CN103890245B - 核酸编码反应 - Google Patents

核酸编码反应 Download PDF

Info

Publication number
CN103890245B
CN103890245B CN201280033406.9A CN201280033406A CN103890245B CN 103890245 B CN103890245 B CN 103890245B CN 201280033406 A CN201280033406 A CN 201280033406A CN 103890245 B CN103890245 B CN 103890245B
Authority
CN
China
Prior art keywords
primer
nucleotide sequence
target
barcode
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280033406.9A
Other languages
English (en)
Other versions
CN103890245A (zh
Inventor
梅甘·安德森
陈佩林
布赖恩·福勒
罗伯特·C·琼斯
菲奥娜·卡佩尔
罗纳德·列波夫斯基
安德鲁·梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuluda
Original Assignee
Fuluda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuluda filed Critical Fuluda
Priority to CN202011240877.XA priority Critical patent/CN112592960A/zh
Publication of CN103890245A publication Critical patent/CN103890245A/zh
Application granted granted Critical
Publication of CN103890245B publication Critical patent/CN103890245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • C12Q1/6855Ligating adaptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1065Preparation or screening of tagged libraries, e.g. tagged microorganisms by STM-mutagenesis, tagged polynucleotides, gene tags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation

Abstract

本文描述了可用于向一个、或典型地多个靶核苷酸序列掺入一个或多个衔接子和/或核苷酸标签和/或条形码核苷酸序列的方法。在具体实施方案中,产生了具有衔接子的核酸片段,例如适于用在高通量DNA测序中的核酸片段。在其他实施方案中,将有关反应混合物的信息编码到反应产物中。本文还描述了在制备用于应用诸如双向核酸测序中可用于扩增一个或多个靶核酸的方法和试剂盒。在具体实施方案中,本发明的方法包括另外进行双向DNA测序。本文还描述了通过引物延伸编码和检测和/或定量等位基因的方法。

Description

核酸编码反应
相关申请的交叉参考
本申请要求2011年5月20日提交的美国临时申请号61/519,348的权益,其通过引用全文并入本文。
发明领域
本发明一般涉及掺入核酸序列到靶核酸中,例如,加入一个或多个衔接子(adaptor)和/或核苷酸标签和/或条形码核苷酸序列到靶核苷酸序列。本文描述的方法可用于,例如,用于检测和/或测序特定靶核酸的高通量检验领域中。
发明背景
在样品中检出特定核酸序列的能力已经导致诊断和预测医学、环境、食品和农业监测,分子生物学研究,以及多种其他领域中的多种新方法。对于许多应用,期望同时检测和/或分析多个样品中的许多靶核酸,所述多个样品例如,群体中的多个单独细胞。
发明概述
在某些实施方案中,本发明提供向包含粘末端的多个靶核酸的每个末端加入衔接子分子的方法。该方法包括(entail)退火衔接子分子到双链靶核酸分子的粘末端以产生退火的衔接子-靶核酸分子,其中衔接子分子是:
(i)发夹结构,所述发夹结构各自包含:
衔接子核苷酸序列,其连接于
核苷酸接头(linker),其连接于
核苷酸序列,其能够退火到衔接子核苷酸序列并连接于
简并尾序列;或
(ii)双链或单链分子,所述双链或单链分子在每条链上各自包含:
第一衔接子核苷酸序列,其连接于
核苷酸接头,其连接于
第二衔接子核苷酸序列;和
简并尾序列,其中双链分子各自包含两个简并尾序列作为粘末端。在退火后,该方法包括填充所得的退火的衔接子-靶核酸分子中的任何缺口,和连接退火的衔接子-靶核酸分子中任何邻近的核苷酸序列以产生衔接子修饰的靶核酸分子。在相关的实施方案中,本发明提供多个衔接子分子,其中衔接子分子是以上(i)的发夹结构或以上(ii)的双链或单链分子。还涵盖了试剂盒,在多个实施方案中,该试剂盒可包含多个衔接子分子联合DNA酶、核酸外切酶、核酸内切酶、聚合酶、连接酶、或其任何组合。
在其他实施方案中,本发明提供用核苷酸序列将多个靶核酸加标签的方法。该方法包括为每个靶核酸准备第一反应混合物,第一反应混合物包含内侧引物对和外侧引物对,其中:
(i)内侧引物包含:
正向、内侧引物,包含第一核苷酸标签、第一条形码核苷酸序列和靶特异性部分;和
反向、内侧引物,包含靶特异性部分、第一条形码核苷酸序列和第二核苷酸标签;和
(ii)外侧引物包含:
正向、外侧引物,包含第二条形码核苷酸序列和第一核苷酸标签特异性部分;和
反向、外侧引物,包含第二核苷酸标签特异性部分和第二条形码核苷酸序列,其中外侧引物是比内侧引物过量的。对每个第一反应混合物进行反应以产生多个加标签的靶核苷酸序列,各自包含5'-第二条形码核苷酸序列-第一核苷酸标签序列-第一条形码核苷酸序列-靶核苷酸序列-第一条形码核苷酸序列-第二核苷酸标签序列-第二条形码核苷酸序列-3'。在相关的实施方案中,本发明提供试剂盒,该试剂盒包含聚合酶联合以上(i)的内侧引物和以上(ii)的外侧引物,其中外侧引物是比内侧引物过量的。
在某些实施方案中,本发明提供用核苷酸序列将多个靶核酸加标签的方法。该方法包括为每个靶核酸准备第一反应混合物,第一反应混合物包含内侧引物对、填充引物(stuffer primer)对和外侧引物对,其中:
(i)内侧引物包含:
正向、内侧引物,包含第一核苷酸标签和靶特异性部分;和
反向、内侧引物,包含靶特异性部分和第二核苷酸标签;
(ii)填充引物包含:
正向、填充引物,包含第三核苷酸标签、第一条形码核苷酸序列和第一核苷酸标签特异性部分;和
反向、填充引物,包含第二核苷酸标签特异性部分、第一条形码核苷酸序列、第四核苷酸标签;和
(iii)外侧引物包含:
正向、外侧引物,包含第二条形码核苷酸序列和第三核苷酸标签特异性部分;和
反向、外侧引物,包含第四核苷酸标签特异性部分和第二条形码核苷酸序列,其中外侧引物是比填充引物过量的,填充引物是比内侧引物过量的。对每个第一反应混合物进行反应以产生多个加标签的靶核苷酸序列,各自包含5'-第二条形码核苷酸序列-第三核苷酸标签序列-第一条形码核苷酸序列-第一核苷酸标签序列-靶核苷酸序列-第二核苷酸标签序列-第一条形码核苷酸序列-第四核苷酸标签序列-第二条形码核苷酸序列-3'。在相关的实施方案中,本发明提供试剂盒,该试剂盒包含聚合酶联合以上(i)的内侧引物、以上(ii)的填充引物、和以上(iii)的外侧引物,其中外侧引物是比填充引物过量的,填充引物是比内侧引物过量的。
在具体实施方案中,本发明提供将多个靶核苷酸序列组合加标签(combinatorialtagging)的方法。该方法采用来源于靶核酸的多个加标签的靶核苷酸序列(a pluralityof tagged target nucleotide sequences),每个加标签的靶核苷酸序列包含核酸内切酶位点和第一条形码核苷酸序列,其中多个加标签的靶核苷酸序列(tagged targetnucleotide sequences in the plurality)包含相同的核酸内切酶位点、但N个不同的第一条形码核苷酸序列,其中N是大于1的整数。该方法包括用对核酸内切酶位点特异性的核酸内切酶切割多个加标签的靶核苷酸序列以产生多个具有粘末端的(sticky-ended)、加标签的靶核苷酸序列。该方法还包括在第一反应混合物中连接包含第二条形码核苷酸序列和互补粘末端的多个衔接子于多个具有粘末端的、加标签的靶核苷酸序列,其中多个衔接子包含M个不同的第二条形码核苷酸序列,其中M是大于1的整数。这一连接产生多个组合加标签的靶核苷酸序列,各自包含第一和第二条形码核苷酸序列,其中多个包括N x M个不同的第一和第二条形码的组合。在相关的实施方案中,本发明提供多个衔接子,包含:
多个第一衔接子,各自包含相同的核酸内切酶位点、N个不同的条形码核苷酸序列、第一引物结合位点和粘末端,其中N是大于1的整数;
第二衔接子,包含第二引物结合位点和粘末端;和
多个第三衔接子,包含第二条形码核苷酸序列和与在所述核酸内切酶位点切割所述第一衔接子时产生的那些互补的粘末端,其中多个第三衔接子包含M个不同的第二条形码核苷酸序列,其中M是大于1的整数。还涵盖的是试剂盒,该试剂盒包含多个第一衔接子、第二衔接子、和多个第三衔接子、联合对第一衔接子中的核酸内切酶位点特异性的核酸内切酶和/或连接酶。
在其他实施方案中,本发明提供用于将多个靶核苷酸序列组合加标签的方法,其中该方法包括退火多个条形码引物到来源于靶核酸的多个加标签的靶核苷酸序列。每个加标签的靶核苷酸序列包含在一个末端的核苷酸标签和第一条形码核苷酸序列,其中多个加标签的靶核苷酸序列包含相同的核苷酸标签、但N个不同的第一条形码核苷酸序列,其中N是大于1的整数。每个条形码引物包含:
第一标签特异性部分,连接于;
第二条形码核苷酸序列,连接于;
第二标签特异性部分,其中多个条形码引物各自包含相同的第一和第二标签特异性部分、但M个不同的第二条形码核苷酸序列,其中M是大于1的整数。该方法还包括在第一反应混合物中扩增加标签的靶核苷酸序列以产生多个组合加标签的靶核苷酸序列,各自包含第一和第二条形码核苷酸序列,其中多个包含NxM个不同的第一和第二条形码组合在相关的实施方案中,本发明提供试剂盒,该试剂盒包含一个或多个核苷酸标签连同以上的多个条形码引物,核苷酸标签可用于产生加标签的靶核苷酸序列。
在某些实施方案中,本发明提供用于检测多个靶核酸的检验方法,该方法包括准备将在检验前被汇集的M个第一反应混合物,其中M是大于1的整数。每个第一反应混合物包含:
样品核酸;
第一、正向引物,包含靶特异性部分;
第一、反向引物,包含靶特异性部分,其中第一、正向引物或第一、反向引物另外包含条形码核苷酸序列,且其中M个反应混合物的每一个中的每个条形码核苷酸序列是不同的。对每个第一反应混合物进行第一反应以产生多个条形码化的靶核苷酸序列,各自包含连接于条形码核苷酸序列的靶核苷酸序列。该方法还包括对于M个第一反应混合物的每一个,汇集所述条形码化的靶核苷酸序列以形成检验池。使用独特的第二引物对对检验池或其一个或多个等份进行第二反应,其中每个第二引物对分别包含:
第二、正向或反向引物,退火到靶核苷酸序列;和
第二、反向或正向引物,退火到条形码核苷酸序列。该方法然后包括对每个独特的、第二引物对,确定反应产物是否存在于检验池或其等份中,藉以反应产物的存在指示特定第一反应混合物中特定靶核酸的存在。
在具体实施方案中,用于检测多个靶核酸的这一检验方法的变化形式包括准备将在检验前被汇集的M个第一反应混合物,其中M是大于1的整数,且每个第一反应混合物包含:
样品核酸;
第一、正向引物,包含靶特异性部分;
第一、反向引物,包含靶特异性部分,其中第一、正向引物或第一、反向引物另外包含核苷酸标签;和
至少一个条形码引物,包含条形码核苷酸序列和核苷酸标签特异性部分,其中条形码引物是比第一、正向和/或第一、反向引物过量的,且其中M个反应混合物的每一个中的每个条形码核苷酸序列是不同的。对每个第一反应混合物进行第一反应以产生多个条形码化的靶核苷酸序列,各自包含靶核苷酸序列连接于核苷酸标签连接于条形码核苷酸序列(atarget nucleotide sequence linked to a nucleotide tag,which is linked to abarcode nucleotide sequence)。该方法还包括对于M个反应混合物的每一个,汇集条形码化的靶核苷酸序列以形成检验池。使用独特的第二引物对对检验池或其一个或多个等份进行第二反应,其中每个第二引物对分别包含:
第二、正向或反向引物,其退火到靶核苷酸序列;和
第二、反向或正向引物,其退火到条形码核苷酸序列。该方法然后包括对每个独特的、第二引物对,确定反应产物是否存在于检验池或其等份中,藉以反应产物的存在指示特定第一反应混合物中特定靶核酸的存在。
在某些实施方案中,本发明提供可用于扩增一个或多个靶核酸用于准备应用诸如双向核酸测序的方法和试剂盒。在一些实施方案中,本发明的方法包括另外进行双向DNA测序。
在特定的双向实施方案中,这些方法包括扩增、加标签和条形码化多个样品中的多个靶核酸。核苷酸标签序列可包含可用于帮助扩增和/或DNA测序的引物结合位点。条形码核苷酸序列可编码关于扩增产物的信息,诸如从中得到该扩增产物的样品的身份。
在某些双向实施方案中,扩增靶核酸的方法包括利用以下扩增靶核酸:
内侧引物组,其中该组包含:
内侧、正向引物,包含靶特异性部分和第一引物结合位点;
内侧、反向引物,包含靶特异性部分和第二引物结合位点,其中第一和第二引物结合位点是不同的;
第一外侧引物组,其中该组包含:
第一外侧、正向引物,包含对第一引物结合位点特异性的部分;和
第一外侧、反向引物,包含条形码核苷酸序列和对第二引物结合位点特异性的部分;
第二外侧引物组,其中该组包含:
第二外侧、正向引物,包含条形码核苷酸序列和对第一引物结合位点特异性的部分;和
第二外侧、反向引物,包含对第二引物结合位点特异性的部分。这一扩增产生两个靶扩增子,其中:
第一靶扩增子包含5'-第一引物结合位点-靶核苷酸序列-第二引物结合位点-条形码核苷酸序列-3';和
第二靶扩增子包含5'-条形码核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-3'。在这些实施方案的变化形式中,每个靶扩增子中的条形码核苷酸序列是相同的,且每个靶扩增子包含仅一个条形码核苷酸序列。
在一些双向实施方案中,第一和第二引物结合位点是DNA测序引物的结合位点。外侧引物可任选地各自另外包含另外的核苷酸序列,其中:
第一外侧、正向引物包含第一另外的核苷酸序列,且第一外侧、反向引物包含第二另外的核苷酸序列;和
第二外侧、正向引物包含第二另外的核苷酸序列,且第二外侧、反向引物包含所述第一另外的核苷酸序列;且第一和第二另外的核苷酸序列是不同的。在这样的实施方案中,扩增产生两个靶扩增子,其中:
第一靶扩增子包含:5'-第一另外的核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-条形码核苷酸序列-第二另外的核苷酸序列-3';和
第二靶扩增子包含:5'-第二另外的核苷酸序列-条形码核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-第一另外的核苷酸序列3'。在具体实施方案中,第一和/或第二另外的核苷酸序列包含引物结合位点。在示例性实施方案中,第一外侧引物组包含PE1-CS1和PE2-BC-CS2,且第二外侧引物组包含PE1-CS2和PE2-BC-CS1(表1,实施例9)。
在某些双向实施方案中,扩增在单个扩增反应中进行。在其他实施方案中,扩增包括在第一扩增反应中采用内侧引物和在第二扩增反应中采用外侧引物,其中第二扩增反应不同于(separate from)第一扩增反应。在这一后者实施方案的变化形式中,第二扩增反应包括两个分别的扩增反应,其中一个扩增反应采用第一外侧引物组且另一个扩增反应采用第二外侧引物组。任选地可汇集在两个分别的第二扩增反应中产生的靶扩增子。
在任何上述双向实施方案中,该方法可包括扩增多个靶核酸。多个靶核酸可以是,例如,基因组DNA、cDNA、片段化的DNA、从RNA逆转录的DNA、DNA文库、或从细胞、体液或组织样品提取或扩增的核酸。在具体实施方案中,多个靶核酸是从福尔马林固定的、石蜡包埋的组织样品扩增的。
任何上述双向方法可另外包括测序靶扩增子。例如,当如上述产生的靶扩增子包含另外的核苷酸序列时,该方法可包括利用结合第一和第二另外的核苷酸序列的引物另外扩增以产生用于DNA测序的模板。在具体实施方案中,结合第一和第二另外的核苷酸序列的引物之一或二者被固定在基质(substrate)上。在具体实施方案中,扩增以产生DNA测序模板可通过等温核酸扩增进行。在某些实施方案中,该方法包括利用模板和结合第一和第二引物结合位点并引发靶核苷酸序列的测序的引物进行DNA测序;这些引物优选地以大致上相等的量存在。在一些实施方案中,该方法包括利用模板和结合第一和第二引物结合位点并引发条形码核苷酸序列的测序的引物进行DNA测序;这些引物优选地以大致上相等的量存在。在具体实施方案中,该方法包括利用模板和结合第一和第二引物结合位点并引发条形码核苷酸序列的测序的引物进行DNA测序;其中引物是引发靶核苷酸序列的测序的引物的反向互补物。在示意性实施方案中,用以引发靶核苷酸序列和条形码核苷酸序列的测序的引物包含CS1、CS2、CS1rc和CS2rc(表2,实施例9)。
在任何上述双向实施方案中,可选择条形码核苷酸序列以避免大致上退火(substantial annealing)到靶核酸。在某些实施方案中,条形码核苷酸序列辨识特定样品。
在一些实施方案中,当按照上述方法进行双向DNA测序时,从DNA测序确定的序列的至少50%以大于序列的平均拷贝数的50%和小于序列的平均拷贝数的2倍存在。在某些实施方案中,从DNA测序确定的序列的至少70%以大于序列的平均拷贝数的50%和小于序列的平均拷贝数的2倍存在。在具体实施方案中,从DNA测序确定的序列的至少90%以大于序列的平均拷贝数的50%和小于序列的平均拷贝数的2倍存在。
在任何上述双向实施方案中,靶扩增子的平均长度小于200个碱基。在多个实施方案中,第一扩增(即,产生靶扩增子的扩增)在约1皮升至约50纳升或约5皮升至约25纳升的范围的体积中进行。在具体实施方案中,第一扩增(即,产生靶扩增子的扩增)反应在扩增之前在微流体装置的分别的区室(compartment)中形成或被分配到微流体装置的分别的区室中。微流体装置可以是,例如,至少部分地从弹性体材料制造的那些。在某些实施方案中,第一扩增(即,产生靶扩增子的扩增)反应在液滴中进行。
本发明的另一方面包括可用于进行以上讨论的双向实施方案的试剂盒。在某些实施方案中,试剂盒包含:
第一外侧引物,其中该组包含:
第一外侧、正向引物,包含对第一引物结合位点特异性的部分;和
第一外侧、反向引物,包含条形码核苷酸序列和对第二引物结合位点特异性的部分,其中第一和第二引物结合位点是不同的;
第二外侧引物组,其中该组包含:
第二外侧、正向引物,包含条形码核苷酸序列和对第一引物结合位点特异性的部分;和
第二外侧、反向引物,包含对第二引物结合位点特异性的部分。在具体实施方案中,第一和第二引物结合位点是DNA测序引物的结合位点。在具体实施方案中,外侧引物各自另外包含另外的核苷酸序列,其中:
第一外侧、正向引物包含第一另外的核苷酸序列,且第一外侧、反向引物包含第二另外的核苷酸序列;和
第二外侧、正向引物包含第二另外的核苷酸序列,且第二外侧、反向引物包含第一另外的核苷酸序列,且第一和第二另外的核苷酸序列是不同的。在示例性实施方案中,第一外侧引物组包含PE1-CS1和PE2-BC-CS2,且第二外侧引物组包含PE1-CS2和PE2-BC-CS1(表1,实施例9)。在某些实施方案中,试剂盒另外包含内侧引物组,其中该组包含:
内侧、正向引物,包含靶特异性部分和第一引物结合位点;和
内侧、反向引物,包含靶特异性部分和第二引物结合位点。在一些实施方案中,试剂盒包含各自对不同的靶核酸特异性的多个内侧引物组。
可用于进行双向实施方案的任何上述试剂盒可另外包含结合第一和第二引物结合位点并引发靶核苷酸序列的测序的DNA测序引物和/或另外包含结合第一和第二引物结合位点并引发条形码核苷酸序列的测序的DNA测序引物。在具体实施方案中,结合第一和第二引物结合位点并引发条形码核苷酸序列的测序的引物是引发靶核苷酸序列的测序的引物的反向互补物。例如,用以引发靶核苷酸序列和条形码核苷酸序列的测序的引物包含CS1、CS2、CS1rc和CS2rc(表2,实施例9)。
在一些实施方案中,本发明还提供检测、和/或定量核酸样品中至少两个不同的靶核酸的相对量的方法。该方法包括从样品中的第一和第二靶核酸产生第一和第二加标签的靶核苷酸序列,
第一加标签的靶核苷酸序列包含第一核苷酸标签;和
第二加标签的靶核苷酸序列包含第二核苷酸标签,其中第一和第二核苷酸标签是不同的。对加标签的靶核苷酸序列进行利用退火到第一核苷酸标签的第一引物的第一引物延伸反应,和利用退火到第二核苷酸标签的第二引物的第二引物延伸反应。该方法还包括检测和/或定量指示第一引物的延伸的信号、和指示第二引物的延伸的信号,其中给定引物的信号指示相应的靶核酸的存在、和/或相对量。
附图简述
图1A-1D:发夹衔接子分子产生衔接子修饰的靶核酸分子例如适合用于高通量DNA测序的文库的图解。(A)发夹衔接子分子,各自包含:衔接子核苷酸序列,其连接于核苷酸接头,其连接于核苷酸序列,其能够退火到衔接子核苷酸序列并连接于简并尾序列;N=核苷酸;任选的特异性酶切割位点可被包含在核苷酸接头中。(B)靶核酸分子制备可包括片段化和消化5'末端以产生3'粘末端。(C)进行退火、填充缺口、和连接。(D)利用在接头内切割的酶方便地将所得的DNA线性化。
图2A-2D:双链衔接子分子产生衔接子修饰的靶核酸分子例如适合用于高通量DNA测序的文库的图解。(A)双链衔接子分子,在每条链上各自包含:第一衔接子核苷酸序列,其连接于核苷酸接头,其连接于第二衔接子核苷酸序列;和简并尾序列,其中双链分子各自包含两个简并尾序列作为粘末端;N=核苷酸;任选的特异性酶切割位点可被包含在核苷酸接头中。(B)靶核酸分子制备可包括片段化和消化5'末端以产生3'粘末端。(C)进行退火、填充缺口、和连接。(D)利用在接头内切割的酶方便地将所得的环状DNA线性化。
图3:四引物、组合条形码化方法可用于将两个条形码的组合放置在每个扩增子的任一末端上。内侧引物包含靶特异性部分(正向引物中的"TS-F"和反向引物中的"TS-R")、条形码核苷酸序列("bc2")、和不同的核苷酸标签。外侧引物包含标签特异性部分("CS1"和"CS2")、不同的条形码核苷酸序列("bc1")、用于测序引物的引物结合位点("A"和"B")。
图4:六引物、组合条形码化方法可用于将两个条形码的组合放置在每个扩增子的任一末端上。内侧引物包含靶特异性部分(正向引物中的"TS-F"和反向引物中的"TS-R")和不同的核苷酸标签。填充引物包含标签特异性部分("CS1"和"CS2")、条形码核苷酸序列("bc2")、和两个另外的不同的核苷酸标签。外侧引物包含对两个另外的核苷酸标签特异性的部分("CS3"和"CS4")、不同的条形码核苷酸序列("bc1")、和用于测序引物的引物结合位点("A"和"B")。
图5A-5B:基于组合连接的加标签方法(combinatorial ligation-based taggingmethod)利用加标签的靶核苷酸序列(A)以产生组合加标签的靶核苷酸序列。PE1、PE1=Illumina测序流动小室(flowcell)结合序列;Seq1、Seq2=测序引发位点;BC1、BC2=条形码序列。参见实施例2。
图6:用于测序(例如,Illumina测序)的基于组合插入诱变的加标签(combinatorial insertional mutagenesis-based tagging)。将条形码插入到转座子标签序列中。TagA和TagB需要足够长来引发测序。BC2应包含4碱基的条形码加在5'末端的3个简并引物(例如NNNAGTC)。转座子末端序列=5'-AGATGTGTATAAGAGACAG-3'(SEQ ID NO:1)。PE1、PE1=Illumina测序流动小室结合序列;BC1、BC2=条形码序列。
图7A-C:条形码化和汇集反应混合物用于后续分析:条形码化的靶核苷酸序列的产生。(A)在示例性实施方案中,将细胞以有限稀释上样到ACCESS ARRAYTM IFC("Integrated Fluidic Circuit",在本文还称为"芯片")中。如所示地上样引物组,芯片中的每个室(chamber)接收完整组的96个正向引物(F1-96)和96个反向引物(R1-96)用于扩增96个靶。反向引物用能退火到条形码引物的标签加标签。芯片的行中的每个室接收不同的条形码引物。(B)如实施例5中所述的,利用3引物方法在芯片中进行逆转录和预扩增以产生条形码化的靶核苷酸序列。任何指定的室将扩增所有基因,且所有扩增子将被单个条形码加标签。反应产物由池(与不同的引物组成90度,即由样品)输出。(C)对于检测,可如所示地上样DYNAMIC ARRAYTM IFC,正向引物(例如,F1)用于扩增特定靶核酸且条形码引物(例如,BC1)用于扩增特定池(例如池1)的特定室中的这一序列。
图8A-C:条形码化和汇集反应混合物用于后续分析:扩增/检测条形码化的靶核苷酸序列的示例性策略。(A)示例性实施方案利用LCR检测具有以下结构的条形码化的靶核苷酸序列:5'-正向引物序列-靶核苷酸序列-反向引物序列-条形码核苷酸序列-3'。在这种情形中,一个引物可退火到反向引物序列,另一个引物可退火到邻近的条形码核苷酸序列,随后是连接、和重复的退火和连接循环。(B)检测可利用悬垂片(flap)核酸内切酶-连接酶链式反应实时进行。这一反应采用标记的探针和未标记的探针,其中探针对反应产物的同时杂交导致在标记的探针的5'末端形成悬垂片,且悬垂片的裂解产生信号。如所示的,悬垂片的裂解可分离荧光团与猝灭剂以产生信号。(C)可用于,例如,检测通过LCR从具有以下结构的条形码化的靶核苷酸序列产生的扩增子的替代性实时检测方法:5'-正向引物序列-靶核苷酸序列-反向引物序列-条形码核苷酸序列-3'。这一方法依赖于使用双链DNA结合染料(dye)来检测反应产物和LCR所用的引物之间的解链温度差异。解链温度分析包括在反应产物是大致上双链且在双链DNA结合染料存在下能够产生信号、但引物是大致上单链且不能产生信号的温度("高温")下的检测。例如,对于检测具有以下结构的条形码化的靶核苷酸序列:5'-正向引物序列-靶核苷酸序列-反向引物序列-条形码核苷酸序列-3',一个引物可退火到反向引物序列,另一个引物可退火到邻近的条形码核苷酸序列,随后是连接、和重复的退火和连接循环。参见图8C。
图9:用于适于细胞操作的微流体装置的单元小室结构("MA006")的示意图,显示芯片上方法(on-chip processes)。
图10:使用细胞悬液的有限稀释来获得每单独反应体积(微流体装置的"室"或"芯片")单个细胞。显示了用于不同细胞密度的理论分布(泊松分布)。
图11 A-B:使用亮视野(A)成像,芯片中细胞计数的结果,与理论分布(B)比较。基于亮视野成像,芯片中的细胞密度接近但低于泊松分布,这一趋势在更高细胞密度时加剧。
图12A-B:荧光细胞"鬼影(ghost)"图像(A)允许比PCR前(pre-PCR)亮视野成像检测更多细胞,从而细胞密度更接近地近似泊松分布(B)。
图13:可以使用的检测芯片中细胞的特异性方法包括,例如,使用细胞膜透性核酸染色剂(stain)和/或用抗体的细胞特异性表面标志物检测。这些更特异性的方法的结果对1E6/ml的细胞密度显示。
图14A-B:(A)RT-PCR前(pre-RT-PCR)核酸染色剂(Syto10 DNA染色剂)检测芯片中细胞与RT-PCR后(post RT-PCR)鬼影图像(细胞鬼影)的比较。(B)Syto10不抑制GAPDH的RT-PCR。
图15:在0.5%Tween 20或0.5%NP40(后者是细胞溶解剂)存在下进行的GAPDH的RT-PCR。二者都不显著抑制GAPDH的RT-PCR。
图16:在MA006芯片中进行的11个基因的标准曲线扩增。这些结果证明,CellsDirectTM一步qRT-PCR试剂盒可与0.5%NP40(用于细胞溶解和阻止芯片中的耗竭效应)一起使用来在MA006芯片中将细胞中基因特异性的RNA转化为扩增子。
图17:四引物、组合条形码化方法用以将两个条形码的组合放到每个扩增子的任一末端上。内侧引物包含靶特异性部分(正向引物中的"TS-F"和反向引物中的"TS-R")、条形码核苷酸序列("bc2")、和不同的核苷酸标签。外侧引物包含标签特异性部分("CS1"和"CS2")、不同的条形码核苷酸序列("bc1")、用于测序引物的引物结合位点("A"和"B")。
图18A-B:4引物条形码化如何可在芯片诸如MA006上进行的图解。(A)在芯片上用内侧引物进行扩增,其中每行的室具有拥有相同的条形码的相同的内侧引物对。(B)来自每列的室的反应产物可作为池收获,并对每个池利用不同的外侧引物对进行扩增。这一扩增产生在扩增子的任一末端具有独特地辨识在其中进行初始扩增的室(以行和列)的条形码组合的扩增子。
图19:比较测序来自单细胞的基因特异性扩增子获得的结果(实施例5),表示为对每个基因特异性扩增子的读取的数目,与总RNA的比较。如从该图明显的,这些RNA的代表当在单独细胞中测量时是不同的,与在总RNA中观察到的相比。
图20 A-B:带有捕获特征(capture feature)和引流沟(drain)的捕获位点。(A)无阻碍物(baffle)以集中流(flow)的位点。(B)带有阻碍物的位点。
图21:另外的捕获位点设计。
图22A-C:可设计捕获结构(capture architecture)以使细胞接触表面标志物的可能性最大化。例如,一个或多个通道壁(channel wall)上的阻碍物可用于引导珠朝向捕获特征。(A)示例性的捕获特征/阻碍物组合。(B)捕获特征的表现可通过调整一个或多个变量来调整,所述变量包括阻碍物的角度、阻碍物与捕获位点的距离、阻碍物的长度、捕获特征的尺寸和形状、捕获特征中引流沟的尺寸(如果存在)。通道壁上的阻碍物用于引导珠朝向捕获特征。(C)捕获特征与通道壁上的阻碍物配对;单独的捕获特征/阻碍物组合可位于交替的壁上以将流集中朝向邻近的捕获特征/阻碍物组合。
图23 A-B:利用捕获特征来捕捉单个、包被亲和性试剂的珠的策略,该珠随后展示亲和性试剂(例如,抗体)以捕获单颗粒(例如,细胞)。(A-1)流在包含捕获特征的通道中开始。(A-2)抗体结合的珠流向捕获特征,直到珠安顿在捕获特征中。(A-3)然后洗涤通道以去除未捕获的珠。(B-1)带有抗体结合的细胞表面标志物的细胞流入包含捕获的珠的通道。(B-2)带有标志物的细胞与被捕获的珠展示的抗体相互作用和结合。展示区域的尺寸为使得结合的细胞将经由空间阻塞抑制其他细胞与捕获的珠相互作用,从而仅一个细胞结合每个捕获的珠。(B-3)然后洗涤通道以去除未结合的细胞,在每个捕获位点留下一个固定的细胞。
