华工序中得到的三氧化钨类微粒实施热处理的工序。即使在通过控制升华工序的条件等无法充分地形成三氧化钨微粒的情况下,通过实施热处理也可使氧化钨微粒中的三氧化钨微粒的比例达到99%以上,实质上达到100%。通过热处理工序,还可将三氧化钨微粒的晶体结构调整为规定的结构。
作为热处理工序中所用的氧化气氛,可例举例如空气或含氧气体。含氧气体是指含氧的惰性气体。热处理温度较好是在200~1000℃的范围内,更好是400~700℃。热处理时间较好是10分钟~5小时,更好是30分钟~2小时。通过将热处理工序的温度和时间设在上述范围内,容易由三氧化钨以外的氧化钨形成三氧化钨。还可调整三氧化钨微粉的晶体结构和结晶性。
用上述氧化钨微粒或氧化钨复合材料微粒形成表面层时,在实施热处理的情况下可适当地调整温度和时间。此外,为了使氧化钨微粒或氧化钨复合材料微粒表现出光催化性能,其晶体结构非常重要,因此将条件设定成在用于形成表面层的涂布液的制备工序(微粒的分散处理工序等)中不会给微粒带来过度的应变。
本实施方式的亲水性构件或亲水性结构物包括上述实施方式的亲水性薄膜。亲水性薄膜不受构件或结构物的材料和形状的限制,可赋予其表面以良好地亲水性。亲水性薄膜具有光催化性能的情况下,可赋予各种构件或结构物以亲水性和光催化性能。亲水性薄膜在制造构件或结构物后粘贴于要求亲水性的表面,或者在构件或结构物的制造过程中一体化。作为构成构件或结构物的材料,可例举玻璃、陶瓷、塑料、树脂、纸张、纤维、金属、木材等。构件或结构物包括以它们为原材料制成的产品。
作为使用亲水性构件或亲水性结构物的产品,可例举空调机、空气净化器、风扇、冰箱、微波炉、餐具清洗干燥机、电饭锅、锅盖、水壶、IH加热器、洗衣机、吸尘器、照明器具(灯、器具主体、灯罩等)、个人电脑的框体、键盘、便携式电话、固定电话、公用电话、自动售货机的按钮部分或触摸屏、卫生用品、马桶、盥洗台、镜子、浴室(墙壁、屋顶、地板等)、建材(室内墙壁、屋顶材料、地板、外壁)、室内用品(窗帘、壁纸、桌子、椅子、沙发、架子、床、寝具等)、玻璃、窗框、扶手、门、把手、文具、厨房用品、汽车的室内空间中所用的构件、汽车的外装、玻璃、后视镜、门镜等。
本实施方式的亲水性薄膜无论有无光照都具有高亲水性,而且可长时间维持其性能。因此,通过使用该亲水性薄膜,可提供即使在暗处或低照度的光照下也能长时间发挥出高亲水性的构件、结构物、产品。使用具有光催化性能的氧化钨类微粒的情况下,可提供具有有机物分解性能、亲水性、抗菌-抗霉菌性、抗病毒性能等光催化性能的薄膜、构件、结构物、产品。利用在可见光的照射下显示出光催化性能的亲水性薄膜,即使在因有机物的污染而亲水性下降的情况下,通过照射光也可在短时间内实现表面的亲水性化。因此可长期维持亲水性和抗菌-除菌性能等。
实施例
接着,对本发明的具体实施例及其评价结果进行描述。
(实施例1)
首先,作为原材料粉末,准备平均粒径为0.5μm的氧化钨粉末。将该原料粉末和载气(Ar)一起向RF等离子体喷雾,再以40L/min的流量通入氩气、以40L/min的流量通入氧气作为反应气体。由此,经过在使原料粉末升华的同时使其发生氧化反应的升华工序,制成氧化钨粉末。再在大气中以400℃×2h的条件对氧化钨粉末实施热处理。
接着,将氧化钨粉末与作为分散介质的正丁醇混合物,再添加作为粘合剂的相对于氧化钨为20重量%的硅酸乙酯(可儿康株式会社(コルコート社)制,SSC-1),实施分散处理,制成涂料(浓度5%)。用棒涂机将该涂料以10μm的厚度涂布于A4大小的基材薄膜(PET制,厚75μm)上,于120℃干燥30分钟,从而制成具有含有氧化钨微粒的表面层的薄膜。
进行所得薄膜的表面层的评价,测定氧化钨微粒的长径、短径、平均粒径(D50)、厚度。平均粒径通过TEM照片的图像分析测得。TEM观察中,使用株式会社日立制作所制的H-7100FA对放大照片进行图像分析,提取50个以上的粒子,求出体积基准的累积直径,算出D50。同样地求出微粒的长径、短径、长宽比。此外,对于涂料制作前的微粒,用株式会社芒泰克(マウンテック)制比表面积测定装置Macsorb1201进行BET比表面积的测定。预处理在氮气中以200℃×20分钟的条件实施。表面层中的氧化钨微粒的平均粒径、长宽比(平均值)、表面层的厚度、涂料制作用粉末的根据比表面积换算的平均粒径示于表1。