图24A-G:(A)设计为在离散的位置(龛(niches))捕获单细胞的微流体装置的简图。单细胞捕获允许在单细胞水平分析生物事件。(B)流设计为在龛上方比经过溢流通道的强。龛包含小的缺口(~3μm高)。当细胞进入龛时,它封闭龛并阻止任何更多的流进入龛。流穿过到下一个未被占据的龛,直到它也被细胞封闭。在细胞穿过溢流通道并离开废弃(outto waste)之前,每个龛应捕获一个细胞。(C)显示带有(D)-(F)中提供的另外的细节的(A)的简图。(D)缓冲液入口与细胞入口汇集(converge),从而迫使细胞向最接近一系列横向细胞捕获通道(transverse cell capture channel)的给料通道的一侧。(E)横向细胞捕获通道的阻力低于细胞溢流通道的,以引导细胞流优先进入龛而不是进入细胞溢流通道。(F)每个龛足够大以捕获仅一个细胞。龛中的细胞升高了该特定回路的阻力,流被导向无细胞的回路。(G)(A)的实际装置,捕获的人类脐静脉内皮细胞(HUVEC)位于龛中。
图25 A-B:实施例9中采用的扩增子加标签策略。(A)标准4引物扩增子加标签相对于双向测序扩增子加标签。标准4引物扩增子加标签方法在共有序列标签1(CS1)和共有序列标签2(CS2)中掺入了末端配对的Illumina测序引物退火位点。每个PCR产物的5'末端和3'末端的测序均要求末端配对的测序运行。(B)靶特异性引物附带有共有序列标签CS1和CS2。样品特异性引物对包含共有序列标签CS1或CS2,以两种排列附带有Genome Analyzer所用的衔接子序列(PE1和PE2)。从相同的靶区域产生两个PCR产物类型:在相同的测序读取中,产物A允许测序靶区域的5'末端而产物B允许测序靶区域的3'末端。
图26A-B:实施例9中使用的分离的-引物PCR(segregated-primer PCR)策略的概述。用靶特异性引物对的第一PCR在ACCESS ARRAYTM IFC中进行。将收获的PCR产物池分为用样品特异性条形码引物的两个随后PCR反应。(A)产生允许测序靶区域5'末端的产物的反应利用PE1_CS1和PE2_BC_CS2引物组合。(B)产生允许测序靶区域3'末端的产物的反应利用PE1_CS2和PE2_BC_CS1引物组合。
图27:实施例9中使用的测序工作流程的概述。两个PCR产物类型都存在于流动小室上。CS1和CS2的等摩尔混合物允许测序靶区域的5'末端和3'末端。剥除(stripping)和用CS1rc和CS2rc的等摩尔混合物再杂交簇(cluster)后,测序条形码。测序引物CS1和CS2在试剂FL1中提供。索引引物CS1rc和CS2rc在试剂FL2中提供。
图28:用来自实施例10中的板1和板2的条形码从条形码化反应运行获得的Bioanalyzer产物。
图29:实施例10中使用的替代的测序引物。使用ACCESS ARRAYTMIFC上使用的所有靶特异性PCR引物的等摩尔混合物作为测序引物池避免了经过不提供信息的靶特异性引物区测序。
图30:基因EGFR对实施例10中一个样品的逐个碱基覆盖。来自每个链的读取以不同的阴影显示。
图31 A-B:(A)在454测序乳液PCR反应之前,在一个反应中进行对靶DNA的等位基因特异性PCR。正向引物具有454个衔接子和等位基因特异性标签。不同的标签以不同的阴影显示。这一反应产生为454珠乳液PCR准备的扩增子。(B)在乳液PCR和上样到测序仪后,每个孔中单独珠上的扩增子是野生型或突变体。第一454循环流动结合野生型标签(粉色箭头)的引物,且流动所有dNTP。随着这一引物延伸,掺入了多个核苷酸,得到非常牢固的信号,但仅在带有野生型分子的孔中。第二循环流动所有dNTP和突变体标签的引物,仅在带有突变体分子的孔中产生信号。
图32:来自Fluidigm和Illumina TruSeq测序引物之间对Illumina产生的文库的相互干扰实验的Agilent Bioanalyzer结果。每个泳道的PCR反应如下:
1.Illumina标准文库+Fluidigm FL1测序引物
2.Illumina标准文库+Illumina TruSeq测序引物
3.Illumina标准文库+Fluidigm FL1和Illumina TruSeq测序引物
4.Illumina标准文库+Illumina标准测序引物(对照)
5.Illumina多路文库+Fluidigm FL1测序引物
6.Illumina多路文库+Illumina TruSeq测序引物
7.Illumina多路文库+Fluidigm FL1和Illumina TruSeq测序引物
8.Illumina多路文库+Illumina多路测序引物(对照)
9.Illumina小RNA文库+Fluidigm FL1测序引物
10.Illumina小RNA文库+Illumina TruSeq测序引物
11.Illumina小RNA文库+Fluidigm FL1和Illumina TruSeq测序引物
12.Illumina小RNA文库+Illumina小RNA测序引物(对照)
图33:来自Fluidigm和Illumina TruSeq测序引物之间对ACCESS ARRAYTM IFC产生的文库的相互干扰实验的Agilent Bioanalyzer结果。每个泳道的PCR反应如下:
1.Fluidigm ACCESS ARRAYTM IFC文库+Fluidigm FL 1测序引物
2.Fluidigm ACCESS ARRAYTM IFC文库+Illumina TruSeq测序引物
3.Fluidigm ACCESS ARRAYTM IFC文库+Fluidigm FL 1和IlluminaTruSeq测序引物
详述
对于多个应用,掺入核酸序列到例如来源于样品诸如生物样品的靶核酸中是必要或期望的。在某些实施方案中,掺入的序列可帮助进一步分析靶核酸。因此,本文描述了可用于掺入一个或多个衔接子和/或核苷酸标签和/或条形码核苷酸序列到一个或典型地多个靶核苷酸序列的方法。在具体实施方案中,产生具有衔接子的核酸片段,例如,适合用在高通量DNA测序中的核酸片段。在其他实施方案中,关于反应混合物的信息被编码在反应产物中。例如,如果核酸扩增在分别的反应体积中进行,可以期望回收内含物用于后续分析,例如,通过PCR和/或核酸测序。分别的反应体积的内含物可分别分析并将结果与最初的反应体积关联。可选地,颗粒/反应体积身份可被编码在反应产物中,例如,如以下有关多引物核酸扩增方法讨论的。而且,这两种策略可组合从而编码分别的反应体积的组,从而该组中的每个反应体积是独特地可辨识的,并随后汇集,然后分别地分析每个池。
在某些实施方案中,本发明提供扩增方法,其中条形码核苷酸序列和帮助DNA测序的另外的核苷酸序列被加入靶核苷酸序列。条形码核苷酸序列可以编码信息,例如像样品来源、它附加(attached)于其上的相关的靶核酸序列。加入的序列可例如,用作DNA测序引物的结合位点。条形码化靶核苷酸序列可以增加在一个单一测定中针对一个或多个靶可进行分析的样品的数量,同时将测定成本的增加降至最低。这些方法特别适合用于增加微流体装置上进行测定的效率。
定义
除非另外说明,权利要求书以及说明书中所使用的术语是如下面列出定义的。为了清楚的目的这些术语被专门地定义,但是所有这些定义都与本领域技术人员如何理解这些术语的情况一致。
术语“邻近(adjacent)”,当在此使用指核酸中的两个核苷酸序列时,可以指核苷酸序列间隔0至约20个核苷酸、更具体地说,在约1至约10个核苷酸的范围内,或直接地彼此邻接(abut)的序列。如本领域技术人员领会的,将连接在一起的两条核苷酸序列通常将直接地彼此邻接。
术语“核酸”是指核苷酸聚合物,并且除非另外限制,包括天然核苷酸的已知的类似物,这些类似物能够以与天然存在的核苷酸类似的方式起作用(例如杂交)。
术语核酸包括任何形式的DNA或RNA,包括例如基因组DNA;互补DNA(cDNA),互补DNA是mRNA的DNA表示,通常通过信使RNA(mRNA)的逆转录、或者通过扩增而得到;合成方式或通过扩增产生的DNA分子;以及mRNA。
术语核酸包括双链或三链核酸,以及单链分子。在双链或三链核酸中,核酸链不必共同延伸(即双链核酸不必沿着两个链的整个长度是双链的)。
不是沿着两条链的完整长度为双链的双链核酸具有在本文称为"粘末端"或"尾序列"的5'或3'延伸(extension)。术语"粘末端"通常用于指相对短的5'或3'延伸,诸如由限制性酶产生的,而术语"尾序列"通常用于指更长的5'或3'延伸。
本文使用的术语"简并序列"表示多个分子中的序列,其中存在多个不同的核苷酸序列。例如,可以存在简并序列的所有可能序列。
术语"简并尾序列"用于描述多个分子中的尾序列,其中尾序列具有多个不同的核苷酸序列;例如,多个分子中可以存在所有可能的不同的核苷酸序列(每个尾1个)。
术语核酸还包括它们的任何化学修饰,例如通过甲基化和/或通过加帽。核酸修饰可以包括加入化学基团,这些化学基团将额外的电荷、可极化性、氢键、静电作用、以及官能性结合到单独的核酸碱基上或结合到作为整体的核酸上。这类修饰可以包括碱基修饰,例如2'-位置糖修饰、5-位置嘧啶修饰、8-位置嘌呤修饰、在胞嘧啶环外胺上的修饰、5-溴-尿嘧啶的取代、主链修饰、稀有碱基配对组合,例如异碱基异胞苷以及异鸟嘌呤等。
更具体地说,在某些实施方案中,核酸可以包括多聚脱氧核糖核苷酸类(包含2-脱氧-D-核糖)、多聚核糖核苷酸类(包含D-核糖)、以及任何其他类型的核酸,该核酸是嘌呤或嘧啶碱的N-或C-糖苷、以及其他包含非核苷酸主链的聚合物,例如,聚酰胺(例如,核酸肽类(PNA))以及聚吗啉代(可从Anti-Virals,Inc.,Corvallis,Oregon以Neugene商购)聚合物、以及其他合成的序列特异性核酸聚合物,其条件是这些聚合物包含处于允许碱基配对以及碱基堆集的构型的核碱基,例如在DNA以及RNA中发现的碱基配对以及碱基堆集一样。术语核酸还包括锁核酸类(LNA),在美国专利号6,794,499、6,670,461、6,262,490和6,770,748中对这些锁核酸进行了说明,就它们的LNA的披露而言,这些专利通过引用以其全部内容并入本文。
可以从完全化学合成方法例如固相介导的化学合成,从生物来源例如通过从产生核酸的任何物种中分离,或从包括通过分子生物学工具例如DNA复制、PCR扩增、逆转录处理核酸的方法,或从这些方法的组合中得到核酸。
核酸分子中元件的顺序在本文通常描述为5'至3'。在双链分子的情形中,根据约定,"上"链通常从5'至3'显示,元件的顺序在本文参考上链描述。
在此使用的术语“靶核酸”是指在本发明的方法中有待检测的特定核酸。
如在此使用的术语“靶核苷酸序列”是指包括靶核酸的核苷酸序列的分子,像,例如,通过扩增靶核酸而得到的扩增产物或当将RNA靶核酸逆转录时所生成的cDNA。
如在此使用的术语“互补”是指在两个核苷酸之间精确配对的能力。即,如果在一个给定位置上一个核酸的核苷酸能够与另一个核酸的核苷酸形成氢键,则这两个核酸被认为在该位置上是彼此互补的。两个单链核酸分子之间的互补性可以是“部分的”,其中仅一些核苷酸进行结合,或当单链分子之间存在完全互补性时,它可以是完全的。核酸链之间互补性的程度对于核酸分子之间杂交的效率以及强度具有显著影响。如果第一核苷酸序列与第二核苷酸序列互补,则第一核苷酸序列被称为是第二序列的"互补物"。如果第一核苷酸序列与第二序列的反向(即,核苷酸的顺序是反向的)的序列互补,则第一核苷酸序列被称为是第二序列的"反向互补物"。
“特异性杂交”是指在定义的严格条件下核酸结合到靶核苷酸序列上,不实质性地结合到杂交混合物中存在的其他核苷酸序列上。本领域普通技术人员应当知道放松杂交条件的严格性将允许容忍序列错配。
在具体实施方案中,在严格杂交条件下进行杂交。短语“严格杂交条件”总体上是指在定义的离子强度和pH下对于特定序列而言温度在低于解链温度(Tm)从约5℃至约20℃或25℃的范围内。如在此使用的,Tm是双链核酸分子的群体被半解离成单链的温度。用于计算核酸的Tm的方法在本领域中是熟知的(参见,例如,Berger和Kimmel(1987)METHODS INENZYMOLOGY,VOL.152:GUIDE TO MOLECULAR CLONING TECHNIQUES,San Diego:AcademicPress,Inc.与Sambrook等人.(1989)MOLECULAR CLONING:A LABORATORY MANUAL,第2版,VOLS.1-3,Cold Spring Harbor Laboratory),两者都通过引用并入本文)。如标准参考文献所指出的,当核酸处于1M NaCl的水溶液中时,可以通过下面等式计算Tm值的简单估计Tm=81.5+0.41(%G+C)(参见,例如,Anderson和Young,Quantitative FilterHybridization in NUCLEIC ACID HYBRIDIZATION(1985))。杂交体的解链温度(以及因此用于严格杂交的条件)被多种因素影响,例如引物或探针的长度以及性质(DNA、RNA、碱基组成)以及靶核酸的性质(DNA、RNA、碱基组成、存在于溶液中或固定的等),以及盐和其他组分的浓度(例如,甲酰胺、硫酸葡聚糖、聚乙二醇的存在与否)。这些因素的影响是熟知的并且在本领域的标准参考文献中进行了讨论。适合用于实现大多数序列的特异性杂交的示例性的严格条件是:在pH7至少约60℃的温度以及约0.2摩尔/升的盐浓度。
使用术语“寡核苷酸”是指相对短的核酸,该核酸总体上短于200个核苷酸、更特别地短于100个核苷酸、最特别地短于50个核苷酸。典型地,寡核苷酸是单链DNA分子。
术语"衔接子"用于指在使用中变得附加到核酸的一个或两个末端的核酸。衔接子可以是单链、双链的,或可包含单链和双链部分。
术语“引物”是指在适宜的条件下(即在四种不同核苷三磷酸以及聚合反应试剂例如DNA或RNA聚合酶或逆转录酶的存在下)在适宜的缓冲液中并且在适宜的温度下能够与核酸杂交(也称为“退火”)并且用作核苷酸(RNA或DNA)聚合反应的起始位点的寡核苷酸。引物的适当的长度取决于引物的预期用途,但是典型地引物是至少7个核苷酸长度,更典型地范围从10个核苷酸至30个核苷酸,或甚至更典型地从15个核苷酸至30个核苷酸长度。其他引物可以是稍微更长的,例如30至50个核苷酸长度。在此上下文中,“引物长度”是指杂交到互补的“靶”序列上并且引发核苷酸合成的寡核苷酸或核酸的部分。短引物分子总体上需要更冷的温度以与模板形成足够稳定的杂交复合体。引物不必反映模板的确切序列但是必须是足够互补的以与模板杂交。术语“引物位点”或“引物结合位点”是指引物杂交到其上的靶核酸的区段。
如果引物、或它的一部分杂交到另一个核酸中的核苷酸序列上,引物被说成退火到该核酸上。引物杂交到特定核苷酸序列上的陈述不旨在暗示该引物完全地或唯一地杂交到该核苷酸序列上。例如,在某些实施方案中,在此使用的扩增引物被说成“退火到核苷酸标签上”。这种说明包括完全退火到核苷酸标签上的引物以及部分地退火到核苷酸标签上以及部分地退火到邻近核苷酸序列例如靶核苷酸序列)上的引物。这类杂交引物可以增加扩增反应的特异性。
如在此使用的,选择引物“以便避免实质性地退火到靶核酸上”是指选择引物以使得在扩增之后检出的大多数扩增子在下面意义上是“全长的”,即它们是从在靶核酸的每个末端上在预期的位点处引发而得到的,与从靶核酸内引发而得到的扩增子不同,后者生成比预期更短的扩增子。在不同实施方案中,选择引物从而至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、或至少99%是全长的。
术语“引物对”是指一组引物,这组引物包括与有待扩增的DNA序列的5’末端的互补物杂交的5'“上游引物”或“正向引物”,以及与有待扩增的序列的3’末端杂交的3'“下游引物”或“反向引物”。如本领域普通技术人员应当了解的,在具体实施方案中术语“上游”和“下游”或“正向”和“反向”不旨在进行限制,而是提供示意性的方向。
在使用两个引物对的实施方案中,例如,在扩增反应中,引物对可标为"内侧"和"外侧"引物对以指示其相对位置;即,"内侧"引物被掺入到反应产物(例如,扩增子)中外侧引物被掺入的位置之间的位置。
在使用三个引物对的实施方案中,例如,在扩增反应中,术语"填充引物"可用于指具有在内侧和外侧引物之间的位置的引物;即,"填充"引物被掺入到反应产物(例如,扩增子)中内侧和外侧引物之间的中间位置。
如果一个引物对可以被用于特定地产生(例如,扩增)给出的反应(例如,扩增)混合物中特定的反应产物(例如,扩增子),则所述引物对被称为是“独特的”。
“探针”是能够通过一个或多个类型的化学键、通常通过互补碱基配对、经常通过氢键形成结合到互补序列的靶核酸上、因此形成双链结构的核酸。探针结合或杂交到“探针结合位点”上。探针可以用可检出的标记物进行标记以允许容易地检出探针,特别是一旦探针杂交到它的互补靶上时。然而,作为替代方案,探针可以是未标记的,但可以是通过与直接地或间接地标记的配体特异性结合而可以检出的。在尺寸方面探针可以显著地改变。总体上,探针是至少7至15个核苷酸长度。其他的探针是至少20、30或40个核苷酸长度。而其他探针是稍微更长的,为至少50、60、70、80或90个核苷酸长度。而其他探针仍然是更长的,并且是至少100、150、200或更多的核苷酸长度。探针还可以是在由上述值中任何一项所限定的任何范围内的任何长度(例如,15至20个核苷酸长度)。
引物或探针可以是与靶核酸序列完全互补的或可以是小于完全互补的。在某些实施方案中,在至少7个核苷酸的序列上,更典型地在10至30个核苷酸范围内的序列上,并且通常在至少14-25个核苷酸的序列上,引物与靶核酸序列的互补物具有至少65%同一性,并且更经常地具有至少75%同一性、至少85%同一性、至少90%同一性、或至少95%、96%、97%、98%或99%同一性。应当理解的是总体上令人希望的是某些碱基(例如引物的3’碱基)是与靶核酸序列的相应的碱基完全互补的。在严格杂交条件下引物和探针典型地退火到靶序列上。
在此使用术语“核苷酸标签”是指被加入到靶核苷酸序列中的预定的核苷酸序列。核苷酸标签可以编码关于该靶核苷酸序列的一项信息,例如靶核苷酸序列的身份或从中得到靶核苷酸序列的样品的身份。在某些实施方案中,这类信息可以被编码到一个或多个核苷酸标签中,例如两个核苷酸标签的组合,在靶核苷酸序列的两个末端之一上的一个可以编码靶核苷酸序列的身份。
本文使用的术语"亲和性标签"是指分子被结合伴侣特异性结合的部分。该部分可以,但不需要是,核苷酸序列。特异性结合可用于帮助加亲和性标签的分子的亲和性纯化。
术语"转座子末端"是指能够被转座酶附加到核酸的寡核苷酸。
如在此使用的术语“条形码引物”是指包括特异性条形码核苷酸序列的引物,该核苷酸序列编码了关于当条形码引物被用于扩增反应时所生成的扩增子的信息。例如,可以使用不同的条形码引物以从大量不同样品的每一个中扩增一个或多个靶序列,这样使得条形码核苷酸序列指示得到的扩增子的样品来源。
如在此使用的,术语“编码反应”是指其中至少一个核苷酸标签被加入到靶核苷酸序列中的反应。例如可以通过“编码PCR”加入核苷酸标签,其中至少一个引物包括靶特异性部分以及位于该靶特异性部分的5’末端上的核苷酸标签,以及第二引物,该第二引物包括仅靶特异性部分或靶特异性部分和位于该靶特异性部分的5’末端上的核苷酸标签。关于可用于编码PCR的PCR方案的示意性实例,参见未决的WO申请US03/37808以及美国专利号6,605,451。还可以通过“编码连接”反应来加入核苷酸标签,该反应可以包括连接反应,其中至少一个引物包括靶特异性部分以及位于该靶特异性部分的5’末端上的核苷酸标签,以及第二引物,该第二引物包括仅靶特异性部分或靶特异性部分和位于该靶特异性部分的5'末端上的核苷酸标签。示意性的编码连接反应被描述于例如美国专利公布号2005/0260640中,该专利通过引用以其全部内容并入本文,并且特别地是针对连接反应。
如在此所使用的“编码反应”可生成“加标签的靶核苷酸序列”,该核苷酸序列包括连接到靶核苷酸序列上的核苷酸标签。
如在此使用的,提及引物的部分,术语“靶特异性”核苷酸序列是指在适当的退火条件下能够特异性退火到靶核酸或靶核苷酸序列上的序列。
如在此使用的,提及引物的部分,术语“核苷酸标签特异性核苷酸序列”是指在适当的退火条件下能够特异性地退火到核苷酸标签上的序列。
根据本发明的教导的扩增包括使至少一个靶核酸的至少一部分再生的任何手段,典型地是以模板依赖性方式,包括但不限于,用于线性或指数扩增核酸序列的广泛的技术。用于完成扩增步骤的示意性手段包括连接酶链式反应(LCR)、连接酶检测反应(LDR)、连接紧接着Q-复制酶扩增、PCR、引物延伸、链置换扩增(SDA)、超支化链置换扩增、多重置换扩增(MDA)、基于核酸链的扩增(NASBA)、两步多重扩增、滚环扩增(RCA)、等,包括它们的多种形式以及组合,例如但不限于OLA/PCR、PCR/OLA、LDR/PCR、PCR/PCR/LDR、PCR/LDR、LCR/PCR、PCR/LCR(也称为组合链反应-CCR),等。这类技术的说明可以在以下及其他来源中找到:Ausbel等人;PCR Primer:A Laboratory Manual,Diffenbach编著,Cold Spring HarborPress(1995);The Electronic Protocol Book,Chang Bioscience(2002);Msuih等人,J.Clin.Micro.34:501-07(1996);The Nucleic Acid Protocols Handbook,R.Rapley编著,Humana Press,Totowa,N.J.(2002);Abramson等人,Curr Opin Biotechnol.1993Feb.;4(1):41-7,美国专利号6,027,998;美国专利号6,605,451,Barany等人,PCT公布号WO97/31256;Wenz等人,PCT公布号WO 01/92579;Day等人,Genomics,29(1):152-162(1995),Ehrlich等人,Science 252:1643-50(1991);Innis等人,PCR Protocols:A Guide toMethods and Applications,Academic Press(1990);Favis等人,NatureBiotechnology18:561-64(2000);和Rabenau等人,Infection 28:97-102(2000);Belgrader,Barany和Lubin,Development of a Multiplex Ligation DetectionReaction DNA Typing Assay,Sixth International Symposium on HumanIdentification,1995(在下面的互联网址上可得:promega.com/geneticidproc/ussymp6proc/blegrad.html-);LCR Kit Instruction Manual,Cat.#200520,Rev.#050002,Stratagene,2002;Barany,Proc.Natl.Acad.Sci.USA 88:188-93(1991);Bi和Sambrook,Nucl.Acids Res.25:2924-2951(1997);Zirvi等人,Nucl.Acid Res.27:e40i-viii(1999);Dean等人,Proc Natl Acad Sci USA 99:5261-66(2002);Barany和Gelfand,Gene109:1-11(1991);Walker等人,Nucl.Acid Res.20:1691-96(1992);Polstra等人,BMCInf.Dis.2:18-(2002);Lage等人,Genome Res.2003Feb.;13(2):294-307,和Landegren等人,Science 241:1077-80(1988),Demidov,V.,Expert Rev Mol Diagn.2002 Nov.;2(6):542-8.,Cook等人,J Microbiol Methods.2003 May;53(2):165-74,Schweitzer等人,CurrOpin Biotechnol.2001 Feb.;12(l):21-7,美国专利号5,830,711,美国专利号6,027,889,美国专利号5,686,243,PCT公布号WO0056927A3,和PCT公布号WO9803673A1。
在一些实施方案中,扩增包括下面各项的连续步骤的至少一个循环:将至少一个引物与至少一个靶核酸中互补的或基本上互补的序列一起退火;使用聚合酶以模板依赖性方式合成核苷酸的至少一个链;并且将新形成的核酸双链变性以分离这些链。该循环可以被重复或可以不被重复。扩增可以包括热循环或能以等温方式完成。
在此使用术语“qPCR”是指定量实时聚合酶链式反应(PCR),该反应还被称为“实时PCR”或“动力学聚合酶链式反应”。
本文提及参数使用的术语"大致上"表示,该参数足以提供有用的结果。因此,"大致上互补"在应用于核酸序列时通常表示足够互补以在所描述的情景中起作用。通常,大致上互补表示足够互补以在采用的条件下杂交。在本文描述的一些实施方案中,反应产物必须区分于未反应的引物。在这种情形中,"反应产物是大致上双链的"的陈述和"引物是大致上单链的"的陈述表示,双链反应产物和单链引物的量之间存在足够的差异,从而可确定反应产物的存在和/或量。
“试剂”广义地是指除了分析物(例如被分析的核酸)之外用于反应中的任何剂。用于核酸扩增反应的示意性试剂包括但不限于,缓冲剂、金属离子、聚合酶、逆转录酶、引物、模板核酸、核苷酸、标记物、染料、核酸酶、等。用于酶反应的试剂包括例如底物、辅因子、缓冲剂、金属离子、抑制剂、以及活化剂。
在此使用术语“通用检测探针”是指鉴别扩增产物存在的任何探针,无论产物中存在的靶核苷酸序列的身份如何。
在此使用术语“通用qPCR探针”是指在qPCR期间鉴别扩增产物的存在的任何这类探针。在具体实施方案中,根据本发明的核苷酸标签可以包括检测探针例如通用qPCR探针结合到其上的核苷酸序列。当标签被加到靶核苷酸序列的两个末端上时,如果想要的话每个标签可以包括被检测探针识别的序列。这类序列的组合可以编码关于加标签的靶核苷酸序列的身份或样品来源的信息。在其他实施方案中,一个或多个扩增引物可以包括检测探针例如通用qPCR探针结合到其上的核苷酸序列。以这种方式,在本发明的方法的扩增步骤期间一个、两个、或多个探针结合位点可以被加到扩增产物中。本领域普通技术人员知道在预扩增期间(如果执行的话)引入多个探针结合位点的可能性,并且扩增有助于多重检测,其中可以在给定的扩增混合物或它的等份中检出两个或多个不同的扩增产物。
术语“通用检测探针”还旨在包括用可检出标记物(例如,荧光标记物)标记的引物、以及非序列特异性探针,例如DNA结合染料,包括双链DNA(dsDNA)染料,例如SYBRGreen。
如在此使用的术语“标记物”是指能够用于提供可检出的和/或可定量的信号的任何原子或分子。具体地,可以将标记物直接地或间接地附加到核酸或蛋白上。可以附加到探针上的适合的标记物包括但不限于放射性同位素、荧光团、生色团、质量标记、电子致密颗粒、磁性颗粒、自旋标记物、发出化学发光的分子、电化学活性分子、酶、辅因子、以及酶底物。
本文使用的术语"染色剂"总体上是指结合反应或检验混合物的组分以帮助检测该组分的任何有机的或无机的分子。
如在此所使用的术语“染料”总体上是指在大于或等于340nm的波长处吸收电磁辐射的任何有机的或无机的分子。
如在此使用的术语“荧光染料”总体上是指当通过电磁辐射来源例如灯、光电二极管或激光进行照射时通过荧光机理发出较长波长电磁辐射的任何染料。
术语“弹性体”具有本领域中所使用的一般性含义。因此,例如,Allcock等人(Contemporary Polymer Chemistry,第2版)说明了弹性体总体上作为聚合物存在于它们的玻璃转化温度与液化温度之间的温度下。弹性材料显示出弹性特性,因为这些聚合物链易于经受扭转移动从而允许使主链响应于力而解螺旋,在缺少该力时主链再螺旋(recoiling)从而呈现出先前的形状。总体上,当施加力时弹性体变形,但是然后当去除该力时,它们返回到它们的初始形状。
本文使用的术语"变化"用于指任何差异。变化可以指个体或群体之间的差异。变化涵盖与普通或正常情形的差异。因此,"拷贝数变化"或"突变"可以指与普通或正常拷贝数或核苷酸序列的差异。"表达水平变化"或"剪接变体"可以指对于特定、细胞或组织、发育阶段、状态等不同于普通或正常表达水平或RNA或蛋白的表达水平或RNA或蛋白。
“多态性标志物”或“多态位点”是在其上出现核苷酸序列趋异的基因座。示例性标志物具有至少两个等位基因,每个以大于1%、并且更典型地大于10%或20%的选择群体的频率出现。多态性位点可以是小至一个碱基对。多态性标志物包括限制性片段长度多态性(RFLP)、可变数量串联重复(VNTR)、超可变区、小卫星序列、双核苷酸重复、三核苷酸重复、四核苷酸重复、简单序列重复、缺失、以及插入元件,例如Alu。首先鉴定的等位基因形式被任意指定为参考形式并且其他等位基因形式被指定为替代的或变体的等位基因。在选择的群体中最频繁出现的等位基因形式有时被称为野生型。对于等位基因形式而言,二倍体生物可以是纯合的或杂合的。双等位基因多态性具有两种形式。三等位基因多态性具有三种形式。
“单核苷酸多态性”(SNP)出现在被单核苷酸占据的多态性位点,这个位点是等位基因序列之间出现变化的位点。该位点通常在等位基因的高度保守的序列(例如,在群体的小于1/100或1/1000的成员中发生变化的序列)之前或之后。SNP通常由于在多态性位点处一个核苷酸被取代成另一个核苷酸而出现。转变(transition)是一个嘌呤被替换成另一个嘌呤或者一个嘧啶被替换成另一个嘧啶。颠换(transversion)是嘌呤被替换成嘧啶或反之亦然。SNP还可以通过相对于参考等位基因缺失一个核苷酸或插入一个核苷酸而产生。
如本文关于反应、反应混合物、反应体积等使用的,术语"分别的"是指其中反应与其他反应分离地进行的反应、反应混合物、反应体积等。分别的反应、反应混合物、反应体积等包括在液滴中进行的那些(参见,例如,2007年11月13日授权的Quake等人的美国专利号7,294,503,题为"Microfabricated crossflow devices and methods",其通过引用全文并入本文,尤其是关于形成和分析液滴的装置和方法的描述;2010年1月28日公布的Link等人的美国专利公布号20100022414,题为"Droplet libraries",其通过引用全文并入本文,尤其是关于形成和分析液滴的装置和方法的描述;和2011年1月6日公布的Miller等人的美国专利公布号20110000560,题为"Manipulation of Micro fluidic Droplets",其通过引用全文并入本文,尤其是关于形成和分析液滴的装置和方法的描述),其可以、但不需要是在乳液中,以及其中反应、反应混合物、反应体积等被机械障碍(mechanical barrier)分隔的那些,例如,分别的容器、微量滴定板的分别的孔、或矩阵型微流体装置(matrix-typemicrofluidic device)的分别的区室。
产生衔接子修饰的靶核酸分子
在某些实施方案中,本发明涉及向包含粘末端的多个靶核酸的每个末端添加衔接子分子的方法。这些实施方案可用于,例如,为了高通量DNA测序的片段产生。可选择衔接子以帮助使用所选的DNA测序平台测序。
在具体实施方案中,这样的方法包括退火衔接子分子到双链靶核酸分子的粘末端以产生退火的衔接子-靶核酸分子。包含粘末端的靶核酸分子可通过任何方便的方法产生。在某些实施方案中,将DNA分子片段化,例如,通过酶促消化、喷雾法、声处理(sonication)等等的任一种。例如,DNA分子可通过用DNA酶诸如DNA酶I消化来片段化,通过热处理结束。不产生粘末端的片段化随后可以是用酶消化片段化的DNA分子以产生粘末端。在具体实施方案中,双链靶核酸分子的粘末端是3'延伸。在消化采用的条件下不具有聚合酶活性的链特异性核酸内切酶可用来产生粘末端。在示例性实施方案中,通过在dNTP不存在下用核酸外切酶III消化5'末端来产生粘末端。
在第一实施方案中,衔接子分子是发夹结构,各自包含:衔接子核苷酸序列,其连接于核苷酸接头,其连接于能够退火到衔接子核苷酸序列并连接于简并尾序列的核苷酸序列。参见图1A。这一实施方案采用两个类型的衔接子分子,其中每个类型包含不同于另一类型的衔接子核苷酸序列(即,第一衔接子核苷酸序列和第二衔接子核苷酸序列)。
在第二实施方案中,衔接子分子是双链或单链分子,在每条链上各自包含:第一衔接子核苷酸序列,其连接于核苷酸接头,其连接于第二衔接子核苷酸序列;和简并尾序列,其中双链分子各自包含两个简并尾序列作为粘末端。参见图2A。
在某些实施方案中,例如,其中靶核酸分子为高通量DNA测序准备的实施方案中,第一和第二衔接子序列可包含能够被DNA测序引物即测序仪特异性标签1和测序仪特异性标签2特异性结合的引物结合位点。参见图1A和2A。
在所有情形中,简并尾序列可以在衔接子分子的3'末端。衔接子分子的简并尾序列与靶核酸分子上的粘末端的至少一部分基本上互补;即,在采用的条件下衔接子分子能够退火到靶核酸分子。简并尾序列的长度将通常足以帮助这一退火,例如,约10至约20个核苷酸。在某些实施方案中,简并尾序列在其3'末端被保护,例如,用磷酸硫代硫酸酯(phosphothionate)或dUTP保护以保护不受核酸外切酶消化。
任选地,衔接子分子可包含一个或多个另外的核苷酸序列。在某些实施方案中,衔接子分子的核苷酸接头部分可包含核酸内切酶位点、条形码核苷酸序列、亲和性标签、和其任何组合。例如,核苷酸接头可包含限制性酶位点、和任选地,至少一个条形码核苷酸序列。
在第一和第二实施方案中,在退火到靶核酸分子后,方法包括填充退火的衔接子-靶核酸分子中的任何缺口(例如利用DNA聚合酶),和连接退火的衔接子-靶核酸分子中任何邻近的核苷酸序列以产生衔接子修饰的靶核酸分子。在一些实施方案中,粘末端产生和连接可在相同的反应混合物中进行。例如核酸外切酶可在单个反应混合物中与连接酶(例如,热稳定连接酶)和聚合酶(例如,
Figure GDA0000588916800000311
)一起使用。
当衔接子分子是发夹结构时,衔接子与靶核酸的连接将退火的衔接子-靶核酸分子转变为单链环状DNA分子,其可形成双链结构,如图1D中所示的。当衔接子分子是单链或双链分子时,衔接子与靶核酸的连接将退火的衔接子-靶核酸分子转变为双链环状DNA分子。当核苷酸接头包含核酸内切酶位点时,方法可另外包括消化单链或双链环状DNA分子以产生线性DNA分子。参见图1D和2D。具体地,可用在核苷酸接头中的位点切割的限制性酶消化双链环状DNA分子以产生线性DNA分子。在具体实施方案中,线性DNA分子包含5'-核苷酸接头的第一部分-第二衔接子核苷酸序列-第一简并尾序列-靶核酸分子-第二简并尾序列-第一衔接子核苷酸序列-核苷酸接头的第二部分-3'。
在示例性实施方案中,上述方法可通过以下进行:
通过以下产生包含粘末端的多个靶核酸分子:
用DNA酶I消化DNA分子以产生片段化的DNA分子,然后热灭活DNA酶I;
在脱氧核苷酸不存在下用具有5'至3'核酸外切酶活性的核酸酶(诸如核酸外切酶III)消化片段化的DNA分子以产生多个具有粘末端的靶核酸分子;
退火所述衔接子到多个靶核酸分子的粘末端,其中衔接子的核苷酸接头包含核酸内切酶位点;
在包含聚合酶和连接酶的单个反应中填充退火的衔接子-靶核酸分子中的任何缺口并连接任何邻近的核苷酸序列以产生环状DNA分子;和
用在核酸内切酶位点切割的核酸内切酶消化环状DNA分子以产生线性DNA分子。
在具体实施方案中,加入衔接子分子到多个靶核酸的每个末端的方法可包括通过任何可得的方法测序衔接子修饰的靶核酸分子,诸如任何可得的高通量DNA测序技术。
掺入核酸序列到靶核酸中
掺入一个或多个核苷酸序列到靶核酸中的反应可利用除了退火到靶核酸的部分以外还包含一个或多个核酸序列的两个或多个引物进行。这些部分的一个或多个可包含随机序列以掺入核酸序列到样品中的基本上所有核酸中。可选地或此外,这些部分的一个或多个可以是对存在的多个或所有核酸共有的一个或多个序列特异性的。在其他实施方案中,引物包含对一个或多个特定靶核酸特异性的部分。核酸序列可利用少至两个引物被掺入。然而,多个实施方案采用三个、四个、五个、或六个或更多个引物,如在以下更详细描述的。以下关于核酸扩增讨论此类反应;然而,本领域技术人员将容易领会,以下讨论的策略可在其他类型的反应例如聚合酶延伸和连接中采用。
三引物方法
在具体实施方案中,本发明提供了用于将多个(例如至少三个)选择的核苷酸序列掺入到一个或多个靶核酸中的扩增方法。在一些实施方案中,这种方法包括扩增在多个样品中的多个靶核酸。在示意性实施方案中,可以在两个或多个不同样品的每一个中扩增同一组靶核酸。这些样品可以在任何方面彼此不同,例如这些样品可以是来自不同组织、受试者、环境来源等。可以使用至少三个引物来扩增每个靶核酸,即:正向和反向扩增引物,每个引物包括靶特异性部分,并且一个或两个引物包括核苷酸标签(例如,第一和第二核苷酸标签)。这些靶特异性部分可以在适当的退火条件下特异性地退火到靶上。用于正向引物的核苷酸标签可以具有与用于反向引物的核苷酸标签相同或不同的序列。总体上,这些核苷酸标签在这些靶特异性部分的5'。第三个引物是条形码引物,该条形码引物包括条形码核苷酸序列以及第一和/或第二核苷酸标签特异性部分。条形码核苷酸序列是选择用于编码关于当条形码引物被用于扩增反应时所生成的扩增子的信息的序列。标签特异性部分可以特异性地退火到正向和反向引物中的一个或两个核苷酸标签上。总体上条形码引物在靶特异性部分的5'。
条形码引物典型地以超过一个或多个正向和/或反向或(内侧)引物的量存在于扩增混合物中。更确切地说,如果条形码引物退火到正向引物中的核苷酸标签上,总体上该条形码引物以超过正向引物的量存在。如果条形码引物退火到反向引物中的核苷酸标签上,总体上该条形码引物以超过反向引物的量存在。在示意性实施方案中,在每种情况中,在扩增混合物中的第三引物即反向引物或正向引物对应地能够以大致类似于条形码引物的浓度存在。总体上,条形码引物以实质性地过量形式存在。例如,扩增混合物中条形码引物的浓度可以是相对于该一个或多个正向和/或反向引物的浓度的至少2倍、至少4倍、至少5倍、至少10倍、至少15倍、至少20倍、至少25倍、至少30倍、至少35倍、至少40倍、至少45倍、至少50倍、至少100倍、至少500倍、至少103倍、至少5X103倍、至少104倍、至少5X104倍、至少105倍、至少5X105倍、至少106倍或更高。此外,条形码引物的浓度超过量可以落在以上述数值的任何一项作为端点的任何范围内(例如,2倍至105倍)。在示意性实施方案中,当条形码引物具有对于正向引物上的核苷酸标签具有特异性的标签特异性部分时,该正向引物能够以皮摩尔至纳摩尔的浓度存在,例如约5pM至500nM、约5pM至100nM、约5pM至50nM、约5pM至10nM、约5pM至5nM、约10pM至1nM、约50pM至约500pM、约100pM或以这些数值任何一项作为端点的任何其他范围(例如,10pM至50pM)。适当地,可与正向引物的这些浓度中任何一项相组合使用的条形码引物的示例性浓度包括约10nM至约10μM、约25nM至约7.5μM、约50nM至约5μM、约75nM至约2.5μM、约100nM至约1μM、约250nM至约750nM、约500nM或以这些数值中任何一项作为端点的任何其他范围(例如,100nM至500nM)。在使用这类浓度的正向和条形码引物的扩增反应中,反向引物具有与条形码引物处于同一数量级的浓度(例如,在约10倍之内、在约5倍之内、或相等)。
可以使每个扩增混合物经受扩增作用从而生成包括加标签的靶核苷酸序列的靶扩增子,各自包括位于该靶核苷酸序列侧翼的第一和第二核苷酸标签,以及位于该靶扩增子的5’或3’末端上的至少一个条形码核苷酸序列(相对于靶扩增子的一个链)。在某些实施方案中,选择第一和第二核苷酸标签和/或条形码核苷酸序列以便避免实质性地退火到靶核酸上。在这类实施方案中,加标签的靶核苷酸序列可以包括具有下面元件的分子:5’-(条形码核苷酸序列)-(来自正向引物的第一核苷酸标签)-(靶核苷酸序列)-(来自反向引物的第二核苷酸标签序列)-3’或5’-(来自正向引物的第一核苷酸标签)-(靶核苷酸序列)-(来自反向引物的第二核苷酸标签序列)-(条形码核苷酸序列)-3'。
四引物方法
在一些实施方案中,可以使用多于三个引物以将希望的元件加入靶核苷酸序列中。例如,可以使用四个引物来生成具有如上讨论的相同的元件加上任选的另外的条形码的分子,例如5’-(条形码核苷酸序列)-(来自正向引物的第一核苷酸标签)-(靶核苷酸序列)-(来自反向引物的第二核苷酸标签)-(另外的条形码核苷酸序列)-3'。在示例性四引物实施方案中,正向引物包括靶特异性部分以及第一核苷酸标签,并且反向引物包括靶特异性部分以及第二核苷酸标签。总之,这两个引物构成“内侧引物”。剩下的两个引物是“外侧引物”,其退火到存在于内侧引物中的第一和第二核苷酸标签上。一个外侧引物是条形码引物,如以上所述的。第二外侧引物可以包括第二标签特异性部分和另外的条形码核苷酸序列,即,其可以是第二条形码引物。
在一个或多个扩增反应中可以进行扩增以掺入来自超过三个引物的元件。例如,可以在其中存在所有四个引物的一个扩增反应中进行四引物扩增。作为替代方案,可以例如在两个扩增反应中进行四引物扩增:一个用来掺入内侧引物并且一个不同的扩增反应用于掺入外侧引物。当所有四个引物都存在于一个扩增反应中时,外侧引物总体上是以过量形式存在于反应混合物中。在一步、四引物扩增反应中,对于条形码引物相对于正向和/或反向引物而言如上给出的相对浓度值还应用到外侧引物相对于内侧引物的浓度上。
组合方法
在四引物扩增反应的示例性实施方案中,外侧引物的每一个包含独特的条形码。例如,一个条形码引物可以由以下元件构成:5’-(第一条形码核苷酸序列)-(第一核苷酸标签)-3',并且该第二条形码引物可以由以下元件构成:5’-(第二条形码核苷酸序列)-(第二核苷酸标签)-3'。在这个实施方案中,可以使一定数量(J)的第一条形码引物与一定数量(K)的第二条形码引物组合从而生成JxK个独特的扩增产物。
在本发明的进一步示例性实施方案中,可以将多于4个引物结合到一个单一反应中从而附加条形码核苷酸序列和核苷酸标签的不同组合。例如,如上所述可以使包含以下元件的外侧条形码引物:5’-(第一条形码核苷酸序列)-(第一核苷酸标签)-3'、5-(第一条形码核苷酸序列)-(第二核苷酸标签)-3'、5’-(第二条形码核苷酸序列)-(第一核苷酸标签)-3'、5’-(第二条形码核苷酸序列)-(第二核苷酸标签)-3',与内侧靶特异性引物组合从而生成包含条形码引物与所希望的扩增子序列的所有组合的扩增产物池。
在本发明的其他示例性实施方案中,可以使上述组合或对于本领域普通技术人员而言是明显的其他组合中的任何一项中的外侧条形码引物与多于一对的具有相同第一和第二核苷酸标签序列的靶引物序列组合。例如,如上所述,可以使包含与同一第一核苷酸标签组合的高达十个不同靶特异性正向引物序列以及与同一第二核苷酸标签组合的高达十个不同靶特异性反向引物序列的内侧引物与高达2个或高达4个外侧条形码引物组合从而生成多个扩增产物。在不同实施方案中,可以使携带相同第一核苷酸标签以及第二核苷酸标签的至少10个、至少20个、至少50个、至少100个、至少200个、至少500个、至少1000个、至少2000个、至少5000个或至少10000个不同靶特异性引物对与高达2个或高达4个外侧条形码引物组合从而生成多个扩增产物。
双向组合方法
在四引物扩增反应的示例性的实施方案中,内侧和外侧引物可各自包含独特的条形码,从而扩增产生在所得的扩增子的每个末端的条形码组合。当扩增子将被测序时这一方法是有用的,因为条形码组合可从序列的任一末端读取。例如,可采用四引物以产生具有以下元件的分子:5'-第二条形码核苷酸序列-第一核苷酸标签序列-第一条形码核苷酸序列-靶核苷酸序列-第一条形码核苷酸序列-第二核苷酸标签序列-第二条形码核苷酸序列-3'。在示例性的四引物实施方案中,两个内侧引物可包含:
正向、内侧引物,包含第一核苷酸标签、第一条形码核苷酸序列和靶特异性部分;和
反向、内侧引物,包含靶特异性部分、第一条形码核苷酸序列和第二核苷酸标签。两个外侧引物可包含:
正向、外侧引物,包含第二条形码核苷酸序列和第一核苷酸标签特异性部分;和
反向、外侧引物,包含第二核苷酸标签特异性部分和第二条形码核苷酸序列。如以上讨论的,如果内侧和外侧引物被包含在相同的反应混合物中,外侧引物优选地以过量存在。
除了内侧和外侧引物以外还采用"填充"引物的六引物扩增方法中可产生元件的类似组合。如此,例如,两个内侧引物可包含:
正向、内侧引物,包含第一核苷酸标签和靶特异性部分;和
反向、内侧引物,包含靶特异性部分和第二核苷酸标签。两个填充引物可包含:
正向、填充引物,包含第三核苷酸标签、第一条形码核苷酸序列和第一核苷酸标签特异性部分;和
反向、填充引物,包含第二核苷酸标签特异性部分、第一条形码核苷酸序列、第四核苷酸标签。两个外侧引物可包含:
正向、外侧引物,包含第二条形码核苷酸序列和第三核苷酸标签特异性部分;和
反向、外侧引物,包含第四核苷酸标签特异性部分和第二条形码核苷酸序列。核酸扩增产生包含以下元件的扩增子:5'-第二条形码核苷酸序列-第三核苷酸标签序列-第一条形码核苷酸序列-第一核苷酸标签序列-靶核苷酸序列-第二核苷酸标签序列-第一条形码核苷酸序列-第四核苷酸标签序列-第二条形码核苷酸序列-3'。扩增可在一个、两个、三个扩增反应中进行。例如,所有三个引物对可被包含在一个反应中。可选地,可进行两个反应,例如,第一反应包括内侧和填充引物,第二反应仅包括外侧引物;或第一反应仅包括内侧引物,随后第二反应包括填充和外侧引物。当存在多于一个引物对时,相对于其他对为"外侧"对的引物对优选地以过量存在,如以上讨论的。如此,如果内侧和填充引物被包含在反应混合物中,填充引物优选地以过量存在,如果填充和外侧引物被包含在反应混合物中,外侧引物优选地以过量存在。当所有三个引物对被包含在单个反应中时,填充引物可以内侧引物和外侧引物的浓度之间的中间浓度存在。
在上述四引物和六引物扩增方法的某些实施方案中,例如,当反应中产生的分子将被进行DNA测序时,外侧引物可另外包含能够被DNA测序引物结合的第一和第二引物结合位点。例如,四引物反应可产生包含以下的加标签的靶核苷酸序列:5'-第一引物结合位点-第二条形码核苷酸序列-第一核苷酸标签序列-第一条形码核苷酸序列-靶核苷酸序列-第一条形码核苷酸序列-第二核苷酸标签序列-第二条形码核苷酸序列-第二引物结合位点-3'。这一实施方案提供的益处是,条形码组合可从分子任一末端的测序读取中确定。类似地,六引物反应可产生包含以下的加标签的靶核苷酸序列:5'-第一引物结合位点-第二条形码核苷酸序列-第三核苷酸标签序列-第一条形码核苷酸序列-第一核苷酸标签序列-靶核苷酸序列-第二核苷酸标签序列-第一条形码核苷酸序列-第四核苷酸标签序列-第二条形码核苷酸序列-第二引物结合位点-3'。
基于组合连接的加标签
在某些实施方案中,本发明包括用于将多个靶核苷酸序列组合加标签(例如,条形码化)的基于连接的方法。该方法采用来源于靶核酸的多个加标签的靶核苷酸序列。每个加标签的靶核苷酸序列包含核酸内切酶位点和第一条形码核苷酸序列。多个加标签的靶核苷酸序列包含相同的核酸内切酶位点、但N个不同的第一条形码核苷酸序列,其中N是大于1的整数。
用对核酸内切酶位点特异性的核酸内切酶切割加标签的靶核苷酸序列以产生多个具有粘末端的、加标签的靶核苷酸序列。然后在第一反应混合物中连接多个衔接子到加标签的靶核苷酸序列。多个衔接子包含第二条形码核苷酸序列和与多个具有粘末端的、加标签的靶核苷酸序列互补的粘末端。而且,多个衔接子包含M个不同的第二条形码核苷酸序列,其中M是大于1的整数。连接产生多个组合加标签的靶核苷酸序列,各自包含第一和第二条形码核苷酸序列,其中多个包含NxM个不同的第一和第二条形码组合。
在某些实施方案中,核酸内切酶位点邻近加标签的靶核苷酸序列中的第一条形码核苷酸序列。在此类实施方案的变化形式中,第二条形码核苷酸序列邻近衔接子中的互补粘末端。在具体实施方案中,例如,组合加标签的靶核苷酸序列包含由少于5个核苷酸分隔的第一和第二条形码核苷酸序列。
在具体实施方案中,例如,当组合加标签的靶核苷酸序列打算用于测序时,加标签的靶核苷酸序列可包含第一和第二引物结合位点,其可具有以下布置的任一种:5'-核酸内切酶位点-第一条形码核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点;和5'-第一引物结合位点-靶核苷酸序列-第二引物结合位点-第一条形码核苷酸序列-核酸内切酶位点-3'。为了帮助测序,第一和第二引物结合位点可以是DNA测序引物的结合位点。在此类实施方案的变化形式中,组合加标签的核苷酸序列可包含以以下布置之一的第二条形码核苷酸序列:5'-第二条形码核苷酸序列-第一条形码核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点;或5'-第一引物结合位点-靶核苷酸序列-第二引物结合位点-第一条形码核苷酸序列-第二条形码核苷酸序列-3'。
可用于这一方法的加标签的靶核苷酸序列可通过任何方便的手段制备,诸如,例如,通过连接衔接子到多个靶核酸,其中衔接子包含:第一衔接子,包含核酸内切酶位点、第一条形码核苷酸序列、第一引物结合位点和粘末端;和第二衔接子,包含第二引物结合位点和粘末端。
在一些实施方案中,有利地在加标签的靶核苷酸序列中包含一个或多个另外的核苷酸序列,例如,以帮助操作和/或鉴定。如此,加标签的靶核苷酸序列可包含第一另外的核苷酸序列,具有选自以下的布置:5'-核酸内切酶位点-第一条形码核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-第一另外的核苷酸序列;和/或5'-第一另外的核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-第一条形码核苷酸序列-核酸内切酶位点-3'。例如,在Illumina测序中,流动小室结合序列(例如,PE1和PE2)被掺入在待测序的DNA模板的任一末端。在本方法中,加标签的靶核苷酸序列可包含一个流动小室结合序列作为第一另外的核苷酸序列,且另一个流动小室结合序列可经由衔接子被引入。参见,例如,图5A-B。如此,本方法可采用包含第二另外的核苷酸序列并具有以下布置的衔接子:5'-第二另外的核苷酸序列-第二条形码核苷酸序列-互补粘末端-3'。在这种情形中,连接衔接子到包含第一另外的核苷酸序列的上述加标签的靶核苷酸序列产生组合加标签的靶核苷酸序列,包含:5'-第二另外的核苷酸序列-第二条形码核苷酸序列-第一条形码核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-第一另外的核苷酸序列;和/或5'-第二另外的核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-第一条形码核苷酸序列-第二条形码核苷酸序列-第一另外的核苷酸序列-3'。在这一实施方案的变化形式中,第一和/或第二另外的核苷酸序列包含引物结合位点。
包含第一另外的核苷酸序列的加标签的靶核苷酸序列可通过任何方便的手段制备,诸如,例如,通过连接衔接子到多个靶核酸,其中衔接子包含:第一衔接子,包含核酸内切酶位点、第一条形码核苷酸序列、第一引物结合位点和粘末端;和第二衔接子,包含第一另外的核苷酸序列、第二引物结合位点和粘末端。
基于组合插入诱变的加标签
组合加标签还可利用插入诱变进行。在某些实施方案中,多个靶核苷酸序列的组合加标签通过以下进行:退火多个条形码引物到来源于靶核酸的多个加标签的靶核苷酸序列,然后在第一反应混合物中扩增加标签的靶核苷酸序列以产生多个组合加标签的靶核苷酸序列,各自包含第一和第二条形码核苷酸序列,其中多个包含NxM个不同的第一和第二条形码组合。
在具体实施方案中,每个加标签的靶核苷酸序列包含在一个末端的核苷酸标签、和第一条形码核苷酸序列,其中多个加标签的靶核苷酸序列包含相同的核苷酸标签、但N个不同的第一条形码核苷酸序列,其中N是大于1的整数。在此类实施方案的变化形式中,第一条形码核苷酸序列被靶核苷酸序列与核苷酸标签间隔。每个条形码引物包含:第一标签特异性部分,连接于第二条形码核苷酸序列,其自身连接于第二标签特异性部分,其中多个条形码引物各自包含相同的第一和第二标签特异性部分、但M个不同的第二条形码核苷酸序列,其中M是大于1的整数。条形码引物的第一标签特异性部分退火到核苷酸标签的5'部分,且条形码引物的第二标签特异性部分退火到核苷酸标签的邻近的3'部分(an adjacent 3'portion of the nucleotide tag),且第二条形码核苷酸序列不退火到核苷酸标签,在退火的第一和第二标签特异性部分之间形成环。
在具体实施方案中,例如在DNA测序中有用的,加标签的核苷酸序列另外包含在靶核苷酸序列和第一条形码核苷酸序列之间的引物结合位点。在此类实施方案的变化形式中,条形码引物的第一和第二标签特异性部分足够长以用作引物结合位点。为了帮助测序,这些结合位点的一个或多个、或优选地所有,是DNA测序引物的结合位点。在此类实施方案中,组合加标签的靶核苷酸序列可包含5'-第一标签特异性部分-第二条形码核苷酸序列-第二标签特异性部分-靶核苷酸序列-引物结合位点-第一条形码核苷酸序列-3'。
在一些实施方案中,有利地在加标签的靶核苷酸序列中包含一个或多个另外的核苷酸序列,例如,以帮助操作和/或鉴定。如此,加标签的靶核苷酸序列可包含第一另外的核苷酸序列,具有以下布置:5'-核苷酸标签-靶核苷酸序列-引物结合位点-第一条形码核苷酸序列-第一另外的核苷酸序列-3'。例如,在Illumina测序中,流动小室结合序列(例如,PE1和PE2)被掺入在待测序的DNA模板的任一末端。在本方法中,加标签的靶核苷酸序列可包含一个流动小室结合序列作为第一另外的核苷酸序列,且另一个流动小室结合序列可经由条形码引物被引入。参见,例如,图6。如此,本方法可采用包含第二另外的核苷酸序列并具有以下布置的条形码引物:5'-第二另外的核苷酸序列-第一标签特异性部分-第二条形码核苷酸序列-第二标签特异性部分-3'。在这种情形中,扩增产生组合加标签的靶核苷酸序列,包含5'-第二另外的核苷酸序列-第一标签特异性部分-第二条形码核苷酸序列-第二标签特异性部分-靶核苷酸序列-引物结合位点-第一条形码核苷酸序列-第一另外的核苷酸序列-3'。在这一实施方案的变化形式中,第一和/或第二另外的核苷酸序列包含引物结合位点。
靶核苷酸序列可通过任何方便的手段加标签,包括本文描述的基于引物的方法。在某些实施方案中,核苷酸标签包含转座子末端,其利用转座酶被掺入到加标签的靶核苷酸序列中。
掺入核酸序列的反应
可采用任何方法以掺入核酸序列到靶核酸中。在示意性实施方案中,采用PCR。当使用三个或更多个引物时,扩增通常进行至少三个循环以掺入第一和第二核苷酸标签以及条形码核苷酸序列。在多个实施方案中,扩增进行5、10、15、20、25、30、35、40、45或50个循环、或落入以这些值的任一个作为端点的范围中的任何数目的循环(例如5-10个循环)。在具体实施方案中,扩增进行足够数目的循环以将靶扩增子拷贝数跨靶和跨样品标准化(例如,15、20、25、30、35、40、45或50个循环、或落入以这些值的任一个作为端点的范围中的任何数目的循环)。
上述方法的特定实施方案提供大致上均一的扩增,产生多个靶扩增子,其中大多数扩增子以相对接近对多个靶扩增子计算的平均拷贝数的水平存在。如此,在多个实施方案中,靶扩增子的至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%以大于靶扩增子的平均拷贝数的50%和小于靶扩增子的平均拷贝数的2倍存在。
应用
在示意性实施方案中,条形码核苷酸序列辨识特定样品。如此,例如,T个靶核酸的组可在S个样品的每个中扩增,其中S和T是整数,通常大于1。在此类实施方案中,扩增可对每个样品分别进行,其中相同的正向和反向引物组用于每个样品,且正向和反向引物组具有该组中所有引物共同的至少一个核苷酸标签。不同的条形码引物可用于每个样品,其中条形码引物具有不同的条形码核苷酸序列、但相同的可退火到共同的核苷酸标签的标签特异性部分。这个实施方案具有的益处是,减少对多个靶序列产生的扩增子中编码样品来源需要被合成的不同的引物的数目。可选地,不同的正向和反向引物组可用于每个样品,其中每个组具有不同于另一组中的引物的核苷酸标签,且不同的条形码引物用于每个样品,其中条形码引物具有不同的条形码核苷酸序列和不同的标签特异性部分。在任一种情形中,扩增从每个样品产生带有样品特异性条形码的T个扩增子的组。
在其中相同的正向和反向引物组用于每个样品的实施方案中,每个靶的正向和反向引物可与样品分别地最初合并,且每个条形码引物可与其相应的样品最初合并。然后可将最初合并的正向和反向引物的小份加入到最初合并的样品和条形码引物的小份以产生S×T个扩增混合物。这些扩增混合物可在任何物品中形成,所述物品可经受适于扩增的条件。例如,在扩增之前,扩增混合物可在微流体装置的分别的区室中形成或被分配到微流体装置的分别的区室中。在示意性实施方案中,适合的微流体装置包括矩阵型微流体装置,诸如以下描述的那些。
在某些实施方案中,在本文描述的任何方法中产生的靶扩增子可从扩增混合物回收。例如,适于允许回收每个反应区室的内容物的矩阵型微流体装置(参见以下)可用于扩增以产生靶扩增子。在这些实施方案的变化形式中,可对靶扩增子进行进一步的扩增和/或分析。在某些实施方案中,扩增混合物中产生的靶扩增子的量可在扩增期间定量,例如,通过定量实时PCR,或之后定量。
在可用于单颗粒分析的实施方案中,组合条形码化可用于编码反应体积的身份、以及因此为扩增产物的来源的颗粒的身份。在具体实施方案中,核酸扩增利用至少两个条形码序列进行,且条形码序列的组合编码为反应产物的来源的反应体积的身份(称为"组合条形码化")。当分别的反应体积处于矩阵型微流体装置的分别的区室中时方便地采用这些实施方案,例如,如从Fluidigm Corp.(South San Francisco,CA)可得的和以下描述的那些(参见"微流体装置")。每个分别的区室可包含辨识在其中进行编码反应的区室的行和列的条形码核苷酸序列的组合。如果回收反应体积并对其进行包括检测条形码组合的进一步分析(例如,通过DNA测序),可将结果与特定区室关联,并从而与该区室中的特定颗粒关联。当在回收过程期间或之后合并分别的反应体积,从而合并("汇集")来自多个分别的反应体积的反应产物时,此类实施方案特别有用。在矩阵型微流体装置中,例如,可汇集来自行中的所有区室、列中的所有区室、或装置中的所有区室的反应产物。如果汇集行中的所有区室,行中的每列优选地具有独特的条形码组合。如果汇集列中的所有区室,列中的每行具有独特的条形码组合。如果汇集装置中的所有区室,装置中的每个区室具有独特的条形码组合。
条形码化和汇集反应混合物用于后续分析
在其他实施方案中,条形码化和汇集策略用于在单独反应混合物中检测多个靶核酸,所述单独反应混合物可例如包含单独颗粒,诸如细胞。这一策略在以下实施例7中对基因表达的单细胞分析描述。
在一个实施方案中,方法包括准备将在检验前被汇集的M个第一反应混合物,其中M是大于1的整数。每个反应混合物包含样品核酸;第一、正向引物,包含靶特异性部分;和第一、反向引物,包含靶特异性部分。第一、正向引物或第一、反向引物可另外包含条形码核苷酸序列,其中M个反应混合物的每一个中的每个条形码核苷酸序列是不同的。可选地,第一、正向引物或第一、反向引物另外包含核苷酸标签,且每个反应混合物另外包含至少一个条形码引物,条形码引物包含条形码核苷酸序列和核苷酸标签特异性部分,其中M个反应混合物的每一个中的每个条形码核苷酸序列是不同的。在这一实施方案中,条形码引物一般是比第一、正向和/或第一、反向引物过量的。对每个第一反应混合物进行第一反应以产生多个条形码化的靶核苷酸序列,各自包含靶核苷酸序列连接于条形码核苷酸序列。对于M个反应混合物的每一个,汇集条形码化的靶核苷酸序列以形成检验池。在这一检验池中,来自特定反应混合物的特定靶核苷酸序列被特定条形码核苷酸序列独特地辨识。使用独特的第二引物对对检验池或其一个或多个等份进行第二反应,其中每个第二引物对分别包含退火到靶核苷酸序列的第二、正向或反向引物;和退火到条形码核苷酸序列的第二、反向或正向引物。方法包括对每个独特的、第二引物对,确定反应产物是否存在于检验池或其等份中。对每个独特的、第二引物对,反应产物的存在指示特定第一反应混合物中特定靶核酸的存在。
在某些实施方案中,方法包括制备MxN个第一反应混合物,其中N是大于1的整数,且每个第一反应混合物包含对不同的靶核酸特异性的第一、正向和反向引物对。在第一反应后,制备各自包含M个第一反应混合物的N个检验池,其中检验池中每个条形码化的靶核苷酸序列包含不同的条形码核苷酸序列。第二反应在N个检验池的每一个中进行,每个检验池与每个其他的检验池是分开的。
对于第一反应,可进行能够产生靶核苷酸序列连接于条形码核苷酸序列的任何反应。方便的第一反应包括扩增和连接。
第二反应可以是依赖于条形码化的靶核苷酸序列的基于引物的检测的任何反应。可使用包括扩增和/或连接步骤,包括本文描述和/或本领域已知的那些的任一种的方法。例如,反应产物的存在可利用聚合酶链式反应(PCR)或连接酶链式反应(LCR)检测。在一些实施方案中,采用实时检测。
示例性的第二反应可采用LCR来检测具有以下结构的条形码化的靶核苷酸序列:5'-正向引物序列-靶核苷酸序列-反向引物序列-条形码核苷酸序列-3'。在这种情形中,一个引物可退火到反向引物序列,另一个引物可退火到邻近的条形码核苷酸序列,随后是连接、和重复的退火和连接循环。反向引物序列提供靶信息,且条形码核苷酸序列辨识池(其可,例如,代表特定样品中扩增的所有靶的池)。参见图8A。
示例性的第二反应可包括实时检测,例如,利用悬垂片核酸内切酶-连接酶链式反应。这一反应采用标记的探针和未标记的探针,其中探针对反应产物的同时杂交导致在标记的探针的5'末端形成悬垂片,且悬垂片的裂解产生信号。例如,悬垂片的裂解可分离荧光团与猝灭剂以产生信号。可采用示例性的实施方案来检测具有以下结构的反应产物:5'-正向引物序列-靶核苷酸序列-反向引物序列-条形码核苷酸序列-3'。在这种情形中,反应可采用退火到反向引物序列的未标记的探针和退火到邻近的条形码核苷酸序列的标记的探针。未标记的探针的3'末端的退火阻止标记的探针的5'末端的退火,形成悬垂片。这一5'悬垂片部分可用荧光团标记,且退火到条形码核苷酸序列的部分可带有猝灭剂,从而悬垂片被酶诸如5'悬垂片核酸内切酶的裂解释放悬垂片,藉以猝灭剂不再能够猝灭荧光团。参见图8B。
有用的替代性实时检测方法,例如,用于检测通过LCR产生的扩增子,依赖于使用双链DNA结合染料来检测反应产物和LCR所用的引物之间的解链温度差异。解链温度分析包括在反应产物是大致上双链且在双链DNA结合染料存在下能够产生信号、但引物是大致上单链且不能产生信号的温度下检测。例如,对于检测具有以下结构的条形码化的靶核苷酸序列:5'-正向引物序列-靶核苷酸序列-反向引物序列-条形码核苷酸序列-3',一个引物可退火到反向引物序列,另一个引物可退火到邻近的条形码核苷酸序列,随后是连接、和重复的退火和连接循环。参见图8C。连接的引物序列例如,R1加BC1与其互补物的长度比R1或BC1与其互补物的长度足够地长,从而在高温下,连接的引物序列是大致上双链的(即产生信号),而未连接的引物序列是大致上单链的(即不产生信号)。在多个实施方案中,至少约10%、20%、30%、40%、50%、60%、70%、80%或90%的未连接的引物是单链的。在这些实施方案的每一个中,为双链的连接的引物的百分比可以是至少约10%、20%、30%、40%、50%、60%、70%、80%或90%。