接着,用爱发科株式会社(アルバアック社)制表面形状测定装置Dektak6M测定所得表面层的表面粗糙度(算术平均粗糙度Ra、平均长度RSm)。表面粗糙度将基准长度设为100μm而测得。另外,用日本电子株式会社(日本電子社)制X射线衍射装置JDX-3500实施表面层的X射线衍射,确认结晶取向的取向性。其结果是,确认表面层的Ra为35nm,RSm为190nm,平滑,晶体取向为未取向。另外,用株式会社岛津制作所制UV-Vis分光光度计UV-2550测定照射波长550nm的光时的透射率。其结果是,透射率为70%。
接着,如下所述评价表面层的亲水性。用接触角计(协和界面科学株式会社(協和界面科学社)制CA-D)每隔一定的时间测定表面层与0.4mg水滴的接触角。刚制作好表面层后,在常规的实验室内环境下的暗处保存3天后,再在暗处保存1个月,然后测定接触角。此外,也对在暗处保存了1个月后的膜照射1小时可见光,测定实施该操作后的接触角。光源使用白色荧光灯(东芝照明株式会社(東芝ライテック社)制,FL20SS·W/18),用紫外线截止滤波器(日东树脂工业株式会社(日東樹脂工業社)制,CLAREX N-169)屏蔽波长小于380nm的光。照度调整为1500lx。这些评价结果示于表2。
亲水性的定义虽不明确,但大多认为接触角在30°以下的情况下具有亲水性。特别是接触角在10°以下的情况下,认为显示出高亲水性。确认该试样在暗处长期维持亲水性。
另外,为了确认基于光催化剂对有机物的分解而产生的亲水性效果,通过JIS R1703-1(2007)所示的方法在所得的表面层上涂布油酸,对照射照度为1500lx的可见光时的水接触角的变化进行评价。光源使用与上述相同的光源。自照射可见光起24小时、48小时、72小时后的评价结果示于表2。为进行比较,对用黑光灯(东芝照明株式会社制,FL20S·BLB·JET20W)照射紫外线(0.5mW/cm2)72小时后的接触角进行评价。虽然在刚开始照射可见光时未显示出足够的亲水性,但随着时间的经过,水接触角减小,虽然确认有油酸的分解,但效果较小。
(实施例2~3)
作为原料,准备密度4.5g/cm3的氧化钨粉末的颗粒。将其置于反应容器内,以10L/min的流量通入氧气的同时将压力保持在3.5kPa,与此同时对原料照射CO2激光。在大气中以700℃×0.5h的条件对通过上述激光处理制成的氧化钨粉末实施热处理,从而得到实施例2的氧化钨微粒。此外,在大气中以900℃×1.5h的条件对通过与实施例1相同的升华工序制成的氧化钨粉末实施热处理,从而得到实施例3的氧化钨微粒。
使用这些微粒与实施例1同样地在PET薄膜上形成表面层,测定表面层中的微粒的平均粒径、长宽比、表面层的厚度。测定结果示于表1。此外,与实施例1同样地评价表面层的取向状态、光透射率、亲水性。亲水性的评价结果示于表2。实施例2和实施例3均未取向,光透射率为70%。由表2可以确认在暗处维持着亲水性。虽然确认有油酸的分解,但效果较小。
(比较例1)
在大气中以1000℃×0.5h的条件对通过与实施例1相同的升华工序制成的氧化钨粉末实施热处理,从而得到比较例1的氧化钨微粒。使用该微粒与实施例1同样地在PET薄膜上形成表面层,测定表面层中的微粒的平均粒径、长宽比、表面层的厚度。测定结果示于表1。此外,与实施例1同样地评价表面层的取向状态、光透射率、亲水性。亲水性的评价结果示于表2。比较例1的表面层虽未取向,但光透射率为30%。由表2可以确认,刚成膜后的接触角大,在暗处接触角增大。油酸的分解非常缓慢。
(实施例4)
使用实施例2中得到的微粒与实施例1同样地在PET薄膜上形成厚55μm的表面层。其结果是,虽然显示出与实施例2同等的亲水性,但有部分膜产生龟裂,薄膜的生产性和处理性产生问题。此外,透射率低达40%,不适合粘贴于透明构件。
(实施例5)
使用实施例2中得到的微粒与实施例1同样地制成涂料。在A4大小的PET薄膜上涂布聚硅氧烷涂料(JSR株式会社制グラスカ)作为基底层,然后用棒涂机以0.3μm的厚度涂布涂料,于120℃干燥30分钟,从而制成具有表面层的薄膜。然后,在涂布有涂料的面的相反的面上涂布粘接剂。其结果是,关于亲水性,获得了与实施例2同等的结果。此外,由于具有粘接剂层,因此可容易地粘贴于其它构件。
(实施例6)