在某些实施方案中,在微流体装置的分别的区室中准备第一反应混合物,分别的区室被布置为由行和列界定的阵列,例如,如从Fluidigm Corp.(South San Francisco,CA)可获得和以下描述的那些(参见"微流体装置")。例如,适于允许回收反应区室的内容物的矩阵型微流体装置(参见以下)可用于第一反应。这一方法对于准备各自包含M个第一反应混合物的N个检验池尤其方便。更具体地,第一反应在微流体装置的分别的区室中进行,其中分别的区室被布置为由行和列界定的阵列。N个检验池的每一个通过汇集装置的行或列中的第一反应混合物来获得。每个条形码化的靶核苷酸序列中的条形码核苷酸序列、连同检验池的身份,辨识为条形码化的靶核苷酸序列的来源的区室的行和列。在具体实施方案中,在微流体装置的分别的区室中准备第二反应混合物,微流体装置具有被布置为由行和列界定的阵列的分别的区室。例如,可在第一微流体装置的分别的区室中准备第一反应混合物以掺入条形码核苷酸序列(例如,Fluidigm Corporation的ACCESS ARRAYTM IFC(Integrated Fluidic Circuit)或MA006 IFC),在第二、不同的微流体装置的分别的区室中准备第二反应混合物以例如帮助检测(例如,Fluidigm Corporation的DYNAMIC ARRAYTMIFC之一,利用PCR或RT-PCR,以双链DNA结合染料诸如EvaGreen用于检测)。
在具体实施方案中,第一和/或第二反应的至少一个对单独颗粒诸如细胞进行。颗粒捕获和检验可如以下描述或如本领域已知的进行。Fluidigm Corporation的MA006 IFC充分适合于这一目的。颗粒在进行第一和/或第二反应时可以是大致上完整的,提供将与目的靶核酸接触的必需反应物。可选地,可在第一或第二反应之前破裂(disrupt)颗粒以帮助条形码化和/或后续分析。在一些实施方案中,在进行多个第一反应之前,用引发生物响应的剂处理颗粒。
后续分析
掺入核酸序列到靶核酸中的上述方法的任一种(包括上述的条形码化和汇集方法)可包括多种分析步骤的任一种,诸如确定第一反应混合物中至少一个靶核酸的量或确定第一反应混合物中一个或多个DNA分子的拷贝数。在其中加标签的或条形码化的靶核苷酸序列由PCR产生的某些实施方案中,例如,其中进行拷贝数确定的那些,有利地进行少于20个循环的PCR以保留不同的靶核苷酸序列的相对拷贝数。
上述方法的任一种可包括确定第一反应混合物中在一个或多个基因座处的基因型和/或确定第一反应混合物中多个基因座的单体型。单体型确定可例如通过以下进行:压缩(condensing)染色体和将染色体分配到第一反应混合物中以产生包含单个染色体的多个第一反应混合物。这一分配可例如如以下所述地对单颗粒分析进行(在这种情形中,被分析的"颗粒"是染色体)。可测序第一反应混合物中的多个基因座、以及因此必需在相同的染色体上的(therefore necessarily on the same chromosome),以对那些基因座的提供单体型。
在上述方法的任一种中,例如,其中进行RT-PCR时,可确定第一反应混合物中一个或多个RNA分子的表达水平。同DNA拷贝数确定一样,有利地进行少于20个循环的PCR以保留差异的相对拷贝数。
无论第一反应混合物中的靶核酸是DNA或RNA,后续分析可包括确定从其产生的靶核苷酸序列的序列。
在一些实施方案中,本文描述的方法包括在每个第一反应混合物中进行多个反应,其中多个反应之一包括扩增以产生加标签的或条形码化的靶核苷酸序列,分析多个反应的结果,并将分析结果与每个第一反应混合物关联。这一关联可由如以上提及的加标签或条形码化靶核苷酸序列来帮助。例如,组合条形码化可用于编码关于来源反应混合物的信息。可选地,引物序列和条形码的组合可编码这一信息,如以上对于条形码化和汇集方法所讨论的。
双向核酸测序
在具体实施方案中,本发明提供制备核酸用于双向DNA测序的方法,其帮助在单个读取测序运行中测序扩增产物的两个末端。此类方法在实施例9中示例。
待测序的DNA可以是任何类型的DNA。在具体实施方案中,DNA是来自生物体的基因组DNA或cDNA。在一些实施方案中,DNA可以是片段化的DNA。待测序的DNA可以是样品中RNA的代表,其中DNA通过例如逆转录或扩增RNA来获得。在某些实施方案中,DNA可以是DNA文库。
为了制备核酸用于根据本文描述的方法的双向DNA测序,利用内侧引物组扩增待测序的每个靶核酸,其中该组包含:
内侧、正向引物,包含靶特异性部分和第一引物结合位点;
内侧、反向引物,包含靶特异性部分和第二引物结合位点,其中第一和第二引物结合位点是不同的。这些第一和第二引物结合位点起到双重功能,用作帮助添加进一步的核苷酸序列的核苷酸标签(如以下所述),和在某些实施方案中,用作DNA测序引物可退火到的引物结合位点。在实施例9的具体实施方案中,第一和第二引物结合位点命名为"CS1"和"CS2",代表"共有序列标签1"和"共有序列标签2"。在这一实施方案中,内侧引物的靶特异性部分命名为"TS-F",代表"靶特异性正向",和"TS-R",代表"靶特异性反向"。
扩增后,靶核苷酸序列变得被第一和第二引物结合位点加标签。将这些加标签的靶核苷酸序列退火到两组外侧引物,其退火到第一和第二引物结合位点。两组外侧引物包含:
第一外侧引物,其中该组包含:
第一外侧、正向引物,包含对第一引物结合位点特异性的部分;和
第一外侧、反向引物,包含条形码核苷酸序列和对第二引物结合位点特异性的部分;
第二外侧引物组,其中该组包含:
第二外侧、正向引物,包含条形码核苷酸序列和对第一引物结合位点特异性的部分;和
第二外侧、反向引物,包含对第二引物结合位点特异性的部分。然后扩增产生两个靶扩增子,即:
第一靶扩增子,包含5'-第一引物结合位点-靶核苷酸序列-第二引物结合位点-条形码核苷酸序列-3';和
第二靶扩增子,包含5'-条形码核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-3'。在具体实施方案中,两个靶扩增子的每个中的条形码核苷酸序列是相同的,且每个靶扩增子仅包含一个条形码核苷酸序列。在一些实施方案中,当扩增多于一个靶核酸时,产生的每对靶扩增子可具有相同的条形码序列,但不同的对可具有不同的条形码序列。在这种情形中,从不同的靶核酸产生的不同的靶扩增子之间的条形码序列将不同。如以上讨论的,例如,来自特定生物样品的不同的靶核酸组可用相同的组特异性序列(即,在组之间不同的序列)条形码化。在具体的实施方案中,组特异性条形码可以是样品特异性条形码,即,辨识靶扩增子所来自的样品的条形码。
在某些实施方案中,外侧引物各自另外包含另外的核苷酸序列,其中:
第一外侧、正向引物包含第一另外的核苷酸序列,且第一外侧、反向引物包含第二另外的核苷酸序列;和
第二外侧、正向引物包含第二另外的核苷酸序列,且第二外侧、反向引物包含第一另外的核苷酸序列,且第一和第二另外的核苷酸序列是不同的。在此类实施方案中,外侧引物扩增产生两个靶扩增子,即:
第一靶扩增子,包含5'-第一另外的核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-条形码核苷酸序列-第二另外的核苷酸序列-3';和
第二靶扩增子,包含5'-第二另外的核苷酸序列-条形码核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-第一另外的核苷酸序列3'。(本领域技术人员理解,本文以这种方式描述的扩增子是对一条链描述的,互补链将具有这些核苷酸序列反向的5'至3'顺序。)
第一和/或第二另外的核苷酸序列还可包含引物结合位点。这一类型的示例性的引物构造描述在实施例9中,其中另外的核苷酸序列命名为"PE-1"和"PE-2"。这些序列是由Genome Analyzer(从Illumina,Inc.,San Diego,CA商购)使用的衔接子序列。条形码核苷酸序列命名为"BC"。利用这些引物的外侧引物扩增产生两个靶扩增子,即:
第一靶扩增子,包含5'-PE1-CS1-靶核苷酸序列-CS2-BC-PE2-3';和
第二靶扩增子,包含5'-PE2-BC-CS1-靶核苷酸序列-CS2-PE1-3'。在具体、示例性实施方案中,第一外侧引物组PE1-CS1和PE2-BC-CS2、和第二外侧引物组PE1-CS2和PE2-BC-CS1具有在实施例9的表1中所示的核苷酸序列。
内侧和外侧引物扩增可在单个扩增反应中进行。可选地,内侧引物扩增可在第一扩增反应中进行,且外侧引物扩增可在不同于第一的第二、扩增反应中进行。在某些实施方案中,第二扩增反应可在两个分别的第二扩增反应中进行:一个采用第一外侧引物组且另一个采用第二外侧引物组。参见实施例9、图2。在此类实施方案中,可汇集在每个分别的第二扩增反应中产生的靶扩增子用于进一步分析,诸如DNA测序。
在许多实施方案中,上述方法将对多个靶核酸,诸如例如,DNA文库进行。在这种情形中,方法可用于对每个靶核酸产生包含两个类型扩增子(以上描述并在实施例9、图2中以"A"和"B"示例)的靶扩增子的池。一个类型的靶扩增子("A")帮助测序靶核酸的5'末端,另一个类型的靶扩增子("B")帮助测序靶核酸的3'末端。此外,每个靶扩增子包含条形码序列,在某些实施方案中,其在两个类型的靶扩增子的每种中是相同的。条形码核苷酸序列可编码关于靶核苷酸序列的信息,诸如产生其的反应的身份和/或靶核酸所来源自的样品的身份。如在以下更详细描述的,每个靶扩增子中的靶核苷酸序列和条形码核苷酸序列可利用任何适合的可得DNA测序方法容易地确定。在具体实施方案中,DNA测序方法是高通量测序方法,诸如桥式扩增(簇式产生(cluster generation))和由Illumina,Inc.,San Diego,CA商品化的测序方法。在某些实施方案中,例如,采用桥式扩增和测序的那些中,靶扩增子的平均长度是小于200个碱基、小于150个碱基或小于100个碱基。
在桥式扩增和测序中,例如,将如本文所述产生的靶扩增子,经由第一和第二另外的核苷酸序列(例如,PE1和PE2)与固定的引物对的坪(a lawnof immobilized primerpairs)杂交。每个引物对中的一个固定的引物是可裂解的。进行第一链合成以产生双链分子。将这些变性,且洗掉用作第一链合成模板的最初杂交的靶扩增子链,留下固定的第一链。这些可翻转并与适合的邻近的引物杂交,形成桥。进行第二链合成以产生双链桥。将这些变性,每个桥产生两个固定的单链分子,其可再次与适合的固定的引物杂交。进行等温桥式扩增以产生多个双链桥。将双链桥变性,裂解并洗掉"反向"链,留下可用作DNA测序模板的固定的"正向"链的簇。
当对如本文所述产生的靶扩增子进行桥式扩增和测序时,可采用退火到第一和第二引物结合位点的引物(例如,CS1和CS2)来测序靶核苷酸序列或条形码核苷酸序列,二者都存在于从扩增子产生的固定的模板中。在某些实施方案中,在适于退火的条件下将适于测序靶核苷酸序列的引物对与固定的模板接触,随后DNA测序。读取这些序列后,可将测序产物变性和洗掉。然后可在适于退火的条件下将固定的模板与适于测序条形码核苷酸序列的引物对接触,随后DNA测序。这些测序反应的顺序不是关键并可以反转(即,可以先测序条形码核苷酸序列,随后测序靶核苷酸序列)。参见实施例9、图3。在某些实施方案中,引发测序条形码核苷酸序列的引物是引发测序靶核苷酸序列的引物的反向互补物。在具体、示例性实施方案中,用以引发测序靶核苷酸序列和条形码核苷酸序列的引物是CS1、CS2、CS1rc和CS2rc(表2,实施例9)。
方便地,在相同的反应中对两个类型的靶扩增子进行桥式扩增和测序以允许同时测序来自每个类型靶扩增子的模板。参见实施例9、图3。这允许从5'末端(例如,在实施例9、图3中,通过测序来自A型扩增子的模板)和从3'末端(例如,在实施例9、图3中,通过测序来自B型扩增子的模板)同时测序每个靶核苷酸序列。在具体实施方案中,结合第一和第二引物结合位点并引发测序靶核苷酸序列的引物以大致上相等的浓度存在,从而产生来自每个靶核苷酸序列的5'和3'DNA序列信息。类似地,在某些实施方案中,结合第一和第二引物结合位点并引发测序条形码核苷酸序列的引物以大致上相等的浓度存在,从而产生来自每个模板类型的条形码序列(即,在实施例9、图3中,来源于A型扩增子或B型扩增子)。
当内侧扩增作为分别的反应进行时,尤其是当扩增多个靶核酸时,在微流体装置,诸如本文描述的或本领域已知的那些的任一个的分别的区室中进行单独反应(例如,每个反应扩增1、2、3、4、5或更多靶核酸)可以是方便的。如以下讨论的,适合的微流体装置可至少部分地从弹性体材料制造。
在具体实施方案中,内侧或(内侧和外侧)扩增在设计为在进行扩增反应后帮助回收扩增产物的微流体装置中进行,诸如本文描述的(参见图2-9)并可从Fluidigm,Inc.,South San Francisco,CA获得的ACCESS ARRAYTMIFC。在这一类型的示例性的装置中,可使用膨胀泵送(dilation pumping)以从微流体装置去除大致上所有反应产物,提供不同反应产物池之间的均匀性。如此,产生在体积和拷贝数方面是均匀的条形码化的反应产物的池是可能的。在多个实施方案中,体积和/或拷贝数均匀性是使得在体积和/或拷贝数方面,从装置回收的每个池的变率是小于约100%、小于约90%、小于约80%、小于约70%、小于约60%、小于约50%、小于约40%、小于约30%、小于约20%、小于约17%、或小于约15%、12%、10%、9%、8%、7%、6%、5%、4.5%、4%、3.5%、3%、2.5%、2%、1.5%、1%或0.5%。本领域技术人员理解,体积和/或拷贝数变率可落入以这些值的任一个为边界的任何范围内(例如,约2%至约7%)。在示例性实施方案中,从微流体装置回收的体积样品改变不大于大约10%。标准吸量误差是以5%至10%的数量级。如此,在体积方面观察到的变量主要可归因于吸量误差。与常规技术相比,利用本文描述的系统和方法减少了制备测序文库所需的时间和劳动。
本领域技术人员将知晓可用于对多个不同的靶核酸、各自在分别的反应中进行本文所述的内侧(或内侧和外侧)扩增的其他装置和策略。例如,基于液滴的扩增充分适合于进行这一内侧扩增。参见,例如,2007年11月13日授权的Quake等人的美国专利号7,294,503,题为"Microfabricated crossflow devices and methods",其通过引用全文并入本文,尤其是其形成和分析液滴的装置和方法的描述;2010年1月28日公布的Link等人的美国专利公布号20100022414,题为"Droplet libraries",其通过引用全文并入本文,尤其是其形成和分析液滴的装置和方法的描述;和2011年1月6日公布的Miller等人的美国专利公布号20110000560,题为"Manipulation ofMicro fluidic Droplets",其通过引用全文并入本文,尤其是其形成和分析液滴的装置和方法的描述。在具体实施方案中,内侧扩增在乳液的液滴中进行。
通过引物延伸编码和检测/定量等位基因
检测和评价核酸样品中特定靶核酸(例如,罕见突变)的比例的方法中可采用核酸编码。这一方法包括从样品中的第一和第二靶核酸产生第一和第二加标签的靶核苷酸序列。例如,方法可通过利用等位基因特异性扩增将等位基因特异性核苷酸标签引入所得的加标签的靶核苷酸序列来进行。然后对加标签的靶核苷酸序列进行利用对每个核苷酸标签特异性的引物的引物延伸反应。方法包括检测和/或定量指示第一引物的延伸的信号和指示第二引物的延伸的信号。给定引物的信号指示相应的靶核酸的存在、和/或相对量。这一方法可方便地在高通量(例如,下一代)DNA测序平台上进行以通过检测标签的存在,而不是通过确定每个分子的DNA序列检测例如样品中的已知突变。这一方法的益处是速度、灵敏度和准确。下一代测序中检查的大量克隆分子允许可靠地检测非常罕见的序列(例如,106个序列中小于1个)。而且,可以比PCR更准确地确定靶序列(例如,突变)的比例,因为下一代测序平台可获得非常高数目的读取。
为了帮助DNA测序平台上的引物延伸,可将用于例如高通量DNA测序的衔接子引入第一和第二加标签的靶核苷酸序列。在具体实施方案中,将衔接子引入到加标签的靶核苷酸序列分子的每个末端。这些衔接子可方便地在一个反应中与核苷酸标签一起引入。
核苷酸标签和/或DNA测序衔接子可利用任何适合的方法诸如例如,扩增或连接引入靶核苷酸序列。例如,可通过分别用第一和第二引物对扩增第一和第二靶核酸产生第一和第二加标签的靶核苷酸序列。第一引物对中的至少一个引物包含第一核苷酸标签且第二引物对中的至少一个引物包含第二核苷酸标签。当在相同的反应中引入DNA测序衔接子时,每个引物对中的一个引物包含5'-(DNA测序衔接子)-(核苷酸标签)-(靶特异性部分)-3',且每个引物对中的另一个引物包含5'-(DNA测序衔接子)-(靶特异性部分)-3'。
许多高通量DNA测序技术包括在DNA测序之前的扩增步骤。因此,在一些实施方案中,在DNA测序平台上引物延伸之前进一步扩增加标签的靶核苷酸序列。例如,可进行乳液扩增或桥式扩增。乳液PCR(emPCR)将单独的DNA分子连同引物涂覆的珠一起分离到位于油相中的水滴中。PCR生成了DNA分子的多个拷贝,这些DNA分子连接到珠上的引物上,紧接着进行固定用于后续测序。emPCR被用于由Marguilis等人(由454 Life Sciences,Branford,CT商品化)、Shendure以及Porreca等人(在本文称为“454测序”,也称为“聚合酶克隆测序(polony sequencing)”)以及SOLiD测序(Life Technologies,Foster City,CA)提供的方法中。参见M.Margulies,等人.(2005)"Genome sequencing in microfabricated high-density picolitre reactors"Nature437:376-380;J.Shendure,等人.(2005)"AccurateMultiplex Polony Sequencing of an Evolved Bacterial Genome"Science 309(5741):1728-1732。还可以通过“桥式PCR”进行体外克隆扩增,其中当引物附加到固体表面上时,片段被扩增。Braslavsky等人开发了一种单分子方法(由Helicos Biosciences Corp.,Cambridge,MA商品化),该方法省略了这个扩增步骤,直接地将DNA分子固定到表面上。I.Braslavsky,等人.(2003)"Sequence information can be obtained from single DNAmolecules"Proceedings of the National Academy of Sciences of the UnitedStates of America 100:3960-3964。
被物理结合到表面上的DNA分子可以被平行地测序。“通过合成测序”,像染料终止电泳测序一样,使用DNA聚合酶来确定碱基序列。“焦磷酸测序”使用DNA聚合作用,一次加入一个核苷酸并且通过附加的焦磷酸盐的释放所发出的光对被加入到给定位置的核苷酸的数量进行检测和定量(由454 Life Sciences,Branford,CT商品化)。参见M.Ronaghi,等人.(1996)."Real-time DNA sequencing using detection of pyrophosphate release"Analytical Biochemistry 242:84-89。可逆的终止剂方法(由Illumina,Inc.,San Diego,CA和Helicos Biosciences Corp.,Cambridge,MA商品化)通过反复去除封闭基团以允许聚合另一个核苷酸使用染料终止剂的可逆形式,一次加入一个核苷酸,并且实时地对各位置上的荧光进行检测。
在通过引物延伸的检测方法的一个实施方案中,其可方便地在454测序平台上进行,第一和第二引物延伸反应在引物延伸的至少两个循环中顺序地进行。具体地,引物延伸的第一循环利用退火到第一核苷酸标签的第一引物进行,引物延伸的第二循环利用退火到第二核苷酸标签的第二引物进行。在每个引物延伸循环中提供所有脱氧核苷三磷酸(dNTP)。任何dNTP向DNA分子的掺入产生可检测信号。在第一循环中检测的信号指示核酸样品中第一靶核酸的存在,而在第二循环中检测的信号指示核酸样品中第二靶核酸的存在。如此,可用仅单个循环的测序平台检测每个靶核酸(例如,突变)。
因为检测的信号是与靶核酸的拷贝数成比例的,信号还可用于评价样品中靶核酸的量。具体地,信号可用于确定两个或多个靶核酸相对彼此的量。
在使用454测序平台检测野生型和突变体靶核酸的示例性的实施方案中,用待检测的野生型和每个突变体的特异性标签准备等位基因特异性PCR反应。如图31所示的,正向引物具有454衔接子和等位基因特异性标签(用不同的阴影辨识)。衔接子是在标签的5',标签是在引物的等位基因特异性部分的5'。反向引物包含靶特异性部分5'的454衔接子。如图31所示的,仅需要一个反向引物来检测单核苷酸多态性。在这一实例中,在单个PCR反应中进行两个等位基因特异性PCR反应,而这不是该方法必需的。PCR反应产生对454珠乳液PCR准备的加标签的靶核苷酸序列。可省略乳液PCR步骤,例如,通过直接退火加标签的靶核苷酸序列到预负载有等位基因特异性寡核苷酸的珠(即,每个单独珠带有仅一个类型的寡核苷酸)。在任一种情形中,单独珠将带有仅一个类型的加标签的靶核苷酸。将珠上样到454测序仪。第一454循环流动例如结合野生型标签的引物和所有四种dNTP。随着这一引物延伸,掺入多个核苷酸,提供非常牢固的信号,但仅在包含野生型珠的孔中。第二454循环流动结合突变体标签的引物和所有四种dNTP,仅在包含突变体珠的孔中提供信号。
在通过引物延伸的检测方法的另一实施方案中,其可在SOLiD测序平台上方便地进行,通过寡核苷酸连接和检测进行第一和第二引物延伸反应。在这一实施方案中,标记的二碱基寡核苷酸对第一和/或第二引物的连接产生可检测信号,且对特定引物检测的总信号指示核酸样品中相应的靶核酸的存在、和/或相对量。在这一实施方案的变化形式中,标记的二碱基寡核苷酸对第一引物的连接与标记的二碱基寡核苷酸对第二引物的连接产生相同的可检测信号,且第一和第二引物延伸反应分别进行,例如,在同时或顺序的循环中。在另一变化形式中,标记的二碱基寡核苷酸对第一引物的连接与标记的二碱基寡核苷酸对第二引物的连接产生不同的可检测信号。不同的信号的使用允许第一和第二引物延伸反应在一个反应混合物中同时进行。该方法中可采用任何类型的可检测信号,但通常采用荧光信号,例如,用于SOLiD测序的。
为如以上描述的SOLiD测序平台上引物延伸准备包含例如等位基因特异性标签和适合的DNA测序衔接子的加标签的靶核苷酸序列。可进行乳液PCR,而这一步骤不是严格必需的。如以上关于454测序描述的,产生附加于珠的加标签的靶核苷酸序列的克隆群的任何方法可用于产生适于在SOLiD测序平台上引物延伸的加标签的靶核苷酸序列。
在通过引物延伸的检测方法的又另一实施方案中,其可方便地在Illumina测序平台上进行,第一和第二引物延伸反应包括通过合成测序。在这一实施方案中,每个脱氧核苷三磷酸用不同的、碱基特异性标记物标记,且脱氧核苷三磷酸向DNA分子的掺入产生碱基特异性可检测信号。对特定引物检测的总信号指示核酸样品中相应的靶核酸的存在和/或相对量。在这一实施方案的变化形式中,第一引物的延伸与第二引物的延伸产生相同的可检测信号,且第一和第二引物延伸反应分别进行,例如,在同时或顺序的循环中。在另一变化形式中,第一引物的延伸与第二引物的延伸产生不同的可检测信号。不同的信号的使用允许第一和第二引物延伸反应在一个反应混合物中同时进行。该方法中可采用任何类型的可检测信号,但通常采用荧光信号,例如,用于Illumina测序的。为如以上描述的Illumina测序平台上引物延伸准备包含等位基因特异性标签和适合的DNA测序衔接子的加标签的靶核苷酸序列。对于在Illumina测序平台上的引物延伸,在DNA测序之前,通常通过桥式PCR进一步扩增加标签的靶核苷酸序列。
在以上所述的具体的通过引物延伸的检测实施方案中,以及在该方法的一些其他实现中,扩增产生在或变得位于离散反应位点的加标签的靶核苷酸序列的克隆群。包含第一核苷酸标签的反应位点的数目相对于包含第二核苷酸标签的反应位点的数目指示样品中第一靶核酸相对于第二靶核酸的量。在这一类型的特定实施方案中,方法可包括检测和比较来自包含第一核苷酸标签的所有反应位点的总信号与来自包含第二核苷酸标签的所有反应位点的总信号。可选地或另外,方法可包括检测和比较包含第一核苷酸标签的反应位点的数目与包含第二核苷酸标签的反应位点的数目。在任一种情形中,比较可包括比较两个值的任何常规手段,诸如,例如,确定比例。
用于该方法的适合的、可区分的核苷酸标签的选择在本领域技术人员的能力范围内。在某些实施方案中,第一核苷酸标签可包含第一核苷酸的均聚物(例如,多聚-A),而第二核苷酸标签可包含第二、不同的核苷酸的均聚物(例如,多聚-G)。
尽管通过引物延伸的检测方法在以上是对分析两个靶核酸描述的,该方法涵盖分析三个或更多个靶核酸,其每一个用不同的核苷酸标签加标签。对所得的加标签的靶核苷酸序列进行三个或更多个引物延伸反应,各自利用退火到不同核苷酸标签的引物,且对每个引物的延伸检测和/或定量信号。在具体实施方案中,两个或更多个加标签的靶核苷酸序列包括不同的条形码,如以上所述的,条形码可编码关于加标签的靶核苷酸序列的信息,例如,样品或反应混合物。
如果需要,以上通过引物延伸的检测方法可以多路进行。例如,在某些实施方案中,通过掺入一个或多个条形码到核苷酸标签中,其中条形码编码样品身份,可在一个或多个引物延伸反应中一起分析多个样品。对引物延伸反应,可采用为等位基因和条形码二者特异性的引物,或可选地,条形码可优选地邻近引物所退火到的核苷酸标签,且引物延伸反应可以是DNA测序反应,其仅需要检测条形码的序列。在前者实施方案中,引物延伸将指示来自特定样品的等位基因的存在,而在后者实施方案中,引物延伸将指示等位基因的存在,且条形码核苷酸序列将辨识样品。
单颗粒分析应用
掺入核酸序列到单颗粒中
在某些实施方案中,掺入核酸序列到靶核酸中的上述方法(包括上述条形码化和汇集方法)在检验颗粒群体中的单颗粒的上下文中使用。一般,将核酸序列引入与颗粒缔合(associated with)或包含在颗粒中的靶核酸。如此,上述第一反应在包含单独颗粒的反应体积中进行。可开发将单颗粒分析结果与检验的每个颗粒关联的能力,其中例如,将两个或更多个参数与表型关联。测量的两个或更多个参数可以是不同类型的参数,例如,RNA表达水平和核苷酸序列。本文描述的单细胞分析方法的另外的应用在以下描述。
单颗粒分析包括在分别的反应体积中捕获群体的颗粒以产生各包含仅一个颗粒的多个分别的反应体积。包含颗粒的分别的反应体积可在液滴中、在乳液中、在容器中、在微量滴定板的孔中、或在矩阵型微流体装置的区室形成。在示意性实施方案中,分别的反应体积在微流体装置的单独区室中存在,所述微流体装置诸如例如,本文描述的那些的任一种。还参见,2004年11月18日公布的Daridon等人的美国专利公布号2004/0229349,其通过引用全文并入本文,尤其是其微流体颗粒分析系统的描述。
在某些实施方案中,通过以下检验参数:在每个分别的反应体积中进行反应诸如核酸扩增以产生一个或多个反应产物,分析反应产物以获得结果,随后将结果与颗粒关联并输入数据组。颗粒可被捕获在分别的反应体积中,然后与一个或多个试剂接触用于进行一个或多个反应。可选地或此外,颗粒可与一个或多个此类试剂接触,可将反应混合物分配到分别的反应体积中。在多个实施方案中,至少2、3、4、5、6、7、8、9、或10或更多个反应在每个分别的反应体积中进行。反应产物的分析可在分别的反应体积中进行。在一些实施方案中,然而,为了后续分析或其他目的,回收分别的反应体积的内容物是有利的。例如,如果核酸扩增在分别的反应体积中进行,可以期望回收内容物用于后续分析,例如,通过PCR和/或核酸测序。分别的反应体积的内容物可分别分析,并将结果与最初反应体积中存在的颗粒关联。可选地,可在反应产物中编码颗粒/反应体积身份,例如,如以上对多引物核酸扩增方法讨论的。另外,可合并这两种策略,从而编码分别的反应体积的组,使得组中的每个反应体积是独特地可辨识的,然后汇集,并分别分析每个池,如由上述条形码化和汇集方法示例的。
颗粒
本文描述的方法可用于分析任何类型的颗粒,例如,通过对来自一个或多个单独颗粒的核酸进行任何上述反应。在某些实施方案中,颗粒一般包括足够小以悬浮在流体中、但足够大以从流体区分开的任何物体。颗粒可以是微观的或接近微观的,并可具有约0.005至100μm、0.1至50μm、或约0.5至30μm的直径。可选地或此外,颗粒可具有约10-20至10-5克、10-16至10-7克、或10-14至10-8克的质量。在某些实施方案中,颗粒是来自生物来源的颗粒("生物颗粒")。生物颗粒包括,例如,分子诸如核酸、蛋白、碳水化合物、脂质、和其组合或聚集物(例如,脂蛋白)、以及较大实体,诸如病毒、染色体、细胞囊泡和细胞器、和细胞。如本文所述可分析的颗粒还包括具有不溶组分的那些,例如,在其上附加待分析的分子的珠。
在示意性实施方案中,颗粒是细胞。适于在本文描述的方法中用作颗粒的细胞一般包括任何自复制、结合膜的生物实体或其任何非复制、结合膜的后代。非复制后代可以是衰老细胞、终末分化细胞、细胞嵌合体、剥夺血清的细胞(serum-starved cell)、感染细胞、非复制突变体、无核细胞、等等。在本文描述的方法中使用的细胞可具有任何来源、遗传背景、健康状态、固定状态、膜透性、预处理、和/或群体纯度以及其他特征。适合的细胞可以是真核、原核、古细菌等等,并可来自动物、植物、真菌、原生生物、细菌、和/或类似来源。在示意性实施方案中,分析人类细胞。细胞可来自生物发育的任何阶段,例如,在哺乳动物细胞(例如,人类细胞)的情形中,可分析胚胎、胎儿或成体细胞。在某些实施方案中,细胞是干细胞。细胞可以是野生型;天然、化学或病毒突变体;改造的突变体(诸如转基因);和/或类似物。此外,细胞可以是生长的、休眠的、衰老的、转化的、和/或永生的以及其他状态。而且,细胞可以是单种培养(monoculture),一般从单细胞或非常相似的细胞的小组作为克隆群体获得;可由任何适合的机制预分选,诸如亲和性结合、FACS、药物筛选等等;和/或可以是不同细胞类型的混合或混杂群体。
包括膜(例如,细胞或细胞囊泡或细胞器)、细胞壁或分隔一个或多个内部组分与外部空间的任何其他类型屏障的颗粒可以是完整的或部分(例如,透性化)或完全(例如,以释放内部组分)被破裂的。当颗粒是细胞时,可使用固定的和/或未固定的细胞。活的或死的、固定或未固定的细胞可具有完整的膜、和/或被透性化/破裂的膜,以允许离子、染色剂、染料、标记物、配体等的获取,和/或被溶解以允许细胞内容物的释放。
本文描述的方法的一个益处是,它们可用于分析几乎任何数目的颗粒,包括充分低于其他方法所需的数百万颗粒的数目。在多个实施方案中,分析的颗粒数目可以是约10、约50、约100、约500、约1000、约2000、约3000、约4000、约5000、约6000、约7,000、约8000、约9,000、约10,000、约15,000、约20,000、约25,000、约30,000、约35,000、约40,000、约45,000、约50,000、约75,000或约100,000。在具体实施方案中,分析的颗粒数目可落入由以上列出的任何两个数值界定的范围中。
颗粒捕获
颗粒可通过本领域已知或本文所述的任何手段被捕获在分别的反应体积中。在某些实施方案中,捕获特征保持一个或多个细胞在分别的反应体积中的捕获位点。在优选的实施方案中,捕获特征优先保持仅单细胞在捕获位点。在某些优选的实施方案中,每个捕获位点位于微流体装置的分别的区室中。本文使用的术语"分别的区室"是指至少暂时地与微流体装置中的其他区室分隔的区室,从而该区室可包含分别的反应体积。暂时分隔可例如用阀实现,如从Fluidgm,Inc.(South San Francisco,CA)可得的微流体装置的情形。分隔程度必须使得检验/反应可在区室中分别进行。本文使用的术语"捕获特征"包括串联或平行操作的单个或多个机制(mechanism)。捕获特征可作用以克服由流体流(fluid flow)施加的定位力。适合的捕获特征可以是基于与流偶合的物理屏障(称为"机械捕获")、化学相互作用(称为"基于亲和性的捕获)、真空力、环中的流体流、重力、离心力、磁力、电力(例如,电泳或电渗力)、和/或光学产生的力、及其他。
捕获特征可以是选择性或非选择性的。选择性机制可以是分级选择性的,即,保持输入的颗粒的少于所有(亚组)。分级选择性机制可至少部分地依赖于随机的集中特征(参见以下)。可选地或此外,选择性机制可以是颗粒依赖性的,即,基于输入的颗粒的一个或多个特性保持颗粒,所述特性诸如尺寸、表面化学、密度、磁性特征、电荷、光学特性(诸如折光率)、和/或类似特性。
机械捕获
机械捕获可至少部分地基于颗粒与例如微流体装置中布置的任何适合的物理屏障接触。这种颗粒-屏障接触一般限制沿着流体流方向的纵向颗粒移动,产生流动辅助的保持(flow-assisted retention)。流动辅助的颗粒-屏障接触还可限制侧对侧的/正交(横向)移动。适合的物理屏障可由从通道或其他通路的任何部分(即,壁、顶和/或底)向内延伸的凸出物形成。例如,凸出物可以是固定的和/或可移动的,包括柱(column)、杆(post)、块(block)、凸块(bump)、壁、和/或部分/完全封闭的阀、及其他。一些物理屏障诸如阀,可以是可移动或可调整的。可选地或此外,物理屏障可由在通道或其他通路中形成的凹处(例如,龛)、或由流体可渗透膜界定。其他物理屏障可基于通路的横截面尺寸形成。例如,尺寸选择性通道可保持过大不能进入通道的颗粒。(尺寸选择性通道还可称为过滤通道、微通道、或颗粒限制性或颗粒选择性通道。)实施例6和8提供示例性的机械捕获实施方案。
基于亲和性的捕获
基于亲和性的捕获可基于一种或多种化学相互作用保持颗粒,即,其中结合伴侣结合颗粒组分。化学相互作用可以是共价和/或非共价的相互作用,包括离子、静电、疏水、范德华、和/或金属配位相互作用、及其他。化学相互作用可选择性和/或非选择性地保持颗粒。选择性和非选择性保持可基于颗粒和表面之间的特异性和/或非特异性化学相互作用,例如,在微流体装置中。
特异性化学机制可使用特异性结合伴侣(SBP),例如,颗粒和装置表面上分别布置的第一和第二SBP。示例性SBP可包括生物素/抗生物素蛋白、抗体/抗原、凝集素/碳水化合物等。SBP可在装置形成之前、期间和/或之后局部地布置在微流体装置中。例如,基质和/或流体层组分的表面可在基质和流体层组分被连接之前被SBP成员的粘附/附加来局部修饰。可选地或此外,在已经形成装置后SBP可局部地与微流体装置的部分缔合,例如,通过SBP成员与装置的局部化学反应(诸如用光的局部光照催化的化学反应)。还参见实施例7,其描述一个实施方案,其中带有SBP成员的珠被机械捕捉在捕获位点以展示SBP成员用于基于亲和性的捕获颗粒(即,细胞)。
非特异性化学机制可依赖于微流体装置的表面化学的局部差异。如上所述,此类局部差异可在微流体装置形成之前、期间和/或之后产生。局部差异可来自局部的化学反应,例如,以产生疏水或亲水区、和/或材料的局部结合。结合的材料可包括聚-L-赖氨酸、聚-D-赖氨酸、聚乙烯亚胺、白蛋白、明胶、胶原、层粘连蛋白、纤连蛋白、巢蛋白(entactin)、玻璃粘连蛋白(vitronectin)、原纤维蛋白、弹性蛋白、肝素、硫酸角质素、硫酸乙酰肝素、硫酸软骨素、透明质酸、和/或细胞外基质提取物/混合物、及其他。
其他捕获特征
可选地或除了基于亲和性的或机械捕获以外,可使用其他捕获特征。这些机制的一些或所有、和/或上述机制可至少部分地依赖于颗粒与微流体装置通道或通路之间的摩擦来帮助保持。
捕获特征可基于真空力、流体流和/或重力。基于真空的捕获特征可施加牵拉颗粒与通路表面更紧密接触的力,例如利用从通道向外的力。真空施加、和/或颗粒保持,可由通道或其他通路壁中的孔/口来帮助。相反,基于流体流的捕获特征可产生保持颗粒的流体流路径诸如环。这些流体流路径可由以下形成:无出口的闭合通道回路(例如,由阀关闭和主动泵送),和/或涡流,诸如由凹处中一般环状流体流形成的。基于重力的捕获特征可对通路的底表面保持颗粒,从而与摩擦组合来限制颗粒移动。基于重力的保持可由凹处和/或减少流体流速来帮助。
捕获特征可基于离心力、磁力、和/或光学产生的力。基于离心力的捕获特征可通过对通路表面推颗粒来保持颗粒,通常通过对颗粒施加一般垂直于流体流的力。这样的力可通过离心微流体装置和/或通过在流体流路径中的颗粒移动来施加。基于磁力的捕获特征可利用在微流体装置内部和/或外部产生的磁场保持颗粒。磁场可与颗粒的铁磁性和/或顺磁性部分相互作用。例如,珠可至少部分地由铁磁性材料形成,或细胞可包括表面结合的或内化的铁磁性颗粒。基于电力的捕获特征可利用电场保持带电荷的颗粒和/或群体。相反,基于光学产生的力操作的捕获特征可利用光来保持颗粒。此类机制可基于光镊及其他的原理操作。
捕获特征的另一种形式是盲填充(blind-fill)通道,其中通道具有入口、但不变地(fixedly)或暂时地没有出口。例如,当微流体装置由气透性材料诸如PDMS制造时,当被经入口的液体的入流迫使离开时,死端通道中存在的气体可逃逸,或被迫使经气透性材料离开通道。这是盲填充的优选的实例。盲填充可与具有入口、和被门控或装有阀(valved bya valve)的出口的通道或区室一起使用。在这一实例中,当关闭出口阀同时经入口填充通道或区室时,发生填充气体的通道或区室的盲填充。如果入口也具有阀,在完成盲填充后可随后关闭该阀,然后可打开出口以将通道或区室内容物暴露于另一通道或区室。如果第三入口与通道或区室连通,该第三入口可将另外的流体、气体或液体引入通道或区室来以测量的量排出待从通道或区室排出的盲填充液体。
集中特征(Focusing Feature)
微流体装置中通过使用一个或多个集中特征以集中颗粒流到每个捕获位点可增强颗粒捕获。集中特征可非限制性地以多种方式分类,例如,以反映其来源和/或操作原理,包括直接和/或间接、流体介导的和/或非流体介导的、外部和/或内部的、等等。这些分类不是互相排除的。如此,给定的集中特征可以两种或更多种方式定位颗粒;例如,电场可直接(例如,经由电泳)和间接(例如,经由电渗)定位颗粒。
集中特征可作用以纵向地和/或横向地界定颗粒位置。术语"纵向位置"表示平行于或沿着微流体通道的长轴和/或通道中的流体流动流(fluid flow stream)的位置。相反,术语"横向位置"表示垂直于通道的长轴和/或相关的主要流体流动流的位置。通过在弯曲通道中使"长轴"与"切线"相等,纵向和横向位置二者可被局部地界定。集中特征可作用以在纵向和横向流之间、沿着相对于通道的长轴和/或流体流以任何角度的路径移动颗粒。
集中特征可单独和/或组合使用。如果组合使用,各特征可连续地(即,顺序地)和/或平行地(即,同时)使用。例如,间接机制诸如流体流可用于粗略定位,直接机制诸如光镊可用于最终定位。
直接集中特征一般包括其中力直接作用于颗粒以将颗粒定位在微流体网络中的任何机制。直接集中特征可基于任何适合的机制,包括基于光、电、磁和/或重力的力,及其他。光学集中特征利用光来介导或至少帮助定位颗粒。适合的光学集中特征包括"光镊",其利用适当集中的和可移动的光源来对颗粒给予定位力。电集中特征利用电来定位颗粒。适合的电机制包括"动电学",即,跨微流体网络的一些或全部施加电压和/或电流,如上所述的,其可直接(例如,经由电泳)和/或间接地经由流体中离子的移动(例如,经由电渗)移动带电荷的颗粒。磁性集中特征使用磁性以基于磁性相互作用定位颗粒。适合的磁性机制包括在流体网络中或周围施加磁场,以经由其与颗粒中、颗粒上或颗粒附近的铁磁性和/或顺磁性材料的缔合定位颗粒。基于重力的集中特征利用重力来定位颗粒,例如,将附着细胞与在细胞培养物位置的基质接触。
间接集中特征一般包括其中力间接作用于颗粒的任何机制,例如,经由流体纵向地和/或横向地移动微流体网络中的颗粒。纵向间接集中特征一般可由沿着通道和/或其他通路的流体流产生和/或调整。因此,纵向集中特征可被调整流速和/或路径的阀和/或泵帮助和/或调整。在一些情形中,纵向集中特征可被电渗集中特征帮助和/或调整。可选地或此外,纵向集中特征可以是基于输入的,即,被输入机制帮助和/或调整,所述输入机制诸如基于压力或重力的机制,包括由流体柱的不等高度产生的压头(pressure head)。
横向间接集中特征一般可被在通道接头、侧面布置的减少的流体流区、通道弯曲、和/或物理屏障(即,阻碍物)处的流体流动流产生和/或调整。基于携带朝向位点的流体的通道数目相对于携带离开位点的流体的通道数目,通道接头可以是统一的位点(unifyingsites)或分隔的位点(dividing sites)。物理屏障可具有任何适合的设计以引导颗粒朝向捕获位点流动。例如,阻碍物可从任何通道表面向外延伸,例如,以引导颗粒朝向捕获位点流动的角度。可调整阻碍物长度、与通道表面的角度、和与捕获位点的距离以增强颗粒朝向捕获位点的流动。阻碍物可由从通道或其他通路的任何部分(即,壁、顶和/或底)向内延伸的凸出物形成。例如,凸出物可以是固定的和/或可移动的,包括柱、杆、块、凸块、壁、和/或部分/完全封闭的阀、及其他。一些物理屏障诸如阀,可以是可移动或可调整的。
在一些实施方案中,对每个捕获位点可采用多个阻碍物。例如,可采用从通道的每个侧壁以一定角度向外延伸的阻碍物以引导颗粒朝向在通道中心定位的捕获位点流动。参见图22A-B。当采用机械捕获时,阻碍物可以与捕获位点中的物理屏障间隔。可选地或另外,阻碍物可接触捕获位点中的物理屏障或是捕获位点中的物理屏障的固有部分。参见图22A和14C。例如,以一定角度从通道壁向外延伸的阻碍物可接触凹的捕获特征(例如,物理屏障)或是凹的捕获特征(例如,物理屏障)的固有部分。应理解的是,"凹的"捕获特征在捕获特征的一般面对流体流方向的一侧是凹的。阻碍物导引颗粒离开通道壁和朝向凹的捕获特征流动,帮助颗粒捕获。沿着流路径的下一个捕获位点可具有相似的阻碍物-凹的捕获特征构造,阻碍物从通道的相同的壁延伸。然而,在一些实施方案中,下一个阻碍物-凹的捕获特征从相对的通道壁延伸是有利的。这一交替的构造作用以集中从一个阻碍物到下一个阻碍物的流,从而沿着每个阻碍物的流增强进入每个凹的捕获特征的颗粒流。参见图22C。
横向间接集中特征可基于层流、随机分隔、和/或离心力以及其他机制。微流体装置中颗粒和/或试剂的横向定位可至少部分地被基于层流的机制介导。基于层流的机制一般包括其中通道中输入流动流的位置由通道中另外的流动流的存在、不存在和/或相对位置来确定的任何集中特征。这种基于层流的机制可由为统一位点的通道接头界定,在统一位点处来自两个、三个或更多个通道的入口流动流流向接头,统一以形成流动离开接头的较少量出口流动流,优选地1个。由于在微流体尺度的流动流的层流特性,统一位点在入口流动流统一为分层出口流动流后可保持入口流动流的相对分布。因此,颗粒和/或试剂可保持局限于任何所选的一个或多个层流流,入口通道基于其携带颗粒和/或试剂,从而横向地定位颗粒和/或试剂。参见,例如,图24D。
每个入口流动流的相对尺寸(或流速)和位置可决定携带颗粒和/或试剂的流动流的位置和相对宽度二者。例如,相对小的(窄的)、侧面为两个较大(较宽)流动流的颗粒/试剂的入口流动流,可占据单个出口通道中窄的中央位置。相反,相对大的(宽的)、侧面为尺寸相当的流动流和较小(较窄)流动流的颗粒/试剂的入口流动流,可占据横向地朝较小流动流偏置的较宽的位置。在任一种情形中,基于层流的机制可称为集中机制,因为颗粒/试剂被"集中"到出口通道的横截面积的亚组。可使用基于层流的机制以单独地运送(address)颗粒和/或试剂到多个不同的捕获位点。
基于层流的机制可以是可变的机制以改变颗粒/试剂的横向位置。如上所述,每个入口流动流的相对贡献可决定颗粒/试剂流动流的横向位置。任何入口流动流的改变的流可改变其对出口流动流的贡献,相应转变颗粒/试剂流动流。在称为灌注机制(perfusionmechanism)的极端的情形中,可横向地移动试剂(或颗粒)流动流,基于存在或不存在来自邻近的入口流动流的流,与保持的颗粒(试剂)接触或与保持的颗粒(试剂)分开。这样的机制还可用于实现颗粒的可变的或调整的横向定位,例如,以引导颗粒向具有不同的横向位置的捕获位点。
微流体装置中颗粒和/或试剂的横向定位可至少部分地由随机(或分部流(portioned flow))集中特征介导。随机横向集中特征一般包括其中至少部分地随机选择的输入的颗粒或试剂的亚组被侧向分配离开主要流动流到通道中减少的流体流的区域(或可能地,到不同的通道)的任何集中特征。减少的流的区域可促进颗粒保持、处理、检测、将颗粒损伤最小化、和/或促进颗粒与基质接触。随机集中特征可由分隔流位点和/或局部加宽以及其他的通道决定。
分隔流位点可通过形成减少的流体流速的区域来实现随机定位。分隔流位点一般包括任何通道接头,在此处来自一个(优选地)或多个入口通道的入口流动流被分隔到较大数目的出口通道中,包括两个、三个或更多个通道。这样的分隔位点可传递颗粒的亚组到在接头处或附近形成的减少的流速或准-停滞流的区域,所述颗粒的亚组可随机选择或基于颗粒的特性(诸如质量)选择。由亚组代表的颗粒的比例可依赖于出口通道相对于入口通道的相对流方向。这些流方向可一般垂直于入口流动流,以相对方向被导向,以形成"T-接头"。可选地,出口流方向可形成小于和/或大于90度的角度。
具有两个或更多个出口通道的分隔流集中特征可用作分部流机制。具体地,被携带到通道接头的流体、颗粒和/或试剂可按照经两个或更多个出口通道的流体流被分部。因此,进入两个或更多个通道的颗粒或试剂的数目或体积比例可被通道的相对尺寸和/或经通道的流体流速调整,通道的相对尺寸和/或经通道的流体流速转而可被阀或其他适合的流调整机制调整。在第一组实施方案中,出口通道可以是非常不等的尺寸,从而仅有小比例的颗粒和/或试剂被导向较小的通道。在第二组实施方案中,阀可用于形成试剂的期望稀释。在第三组实施方案中,阀可用于选择性导向颗粒到两个或更多个流体路径之一。
局部加宽的通道可通过产生主要流动流侧向的降低流速的区域促进随机定位。降低流速可在降低流速的区域沉降输入的颗粒的亚组。这样的加宽的通道可包括以一定角度弯曲(curve)或弯下(bend)的非直线通道。可选地或此外,加宽的区域可由在通道壁、横贯通道的室和/或等等中形成的凹处形成,尤其在弯曲或弯下的通道的外侧缘。
颗粒和/或试剂的横向定位还可至少部分地被离心集中特征介导。在离心集中特征中,颗粒可经历由速度改变决定的离心力,例如,通过移动经过流体路径中的弯道。颗粒的尺寸和/或密度可决定速度改变的速率,分配不同尺寸和/或密度的颗粒到不同横向位置。
引流沟特征
在某些实施方案中,捕获位点还包括引流沟特征。当采用机械捕获时,例如,引流沟特征可包括捕获特征中的一个或多个障碍物,其尺寸为允许流体流动但不允许颗粒流动经过和/或围绕捕获特征。如此,例如,捕获特征可包括由空间(引流沟特征)间隔的两个物理屏障,其中空间足够大以允许无颗粒的流体以足够低的阻抗在屏障之间流动以引导细胞朝向屏障,从而增强颗粒捕获的概率。物理屏障之间的空间一般应足够小和/或适当地构造,使得将在捕获位点被捕获的颗粒将不穿过屏障。在具体、示例性实施方案中,捕获特征包括带有第一和第二端的两个凹的物理屏障,其中屏障布置为在屏障的第一端之间带有小空间,形成引流沟特征,在屏障的第二端之间带有较大空间。参见图22B(其中d3大于d1,d1形成引流沟)。以这一构造,屏障形成尺寸适合捕获颗粒的"杯",在杯的基部带有引流沟。凭借引流沟,颗粒朝向杯流动,只要其未被占据。颗粒流入杯中后,引流沟被"塞上",这倾向于增强颗粒围绕杯的流动并继续到微流体装置中的下一捕获特征。
未优化的单颗粒捕获
在具体实施方案中,捕获技术诸如有限稀释用于在分别的反应体积中捕获颗粒。在这一类型的捕获中,例如在微流体装置中没有使用任何捕获特征,诸如优先保持仅单细胞在捕获位点的结合亲和性或机械特征。例如,有限稀释可如下进行:通过制备一系列颗粒悬液的稀释液,并将来自每个稀释液的小份分配到分别的反应体积中。确定每个反应体积中颗粒的数目,然后选择产生具有仅单颗粒的反应体积的最高比例的稀释液并将其用于对本文描述的参数测量捕获颗粒。
优化的单颗粒捕获
在一些实施方案中,方法包括使用优化的捕获技术来增加高于利用诸如有限稀释的方法实现的具有仅一个颗粒的分别的反应体积的预计比例(即,高于约33%)。在这些实施方案的变化形式中,捕获被优化使得各自具有仅一个颗粒的分别的反应体积的预计比例是分别的反应体积的总数目的至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%或至少约95%。在具体实施方案中,各自具有仅一个颗粒的分别的反应体积的预计比例落入以以上列出的任何两个百分比为边界的范围中。各自具有仅一个颗粒的分别的反应体积的预计比例可通过经验或统计学手段确定,取决于特定捕获技术(例如,有限稀释以与泊松分布一致的方式产生具有仅一个颗粒的反应体积)。本文使用的术语"优化"不暗示实现最优的结果,仅表示采取一些措施来增加具有仅一个颗粒的分别的反应体积的预计比例高于约33%。在具体实施方案中,例如,利用排除在每个反应体积(捕获位点)中多于一个颗粒的保持的基于尺寸的机制,可实现优化的单颗粒捕获。
在某些实施方案中,机械捕获单独使用或与一个或多个其他捕获特征组合使用以在每个分别的反应体积(即,微流体装置中的每个捕获位点)中优先捕获单颗粒。例如,每个捕获位点可包括尺寸为包含仅一个颗粒的一个或多个物理屏障。物理屏障的形状可设计为增强颗粒的保持。例如,当颗粒是细胞时,物理屏障的尺寸和构造可形成适于保持仅一个细胞的凹的表面。在此类实施方案中,可设计物理屏障从而允许流体流经未被细胞占据时的捕获位点,和/或捕获位点可包括帮助这一流动的引流沟特征。在具体实施方案中,微流体装置包含多个适当地尺寸/构造的物理屏障,藉以多个单独颗粒被保持在装置中,每个物理屏障保持一个颗粒。在示意性实施方案中,物理屏障可位于微流体装置中的分别的区室中,每个区室一个区域。区室可被布置为形成阵列,诸如例如,从Fluidigm Corp.(South SanFrancisco,CA)可得的和本文描述的微流体阵列。还参见图24A-G。
在某些实施方案中,基于亲和性的捕获单独使用或与一个或多个其他捕获特征例如机械捕获组合使用以在每个分别的反应体积(即,微流体装置中的每个捕获位点)中优先捕获单细胞。例如,微流体装置表面的包含对颗粒或颗粒组分的结合伴侣的离散区域的尺寸可使得仅一个颗粒可结合该区域,后续颗粒的结合被空间位阻封闭。在具体实施方案中,微流体装置包含多个适当地尺寸的区域,藉以多个单独颗粒被保持在装置中,在每个区域一个颗粒。在示意性实施方案中,这些区域可位于微流体装置中的分别的区室中,每个区室一个区域。区室可被布置为形成阵列,诸如例如,从Fluidigm Corp.(South SanFrancisco,CA)可得的和本文描述的微流体阵列。
基于亲和性的、优化的单颗粒捕获的一种方法是基于捕获包含结合待检验的颗粒的结合伴侣的支持物。在示意性实施方案中,支持物可以是在其表面分布结合伴侣的珠。参见图23A。珠可通过机械捕获利用杯形捕获特征捕获以在每个捕获位点产生单个固定的支持物(例如,珠)。除了固定支持物以外,在某些实施方案中,捕获特征可减少支持物(例如,珠)展示结合伴侣的表面积。这一表面可被足够地减少使得仅一个颗粒可结合固定的支持物(例如,珠)展示结合伴侣的区域。为了帮助颗粒-支持物结合,在一些实施方案中,固定的支持物展示结合伴侣的区域面对颗粒的流动路径。在具体、示例性的实施方案中,微流体装置的流动通道包含一系列捕获特征。将带有结合伴侣(例如,细胞特异性抗体)的珠的悬液输入通道以在捕获位点产生一系列固定的珠。然后洗涤通道以去除任何游离(即,未固定的)珠。图23A。然后将细胞悬液输入通道。单独细胞可结合每个珠展示结合伴侣的部分。每个结合的细胞经由空间阻塞阻止任何其他细胞结合该珠。通道的洗涤去除未结合的细胞。参见图23B。然后可关闭捕获位点之间的阀以产生分别的反应体积,各自包含一个捕获位点和一个结合的细胞。可采用一个或多个集中特征以引导珠以及颗粒流动朝向每个捕获位点。可选地或另外,捕获特征可各自包括当捕获特征未被珠占据时允许流体流经捕获位点的引流沟特征。
确定捕获的颗粒的数目和/或特征
在某些实施方案中,确定每个分别的反应体积中颗粒的数目是有利的。当利用有限稀释时,可进行这一确定以鉴定产生具有仅单颗粒的区室的最高比例的稀释。这一确定还可在任何捕获技术之后进行以鉴定包含仅一个颗粒的那些反应体积。例如,在一些实施方案中,基于检验结果是否来自包含0、1、2或更多个细胞的反应体积,可将检验结果分选为多个"仓(bin)",允许分别分析这些仓的一个或多个。在某些实施方案中,本文描述的任何方法可包括确定任何区室是否包括多于单颗粒(more than a single particle);和不进一步分析或丢弃来自包括多于单颗粒的任何区室的结果。
在一些实施方案中,每个分别的反应体积中颗粒的数目通过显微术确定。例如,当分别的反应体积是在足够透明或半透明的微流体装置的区室中时,简单的亮视野显微术可用于显现和计数每个区室的颗粒例如细胞。参见实施例5。以下描述的和从Fluidigm Corp.(South San Francisco,CA)可得的微流体装置适于用在这一亮视野显微术方法中。
在某些实施方案中,可采用染色剂、染料或标记物来检测每个分别的反应体积中颗粒的数目。可使用在分别的反应体积中可检测的任何染色剂、染料或标记物。在示意性实施方案中,可使用荧光染色剂、染料或标记物。采用的染色剂、染料或标记物可为特定应用定制。当颗粒是细胞,且待测量的参数是细胞表面的特征时,染色剂、染料或标记物可以是不需要穿透细胞的细胞表面染色剂、染料或标记物。例如,可采用对细胞表面标志物特异性的标记的抗体来检测每个分别的反应体积中细胞的数目。当颗粒是细胞,且待测量的参数是细胞内部的特征(例如,核酸)时,染色剂、染料或标记物可以是膜透性染色剂、染料或标记物(例如,双链DNA结合染料)。
在具体实施方案中,在每个分别的反应体积中可检测细胞的特征,伴随或不伴随确定每个反应体积中细胞的数目。例如,可采用染色剂、染料或标记物来确定任何反应体积(例如,微流体装置中的任何区室)是否包括具有该特征的颗粒。这一步骤通过允许后续分析仅包括具有该特定特征的颗粒的那些区室的反应结果可增加检验效率。在这一上下文中可检测的示意性的特征包括,例如,特定基因组重排、拷贝数变化、或多态性;特定基因的表达;和特定蛋白的表达。
分析单颗粒中的核酸
在具体实施方案中,本文描述的方法用于分析一个或多个核酸。例如,可确定特定靶核酸的存在和/或水平,也可确定靶核酸的特征,例如,核苷酸序列。在示意性实施方案中,带有在颗粒中或与颗粒缔合的一个或多个样品核酸的颗粒的群体被捕获在分别的反应体积中,分别的反应体积各自优选地包含仅单颗粒。进行反应,诸如连接和/或扩增DNA,或逆转录和/或扩增RNA,对包含一个或多个靶核酸的任何反应体积产生反应产物。这些反应产物可在反应体积中分析,或可分别或以池回收反应体积用于后续分析,诸如DNA测序。
在某些实施方案中,反应掺入一个或多个核苷酸序列到反应产物中。这些序列可通过任何适合的方法掺入,包括连接、转座酶介导的掺入、或利用带有包括待掺入的序列的一个或多个核苷酸标签的一个或多个引物扩增。这些掺入的核苷酸序列可起到任何帮助本文所述的任何检验的任何功能。例如,一个或多个核苷酸序列可被掺入反应产物以编码有关反应产物的信息条目,诸如为反应产物来源的反应体积的身份。在这种情形中,反应在本文称为"编码反应"。为了这一目的可采用将"条形码"核苷酸序列加入靶核酸的多引物方法并在以上描述。在具体实施方案中,核酸扩增利用至少两个扩增引物进行,其中每个扩增引物包括条形码核苷酸序列,且条形码核苷酸序列的组合编码为反应产物来源的反应体积的身份(称为"组合条形码化")。当分别的反应体积在矩阵型微流体装置的分别的区室中时方便地采用这些实施方案,所述矩阵型微流体装置例如,如从Fluidigm Corp.(South SanFrancisco,CA)可得并在以下描述的那些(参见"微流体装置")。每个分别的区室可包含辨识在其中进行编码反应的区室的行和列的条形码核苷酸序列的组合。如果反应体积被回收并进行包括检测条形码组合的进一步分析,可将结果与特定区室关联,从而与区室中的颗粒关联。这一关联可对包含单颗粒的所有区室进行以允许对颗粒群体的单颗粒(例如,单细胞)分析。
以下部分讨论适合的核酸样品、和其中适于在本文描述的方法中分析的靶核酸。然后描述扩增引物设计和示例性的扩增方法。其余部分讨论多种标记策略和去除不想要的反应组分。这些部分是关于采用扩增来掺入核酸序列到靶核酸中和/或分析它们的方法来描述的。然而,基于本文的指导,本领域技术人员将认识到,扩增对于进行本文描述的许多方法不是关键的。例如,核酸序列可利用其他手段掺入,诸如连接或利用转座酶。
样品核酸
核酸(“样品”)的制备可以从生物来源得到并且使用本领域已知的常规方法进行制备。具体地说,可以从任何来源提取和/或扩增在本文中所述的方法中有用的DNA或RNA,所述来源包括细菌、原生动物、真菌、病毒、细胞器、以及高等生物例如植物类或动物类,具体地是哺乳动物类,并且更具体地是人类。还可以从环境来源(例如,池塘水),从人造产物(例如,食物),从法医样品等中得到适当的核酸。可以通过多种标准技术中任何一项从细胞、体液(例如,血液、血液级分、尿液等)、或组织样品中提取或扩增核酸。示例性样品包括血浆、血清、脊髓液、淋巴液、腹膜液、胸膜液、口腔液、以及皮肤的外切片的样品;来自呼吸道、肠道生殖道、以及尿道的样品;眼泪、唾液、血细胞、干细胞、或肿瘤的样品。例如,可以从胚胎中或从母体血液中得到胎儿DNA的样品。可以从活的或死的生物体中或从体外培养物中得到样品。示例性样品可以包括单细胞、福尔马林固定的和/或石蜡包埋的组织样品、以及针吸活组织检查。本文所述的方法中有用的核酸还可以是从一个或多个核酸文库包括cDNA、粘粒、YAC、BAC、PI、PAC文库等中衍生的。
可以使用本领域熟知的方法分离感兴趣的核酸,其中具体方法的选择取决于核酸的来源、性质、以及类似因素。这些样品核酸不必是纯的形式,但是典型地是足够纯的以允许目标反应得以实施。当靶核酸是RNA时,该RNA可以通过本领域中已知的并且在例如Sambrook,J.,Fritsch,E.F.,和Maniatis,T.,Molecular Cloning:A LaboratoryManual.Cold Spring Harbor Laboratory Press,NY,Vol.1,2,3(1989)中进行说明的标准方法被逆转录成为cDNA。
靶核酸
在本文所述的方法中有用的靶核酸可以从以上所述的任何样品核酸衍生。在典型的实施方案中,对于靶核酸而言,至少一些核苷酸序列信息应该是已知的。例如,如果使用PCR作为编码反应,总体上对于给定的靶核酸的每个末端而言可以得到足够的序列信息以允许设计适当的扩增引物。在替代实施方案中,引物中靶特异性序列可以用随机或简并的核苷酸序列来替换。
这些靶可以包括例如与病原体例如病毒、细菌、原生动物、或真菌相关的核酸;RNA,例如,过表达或低表达指示疾病的那些,以组织特异性或发育特异性形式表达的那些;或由特定的刺激物诱导的那些;基因组DNA,该基因组DNA可以被分析特异性多态性(例如SNP)、等位基因、或单体型,例如在基因分型中。特别感兴趣的是在遗传疾病或其他病理学中发生改变的(例如,扩增、缺失、重排、和/或突变)基因组DNA;与希望的或不希望的性状相关联的序列;和/或独特地识别个体的序列(例如,在法医或亲子鉴定中)。当采用多个靶核酸时,这些可以在相同的或不同的染色体上。
在多个实施方案中,待扩增的靶核酸可以是,例如,25个碱基、50个碱基、100个碱基、200个碱基、500个碱基或750个碱基。在本文描述的方法的某些实施方案中,可采用长片段(long-range)扩增方法诸如长片段PCR以从扩增混合物产生扩增子。长片段PCR允许扩增范围从1或数千碱基(kb)至超过50kb的靶核酸。在多个实施方案中,通过长片段PCR扩增的靶核酸的长度是至少约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、20、25、30、35、40、45或50kb。靶核酸还可落入以这些数值的任一个作为端点的任何范围内(例如,25个碱基至100个碱基或5-15kb)。
引物设计
适合用于核酸扩增的引物是足够长的以在用于聚合的试剂存在下引发延伸产物的合成。引物的确切长度以及构成将取决于多种因素,包括例如退火反应的温度、引物的来源以及构成,以及当使用探针时,探针退火位点与引物退火位点的接近程度以及引物:探针浓度的比率。例如,取决于靶核酸序列的复杂性,寡核苷酸引物典型地包含在约15至约30个核苷酸的范围内,虽然它可以包含更多或更少的核苷酸。引物应当是足够互补的以选择性地退火到它们相应的链上并且形成稳定的双链体。本领域普通技术人员知道如何选择适当的引物对来扩增感兴趣的靶核酸。
例如,可以通过使用任何可商购的软件或开源软件例如Primer3(参见,例如,Rozen和Skaletsky(2000)Meth.Mol.Biol,132:365-386;www.broad.mit.edu/node/1060,等)或者通过访问Roche UPL网址来设计PCR引物。将扩增子序列输入Primer3程序中,其中UPL探针序列在括号中以确保Primer3程序将在被括起来的探针序列的任一侧上设计引物。
可以通过任何适当的方法来制备引物,包括例如,适当序列的克隆以及限制性酶切或通过多种方法的直接化学合成,例如Narang等人.(1979)Meth.Enzymol.68:90-99的磷酸三酯法;Brown等人(1979)Meth.Enzymol.68:109-151的磷酸二酯法;Beaucage等人(1981)Tetra.Lett.,22:1859-1862的二乙基磷酰胺酸法;美国专利号4,458,066的固体载体法等,或可以从商业来源提供引物。
可以通过使用Sephadex柱(Amersham Biosciences,Inc.,Piscataway,NJ)或本领域普通技术人员已知的其他方法对引物进行纯化。引物纯化可以提高本发明方法的灵敏度。
扩增方法
核酸可根据本文描述的方法为了任何有用的目的扩增,例如,以增加靶核酸的浓度用于后续分析、和/或掺入一个或多个核苷酸序列、和/或检测和/或定量和/或测序一个或多个靶核酸。扩增可在液滴中、在乳液中、在容器中、在微量滴定板的孔中、在矩阵型微流体装置的区室、等等中进行。
扩增以增加靶核酸浓度
扩增以增加靶核酸浓度可旨在扩增反应混合物中所有核酸、特定类型的所有核酸(例如,DNA或RNA)、或特定靶核酸。在具体、示例性的实施方案中,可进行全基因组扩增以增加基因组DNA的浓度;可扩增RNA,任选地先进行逆转录步骤;和/或一般性或靶特异性预扩增。
全基因组扩增
为分析基因组DNA,可以使用全基因组扩增(WGA)方法扩增样品核酸。合适的WGA的方法包括引物延伸PCR(PEP)和改进的PEP(I-PEP)、简并寡核苷酸引物PCR(DOP-PCR)、连接介导PCR(LMP)、基于T7的DNA线性扩增(TLAD)、和多重置换扩增(MDA)。这些技术描述在2010年7月15日公布的美国专利公布号20100178655中(Hamilton等人),其通过引用全文并入本文,尤其是其可用于单细胞核酸分析的方法的描述。