在大气中以500℃×2h的条件对通过与实施例1相同的升华工序制成的氧化钨粉末实施热处理,从而得到实施例6的氧化钨微粒。使用该微粒与实施例1同样地在PET薄膜上形成厚0.3μm的表面层,测定表面层中的微粒的平均粒径、长宽比、表面层的厚度。测定结果示于表1。此外,与实施例1同样地评价表面层的取向状态、光透射率、亲水性。评价结果示于表2。
实施例6的表面层未取向,光透射率在80%以上。由表2可以确认,即使在暗处也显示出10°以下的接触角,在暗处长期维持高亲水性。另外,油酸被分解,光照72小时后显示出高亲水性。认为在暗处显示出比实施例1~3更高的亲水性、而且获得了高光催化效果的原因在于,通过优化制造条件而提高了结晶性。
(实施例7)
作为投入等离子体的原料,使用Fe、Mo等的含量较多的氧化钨粉末,除此之外实施与实施例3相同的升华工序和热处理工序,制成含有300ppm的Fe的氧化钨复合材料粉末。使用所得的氧化钨复合材料微粒与实施例6同样地在PET薄膜上形成表面层,测定表面层中的微粒的平均粒径、长宽比、表面层的厚度。测定结果示于表1。此外,与实施例1同样地评价表面层的取向状态、光透射率、亲水性。评价结果示于表2。表面层未取向,光透射率在80%以上。与实施例6同样,在暗处也显示出高亲水性,而且确认有高光催化效果。
(实施例8)
向实施例6中得到的氧化钨微粒中混合10质量%的氧化钛(TiO2)粉末。使用该氧化钨复合材料粉末(微粒)与实施例6同样地在PET薄膜上形成中间层,测定表面层中的微粒的平均粒径、长宽比、表面层的厚度。测定结果示于表1。此外,与实施例1同样地评价表面层的取向状态、光透射率、亲水性。评价结果示于表2。表面层未取向,光透射率在80%以上。与实施例6同样,在暗处也显示出高亲水性,而且确认有高光催化效果。
(实施例9)
在PET薄膜上形成钛(TiO2)层后,以0.3μm的厚度涂布实施例6中制成的涂料,形成表面层。与实施例1同样地测定表面层中的微粒的平均粒径、长宽比、表面层的厚度。测定结果示于表1。此外,与实施例1同样地评价表面层的取向状态、光透射率、亲水性。评价结果示于表2。表面层未取向,光透射率在80%以上。与实施例6同样,在暗处也显示出高亲水性,而且确认有高光催化效果。
(实施例10)
向实施例6中得到的氧化钨微粒中混合1质量%的氧化铜(CuO)粉末。使用由此得到的氧化钨复合材料粉末(微粒)与实施例6同样地在PET薄膜上形成表面层,测定表面层中的微粒的平均粒径、长宽比、表面层的厚度。测定结果示于表1。此外,与实施例1同样地评价表面层的取向状态、光透射率、亲水性。评价结果示于表2。表面层未取向,光透射率在80%以上。与实施例6同样,在暗处也显示出高亲水性,而且确认有高光催化效果。
(实施例11)
向实施例6中制成的涂料中添加30质量%的胶态二氧化硅。使用该涂料与实施例6同样地在PET薄膜上形成厚0.3μm的表面层,测定表面层中的微粒的平均粒径、长宽比、表面层的厚度。测定结果示于表1。此外,与实施例1同样地评价表面层的取向状态、光透射率、亲水性。评价结果示于表2。表面层未取向,光透射率在80%以上。与实施例6同样,在暗处也显示出高亲水性,而且确认有高光催化效果。
(实施例12)
向实施例6中制成的涂料中添加以Ag换算为0.002质量%的硝酸银,实施光还原处理后,以0.3μm的厚度涂布于PET薄膜上,形成表面层。测定表面层中的微粒的平均粒径、长宽比、表面层的厚度。测定结果示于表1。此外,与实施例1同样地评价表面层的取向状态、光透射率、亲水性。评价结果示于表2。表面层未取向,光透射率在80%以上。与实施例6同样,在暗处也显示出高亲水性,而且确认有高光催化效果。此外,无论有无光照,都确认具有抗菌性。
(比较例2)
采用溅射法在聚酰亚胺薄膜上形成厚0.1μm的氧化钨膜。与实施例1同样地测定所得膜的特性。测定结果示于表1。此外,与实施例1同样地评价所得膜的亲水性。评价结果示于表2。取向性的评价结果是,氧化钨膜具有三斜晶发生取向的晶体结构。光透射率为50%。由于膜已取向,因此刚形成膜后及保存于暗处后的亲水性下降。另一方面,虽然通过照射可见光可观察到接触角的减小,但亲水性仍不足。此外,油酸的分解能力差。
(比较例3)
用胶态二氧化硅在PET薄膜上形成厚0.5μm的二氧化硅(SiO2)膜。与实施例1同样地测定所得膜的特性。测定结果示于表1。此外,与实施例1同样地评价所得膜的亲水性。评价结果示于表2。虽然在刚形成膜后显示出高亲水性,但在保存于暗处的过程中亲水性下降。认为这是因为吸附了气氛中的污染物。未见由光照导致的变化。当然也几乎没有油酸的分解性能。