WGA试剂盒可购自例如,Qiagen,Inc.(Valencia,CA USA)、Sigma-Aldrich(Rubicon Genomics;例如,Sigma
Figure GDA0000588916800000751
Single Cell Whole GenomeAmplification Kit,PN WGA4-50RXN)。本文描述的方法的WGA步骤可以使用任何可利用的试剂盒根据生产商的说明而进行。
在具体实施方案中,WGA步骤是限制的WGA,即,WGA在达到反应平台期之前停止。典型地,WGA进行多于两个扩增循环。在某些实施方案中,WGA进行少于大约10个扩增循环,例如4至8个循环之间,包括4和8个循环。但是,WGA可以进行3、4、5、6、7、8或9个循环,或者落入由任意这些值限定的范围内的一些循环。
RNA扩增
在某些实施方案中,可以分析单细胞或小细胞群的RNA中的一个或多个RNA靶。合适的RNA靶包括mRNA,以及非编码RNA,如小核仁RNA(snoRNA)、微小RNA(miRNA)、小干扰RNA(siRNA)和与Piwi蛋白相作用的RNA(Piwi-interacting RNA)(piRNA)。在具体实施方案中,感兴趣的RNA被转化成DNA,如通过逆转录或扩增。
例如,为分析单细胞或小细胞群的mRNA,所述mRNA通常被转化成mRNA群的DNA表现形式。在某些实施方案中,使用的方法优选地产生cDNA群,其中每一个cDNA的相对量与样品群中对应的mRNA的相对量大致相同。
在具体实施方案中,可以采用逆转录根据标准方法使用逆转录酶从mRNA模板产生cDNA。通过使用如特异引物、寡聚dT或随机引物可以启动细胞mRNA群的逆转录。为合成代表细胞mRNA的cDNA库,可以使用逆转录酶合成与样品细胞RNA互补的cDNA第一链。这可以使用商业可利用的BRL Superscript II试剂盒(BRL,Gaithersburg,Md.)或任何其它商业可利用的试剂盒完成。逆转录酶优先使用RNA作为模板,但也可以使用单链DNA模板。因此,可以使用逆转录酶和合适的引物(如,多聚A、随机引物等等)完成cDNA第二链的合成。还可以使用大肠杆菌(E.coli)DNA聚合酶I完成第二链合成。可以在第二cDNA链合成的同时或之后移除所述RNA。这可以通过例如用降解RNA的RNA酶如大肠杆菌RNA酶H处理混合物而完成。
在其他实施方案中,使用扩增方法从mRNA模板产生cDNA。在这样的实施方案中,典型地使用产生代表mRNA群的cDNA群的扩增方法。
单细胞或小细胞群的非编码RNA的分析典型地起始于感兴趣的RNA转化成DNA。该转化可以通过逆转录或扩增完成。在某些实施方案中,使用的方法优选地产生DNA群,其中每一个DNA的相对量与样品群中对应的mRNA的相对量大致相同。可以使用优先与感兴趣的RNA退火的引物选择性地逆转录或扩增所述靶RNA。合适的引物可以商业获得或可由本领域技术人员设计。例如,Life Technologies出售用于微小RNA(miRNA)靶的MegaPlexTM引物池。这些引物可以用于逆转录(RT)和特定靶扩增(STA)。参见,如实施例6B。
预扩增
可进行预扩增来增加反应混合物中核酸序列的浓度,一般,例如利用随机引物组、对存在的多个或所有核酸共同的一个或多个序列特异性的引物(例如,多聚-dT来引发多聚-A尾)、或随机引物组和特异性引物的组合。可选地,预扩增可利用对感兴趣的一个或多个靶核酸特异性的一个或多个引物对进行。在特定、示例性实施方案中,可预扩增由WGA产生的扩增的基因组或从RNA产生的DNA(如cDNA)以产生预扩增反应混合物,所述预扩增反应混合物包含一个或多个特异于一个或多个感兴趣的靶核酸的扩增子。典型地,使用预扩增引物、合适的缓冲液系统、核苷酸和DNA聚合酶(如修改为用于“热启动”条件的聚合酶)进行预扩增。
在具体实施方案中,预扩增引物是与在制备样品的扩增实验中使用的那些相同的序列,尽管通常是以减少的浓度。引物浓度可以是如比在扩增实验中使用的引物浓度少大约10至大约250倍。实施方案包括使用比在扩增实验中的引物浓度少大约10、20、35、50、65、75、100、125、150、175和200倍的引物。
在具体实施方案中,预扩增至少进行两个循环。在某些实施方案中,预扩增进行少于大约20个循环,如8和18个循环之间,包括8和18个循环。但是,预扩增可以进行3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23或24个循环或者落入任何这些值限定的范围内的一些循环。在示例的实施方式中,预扩增可以进行大约14个循环以将被检测的扩增子增加大约16,000倍。
扩增用于检测和/或定量靶核酸
在本文所述的方法中可以使用核酸检测和/或定量的任何方法以检测扩增产物。在一个实施方案中,使用PCR(聚合酶链式反应)来对靶核酸进行扩增和/或定量。在其他实施方案中,使用其他扩增系统或检测系统,包括例如美国专利号7,118,910中所述的系统(出于它的说明扩增/检测系统的目的,该专利通过引用以其全部内容并入本文)。在具体实施方案中,使用实时定量的方法。例如可以使用“定量实时PCR”方法通过测量在扩增过程本身期间形成的扩增产物的数量来确定样品中存在的靶核酸的量。
荧光生成核酸酶测定法(fluorogenic nuclease assay)是实时定量方法的一个具体的实例,该方法可以被成功地用于在本文所述的方法中。监测扩增产物形成的方法包括使用双标记的荧光生成寡核苷酸探针对PCR产物累积进行连续测量,文献中通常称为“
Figure GDA0000588916800000781
方法”的一种方法。参见美国专利号5,723,591;Heid等人,1996,Real-timequantitative PCR Genome Res.6:986-94,出于它们的说明荧光生成核酸酶测定法的目的,每个文件都通过引用以其全部内容并入本文。应当理解的是虽然对于qPCR而言“
Figure GDA0000588916800000782
探针”是最广泛使用的,本文所述的方法不限于使用这些探针;可以使用任何适合的探针。
可以用于本发明的其他检测/定量方法包括FRET以及模板延伸反应、分子信标检测、蝎型探针检测(scorpion detection)、侵入物检测(invader detection)、以及锁式探针检测(padlock probe detection)。
FRET和模板延伸反应使用用供体/受体对的一个成员标记的引物以及用该供体/受体对的另一个成员标记的核苷酸。在模板依赖性延伸反应期间在将标记的核苷酸掺入到引物中之前,供体和受体被间隔足够开这样使得能量转移不会发生。然而,如果标记的核苷酸被掺入到引物中并且该间距是足够近的,则发生能量转移并且可以被检出。这些方法在检测单核苷酸多态性中在进行单碱基对延伸反应中是特别有用的,并且在美国专利号5,945,283以及PCT公布WO 97/22719中描述。
关于分子信标,当探针杂交到扩增产物的互补区上时,它的构象改变导致形成可检出的信号。探针本身包括两个区段:一个区段在5’末端并且另一个区段在3’末端。这些区段位于退火到探针结合位点的探针区段的侧翼,并且彼此互补。一个末端区段被典型地附加到报告物染料(reporter dye)上,并且另一个末端区段通常被附连到猝灭剂染料(quencher dye)上。在溶液中,两个末端区段可以彼此杂交从而形成发夹环。在这种构象中,报告物和猝灭剂染料是足够近的接近这样使得来自报告物染料的荧光被猝灭剂染料有效地猝灭。相反,杂交的探针导致其中猝灭程度被降低的线性构象。因此,通过监测这两种染料的发射变化,有可能间接地监测扩增产物的形成。这个类型的探针以及它们的使用方法进一步由例如Piatek等人,1998,Nat.Biotechnol.16:359-63;Tyagi,和Kramer,1996,Nat.Biotechnology14:303-308;和Tyagi,等人,1998,Nat.Biotechnol.16:49-53(1998)描述。
蝎型探针检测方法由例如Thelwell等人.2000,Nucleic Acids Research,28:3752-3761和Solinas等人,2001,"Duplex Scorpion primers in SNP analysis and FRETapplications"Nucleic Acids Research 29:20描述。蝎型引物是荧光生成PCR引物,其中探针元件经由PCR终止剂(PCR stopper)被附加到5’端上。它们被用于均匀溶液中PCR产物的实时扩增子特异性检测。两种不同形式是可能的,即“茎环”形式和“双链体”形式。在两种情况中,探查机理是分子内的。在所有形式中蝎型探针检测的基本元件是:(i)PCR引物;(ii)用于防止PCR读通该探针元件的PCR终止剂;(iii)特异性探针序列;以及(iv)包含至少一个荧光团以及猝灭剂的荧光检测系统。在蝎型引物PCR延伸之后,得到的扩增子包含与探针互补的序列,这导致了每个PCR循环的变性阶段形成单链。当冷却时,探针是游离的以结合到这个互补序列上,造成荧光增加,因为猝灭剂不再位于该荧光团的附近。PCR终止剂防止探针被Taq DNA聚合酶不希望地读通。
侵入物测定法(Third Wave Technologies,Madison,WI)特别地用于SNP基因分型并且使用称为信号探针的寡核苷酸,该寡核苷酸是与靶核酸(DNA或RNA)或多态性位点互补的。称为Invader Oligo的第二寡核苷酸包含相同的5’核苷酸序列,但是3’核苷酸序列包含核苷酸多态性。Invader Oligo干扰信号探针结合到靶核酸上,这样使得信号探针的5’端在包含该多态性的核苷酸上形成一个“悬垂片”。这个复合体被称为裂解酶(cleavase)的结构特异性内切核酸酶所识别。裂解酶裂解核苷酸的5’悬垂片。释放的悬垂片与携带FRET标记物的第三探针相结合,由此形成被裂解酶所识别的另一个双链体结构。这次该裂解酶裂解荧光团远离猝灭剂并且生成荧光信号。对于SNP基因分型而言,将设计信号探针以与参考(野生型)等位基因或变异体(突变体)等位基因之一相杂交。与PCR不同,存在信号的线性扩增而没有核酸的扩增。通过下面各项提供了足以指导本领域普通技术人员的进一步的细节,例如Neri,B.P.,等人,Advances in Nucleic Acid and Protein Analysis 3826:117-125,2000)以及美国专利号6,706,471。
锁式探针(PLP)是长的(例如,约100个碱基)线性寡核苷酸。在探针的3’和5’末端上的序列是与靶核酸中邻近序列互补的。在PLP的中央非互补区中,存在可以被用于识别特异性PLP的“标签”序列。标签序列位于通用引发位点侧翼,引发位点允许PCR扩增该标签。当杂交到靶上时,PLP寡核苷酸的两个末端变成紧密接近并且可以通过酶连接作用进行连接。得到的产物是连锁(catenated)到靶DNA链上的环形探针分子。通过核酸外切酶的作用去除任何未连接的探针(即没有杂交到靶上的探针)。PLP的杂交作用和连接要求两个末端区段都识别靶序列。以这种方式,PLP提供了极其特异性的靶识别。
然后可以将环化PLP的标签区扩增并且对得到的扩增子进行检测。例如,可以进行
Figure GDA0000588916800000801
实时PCR以对扩增子进行检测和定量。扩增子的存在和数量可能与样品中靶序列的存在和数量相关联。关于PLP的说明,参见例如,Landegren等人,2003,Padlock andproximity probes for in situ and array-based analyses:tools for the post-genomic era,Comparative and Functional Genomics 4:525-30;Nilsson等人,2006,Analyzing genes using closing and replicating circles Trends BiotechnoX.24:83-8;Nilsson等人,1994,Padlock probes:circularizing oligonucleotides forlocalized DNA detection,Science 265:2085-8。
在具体实施方案中,可以用作针对探针的检测标记物的荧光团包括但不限于罗丹明、菁蓝3(Cy3)、菁蓝5(Cy5)、荧光素、VicTM、LiZTM、TamraTM、5-FamTM、6-FamTM、以及德克萨斯红(Molecular Probes)。(VicTM、LiZTM、TamraTM、5-FamTM、6-FamTM都是从LifeTechnologies,Foster City,Calif可得到的)。
在一些实施方案中,在足以表明样品中存在靶核酸序列的预定数目的循环之后技术人员可以简单地进行对扩增产物的量监测。对于任何给定的样品类型、引物序列、以及反应条件,本领域技术人员可以容易地确定多少个循环对于确定给定靶核酸的存在是足够的。在其他实施方案中,在指数扩增结束时,即在“平台”期期间进行检测,或进行终点PCR。在不同实施方案中,扩增可以被执行约:2个、4个、10个、15个、20个、25个、30个、35个或40个循环或落在由这些值的任何一项界定的任何范围内的数量的循环。
通过获得在不同温度下的荧光,可能追踪杂交的程度。此外,PCR产物杂交的温度依赖性可以用于鉴定和/或定量PCR产物。因此,本文描述的方法包括解链曲线分析在检测和/或定量扩增子中的应用。解链曲线分析是熟知的并在例如美国专利号6,174,670、6472156和6,569,627中描述,每一篇都通过引用的方式全文并入本文,特别是它们对于应用解链曲线分析以检测和/或定量扩增产物的描述。在示例的实施方案中,使用双链DNA染料,如SYBR Green、Pico Green(Molecular Probes,Inc.,Eugene,OR)、EVA Green(Biotinum)、溴化乙锭等等进行解链曲线分析(参见Zhu等人.,1994,Anal.Chem.66:1941-48)。
在某些实施方案中,多路检测在单独扩增混合物中进行,例如,在微流体装置的单独反应区室中,其可用于进一步增加在单个检验中可被分析的样品和/或靶的数目或用于进行比较性方法,诸如比较性基因组杂交(CGH)。在多个实施方案中,在每个单独反应区室中进行多达2、3、4、5、6、7、8、9、10、50、100、500、1000、5000、10000或更多个扩增反应。
根据某些实施方案,技术人员可采用内部标准来定量由荧光信号所指示的扩增产物。参见,例如,美国专利号5,736,333。
已经开发了可用包含荧光染料的组合物进行热循环反应、发射特定波长的光束、读取荧光染料的强度、并在每个循环后展示荧光强度的装置。包含热循环仪、光束发射器和荧光信号检测仪的装置已经描述在例如,美国专利号5,928,907;6,015,674;和6,174,670中。
在一些实施方案中,这些功能的每一个可由分别的装置进行。例如,如果技术人员采用Q-beta复制酶反应用于扩增,反应可不在热循环仪中进行,但可包括在特定波长发射的光束,检测荧光信号,并计算和展示扩增产物的量。
在具体实施方案中,组合的热循环和荧光检测装置可用于准确定量靶核酸。在一些实施方案中,可在一个或多个热循环期间和/或之后检测和展示荧光信号,从而允许随着反应发生实时监测扩增产物。在某些实施方案中,技术人员可使用扩增产物的量和扩增循环的数目来计算扩增之前样品中存在多少靶核酸序列。
用于DNA测序的扩增
在某些实施方案中,采用扩增方法以产生适于自动DNA测序的扩增子。许多现有的DNA测序技术依赖于"通过合成测序"。这些技术包括文库产生、文库分子的大型平行PCR扩增、和测序。文库产生开始于转变样品核酸为适当尺寸的片段、连接衔接子序列到片段末端、和选择适当地附带衔接子的分子。文库分子末端上衔接子序列的存在使得能够扩增随机-序列插入物。将核苷酸序列加标签的上述方法可代替连接以掺入衔接子序列,如以下更详细描述的。
此外,上述方法提供靶核苷酸序列的大致上均匀的扩增的能力有助于制备具有良好覆盖的DNA测序文库。在自动DNA测序的上下文中,术语"覆盖"是指在测序时测量序列的次数。具有大致上均匀的覆盖的DNA测序文库可产生其中覆盖大致上也是均匀的序列数据。如此,在多个实施方案中,在进行如本文所述地制备的多个靶扩增子的自动测序时,靶扩增子的至少50%的序列以大于靶扩增子序列的平均拷贝数的50%和小于靶扩增子序列的平均拷贝数的2倍存在。在这一方法的多个实施方案中,靶扩增子序列的至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%以大于靶扩增子序列的平均拷贝数的50%和小于靶扩增子序列的平均拷贝数的2倍存在。
在某些实施方案中,可采用至少三个引物以产生适于DNA测序的扩增子:正向、反向和条形码引物。然而,正向引物、反向引物和条形码引物的一个或多个可包括至少一个另外的引物结合位点。在具体实施方案中,条形码引物包括至少第一另外的引物结合位点,其位于条形码核苷酸序列的上游,条形码核苷酸序列在第一核苷酸标签特异性部分的上游。在某些实施方案中,正向引物、反向引物和条形码引物的两个包括至少一个另外的引物结合位点(即,从而扩增产生的扩增子包括核苷酸标签序列、条形码核苷酸序列、和两个另外的结合位点)。例如,如果条形码引物包括条形码核苷酸序列上游的第一另外的引物结合位点,在具体实施方案中,反向引物可包括第二核苷酸标签下游的至少第二另外的引物结合位点。然后扩增产生具有以下元件的分子:5'-第一另外的引物结合位点-条形码核苷酸序列-来自正向引物的第一核苷酸标签-靶核苷酸序列-来自反向引物的第二核苷酸标签-第二另外的引物结合位点-3'。在具体实施方案中,第一和第二另外的引物结合位点能够被DNA测序引物结合,以帮助测序包含条形码的完整扩增子,如以上讨论的,条形码可指示样品来源。
在其他实施方案中,采用至少四个引物以产生适于DNA的扩增子。例如,内侧引物可与另外包含能够被DNA测序引物结合的第一和第二引物结合位点的外侧引物一起使用。扩增产生具有以下元件的分子:5'-第一引物结合位点-第二条形码核苷酸序列-第一核苷酸标签序列-第一条形码核苷酸序列-靶核苷酸序列-第一条形码核苷酸序列-第二核苷酸标签序列-第二条形码核苷酸序列-第二引物结合位点-3'。因为这一分子在任一末端包含条形码组合,可从分子的任一末端获得序列来辨识条形码组合。
以类似的方式,可采用六个引物来准备用于测序的DNA。更具体地,如以上讨论的内侧和填充引物,可与另外包含能够被DNA测序引物结合的第一和第二引物结合位点的外侧引物一起使用。扩增产生具有以下元件的分子:5'-第一引物结合位点-第二条形码核苷酸序列-第三核苷酸标签序列-第一条形码核苷酸序列-第一核苷酸标签序列-靶核苷酸序列-第二核苷酸标签序列-第一条形码核苷酸序列-第四核苷酸标签序列-第二条形码核苷酸序列-第二引物结合位点-3'。因为这一分子在任一末端包含条形码组合,可从分子的任一末端获得序列来辨识条形码组合。
本文描述的方法可包括利用任何可得的DNA测序方法对至少一个靶扩增子进行DNA测序。在具体实施方案中,利用高通量测序方法测序多个靶扩增子。此类方法通常利用体外克隆步骤来扩增单独的DNA分子。如以上讨论的,乳液PCR(emPCR)分离油相中的含水液滴中的单独DNA分子连同引物包被的珠。PCR产生DNA分子的拷贝,其结合珠上的引物,随后固定用于后面的测序。体外克隆扩增还可通过"桥式PCR"进行,其中引物附加到固体表面后扩增片段。物理结合到表面的DNA分子可平行地测序,例如,通过焦磷酸测序或通过如以上讨论的合成测序方法。
标记策略
可以将任何适合的标记策略用于本文所述的方法中。当测定混合物被等分,并且分析每个等份的单一扩增产物的存在时,可以将通用检测探针用于扩增混合物中。在具体实施方案中,可以使用通用qPCR探针来进行实时PCR检测。适当的通用qPCR探针包括双链DNA染料,例如SYBR Green、Pico Green(Molecular Probes,Inc.,Eugene,OR)、EVA Green(Biotinum)、溴化乙锭、以及类似物(参见Zhu等人,1994,Anal.Chem.66:1941-48)。适当的通用qPCR探针还包括序列特异性探针,这些探针结合到所有扩增产物中存在的核苷酸序列上。在扩增期间,这类探针的结合位点可以被方便地掺入到加标签的靶核苷酸序列中。
作为替代方案,可以将一个或多个靶特异性qPCR探针(即对于有待检测的靶核苷酸序列具有特异性的)用于扩增混合物中以对扩增产物进行检测。靶特异性探针可能是有用的,例如当在大量的样品中仅少量靶核酸有待检测时。例如,如果仅3个靶有待检测时,可以使用对于每个靶具有不同荧光标记物的靶特异性探针。通过正确地选择标记物,可以进行分析,其中在单一反应中不同标记物在不同波长下被激发和/或检测。参见,例如Fluorescence Spectroscopy(Pesce等人编著)Marcel Dekker,New York,(1971);White等人,Fluorescence Analysis:A Practical Approach,Marcel Dekker,New York,(1970);Berlman,Handbook of Fluorescence Spectra of Aromatic Molecules,第2版,AcademicPress,New York,(1971);Griffiths,Colour and Constitution of Organic Molecules,Academic Press,New York,(1976);Indicators(Bishop编著).Pergamon Press,Oxford,19723;和Haugland,Handbook of Fluorescent Probes and Research Chemicals,Molecular Probes,Eugene(1992)。
去除不想要的反应组分
应当理解的是其中使用多个反应步骤的涉及核酸的复杂混合物的反应可能导致多个未掺入的反应组分,并且通过多个提纯步骤(clean-up procedure)中任何一项去除这类未掺入的反应组分或降低它们的浓度可以提高随后发生反应的效率和特异性。例如,在一些实施方案中,在进行在此所述的扩增步骤之前,去除预扩增引物、或降低预扩增引物的浓度可能是令人希望的。
在某些实施方案中,可以通过简单地稀释来降低不希望的组分的浓度。例如,在进行扩增之前可以将预扩增的样品稀释约2倍、5倍、10倍、100倍、500倍、1000倍从而提高随后扩增步骤的特异性。
在一些实施方案中,可以通过多种酶学方法来去除不想要的组分。作为替代方案,或除了上述方法之外,可以通过纯化来去除不想要的组分。例如,可以将纯化标签掺入到上述引物的任何一个中(例如条形码核苷酸序列中)以有助于对加标签的靶核苷酸进行纯化。
在具体实施方案中,提纯包括选择性地固定希望的核酸。例如,可以优先地将希望的核酸固定到固相支持体上。在示例性实施方案中,亲和性部分,例如生物素(例如,光-生物素)被附加到希望的核酸上,并且得到的生物素标记的核酸被固定在固体支持物上,该固体支持物包括亲和部分-结合物(affinity moiety-binder),例如链霉抗生物素蛋白。可以用多个探针对固定的核酸进行查询,并且将未杂交的和/或未连接的探针通过洗涤去除(参见,例如,公布的P.C.T.申请WO 03/006677以及USSN 09/931,285)。作为替代方案,可以对固定的核酸进行洗涤以去除其他组分并且随后从该固体支持物中释放固定的核酸用于进一步分析。这种方法可以被用于例如在加入用于DNA测序的引物结合位点之后从扩增混合物中回收靶扩增子。在具体实施方案中,可以将亲和性部分例如生物素附加到扩增引物上这样使得扩增生成亲和性部分标记的(例如生物素标记的)扩增子。因此,例如当使用三个引物以将条形码和核苷酸标签元件加入到靶核苷酸序列中时,如上所述,条形码或反向引物中至少一个可以包括亲和性部分。当使用四个引物(两个内侧引物以及两个外侧引物)来将希望的元件加入到靶核苷酸序列中时,外侧引物中至少一个可以包括亲和性部分。
微流体装置
在某些实施方案中,可以使用微流体装置来实现本文所述的方法。在示例性实施方案中,该装置是矩阵型的微流体装置,允许同时将多个底物溶液(substrate solution)与多个试剂溶液组合在分别分离的反应区室(separate isolated reactioncompartment)中。应当理解的是底物溶液可以包含一个或多个底物(例如靶核酸)并且试剂溶液可以包含一个或多个试剂。例如,微流体装置可以允许同时配对地组合多个不同扩增引物和样品。在某些实施方案中,该装置被配置以在这些不同室的每一个中包含不同组合的引物和样品。在不同实施方案中,分离的反应区室的数量可以是大于50个、通常地大于100个、更经常地大于500个、甚至更经常地大于1000个、并且时常大于5000个、或大于10,000个。
在具体实施方案中,矩阵型的微流体装置是Dynamic Array("DA")微流体装置。DA微流体装置是被设计用于分离配对组合的样品和试剂(例如,扩增引物、检测探针、等)并且适合用于进行定性以及定量PCR反应包括实时定量PCR分析的矩阵型微流体装置。在一些实施方案中,这种DA微流体装置至少部分是由弹性体制造的。DA微流体装置被描述于PCT公布号WO05107938 A2(Thermal Reaction Device and Method For Using The Same)和美国专利公布号US20050252773A1中,出于它们的DA微流体装置的说明的目的,这两者都通过引用以其全部内容并入本文。DA微流体装置可以并入多个高密度矩阵设计,这些设计使用该微流体装置的层之间的流体连通通路来编织穿过该装置并且在层之间的控制管线以及流体管线。通过弹性体块的多个层中的流体管线,高密度反应单元(reaction cell)安排是可能的。作为替代方案,可以设计DA微流体装置使得所有试剂以及样品通道都位于同一弹性体层中,控制通道在不同的层中。在某些实施方案中,DA微流体装置可用于将M个数目的不同的样品与N个数目的不同的试剂反应。
虽然WO05107938中所述的DA微流体装置非常适合用于进行在本文所述的方法,本发明不限于任何具体的装置或设计。可以使用分配样品和/或允许独立的配对组合试剂和样品的任何装置。美国专利公布号20080108063(该专利通过引用以其全部内容并入本文)包括说明了48.48DYNAMIC ARRAYTM IFC,可以从Fluidigm Corp.(South San FranciscoCalif)得到的一种可商购的装置的图表。应当理解的是其他构型是可能的并且是被考虑的,例如48×96、96×96、30×120;等。
在具体实施方案中,微流体装置可以是DIGITAL ARRAYTM IFC微流体装置,该装置适于进行数字扩增。这类装置可以具有将样品和试剂的混合物分配到纳升体积反应区室中的整合的通道以及阀。在一些实施方案中,DIGITAL ARRAYTM IFC微流体装置至少部分是由弹性体制造的。示例性的DIGITAL ARRAYTM IFC微流体装置被描述于共同未决的属于Fluidigm Corp.(South San Francisco,CA)的美国申请中,例如标题为“Method andApparatus for Determining Copy Number Variation Using Digital PCR”的美国申请号12/170,414。一个示例性实施方案具有12个输入端口,这些端口相应于12个单独的样品输入该装置中。该装置可以具有12个嵌板(panel),并且这12个嵌板的每一个可以包含765个6 nL的反应区室,每个嵌板总体积为4.59μL。微流体通道可以将嵌板上的不同的反应区室连接到流体来源上。可以将压力施加到一个累加器(accumulator)以开放和关闭将反应区室连接到流体来源上的阀。在示例性实施方案中,可以提供12个入口用于载入样品试剂混合物。可以使用48个入口来提供试剂来源,当将压力施加到累加器上时,试剂被供应到芯片上。另外地,可以提供两个或更多个入口以提供芯片的水合。
尽管DIGITAL ARRAYTM IFC微流体装置非常适合用于实现在本文所述的某些扩增方法,本领域普通技术人员应当认识到对于这些装置的多种变更和替代方案。给定的DIGITAL ARRAYTM IFC微流体装置的几何形状将取决于具体应用。与适合用于在本文所述方法中的装置相关的另外的说明被提供于美国专利申请公布号20050252773中,出于它的披露DIGITAL ARRAYTM IFC微流体装置的目的,通过引用将其并入本文。
在某些实施方案中,可以使用提供反应产物的回收的微流体装置来实现在本文所述的方法。这类装置被详细描述于2009年4月2日提交的共同未决的美国申请号61/166,105中(该专利通过引用以其全部内容并入本文并且特别地是出于它的说明允许反应产物回收的微流体装置以及相关方法的目的),并由Fluidigm Corp.作为ACCESS ARRAYTM IFC(Integrated Fluidic Circuit)出售。
在这一类型的示例性装置中,独立的样品输入与引物输入以MxN阵列构型组合。因此,每个反应是特定样品与特定试剂混合物的独特组合。在一个实现方式中,通过安排为列的样品输入管线将样品载入微流体装置的样品区室中。通过安排为横过所述列的行的测定液输入管线将测定试剂(例如引物)载入微流体装置的测定区室中。在加载期间样品区室和测定区室是处于流体隔绝的。在加载过程完成之后,将可操作以防止流体管线通过样品和测定区室的对之间的接口阀开放以使样品和测定液的配对组合能够自由地界面间扩散。样品和测定液的精确混合使不同配对组合之间能够发生反应,在每个区室中生成一个或多个反应产物。收获反应产物并且然后可将其用于随后的过程。如在此使用的术语“测定液(assay)”和“样品”是这些装置在某些实施方案中的具体用途的说明。然而,这些装置的用途不限于在所有实施方案中使用样品”以及“测定液”。例如,在其他实施方案中,“样品”可以指“第一试剂”或多个“第一试剂”并且“测定液”可以指“第二试剂”或多个“第二试剂”。这些装置的MxN特征使有待组合的第一试剂的任何组能够与第二试剂的任何组相组合。
根据具体实施方案,可以将来自MxN个配对组合的反应产物从微流体装置回收到离散的池中,例如,M个样品的每一个对应一个池。典型地,离散的池被包含在提供于载体(carrier)上的样品输入端口中。在一些方法中,出于归一化的目的,可以在“每个扩增子”的基础上收集这些反应产物。使用本发明的实施方案,有可能实现其中扩增产物的拷贝数在一个样品中改变不大于±25%并且在样品间不大于±25%的结果(针对从样品和测定液的同一输入溶液组装的重复实验)。因此,如通过特定已知基因型分布测量的,从微流体装置中回收的扩增产物将是输入样品的代表。在某些实施方案中,输出样品浓度将大于2,000个拷贝/扩增子/微升,并且反应产物的回收将在小于两小时内完成。
在一些实施方案中,反应产物由膨胀泵送回收。膨胀泵送提供了使用常规技术通常不可获得的益处。例如,膨胀泵送使得能够从微流体装置缓慢去除反应产物。在示例的实施方案中,以小于100μl/小时的流体流速回收反应产物。在这个示例中,为了将48个反应产物分配到每一列中的反应区室,每个反应产物的体积为约1.5μl,在约30分钟的时间段中去除反应产物将导致72μl/小时的流体流速。(即,48x1.5/0.5小时)。在其他实施方案中,反应产物的去除速率以以下速率进行:小于90μl/hr、80μl/hr、70μl/hr、60μl/hr、50μl/hr、40μl/hr、30μl/hr、20μl/hr、10μl/hr、9μl/hr、小于8μl/hr、小于7μl/hr、小于6μl/hr、小于5μl/hr、小于4μl/hr、小于3μl/hr、小于2μl/hr、小于1μl/hr或小于0.5μl/hr。
膨胀泵送导致清除微流体装置中存在的大致上高百分比的以及可能地所有的反应产物。一些实施方案去除微流体装置的反应区室(例如,样品区室)中存在的多于75%的反应产物。作为举例,一些实施方案去除反应区室中存在的反应产物的多于80%、85%、90%、92%、95%、96%、97%、98%或99%。
本文描述的方法可使用带有多个一般包括样品区室和检验区室的"单元小室"的微流体装置。此类单元小室可具有数百微米数量级尺寸,例如具有如下尺寸的单元小室:500x500μm、525x525μm、550x550μm、575x575μm、600x600μm、625x625μm、650x650μm、675x675μm、700x700μm或类似尺寸。选择样品区室和测定区室的尺寸以提供当减少样品和测定液用量时足以完成希望过程的材料量。作为举例,样品区室可以具有100-400μm宽度x200-600μm长度x100-500μm高度数量级的尺寸。例如,宽度可以是100μm、125μm、150μm、175μm、200μm、225μm、250μm、275μm、300μm、325μm、350μm、375μm、400μm或类似尺寸。例如,长度可以是200μm、225μm、250μm、275μm、300μm、325μm、350μm、375μm、400μm、425μm、450μm、475μm、500μm、525μm、550μm、575μm、600μm或类似尺寸。例如,高度可以是100μm、125μm、150μm、175μm、200μm、225μm、250μm、275μm、300μm、325μm、350μm、375μm、400μm、425μm、450μm、475μm、500μm、525μm、550μm、575μm、600μm或类似尺寸。测定区室可以具有类似尺寸范围,这典型地提供了比较小的区室体积更小的范围内类似的步长(step size)。在一些实施方案中,样品区室体积对于测定区室体积的比率是约5:1、10:1、15:1、20:1、25:1或30:1。比列出的范围更小的区室体积被包括在本发明的范围内并且易于使用微流体装置制造技术来制造。
更高密度的微流体装置典型地将使用更小的区室体积以减少单元小室的覆盖区(footprint)。在其中可以得到非常小样品尺寸的应用中,减少区室体积将有助于对此类小的样品进行测试。
对于单颗粒分析,可设计微流体装置以帮助上样和捕获待分析的特定颗粒。图9显示用于分析哺乳动物细胞的示例性的微流体装置的单元小室结构。每个单元小室具有"细胞通道"(即,样品区室)和"检验通道"(即,检验区室)。细胞通道是圆形的,用于上样哺乳动物细胞,尺寸为直径在数十微米级别至长度在一百数百微米。取决于被分析的细胞的尺寸,直径可以是约15μm、约20μm、约25um、约30μm、约35μm、约40μm、或约45μm或更多,或可落入以这些值的任一个作为端点的范围内。取决于被分析的细胞的尺寸,长度可以是约60μm、约90μm、约120μm、约150μm、约170μm、约200μm、约230μm、约260μm、约290μm或更多,或可落入以这些值的任一个作为端点的范围内。在基于ACCESS ARRAYTM IFC平台("MA006")的示例性的微流体装置中,用于上样哺乳动物细胞的单元小室可以是约30μmx170μm。这样的装置可配置为在上样后对细胞通道提供或帮助提供热来溶解细胞。如图9所示,装置可包括与细胞通道分开的检验通道用于进行反应诸如核酸扩增。170μmx170封锁阀(containment valve)可用于关闭细胞通道。
2012年2月29日提交的题为"Methods,Systems,And Devices For MultipleSingle-Particle or Single-Cell Processing Using Microfluidics"的共同待决的美国申请号61/605,016描述了用于利用微流体的多个单颗粒或单细胞处理的方法、系统和装置。多个实施方案提供从细胞颗粒的较大群体捕获、分隔、和/或操作单独颗粒或细胞,以及产生与每个单独颗粒或细胞相关的遗传信息和/或反应。一些实施方案可配置为成像单独颗粒或细胞或相关的反应产物作为处理的部分。这一申请通过引用全文并入本文,尤其是其对配置用于多个单颗粒或单细胞处理的微流体装置和相关系统的描述。
在具体实施方案中,采用微流体装置以有助于具有下面的动态范围的测定法:至少3个数量级、更经常是至少4个、至少5个、至少6个、至少7个或至少8个数量级。
使用弹性体材料的制造方法以及用于设计装置以及它们的部件的方法已经详细地描述于科学以及专利文献中。参见,例如,Unger等人.(2000)Science 288:113-116;美国专利号US 6,960,437(Nucleic acid amplification utilizing microfluidicdevices);6,899,137(Microfabricated elastomeric valve and pump systems);6,767,706(Integrated active flux microfluidic devices and methods);6,752,922(Microfluidic chromatography);6,408,878(Microfabricated elastomeric valve andpump systems);6,645,432(microfluidic devices including three-dimensionallyarrayed channel networks);美国专利申请公布号2004/0115838;2005/0072946;2005/0000900;2002/0127736;2002/0109114;2004/0115838;2003/0138829;2002/0164816;2002/0127736;和2002/0109114;PCT公布号WO2005/084191;WO 05/030822A2;和WO 01/01025;Quake&Scherer,2000,"From micro to nanofabrication with soft materials"Science 290:1536-40;Unger等人.,2000,"Monolithic microfabricated valves andpumps by multilayer soft lithography"Science 288:113-116;Thorsen等人.,2002,"Microfluidic large-scale integration"Science 298:580-584;Chou等人.,2000,"Microfabricated Rotary Pump"Biomedical Microdevices 3:323-330;Liu等人.,2003,"Solving the"world-to-chip"interface problem with a microfluidic matrix"Analytical Chemistry 75,4718-23,Hong等人,2004,"A nanoliter-scale nucleic acidprocessor with parallel architecture"Nature Biotechnology22:435-39。
数据输出和分析
在某些实施方案中,当在矩阵型的微流体装置上执行本文所述的方法时数据能够作为热矩阵(也称为“热图”)输出。在热矩阵中,每个正方形(代表DA矩阵上的反应区室)已经被指定颜色值,该颜色值能够以灰度形式显示,但更典型地以颜色显示。在灰度中,黑色正方形指示未检测出扩增产物,而白色正方形指示扩增产生的最高水平,其中灰度阴影指示其间扩增产物的水平。在进一步方面中,可以使用软件程序来对将热矩阵中生成的数据编译成读者更友好的形式。
应用
在具体实施方案中,本文所述的方法用于分析一个或多个核酸,例如(在一些实施方案中),颗粒中或与颗粒缔合的一个或多个核酸。因此,例如,这些方法适用于鉴别特定多态性(例如SNP)、等位基因、或单体型、或染色体异常例如扩增、缺失、重排、或非整倍性的存在。这些方法可以被用于基因分型中,基因分型可以在多种背景中实现,这些背景包括对遗传疾病或疾患、癌症进行诊断、药物基因组学(个体化用药)、农业中质量控制(例如用于种子或家畜)、对植物或动物的种群进行研究和管理(例如,水产养殖或渔业管理中或确定种群多样性中)、或亲子或法医鉴定。本文所述的方法可以用于在生物或环境样品中鉴别指示特定条件或生物体的序列。例如,所述方法可以用于测定中以鉴别病原体例如,病毒、细菌、以及真菌。所述方法还可以被用于旨在表征环境或微环境的研究中,例如表征人肠中的微生物物种。
在某些实施方案中,这些方法还可以用于确定DNA或RNA拷贝数。确定基因组DNA中异常DNA拷贝数是有用的,例如,在诊断和/或预后遗传缺陷和疾病,例如癌中。对于感兴趣的基因,例如在不同条件下(例如,不同外部刺激或疾病状态)和/或在不同发育阶段下,例如不同个体、组织、或细胞中的表达监控而言,确定RNA“拷贝数”,即表达水平,是有用的。
此外,可以使用所述方法来制备核酸样品用于进一步分析,例如像DNA测序。
而且,在随后分析之前,作为第一步骤,可以将核酸样品加标签,从而降低样品的错误标记或交叉污染将损害结果的风险。例如,在收集之后任何医师办公室、实验室、或医院可以立即对样品进行加标签,并且在分析时可以对标签进行确认。类似地,可以对包含在犯罪现场收集的核酸的样品尽快加标签,以确保样品不被错误标记或被篡改。样品从一方到另一方的每次传递时的标签检测可以用于建立样品的保管链。
如以上讨论的,除了核酸以外,本文描述的方法还可用于分析颗粒的其他参数,诸如例如,每个颗粒中或与每个颗粒缔合的一个或多个蛋白的表达水平。在一些实施方案中,对每个颗粒分析一个或多个核酸连同一个或多个其他参数。
将多个参数的检验结果与颗粒群体中每个颗粒相关联的能力可在多种不同类型研究中开发。在多个实施方案中,本文描述的方法可用于鉴定两种或更多种变化诸如拷贝数变化、突变、表达水平变化或剪接变体,其中将变化一起与表型关联。表型可以是,例如,疾病的风险、存在、严重度、预后、和/或对具体疗法的响应性或对药物的耐药性。本文描述的方法还可用于检测特定核酸序列的共存在,其可指示基因组重组、特定剪接变体的共表达、B细胞中特定轻链和重链的共表达。该方法还可适用于检测特定宿主细胞中特定病原体的存在,例如,当病原体特异性和宿主细胞特异性核酸二者(或其他参数)共同存在于相同的细胞中时。该方法还可用于从循环中的肿瘤细胞靶向再测序,例如,在不同癌症中的突变热点。
试剂盒
根据本发明的试剂盒可包括对于实践本文描述的一个或多个测定方法有用的一个或多个试剂。总体上试剂盒包括包装,其中一个或多个容器容纳试剂(例如引物和/或探针)作为一个或多个单独组合物,或任选地,当试剂的相容性将允许时,作为混合物。该试剂盒还可以包括从使用者的观点来看可以是令人希望的其他物质,例如缓冲剂、稀释剂、标准品、和/或在样品处理、洗涤、或进行该测定的任何其他步骤中有用的任何其他物质。在具体实施方案中,试剂盒包括以上讨论的一个或多个矩阵型微流体装置。
在某些实施方案中,本发明包括用于进行加入衔接子分子到包含粘末端的多个靶核酸的每个末端的上述方法的试剂盒。这些实施方案可用于,例如,用于高通量DNA测序的片段产生。这样的试剂盒可包含设计为用于这一方法的多个衔接子分子(参见以上)和选自以下组成的组的一个或多个组分:DNA酶、核酸外切酶、核酸内切酶、聚合酶和连接酶。。
在具体实施方案中,本发明包括用于组合条形码化的试剂盒。用于进行四引物方法的试剂盒,例如,可包含聚合酶和:
(i)内侧引物,包含:
正向、内侧引物,包含第一核苷酸标签、第一条形码核苷酸序列和靶特异性部分;和
反向、内侧引物,包含靶特异性部分、第一条形码核苷酸序列和第二核苷酸标签;和
(ii)外侧引物,包含:
正向、外侧引物,包含第二条形码核苷酸序列和第一核苷酸标签特异性部分;和
反向、外侧引物,包含第二核苷酸标签特异性部分和第二条形码核苷酸序列,其中外侧引物是比内侧引物过量的。用于进行六引物、组合条形码化方法的试剂盒可包含聚合酶和:
(i)内侧引物,包含:
正向、内侧引物,包含第一核苷酸标签和靶特异性部分;和
反向、内侧引物,包含靶特异性部分和第二核苷酸标签;
(ii)填充引物,包含:
正向、填充引物,包含第三核苷酸标签、第一条形码核苷酸序列和第一核苷酸标签特异性部分;和
反向、填充引物,包含第二核苷酸标签特异性部分、第一条形码核苷酸序列、第四核苷酸标签;和
(iii)外侧引物,包含:
正向、外侧引物,包含第二条形码核苷酸序列和第三核苷酸标签特异性部分;和
反向、外侧引物,包含第四核苷酸标签特异性部分和第二条形码核苷酸序列;其中外侧引物是比填充引物过量的,填充引物是比内侧引物过量的。
在其他实施方案中,本发明包括用于基于组合连接的加标签的试剂盒。这些试剂盒包含多个衔接子,包含:
多个第一衔接子,各自包含相同的核酸内切酶位点、N个不同的条形码核苷酸序列、第一引物结合位点和粘末端,其中N是大于1的整数;
第二衔接子,包含第二引物结合位点和粘末端;和
多个第三衔接子,包含第二条形码核苷酸序列和与在所述核酸内切酶位点切割所述第一衔接子时产生的那些互补的粘末端,其中多个第三衔接子包含M个不同的第二条形码核苷酸序列,其中M是大于1的整数。这样的试剂盒可任选地包含对第一衔接子中的核酸内切酶位点特异性的核酸内切酶和/或连接酶。
本发明还提供用于通过插入诱变来加标签的试剂盒,其也可用于如上所述的组合加标签。在某些实施方案中,这样的试剂盒包含:
一个或多个核苷酸标签;和
多个条形码引物,其中每个条形码引物包含:
第一部分,其是对核苷酸标签的第一部分特异性的,连接于;
条形码核苷酸序列,其不退火到核苷酸标签,连接于;
第二部分,其是对核苷酸标签的第二部分特异性的,其中多个条形码引物各自包含相同的第一和第二标签特异性部分、但M个不同的第二条形码核苷酸序列,其中M是大于1的整数。在具体实施方案中,核苷酸标签包含转座子末端,且试剂盒另外包含转座酶,转座酶可将转座子末端加入到靶核酸。这样的试剂盒还可任选包含聚合酶。
本发明包括可用于双向核酸测序的试剂盒。在具体实施方案中,这样的试剂盒可包含:
第一外侧引物组,其中该组包含:
第一外侧、正向引物,包含对第一引物结合位点特异性的部分;和
第一外侧、反向引物,包含条形码核苷酸序列和对第二引物结合位点特异性的部分,其中第一和第二引物结合位点是不同的;
第二外侧引物组,其中该组包含:
第二外侧、正向引物,包含条形码核苷酸序列和对第一引物结合位点特异性的部分;和
第二外侧、反向引物,包含对第二引物结合位点特异性的部分。在某些实施方案中,第一和第二引物结合位点可以是DNA测序引物的结合位点。在一些实施方案中,外侧引物可各自另外包含另外的核苷酸序列,其中:
第一外侧、正向引物包含第一另外的核苷酸序列,且第一外侧、反向引物包含第二另外的核苷酸序列;和
第二外侧、正向引物包含第二另外的核苷酸序列,且第二外侧、反向引物包含第一另外的核苷酸序列;且第一和第二另外的核苷酸序列是不同的。在具体、示例性实施方案中,第一外侧引物组包含PE1-CS1和PE2-BC-CS2,且第二外侧引物组包含PE1-CS2和PE2-BC-CS1(表1,实施例9)。
包含两组外侧引物的双向核酸测序试剂盒还可任选地包含内侧引物组,其中该组包含:
内侧、正向引物,包含靶特异性部分和第一引物结合位点;和
内侧、反向引物,包含靶特异性部分和第二引物结合位点。在某些实施方案中,试剂盒可包含各自对不同的靶核酸特异性的多个内侧引物组。
这些双向核酸测序试剂盒的任一个还可任选地包含以下DNA测序引物:
结合第一和第二引物结合位点并引发靶核苷酸序列的测序;和/或
结合第一和第二引物结合位点并引发条形码核苷酸序列的测序。在具体实施方案中,两个类型的DNA测序引物被包括在试剂盒中,且结合第一和第二引物结合位点并引发条形码核苷酸序列的测序的引物是引发靶核苷酸序列的测序的引物的反向互补物。在具体、示例性实施方案中,试剂盒包含DNA测序引物CS1、CS2、CS1rc和CS2rc(表2,实施例9)。
试剂盒通常上包括用于实现本文所述的一种或多种方法的说明书。试剂盒中包括的说明书可以被附着在包装材料上或可以作为包装插入物(package insert)而包括。虽然这些说明书典型地是书面或打印的材料,它们不限于此。能够存储这类说明书并且使它们与最终用户进行交流的任何介质是本发明考虑的。这类介质包括但不限于电子存储介质(例如,磁盘、磁带、盒带、芯片)、光学介质(例如CD ROM)、RF标签,等。如在此使用的,术语“说明书”可以包括提供该说明书的互联网的地址。
应当理解,本文所述的实例及实施方案仅是为说明目的且并且根据其的不同的修饰或变化将对本领域中的普通技术人员进行建议,并将包括于本申请的精神及范围以及随附权利要求的范围内。
此外,出于所有的目的,在此引用的所有其他出版物、专利、以及专利申请都通过引用以其全部内容并入本文。
实施例
实施例1
用于DNA测序的一般文库制备方法
制备用于核酸测序的文库的现有方法是繁琐的,需要多个步骤。方法的关键包括随机片段化DNA(例如),随后末端修复,抛光片段末端和连接末端衔接子。这些步骤各需要特定反应条件和在每个步骤之间纯化产物。
这一实施例与图1和2描述了文库制备的可选方法。这一方法利用简并测序衔接子,其可以是双链DNA分子,包含用于给定测序仪的末端衔接子(或其部分)、限制性酶消化位点(或其他特异性裂解位点)、和在两条链3'末端的侧翼简并序列。可选地,衔接子可以是发夹序列或双链寡核苷酸。末端衔接子是在3'末端带有简并序列的单链寡核苷酸也是可能的。
DNA将利用标准方法(例如酶促消化、喷雾化、超声处理)片段化。酶促消化将是优选的,因为它们对DNA分子用于下游步骤导致较少损伤。例如,可将DNA酶I加入待测序的DNA。这一反应可通过热处理终止。
然后将在NTP不存在下利用T4聚合酶或无聚合酶活性的链特异性核酸外切酶在末端消化双链DNA回到单链DNA。核酸外切酶将是优选的,因为它可在单个反应中与连接酶(例如,热稳定连接酶)和聚合酶(例如,
Figure GDA0000588916800000981
)一起作用。然而,如果使用T4聚合酶,制备方法仍将以多个步骤作用。
核酸酶消化将在DNA的末端暴露一条链。衔接子序列将在聚合酶和连接酶存在下加入。衔接子序列将退火到消化的DNA,缺口将被聚合酶/连接酶混合物填充和修复。在这一方案的一个版本中,衔接子序列将从发夹结构制造,从而在消化/连接/聚合期间,终产物是环化的DNA。其将被保护不受核酸外切酶的进一步降解,导致终产物的聚积。
实施例2
用于Illumina测序的基于组合连接的条形码化
制备DNA测序文库,且标准PE2-BC-标签序列被RE-1-BC-标签代替。
条形码序列的PE2标签序列下游用限制性酶(例如BsrD1)的识别位点(RE-1)代替,留下短的悬垂物:
5’-TGCATAGCAATGNN|CTAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-靶-3’(SEQ IDNO:2)
3’-ACGTATCGTTAC|NNGATCCACTGACCTCAAGTCTGCACACGAGAAGGCTAGA-靶-5’(SEQ IDNO:3)
用酶切割文库。
连接包含适当悬垂物的衔接子分子和第二条形码序列:
5'-CAAGCAGAAGACGGCATACGAGATAGCTNN+CTAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-靶-3’(SEQ ID N0:4)
3’-GTTCGTCTTCTGCCGTATGCTCTATCGA NNGATCCACTGACCTCAAGTCTGCACACGAGAAGGCTAGA-靶-5’(SEQ ID N0:5)
连接将产生以下构建体:
5'-CAAGCAGAAGACGGCATACGAGATAGCTNNCTAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-靶-3'(SEQ ID N0:6)
3'-GTTCGTCTTCTGCCGTATGCTCTATCGANNGATCCACTGACCTCAAGTCTGCACACGAGAAGGCTAGA-靶-5'(SEQ ID NO:7)
利用标准清除方法在测序前去除剩余的衔接子分子。
在测序运行上的索引读取期间,报告回的索引序列将是:CTAGNNAGCT(SEQ ID NO:8)。
实施例3
基因表达的单细胞分析
问题:为了利用DYNAMIC ARRAYTM IFC获得一组基因的单细胞基因表达数据,首先在芯片外的试管中分离细胞。分离这一细胞的方法是难以进行的和/或需要大量细胞。当细胞有限时,诸如来自组织的原代细胞和/或来自微孔板中的药物筛选试验的细胞,这一最后的障碍更多地变成利用BioMark从单细胞获得基因表达数据的屏障。
解决方案:ACCESS ARRAYTM IFC("芯片")或允许回收反应混合物的类似芯片可用于经由有限稀释上样单细胞(例如MA006芯片)。通过利用芯片作为分选和制备用于下游基因表达分析的细胞的设备,可方便地为DYNAMIC ARRAYTM IFC准备有限数目的细胞,从而为以上列出的问题提供解决方案。本发明的步骤如下:
1)以有限稀释在ACCESS ARRAYTM IFC中上样细胞。如图7A所示地上样引物组。任何给定的细胞将被暴露于所有基因特异性引物和单个独特条形码引物。
2)在芯片中进行逆转录和预扩增。产生的扩增子的一个实例显示在图7B。这是3引物方法。使用这一方法的益处是,对特定实验仅需要设计和订购一组96个引物对(或更多,对于期望的许多基因)。BC反向引物是通用的,用在所有实验中。任何给定细胞将具有扩增的所有基因,且所有扩增子将已经被单个条形码加标签。(参见以下可能的变化)。
3)反应产物由池(与不同的引物组成90度,即由样品)输出。池N现在包含96个基因(或更多或更少)的预扩增物与条形码的混合物,其中一个条形码与一个细胞匹配。池保持分离,从而即使多个细胞以相同的条形码加标签,它们也是可区分的,因为它们属于不同的池。
4)上样DYNAMIC ARRAYTM IFC,如图7C所示。注意:单细胞可经由多种方法在ACCESSARRAYTM芯片上追踪。这提供关于哪个池和哪个条形码预扩增反应具有单细胞的信息,即,哪个应被上样到DYNAMIC ARRAYTM IFC上。这一选择允许我们仅读取包含一个细胞的ACCESSARRAYTM IFC室,导致DYNAMIC ARRAYTM IFC的有效使用。而且,如果目标细胞通过使用细胞特异性染色剂即对细胞表面标志物的抗体被圈定,则仅这一亚组的细胞可被选择用于上样到DYNAMIC ARRAYTM IFC。当细胞在细胞的混杂群体中是罕见的即,干细胞、癌症干细胞、癌细胞的时候,这可变得重要。
5)运行qPCR,用EvaGreen用于检测。通过扩增一个BC引物和一个基因特异性引物的组合,可获得单细胞(其扩增子在ACCESS ARRAYTM IFC中的预扩增期间被BC引物加标签)对给定基因(其扩增将被DYNAMIC ARRAYTM IFC中的基因特异性引物检测)的基因表达。
可能的变化:存在具有预扩增一组基因和用独特条形码加标签单独细胞的共同最终结果的不同检测方法。实例如下:
如以上相同地进行但使用2-引物方法。
使用Fen-连接酶链式反应。
使用解链温度策略。
实施例4
检测来自实施例3的反应产物的可选方法
代替利用qPCR以EvaGreen检测来自在ACCESS ARRAYTM IFC中预扩增的BC-加标签的扩增子,在DYNAMIC ARRAYTM IFC(例如,M96)中进行带有实时检测的连接酶链式反应。
示例性的扩增子具有以下结构:5'-正向引物序列-靶核苷酸序列-反向引物序列-条形码核苷酸序列-3'。在这种情形中,一个引物可退火到反向引物序列,另一个引物可退火到邻近的条形码核苷酸序列,随后是连接、和重复的退火和连接循环。参见图8A。具有任一不同的反向引物("R")的池中的扩增子来源于不同的靶核酸(此处是信使RNA),具有不同的条形码引物("BC")的池中的扩增子将不被扩增。因此,用BCM扩增池N扩增了来自ACCESSARRAYTM IFC的行N、列M中的室的条形码化的靶核酸。在这一扩增中使用R1作为另一个引物扩增了来源于对应R1的靶核酸的扩增子。
实时检测的一个方法是悬垂片核酸内切酶-连接酶链式反应,其使用5'悬垂片核酸内切酶和标记的BCn引物,如图8B所示。这一反应采用标记的探针和未标记的探针,其中探针对反应产物的同时杂交导致在标记的探针的5'末端形成悬垂片,且悬垂片的裂解可裂解荧光团与猝灭剂分开,产生信号。由于BC不是扩增子特异性的,这些引物仅需制造一次。例如,96个BC的一组对于任何数目的不同组FnRn个扩增子将是足够的。
这一策略的益处:
池和BC的选择允许分析仅包含单细胞的那些ACCESS ARRAYTM IFC室(其中单细胞分析是目的)。未标记的细胞可利用ACCESS ARRAYTM IFC的亮视野或荧光成像来检测。此外,细胞可在上样到ACCESS ARRAYTMIFC之前或之后用染料和/或标记的抗体染色以辨识感兴趣的细胞(例如,干细胞、癌细胞、癌症干细胞等等)。池和BC的选择允许分析仅包含感兴趣的细胞的那些ACCESS ARRAYTM IFC室,改进效率。
这一策略需要比FACS少的多的细胞,这使得可能用在不能利用FACS进行的分析中,诸如分析原代细胞或来自筛选试验的细胞的群体。
实施例5
利用适于细胞操作的ACCESS ARRAYTM IFC("MA006")从单细胞制备用于测序的核 酸的方法
一般方法的概述
"芯片"在本文称为MA006,已经利用ACCESS ARRAYTM IFC平台开发,还开发了利用MA006、整合细胞操作和用于核酸测序的样品制备的方法。参见图9的MA006单元小室结构的示意图,显示芯片上方法。这一整合简化了执行实验所需的步骤。而且,上样芯片需要仅数百细胞。
MA006芯片具有以下特征:
单元小室具有170x30pm圆形通道来上样哺乳动物细胞
48.48矩阵格式;
在细胞通道中利用热溶解细胞;
用于扩增反应的分别的反应区室;
170x170pm封锁阀以关闭细胞通道;
额外的阻力层:PourOB-30gm圆形阻力;
芯片制造:使用现有的AA48.48方法;
65pm准直容差;
130pm冲孔直径;
65x85pm阀尺寸;和
3层设计方法。
MA006芯片上没有细胞捕获特征。结果是有限稀释策略用于获得每室期望数目的细胞。然而,细胞捕获特征可被设计到芯片中。它们可以是物理(例如,杯或盏结构)、生物(例如,布点的肽)、或化学的(例如,带电荷离子)。
芯片外的细胞操作:将待分析的细胞准备到使得获得每样品室(图9中的"细胞通道")期望数目的细胞的密度。因为MA006芯片使用有限稀释策略,每室细胞的数目在理论和实际上都遵循泊松分布。在第一种情况中,因为包含单细胞的最大数目的室是期望的,最佳细胞密度是每微升300-600细胞。1至2微升的最小体积可被施加到入口。因此,实验可用仅数百细胞进行。可使用来自任何来源(即,活生物体、组织培养物等等)的任何细胞类型(即,哺乳动物、细菌等等)。可使用制备、洗涤、和/或染色的任何形式或程度,只要其与下游应用相容。
芯片中的细胞追踪:在任何聚合酶/扩增依赖性化学反应不存在下,可利用亮视野或荧光显微术监测芯片中细胞的位置、身份、和/或内容物。细胞可用任何染色剂染色(即,核酸特异性染色,诸如SYT010;免疫检测,诸如Cy5共轭的抗CD19;等等),只要其与下游应用相容。这可用于例如在混杂的细胞群体中鉴定罕见细胞,即,癌症干细胞。
化学反应:在将细胞上样到MA006后,将检验上样到检验室(图9中的"检验通道"),释放界面阀以混合样品和检验室的内容物。对芯片进行根据所选化学反应的热循环和如果化学反应需要和/或支持,实时或在终点成像。这一程序不限于基因特异性扩增,即可使用非特异性简并引物,或可进行RNA特异性扩增。在基因特异性扩增的情形中,可利用"多路"策略同时靶向多于一个基因。化学反应是灵活的,条件是输出是测序的底物(substrate),并且化学反应不应限于聚合酶链式反应或甚至扩增。
细胞操作
细胞计数:亮视野成像
如下操作RAMOS细胞:
(1)收获细胞。
(2)在冰冷的Tris盐水BSA缓冲液中洗涤2-3X。
(3)计数和进行适当的稀释。不同细胞密度的理论分布(泊松分布)显示在图10。
(4)将细胞推入MA006芯片。
(5)通过亮视野成像。
图11A-B显示使用亮视野成像,芯片中细胞计数的结果(A),与理论分布(B)比较。基于亮视野成像,芯片中的细胞密度接近但低于泊松分布,这一趋势在更高细胞密度时加剧。这可部分地由于芯片特征产生的"遮蔽",其可减少利用亮视野成像可检测其中的细胞的可测量面积。
细胞计数:PCR后荧光
将细胞以0.15E6/ml上样到MA006芯片并利用Cells-DirectTM RT PCR组分、Rox和EVA green进行RT-PCR。图12A-B显示荧光细胞"鬼影"图像(A)允许比PCR前亮视野成像检测更多细胞,从而细胞密度更接近地近似泊松分布(B)。基于这些结果,如果对MA006芯片的每入口施加4000细胞(例如,4μl,1000细胞/μl)并遍布,2304(48x48)或800室的大约1/3具有单细胞。
更特异性的方法
可使用的用于检测芯片中细胞的更特异性的方法包括,例如,使用细胞膜透性核酸染色剂和/或用抗体检测细胞特异性表面标志物。如此,例如,可如下操作RAMOS细胞:
(1)收获细胞。
(2)在冰冷的Tris盐水BSA缓冲液中洗涤2-3X。
(3)用Syto10 DNA染色剂和/或Cy5-标记的抗CD19抗体染色。
(4)在冰冷的Tris盐水BSA缓冲液中洗涤2-3X。
(5)计数并进行适当的稀释。
(6)将细胞推入MA006芯片。
(7)成像。
在图13中,这些更特异性的方法的结果对1E6/ml的细胞密度显示。图14A显示RT-PCR前核酸染色剂(Syto10 DNA染色剂)与RT-PCR后鬼影图像(细胞鬼影)的比较,图14B显示Syto10不抑制GAPDH的RT-PCR。芯片中细胞检测的工作流可包括用DNA染色剂和/或抗体染色细胞,随后RT-PCR前计数和然后RT-PCR后计数细胞鬼影作为备份(back-up)。
化学反应:一步基因特异性RT-PCR
研究了不同的化学反应以寻找在MA006芯片中转化细胞中的基因特异性RNA为扩增子的有效化学反应。将细胞推入细胞通道的Tris盐水BSA(0.5μg/ml)缓冲液中。上样到检验通道的试剂包括:
引物(500nM终浓度)
CellsDirectTM一步qRT-PCR试剂盒组分(从Life Technologies,Foster City,CA可得)
反应混合物
酶混合物:Superscripte III+Platinum Taq聚合酶
缓冲液
Rox
EVA Green
上样试剂-AA或GE(从Fluidigm Corp.,South San Francisco,CA可得)以阻止被PDMS非特异性吸收("耗竭效应")并溶解细胞。
带有或不带有AA或GE上样试剂地进行GAPDH的RT-PCR。结果显示,两种上样试剂都抑制RT-PCR。上样试剂包含:Prionex(AA)或BSA(GE)和0.5%Tween-20。GAPDH的RT-PCR在Prionex或BSA存在下进行。发现Prionex但不是BSA抑制RT-PCR。GAPDH的RT-PCR在0.5%Tween 20或0.5%NP40(后者是细胞溶解剂)存在下进行。这一研究的结果显示在图15。0.5%Tween 20和0.5%NP40都不显著抑制GAPDH的RT-PCR。