(比较例4)
使用以聚硅氧烷树脂作为粘合剂的锐钛矿型氧化钛溶胶涂料在PET薄膜上形成厚0.3μm的膜。与实施例1同样地测定所得膜的特性。测定结果示于表1。此外,与实施例1同样地评价所得膜的亲水性。但是,即使对在暗处保存了1个月的试样照射可见光,也未确认到接触角的变化,因此将照射紫外线后的测定结果示于表2。评价结果示于表2。刚形成膜后,虽然亲水性较低,但仍可观察到亲水性的倾向,但是在保存于暗处的过程中亲水性下降。照射紫外线后有接触角减小的倾向,可观察到由光照产生的效果。在油酸的分解试验中,也只在紫外线的照射下表现出亲水性。
[表1]
[表2]
*:用紫外光代替可见光进行照射。
(实施例13、14)
实施例13中,使实施例6中得到的氧化钨微粒分散于氯铂酸水溶液后,照射可见光并投入甲醇,实施基于光析出法的承载。实施离心分离,实施两次上清的除去和通过追加水来进行的洗涤,将除去上清后的粉末于110℃干燥12小时,从而制成含有0.1质量%的Pt的氧化钨复合材料粉末。
实施例14中,使实施例6中得到的氧化钨微粒分散于氯化钯水溶液。将该分散液离心分离,实施两次上清的除去和通过追加水来进行的洗涤,将除去上清后的粉末于110℃干燥12小时,从而制成含有0.5质量%的Pd的氧化钨复合材料粉末。
使用实施例13和实施例14的氧化钨复合材料粉末与实施例1同样地在PET薄膜上形成厚0.3μm的表面层。评价表面层中的微粒的特性和表面层的取向状态、光透射率、亲水性。其结果是,实施例13、14的微粒的特性、表面层的取向状态、光透射率均与实施例6同等。
对于亲水性,不仅在暗处长期显示出高亲水性,而且可确认油酸的分解比实施例6进行得更快。对于实施例6、实施例13、实施例14的薄膜,用金黄色葡萄球菌、大肠杆菌、流感病毒评价抗菌、抗病毒性,结果可确认均显示出良好的抗菌、抗病毒性。
(实施例15)
将实施例6中制成的薄膜粘贴于汽车的室内空间的玻璃或仪表盘,评价亲水性,结果接触角为5°,显示出高亲水性。因此,不易发生结露,且玻璃不易污染。还可抑制霉菌的产生。
上述各实施例的亲水性薄膜因为具有均匀的表面层,所以可稳定地发挥出分解乙醛等有机气体的性能。此外,亲水性薄膜因为具有透明性,所以不易产生视觉上的色差等问题。因此适合用于汽车的室内空间中所用的构件及工地、商店、公共设施、住宅等中所用的建材、内部装饰材料、家电等。
产业上利用的可能性
本发明的亲水性薄膜适用于要求亲水性的各种构件或结构物。该构件或结构物可有效地用于要求基于亲水性的防污、防雾、防结露、去污等效果的各种产品。

Claims (11)

1.一种亲水性薄膜,其特征在于,包括:
基材薄膜,
在所述基材薄膜上涂布包含树脂化合物的溶液而形成,厚度在10~200nm的范围内的基底层,以及
形成于基底层上,含有以0.001质量%以上50质量%以下的范围包含过渡金属元素的氧化钨复合材料微粒的表面层;
所述氧化钨复合材料微粒的平均粒径在1nm以上200nm以下的范围内,且所述微粒的长宽比在1以上3.5以下的范围内,
所述表面层的厚度在2nm以上50μm以下的范围内,将基准长度设为100μm时的算数平均粗糙度Ra在1~1000nm的范围内,显示亲水性以及在可见光的照射下的光催化性能。
2.一种亲水性薄膜,其特征在于,包括:
基材薄膜,
在所述基材薄膜上涂布包含树脂化合物的溶液而形成,厚度在10~200nm的范围内的基底层,以及
形成于基底层上,含有包含含量在0.001~50质量%的范围内的选自Ti、Zr、Mn、Fe、Pd、Pt、Cu、Ag、Ce、Zn的至少1种元素的氧化钨复合材料微粒的表面层;
所述氧化钨复合材料微粒的平均粒径在1nm以上200nm以下的范围内,且所述微粒的长宽比在1以上3.5以下的范围内,
所述表面层的厚度在2nm以上50μm以下的范围内,将基准长度设为100μm时的算数平均粗糙度Ra在1~1000nm的范围内,显示亲水性以及在可见光的照射下的光催化性能。
3.如权利要求1所述的亲水性薄膜,其特征在于,
所述氧化钨复合材料微粒以0.01质量%以上10质量%以下的范围包含过渡金属元素。
4.如权利要求2所述的亲水性薄膜,其特征在于,
所述氧化钨复合材料微粒以0.01质量%以上10质量%以下的范围包含过渡金属元素。
5.如权利要求1或2所述的亲水性薄膜,其特征在于,
所述树脂化合物为选自有机硅改性树脂、含胶态二氧化硅的树脂、含聚硅氧烷的树脂的至少1种。
6.如权利要求1或2所述的亲水性薄膜,其特征在于,
所述表面层含有选自无机粘合剂和有机粘合剂的至少1种粘合剂成分。
7.如权利要求6所述的亲水性薄膜,其特征在于,
所述表面层是粘合剂成分的含量在5~99.9质量%的范围内的所述氧化钨复合材料微粒的分散液涂布而形成的层。
8.如权利要求7所述的亲水性薄膜,其特征在于,
所述无机粘合剂为选自二氧化硅、胶态二氧化硅、氧化铝、氧化锆、氧化锌、硅化合物、磷酸盐、磷酸二氢盐、水玻璃、水泥、石膏、石灰以及搪瓷用玻璃料的至少一种。
9.如权利要求7所述的亲水性薄膜,其特征在于,
所述有机粘合剂为选自氟类树脂、有机硅类树脂、丙烯酸树脂、环氧树脂、聚酯树脂、三聚氰胺树脂、聚氨酯树脂以及醇酸树脂的至少一种。
10.一种构件,其特征在于,包括权利要求1或2所述的亲水性薄膜。
11.一种结构物,其特征在于,包括权利要求1或2所述的亲水性薄膜。
CN201410145783.2A 2008-09-16 2009-09-16 亲水性薄膜以及使用该亲水性薄膜的构件和结构物 Active CN103950253B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008236526 2008-09-16
JP2008-236526 2008-09-16
JP2008-260027 2008-10-06
JP2008260027 2008-10-06
CN200980136969.9A CN102159317B (zh) 2008-09-16 2009-09-16 亲水性薄膜以及使用该亲水性薄膜的构件和结构物

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980136969.9A Division CN102159317B (zh) 2008-09-16 2009-09-16 亲水性薄膜以及使用该亲水性薄膜的构件和结构物

Publications (2)

Publication Number Publication Date
CN103950253A true CN103950253A (zh) 2014-07-30
CN103950253B CN103950253B (zh) 2016-08-17

Family

ID=42039293

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980136969.9A Active CN102159317B (zh) 2008-09-16 2009-09-16 亲水性薄膜以及使用该亲水性薄膜的构件和结构物
CN201410145783.2A Active CN103950253B (zh) 2008-09-16 2009-09-16 亲水性薄膜以及使用该亲水性薄膜的构件和结构物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200980136969.9A Active CN102159317B (zh) 2008-09-16 2009-09-16 亲水性薄膜以及使用该亲水性薄膜的构件和结构物

Country Status (4)

Country Link
EP (1) EP2343125B1 (zh)
JP (3) JP5453281B2 (zh)
CN (2) CN102159317B (zh)
WO (1) WO2010032445A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104556232A (zh) * 2014-10-22 2015-04-29 北京科技大学 纳米氧化钨水溶液的制备方法及其应用
CN106367888A (zh) * 2016-08-25 2017-02-01 天津碧水源膜材料有限公司 一种非溶剂致相法制备多孔膜方法
CN108993572A (zh) * 2018-08-09 2018-12-14 中国地质大学(北京) 一种铁掺杂三氧化钨-氮化碳复合薄膜的制备方法
CN110475901A (zh) * 2017-03-15 2019-11-19 佳能奥普特龙株式会社 亲水性蒸镀膜以及蒸镀材料