为了确定为来自细胞的GAPDH的RT-PCR开发的反应条件将允许以不同的水平表达的其他基因的RT-PCR,覆盖一定范围表达水平的11个基因的RT-PCR用10ng/μl RNA和上述试剂进行,除了0.5%NP40代替AA/GE上样试剂。热循环方案是:50℃30分钟;55℃30分钟;95℃2分钟;然后45个循环:95℃15秒、60℃30秒、和72℃60秒。图16中显示在MA006芯片中进行的这些11个基因的标准曲线扩增。这些结果证明,CellsDirectTM一步qRT-PCR试剂盒可与0.5%NP40(用于细胞溶解和阻止芯片中的耗竭效应)一起使用来在MA006芯片中将细胞中基因特异性的RNA转化为扩增子。
测序
为了帮助测序在MA006芯片中产生的基因特异性扩增子,采用条形码化方法以区分来自不同的室(例如,细胞)的扩增子。更具体地,采用四引物、组合条形码化方法以将两个条形码的组合放到每个扩增子的任一末端上。这一方法在图17中图解显示。内侧引物包含靶特异性部分(正向引物中的"TS-F"和反向引物中的"TS-R")、条形码核苷酸序列("bc2")、和不同的核苷酸标签。外侧引物包含标签特异性部分("CS1"和"CS2")、不同的条形码核苷酸序列("bc1")、和用于测序引物的引物结合位点("A"和"B")。图18A-B图解4引物条形码化如何可在芯片诸如MA006上进行。在芯片上用内侧引物进行扩增,其中每行的室具有拥有相同的条形码的相同的内侧引物对。来自每列的室的反应产物可作为池收获,并对每个池利用不同的外侧引物对进行扩增。这一扩增产生在扩增子的任一末端具有独特地辨识在其中进行初始扩增的室(以行和列)的条形码组合的扩增子。测序反应产物并确定每个反应区室的每个序列的读取的数目。这一确定对RAMOS细胞和对脾RNA进行。图19显示对获得的结果的比较,表示为与总RNA的读取的数目相比,对每个基因特异性扩增子的读取的数目(红)。如从该图明显的,与在总RNA中观察到的相比,这些RNA的代表当在单独细胞中测量时是不同的。
实施例6
基于尺寸的微流体单颗粒捕获
当悬液流经微流体装置时从悬液离散地捕获(discretely capturing)单细胞的一个方法是界定以以下方式导引颗粒(诸如细胞或珠)的悬液流过捕获位点的微流体几何形状:捕获位点捕捉单颗粒、有效捕获单颗粒(例如,捕获经过捕获位点附近的颗粒的概率高)、和/或导引围绕捕获位点的剩余悬液。几何形状可以是基于尺寸的,即,捕获位点仅仅足够大以包含一个颗粒(且不多于),但仍允许无颗粒悬液以适当低的流体阻抗流经该位点,从而空的捕获位点将导引颗粒的流朝向它而不是围绕它。这一目的可通过使用引流沟来实现。另外的几何形状还可以以下方式集中颗粒的流:为了成功捕获的高概率,增加颗粒去到足够接近捕获位点的可能性。对这些几何形状的变化集中在控制围绕捕获位点和引流沟、包括引流沟自身的流体的流阻,以及改变集中几何形状的孔以试图定位接近捕获位点的颗粒的流。图20A-B示例带有捕获特征和引流沟的捕获位点。图A显示无阻碍物以集中流的位点,而图B显示带有阻碍物的位点。另外的捕获位点设计显示在图21。
实施例7
基于表面标志物捕获颗粒
微流体结构中的单细胞研究要求分离单独细胞到单独反应区隔(室、液滴、颗粒)中。有限稀释是实现这一分离的一个方法。细胞被以平均每区隔小于一个细胞的浓度上样,并以泊松统计学描述的方式分配到那些区隔中。另一种方法是依赖于机械陷阱来捕获细胞。这些陷阱设计为捕获给定尺寸范围的细胞(参见实施例6)。这导致从群体偏置地选择在该尺寸范围中的细胞。
对于一些应用,理想的捕获方法将利用在细胞表面上表达的生物标志物。抗体可以在微流体阵列上的特定位置排列,尽管取决于微流体阵列的结构,这一方法可能不简单。
这一实施例描述了基于最初捕获在微流体装置中特定位置的单个、亲和性试剂包被的珠来捕获单颗粒(例如,细胞)的方法。在捕获位点开口处被该珠占据的表面积提供了细胞结合可及的亲和性试剂的确定表面。珠尺寸和捕获位点可被选择/设计使得单细胞结合到珠后,珠的其余可及表面积被先结合的细胞空间封闭。尺寸适当的珠捕获位点的选择还提供宽范围细胞尺寸的捕获。只要细胞大于暴露的捕获面积,并表达适当的表面标志物或亲和性试剂的结合伴侣,捕获该细胞就应是可能的。
捕获结构可被设计为使得细胞接触表面标志物的概率最大化。例如,一个或多个通道壁上的阻碍物可用于引导珠朝向捕获特征。参见图22A的示例性的捕获特征/阻碍物组合。捕获特征的表现可通过调整一个或多个变量来调整,所述变量包括阻碍物的角度、阻碍物与捕获位点的距离、阻碍物的长度、捕获特征的尺寸和形状、捕获特征中引流沟的尺寸(如果存在)。参见图22B和C,示例捕获特征/阻碍物组合的变量和表现。在图22B中,通道壁上的阻碍物用于引导珠朝向捕获特征。在图22C中,捕获特征与通道壁上的阻碍物配对;单独的捕获特征/阻碍物组合可位于交替的壁上以将流集中朝向邻近的捕获特征/阻碍物组合。这些组合可位于在使用中可分隔(例如,利用阀)的位点以形成分别的反应区室。
图23A和B示例(以简化形式,缺少阻碍物)利用捕获特征捕捉单个、亲和性试剂包被的珠的策略,该珠随后展示亲和性试剂(例如,抗体)以捕获单颗粒(例如,细胞)。在图23A-1中,流在包含捕获特征的通道中开始。在图A-2中,抗体结合的珠流向捕获特征,直到珠安顿在捕获特征中,如图A-3所示。然后洗涤通道以去除未捕获的珠。随后,如图23B-1所示,带有抗体结合的细胞表面标志物的细胞流入包含捕获的珠的通道。图B-2示例带有标志物的细胞如何与被捕获的珠展示的抗体相互作用和结合。展示区域的尺寸为使得结合的细胞将经由空间阻塞抑制其他细胞与捕获的珠相互作用,从而仅一个细胞结合每个捕获的珠。如图B-3所示,然后洗涤通道以去除未结合的细胞,在每个捕获位点留下一个固定的细胞。
实施例8
用于细胞捕获("CCap")的微流体装置
图24A显示设计为在离散的位置(龛)捕获单细胞的微流体装置的简图。流设计为在龛上方比经过溢流通道的强。龛包含小的缺口(~3μm高)。参见图24B。当细胞进入龛时,它封闭龛并阻止任何更多的流进入龛。流穿过到下一个未被占据的龛,直到它也被细胞封闭。理论上,在细胞穿过溢流通道并离开废弃之前,每个龛应捕获一个细胞。参考图24C-F的更多细节,缓冲液入口与细胞入口汇集,从而迫使细胞向最接近一系列横向细胞捕获通道的给料通道的一侧。参见图24D。横向细胞捕获通道的阻力低于细胞溢流通道的,以引导细胞流优先进入龛而不是进入细胞溢流通道。参见图24E。如图24F所示,每个龛足够大以捕获仅一个细胞。龛缺口足够小,使得细胞在操作压力/流水平被捕获。如果后者过高和/或龛缺口过大,细胞可变形并被推动穿过龛缺口。龛中细胞的存在升高了该特定回路的阻力,因此流被导向无细胞的回路。图24G显示实际装置,捕获的人类脐静脉内皮细胞(HUVEC)位于龛中。
实施例9
利用48.48 ACCESS ARRAYTM IFC、用于Illumina测序仪的双向DNA测序扩增子加标 签-方案1
引言
以下方案概述了对于在ACCESS ARRAYTM System上已经产生的扩增子文库,在Illumina Genome GAII、HiSeq和MiSeq测序仪上的双向测序策略。这一方案的目的是以单个读取测序运行测序PCR产物的两个末端。在标准的4引物扩增子加标签方法(参见实施例6)中,将加标签的靶特异性(TS)引物对与包含条形码序列(BC)的样品特异性引物对和Illumina测序仪所用的衔接子序列(PE1和PE2,图25A)组合。此处,在双向测序扩增子加标签策略中,不同地,将加标签的靶特异性引物对与两组样品特异性引物对组合。样品特异性引物对包含共有序列标签CS1或CS2,以两种排列附带有Illumina衔接子序列(PE1和PE2,图25B)。这一方法仅要求一组靶特异性引物对,而样品特异性条形码引物是通用的,可用在多个实验中。
双向测序扩增子加标签产生每个靶区域两个类型的PCR产物:一个PCR产物允许测序靶区域的5'末端(产物A)和一个PCR产物允许测序靶区域的3'末端(产物B)。因为两个PCR产物同时存在于流动小室,一个测序读取产生靶区域两个末端的序列信息。这一策略与末端配对的测序(实施例6)之间的主要差异在于,5'读取和3'读取不是来源于相同的簇,即,来自相同的模板分子。相反,衍生了模板群体的平均值。
多个靶序列的扩增可在加入双向条形码之前进行。简言之,该方案采用两步方法:ACCESS ARRAY IFC上的PCR在仅多路、加标签的、靶特异性引物存在下运行。然后收获的PCR产物池用作用样品特异性条形码引物的第二PCR的模板。在独立PCR反应中加入两组条形码引物,如下所述。
将样品特异性条形码引物对分离到两个分别的PCR反应中(图26;还参见表1)。
表1.分离的-引物PCR策略中使用的条形码引物.
引物 序列
PE1-CS1 5’-AATGATACGGCGACCACCGAGATCTACACTGACGACATGGTTCTACA-3'(SEQ ID N0:9)
PE2-BC-CS2 5’-CAAGCAGAAGACGGCATACGAGAT-[BC]-TACGGTAGCAGAGACTTGGTCT-3'(SEQ ID NO:10)
PE1-CS2 5’-AATGATACGGCGACCACCGAGATCTTACGGTAGCAGAGACTTGGTCT-3’(SEQ ID NO:11)
PE2-BC-CS1 5’-CAAGCAGAAGACGGCATACGAGAT-[BC]-ACACTGACGACATGGTTCTACA-3'(SEQ ID N0:12)
条形码化PCR后,合并5'反应和3'反应二者的PCR产物并将该产物用作在流动小室上形成簇的模板。由于两个PCR产物类型都存在并在流动小室上形成簇,CS1和CS2测序引物的等摩尔混合物允许同时测序两个PCR产物类型(图27)。类似地,具有CS1rc和CS2rc测序引物的等摩尔混合物的索引读取允许同时测序两个PCR产物类型的条形码。
可查阅
Figure GDA0000588916800001101
IFC Controller for ACCESS ARRAYTM System User Guide(PN 68000157)作为用于这一方案的参考。可查阅Illumina网址的最新方案、试剂和目录号信息。
制备和测序扩增子
以下试剂用于这一方案并储存在-20℃:FastStart高保真PCR System,dNTPack(Roche,PN 04-738-292-001);20X ACCESS ARRAYTM上样试剂(Fluidigm,PN 100-0883);带有通用标签(CS1正向标签、CS2反向标签)的靶特异性引物对,包括50μM CS1-加标签的TS正向引物和50μM CS2-加标签的TS反向引物;和用于Illumina GAII、HiSeq和MiSeq测序仪的双向384条形码试剂盒(Fluidigm,PN 100-3771)。另外的试剂储存在4℃,包括:AgilentDNA 1000试剂盒试剂(Agilent,PN 5067-1504);和1 X ACCESS ARRAYTM收获溶液(Fluidigm,PN 100-1031)。其他试剂储存在室温,包括PCR Certified Water(Teknova,PNW330);DNA悬浮缓冲液(10 mM Tris HCI,0.1 mM EDTA,pH8.0)(Teknova,PN T0221);和Agilent DNA 1000芯片(包括在Agilent DNA 1000 DNA试剂盒中)(Agilent)。
以下设备和消耗品用于这一方案:1.5mL或2mL微量离心管;带有用于2 mL管的转子的微量离心机;带有用于0.2mL PCR管条(tube strip)的转子的微量离心机;带有板架(plate carrier)的离心机;Agilent 2100BioAnalyzer(Agilent);96孔反应板;MicroAmpClear Adhesive Film(Applied Biosystems,PN 4306311);IFC Controller AX(2倍量,PCR前和PCR后)(Fluidigm);FC1 Cycler(Fluidigm);48.48 ACCESS ARRAYTM IFC s(Fluidigm);和Control Line Fluid Syringes(Fluidigm,PN 89000020)。
在ACCESS ARRAYTM IFC上的多路PCR按照在Fluidigm ACCESS ARRAYTM Systemfor Illumina Platform User Guide中的Chapter 6-Multiplex PCR on the 48.48ACCESS ARRAYTM IFC中详述的说明进行。
条形码化PCR按照在Fluidigm ACCESS ARRAY System for Illumina PlatformUser Guide中的Chapter 6-Attaching Sequence Tags and Sample Barcodes中详述的说明进行。收获的PCR产物池的100X稀释物用作二个而不是一个条形码化PCR反应的模板:一个反应产生的PCR产物A允许测序靶区域的5'末端,另一个反应产生的PCR产物B允许测序靶区域的3'末端。反应的设置与Fluidigm ACCESS ARRAY System for Illumina PlatformUser Guide中的"Attaching Sequence Tags and Sample Barcodes"相同。然而,样品预混合物主混合物(Sample Pre-Mix Master Mix)的量加倍以补偿孔数目的增加。在第二PCR完成后,合并PCR产物A和PCR产物B池,随后测序。Fluidigm ACCESS ARRAYTM System forIllumina Platform User Guide的第8章提供描述PCR后产物文库纯化和定量的方法。
这一实施例的其余部分提供该方案中使用的测序工作流。
以下制备试剂的说明预期是与Illumina TruSeq测序试剂一起使用。Fluidigm试剂FL1和FL2分别包含CS1和CS2测序和索引引物的等摩尔混合物。FL1是测序引物,包含各50μM的CS1和CS2引物。FL2是索引引物,包含各50μM的CS1rc和CS2rc引物。这些引物的序列显示在表2。
表2引物和序列
引物 序列
CS1 5’-ACACTGACGACATGGTTCTACA-3'(SEQ ID NO:13)
CS2 5’-TACGGTAGCAGAGACTTGGTCT-3’(SEQ ID NO:14)
CS1rc 5’-TGTAGAACCATGTCGTCAGTGT-3’(SEQ ID NO:15)
CS2rc 5’-AGACCAAGTCTCTGCTACCGTA-3’(SEQ ID NO:16)
测序引物HP6/FL1通过在无DNA酶、RNA酶的0.5mL微量离心管中在TruSeq试剂HP6中稀释Fluidigm试剂FL1(其包含定制的测序引物)到终浓度0.25μM来制备,如表3所示。混合后涡旋引物以确保完全混合。
表3制备HP6/FL 1(每mL)的说明
试剂 体积
TruSeq试剂HP6 995μL
FL1 5μL
1000μL
索引引物HP8/FL2通过在无DNA酶、RNA酶的0.5ml微量离心管中在Truseq试剂HP8中稀释Fluidigm试剂FL2(其包含定制的索引引物)到终浓度0.25μM来制备,如表4所示。混合后涡旋引物以确保完全混合。
表4制备HP8/FL2(每mL)的说明
试剂 体积
TruSeq试剂HP8 995μL
FL2 5μL
1000μL
簇利用Illumina cBotTM User Guide、Illumina Cluster Station User Guide或Illumina MiSeq User Guide中的详细说明产生。为了杂交测序引物,测序引物试剂HP6/FL1用于第一读取。
根据制造商的说明制备测序试剂并上样到测序仪。对于读取1,遵循制造商提供的说明来进行多路的单读取测序运行。
对于索引读取,索引试剂HP7/FL2被代替,而不是HP7试剂。Fluidigm双向引物文库中使用的条形码序列设计为使得即使存在测序误差时仍可区分它们。随着平行运行更多样品,区分条形码序列所需的索引读取的长度明显增加。索引读取的建议描述在表5。
表5索引读取建议
每泳道的样品数目 1-96 97-384 385-1920
索引读取的长度 6个碱基 8个碱基 10个碱基
制备测序运行时,按照表5中的指导调整索引读取的长度。确保上样到测序仪的测序试剂的体积足够用于索引循环。根据制造商的建议实现这些改变。
实施例10
利用微流体装置、用于双向Illumina测序、允许回收扩增产物的将靶核酸加标签 的详细程序
设计394个引物对以从基因BRCA1、BRCA2、PTEN、PI3KCA、APC、EGFR、TP53中PCR扩增外显子(参见下表6)。正向引物附加Tag8序列,反向引物附加Tag5序列。394个引物被布置为48组,每组包含平均大约8个引物对,以0.05%Tween-20中每个引物1μM的浓度。样品混合物从48个细胞系基因组DNA样品(参见下表7)通过加入1μl样品(50 ng/ul)到3μl样品预混合物制备,样品预混合物包含1U Roche Faststart HiFi聚合酶、1x缓冲液、100μM dNTP、4.5mM MgCl2、5%DMSO和1xACCESS ARRAYTM样品上样溶液。
ACCESS ARRAYTM IFC按照ACCESS ARRAYTM User Guide中的说明运行。将样品混合物上样到ACCESS ARRAY 48.48TM IFC的样品端口。将各组引物上样到ACCESS ARRAY48.48TM IFC的入口。在Fluidigm独立热循环仪上利用热循环仪供应的标准PCR方案进行PCR。在PCR后,利用分别的控制器(controller)从ACCESS ARRAYTM IFC收获产物。然后将一微升的每个产物转移到PCR板并用PCR级水稀释100x。然后制备包含4μl PCR主混合物(1URoche Faststart HiFi聚合酶、1x缓冲液、100μMdNTP、4.5mM MgCl2、5%DMSO和如以下表8中所述的条形码引物)的3个PCR板。板1包含PE2-CS1/PE1-BC-CS2形式的带有条形码FL001-FL0048的引物对,每个引物具有400nM的浓度。板2包含PE2-CS2/PE1-BC-CS1形式的带有条形码FL001-FL0048的引物对,每个引物以400nM的浓度。板3包含PE2-CS1/PE2-CS2/PE1-BC-CS1/PE1-BC-CS2形式的带有条形码FL0049-FL0096的两对引物。对所有三个板利用以下热循环方案进行15个PCR循环(95℃10min;15x(95℃15s,60℃30s,72℃90s);72℃3min)。
在Agilent 1000 Bioanalyzer芯片上分析来自每个板的每个反应产物,基于来自分析的电泳图测量PCR产物池的浓度(图28)。利用根据从AgilentBioanalyzer获得的浓度调整的体积,将来自每个板的PCR产物汇集到相等浓度。
利用AMPure珠(Beckman Coulter)清洁汇集的样品,珠与样品的比例为1:1。
扩增子池在Genome Analyzer II(Illumina)的两个分别的泳道上测序。第一泳道利用CS1和CS2引物用于第一读取,和C1rc和CS2rc引物用于索引读取。因为预计CS1和CS2的退火温度比标准Illumina读取1和索引测序引物的低10℃,使用CS1、CS2、CS1rc和CS2rc的LNA(锁核酸)形式以优化在Illumina Cluster Station and Genome Analyzer手册中描述的标准条件下对簇的杂交。
对于测序,第二泳道使用从在ACCESS ARRAYTM IFC上扩增期间使用的引物组装的靶特异性正向和反向引物的池(图29)。CS1/CS2rc索引引物用于索引读取。由于其长度增加,靶特异性引物具有比CS1或CS2高的退火温度。这一方法避免了读取通过(readingthrough)PCR产物的不提供信息的靶特异性引物部分。相反,从PCR产物的提供信息的区域获得具有最低误差率的测序信息,在该区域5'和3'读取之间存在最少量的重叠。方法还允许测序误差率最大处(即,PCR产物中部)的更大重叠,和PCR产物尺寸增加30-40bp。
利用Illumina软件将序列数据多路分用(demultiplexed)并利用aligner ELAND(Illumina)与人类基因组参考序列build hg19比对。示例性的样品的基因EGFR的逐个碱基覆盖显示在图30。
表6用于扩增来自基因BRCA1、BRCA2、PTEN、PI3KCA、APC、EGFR、TP53的外显子的引物
Figure GDA0000588916800001151
Figure GDA0000588916800001161
Figure GDA0000588916800001171
Figure GDA0000588916800001181
Figure GDA0000588916800001191
Figure GDA0000588916800001201
Figure GDA0000588916800001211
Figure GDA0000588916800001221
Figure GDA0000588916800001231
Figure GDA0000588916800001241
Figure GDA0000588916800001251
Figure GDA0000588916800001261
Figure GDA0000588916800001271
Figure GDA0000588916800001281
Figure GDA0000588916800001291
Figure GDA0000588916800001301
Figure GDA0000588916800001311
Figure GDA0000588916800001321
Figure GDA0000588916800001331
Figure GDA0000588916800001341
Figure GDA0000588916800001351
Figure GDA0000588916800001361
Figure GDA0000588916800001371
Figure GDA0000588916800001381
表7细胞系基因组DNA样品
样品 BC
K562 FLD0001
MOLT-4 FLD0002
CCRF-CEM FLD0003
RPMI-8226 FLD0004
HL-60(TB) FLD0005
SR FLD0006
SF-268 FLD0007
SF-295 FLD0008
SF-539 FLD0009
SNB-19 FLD0010
SNB-75 FLD0011
U251 FLD0012
BT-549 FLD0013
HS-578T FLD0014
MCF7 FLD0015
NCI/ADR-RES FLD0016
MBA-MB-231/ATCC FLD0017
MDA-MB-435 FLD0018
T-47D FLD0019
COLO 205 FLD0020
HCC-2998 FLD0021
HCT-116 FLD0022
HCT-15 FLD0023
HT-29 FLD0024
KM12 FLD0025
SW-620 FLD0026
A549/ATCC FLD0027
EKVX FLD0028
HOP-62 FLD0029
HOP-92 FLD0030
NCI-H322M FLD0031
NC I-H226 FLD0032
NCI-H23 FLD0033
NCI-H460 FLD0034
NCI-H522 FLD0035
LOX IMVI FLD0036
M14 FLD0037
MALME-3M FLD0038
SK-MEL-2 FLD0039
样品 BC
SK-MEL-28 FLD0040
SK-MEL-5 FLD0041
UACC-257 FLD0042
UACC-62 FLD0043
IGR-OV1 FLD0044
OVCAR-3 FLD0045
OVCAR-4 FLD0046
OVCAR-5 FLD0047
OVCAR-8 FLD0048
K562 FLD0049
MOLT-4 FLD0050
CCRF-CEM FLD0051
RPMI-8226 FLD0052
HL-60(TB) FLD0053
SR FLD0054
SF-268 FLD0055
SF-295 FLD0056
SF-539 FLD0057
SNB-19 FLD0058
SNB-75 FLD0059
U251 FLD0060
BT-549 FLD0061
HS-578T FLD0062
MCF7 FLD0063
NCI/ADR-RES FLD0064
MBA-MB-231/ATCC FLD0065
MDA-MB-435 FLD0066
T-47D FLD0067
COLO 205 FLD0068
HCC-2998 FLD0069
HCT-116 FLD0070
HCT-15 FLD0071
HT-29 FLD0072
KM12 FLD0073
SW-620 FLD0074
A549/ATCC FLD0075
EKVX FLD0076
HOP-62 FLD0077
HOP-92 FLD0078
NCI-H322M FLD0079
NCI-H226 FLD0080
NCI-H23 FLD0081
样品 BC
NCI-H460 FLD0082
NCI-H522 FLD0083
LOX IMVI FLD0084
M14 FLD0085
MALME-3M FLD0086
SK-MEL-2 FLD0087
SK-MEL-28 FLD0088
SK-MEL-5 FLD0089
UACC-257 FLD0090
UACC-62 FLD0091
IGR-OV1 FLD0092
OVCAR-3 FLD0093
OVCAR-4 FLD0094
OVCAR-5 FLD0095
OVCAR-8 FLD0096
表8条形码引物
Figure GDA0000588916800001411
实施例11
利用48.48 ACCESS ARRAYTM IFC、用于Illumina测序仪的双向DNA测序扩增子加标 签-方案2
这一实施例提供实施例9中的方案的修改形式。实施例9的引言也适用于这一实施例。
制备扩增子
可查阅以下文件用作这一方案的参考:
Figure GDA0000588916800001421
IFC Controller for ACCESSARRAYTM System User Guide(PN 68000157);
Figure GDA0000588916800001422
Control Line Fluid LoadingProcedure Quick Reference(PN68000132);和Agilent DNA 1000 Kit Guide。
以下试剂用于这一方案并储存在-20℃:FastStart高保真PCR System,dNTPack(Roche,PN 04-738-292-001);20X ACCESS ARRAYTM上样试剂(Fluidigm,PN 100-0883);1XACCESS ARRAYTM收获溶液(Fluidigm,PN100-1031);用于Illumina测序仪的ACCESS ARRAYTM条形码文库-384(双向)(Fluidigm,PN 100-3771);以通用标签(CS1正向标签、CS2反向标签)加标签的靶特异性引物对,包括50μM CS1-加标签的TS正向引物和50μMCS2-加标签的TS反向引物;和50 ng/μL的模板DNA。(1X ACCESS ARRAYTM收获溶液(Fluidigm,PN 100-1031)不单独包装出售。它可以ACCESS ARRAYTM Harvest Pack,PN 100-3155的名称以10个单位购买,或作为48.48 ACCESS ARRAYTM上样试剂试剂盒,PN 100-1032中的组分购买。)还使用Agilent DNA 1000试剂盒试剂(Agilent,PN 5067-1504),其储存在4℃。另外,使用PCRCertified Water(Teknova,PN W330);其储存在室温。
在ACCESS ARRAYTM IFC上的多路PCR按照在ACCESS ARRAYTM System forIllumina Platform User Guide中的Chapter 6-Multiplex Amplicon Tagging on the48.48 ACCESS ARRAYTM IFC中详述的说明进行。可选地,按照在ACCESS ARRAYTM Systemfor Illumina Platform User Guide的附录C中详述的说明,进行48.48 ACCESS ARRAYTMIFC上的2引物靶特异性PCR以实现无多路的双向扩增子加标签。然后按照以下说明将收获的PCR产物条形码化。
按照在Fluidigm ACCESS ARRAYTM System for Illumina Platform User Guide中Chapter 6-Attaching Sequence Tags and Sample Barcodes中详述的说明,在两个96孔板中将PCR产物条形码化用于双向扩增子加标签。收获的PCR产物池的100倍稀释物用作二个(而不是一个)条形码化PCR反应的模板:一个96孔板中一个反应产生的PCR产物A允许测序靶区域的5'末端,第二96孔板中另一个反应产生的PCR产物B允许测序靶区域的3'末端。反应的设置与Fluidigm ACCESS ARRAYTM System for Illumina Platform User Guide中的"Attaching Sequence Tags and Sample Barcodes"相同。然而,样品预混合物溶液的量加倍以补偿反应数目的增加,且用于Illumina测序仪的ACCESS ARRAYTM条形码文库-384(双向)(Fluidigm,PN 100-3771)用于制备样品混合物溶液(表9和10)。
表9样品混合溶液-PCR产物A
组分 体积(μL)
样品预混合物 15.0
用于Illumina测序仪的ACCESS ARRAY<sup>TM</sup>条形码文库-384(双向)A 4.0
稀释的收获的PCR产物池 1.0
20.0
表10样品混合溶液-PCR产物B
组分 体积(μL)
样品预混合物 15.0
用于Illumina测序仪的ACCESS ARRAY<sup>TM</sup>条形码文库-384(双向)B 4.0
稀释的收获的PCR产物池 1.0
20.0
在第二PCR完成后,合并PCR产物A和PCR产物B池,随后测序。Fluidigm ACCESSARRAYTM System for Illumina Platform User Guide的第8章提供描述PCR后产物文库纯化和定量的方法。使用用于Illumina测序仪的ACCESS ARRAYTM条形码文库-384(双向)(Fluidigm,PN 100-3771)来产生用于测序的双向扩增子是关键的。
利用Fluidigm FL1和FL2测序引物的测序工作流
以下说明预期与Illumina TruSeq测序试剂在Illumina GAII和HiSeq系统上一起使用。Fluidigm测序试剂FL1和FL2分别包含CS1和CS2测序和索引引物的等摩尔混合物。FL1是定制的测序引物,包含各50μM的CS1和CS2引物。FL2是定制的索引引物,包含各50μM的CS1rc和CS2rc引物