CN111081531A (zh) * 2019-10-30 2020-04-28 华灿光电(浙江)有限公司 外延层剥离方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018899A1 (ja) * 2009-08-12 2011-02-17 株式会社 東芝 抗ウイルス性材料とそれを用いた膜、繊維および製品
KR20120098826A (ko) * 2009-12-01 2012-09-05 스미또모 가가꾸 가부시끼가이샤 항바이러스제 및 그것을 사용한 항바이러스제 기능 제품
US8864251B2 (en) 2012-07-31 2014-10-21 Whirlpool Corporation Hydrophilic structures for condensation management in refrigerator appliances
US8926032B2 (en) 2012-07-31 2015-01-06 Whirlpool Corporation Hydrophilic structure for condensation management on the movable mullion of a refrigerator
CN102862516B (zh) * 2012-09-07 2016-01-06 俞钟晓 汽车后视镜雨滴消除贴
CN102862515B (zh) * 2012-09-07 2015-09-09 俞钟晓 一种汽车后视镜雨滴分散器
US10301477B2 (en) * 2013-03-15 2019-05-28 Behr Process Corporation Superhydrophilic coating composition
JP6276123B2 (ja) * 2014-07-04 2018-02-07 シャープ株式会社 光触媒材料
JP6501110B2 (ja) * 2015-03-04 2019-04-17 国立研究開発法人産業技術総合研究所 水素ガス感応性膜及びその製造方法
JP6540377B2 (ja) * 2015-08-27 2019-07-10 株式会社Ihi 親水性フィルム、電解質膜、及びその親水性フィルムの製造方法
WO2017170218A1 (ja) * 2016-03-29 2017-10-05 キヤノンオプトロン株式会社 多層膜、光学部材および光学部材の製造方法
CN107149872B (zh) * 2017-05-10 2020-06-12 大连理工大学 光催化净化气体便利贴的制备方法
JP7106268B2 (ja) * 2017-12-14 2022-07-26 株式会社東芝 光触媒付基材およびその製造方法及び光触媒装置
JP2020040047A (ja) * 2018-09-13 2020-03-19 株式会社東芝 光触媒分散液、光触媒複合材料および光触媒装置
JP7549519B2 (ja) * 2020-12-21 2024-09-11 シャープ株式会社 フィルム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188089A (ja) * 1997-12-26 1999-07-13 Toshiba Lighting & Technology Corp 光触媒体および照明器具
AU4931999A (en) * 1998-07-30 2000-02-21 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
JP2001152130A (ja) 1999-11-25 2001-06-05 Toto Ltd 光触媒性親水性部材、および、その製造方法
WO2001068786A1 (fr) * 2000-03-13 2001-09-20 Toto Ltd. Element hydrophile et son procede de fabrication
JP4526153B2 (ja) * 2000-04-11 2010-08-18 日本曹達株式会社 光触媒担持構造体、その製造法および中間層形成用組成物
JP2002201045A (ja) * 2000-12-27 2002-07-16 Toto Ltd 親水性薄膜
JP2002286358A (ja) * 2001-03-28 2002-10-03 Matsushita Refrig Co Ltd 冷蔵庫
JP3899237B2 (ja) 2001-03-30 2007-03-28 株式会社アライドマテリアル 微粒タングステン酸化物とその製造方法
EP1442793B1 (en) * 2001-09-28 2010-12-22 Shibaura Mechatronics Corporation Photocatalyst and method for preparing the same
CN101695655B (zh) * 2001-11-29 2012-11-21 芝浦机械电子装置股份有限公司 光催化剂的制造装置
JP4118086B2 (ja) * 2002-05-31 2008-07-16 トヨタ自動車株式会社 親水性を有する防曇防汚性薄膜の製造方法
JP4140770B2 (ja) * 2002-09-18 2008-08-27 コバレントマテリアル株式会社 二酸化チタン微粒子およびその製造方法ならびに可視光活性型光触媒の製造方法
US7255831B2 (en) * 2003-05-30 2007-08-14 Carrier Corporation Tungsten oxide/titanium dioxide photocatalyst for improving indoor air quality
JP2005007300A (ja) * 2003-06-19 2005-01-13 Ngk Insulators Ltd 光触媒反応装置
JP2005131552A (ja) * 2003-10-30 2005-05-26 Mitsubishi Plastics Ind Ltd 透明光触媒層形成組成物及びその用途
JP4794869B2 (ja) 2004-09-07 2011-10-19 株式会社日清製粉グループ本社 微粒子の製造方法
JP4878141B2 (ja) * 2005-10-05 2012-02-15 株式会社日本触媒 複合光触媒体
TW200631660A (en) * 2005-01-18 2006-09-16 Nippon Catalytic Chem Ind Visible light responsive photocatalyst composition and method for manufacturing the same
JP4883912B2 (ja) * 2005-01-18 2012-02-22 株式会社日本触媒 可視光応答型光触媒およびその製造方法
JP5374747B2 (ja) * 2006-02-01 2013-12-25 東芝マテリアル株式会社 光触媒材料およびそれを用いた光触媒組成物並びに光触媒製品
JP2008006429A (ja) * 2006-02-01 2008-01-17 Toshiba Lighting & Technology Corp 光触媒材料、光触媒体、光触媒製品、照明器具及び光触媒材料の製造方法
TW200732036A (en) * 2006-02-01 2007-09-01 Toshiba Lighting & Technology Photocatalysis material, photocatalysis body, photocatalysis product, luminaire and manufacturing method thereof
JP5054031B2 (ja) * 2006-12-28 2012-10-24 日本曹達株式会社 光触媒担持構造体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104556232A (zh) * 2014-10-22 2015-04-29 北京科技大学 纳米氧化钨水溶液的制备方法及其应用
CN104556232B (zh) * 2014-10-22 2016-04-27 北京科技大学 纳米氧化钨水溶液的制备方法及其应用
CN106367888A (zh) * 2016-08-25 2017-02-01 天津碧水源膜材料有限公司 一种非溶剂致相法制备多孔膜方法
CN110475901A (zh) * 2017-03-15 2019-11-19 佳能奥普特龙株式会社 亲水性蒸镀膜以及蒸镀材料
CN110475901B (zh) * 2017-03-15 2022-08-09 佳能奥普特龙株式会社 亲水性蒸镀膜以及蒸镀材料
CN108993572A (zh) * 2018-08-09 2018-12-14 中国地质大学(北京) 一种铁掺杂三氧化钨-氮化碳复合薄膜的制备方法
CN111081531A (zh) * 2019-10-30 2020-04-28 华灿光电(浙江)有限公司 外延层剥离方法
CN111081531B (zh) * 2019-10-30 2022-03-18 华灿光电(浙江)有限公司 外延层剥离方法

Also Published As

Publication number Publication date
JP2014098542A (ja) 2014-05-29
EP2343125A4 (en) 2012-01-25
JP2014076665A (ja) 2014-05-01
JP5453281B2 (ja) 2014-03-26
CN102159317A (zh) 2011-08-17
WO2010032445A1 (ja) 2010-03-25
EP2343125A1 (en) 2011-07-13
JPWO2010032445A1 (ja) 2012-02-09
JP5766778B2 (ja) 2015-08-19
EP2343125B1 (en) 2019-03-20
JP5707480B2 (ja) 2015-04-30
CN103950253B (zh) 2016-08-17
CN102159317B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
CN102159317B (zh) 亲水性薄膜以及使用该亲水性薄膜的构件和结构物
Rampaul et al. Titania and tungsten doped titania thin films on glass; active photocatalysts
CN1097477C (zh) 二氧化钛光催化剂构件及其制造方法
CN101137731B (zh) 氧化钛涂布剂及氧化钛涂膜的形成方法
JP5981483B2 (ja) 親水性部材の製造方法
CN101821005B (zh) 可见光响应型光催化剂粉末及其制造方法,以及使用了该粉末的可见光响应型光催化剂材料、光催化剂涂料、光催化剂产品
WO2009051271A1 (ja) 光触媒膜、光触媒膜の製造方法、物品および親水化方法
JP2002346393A (ja) 光触媒体およびその製造方法
Surekha et al. Self-cleaning glass
JP4738736B2 (ja) 光触媒複合体、光触媒層形成用塗布液及び光触媒担持構造体
CN106794450A (zh) 光催化涂层及其制备方法
Fateh et al. Self-cleaning coatings on polymeric substrates
JP2010101919A (ja) カメラ用レンズ
JP2010096359A (ja) 冷蔵ショーケース
JPH1057817A (ja) 光触媒活性を有する親水性構造体
TWI239269B (en) Interior design material or indoor furniture with titanium oxide
JP2010101920A (ja) カメラ
JP2010099098A (ja) 鍋蓋
JP2005137977A (ja) 透明光触媒層形成組成物
JP2010099097A (ja) 浴室用鏡
JP2010099096A (ja) 加熱保温用ショーケース
JP2010100070A (ja) 自動車用サイドミラー
Yaghoubi Self‐Cleaning Materials for Plastic and Plastic‐Containing Substrates
JP2010098948A (ja) 灰皿
JP2010094158A (ja) 冷凍ショーケース

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant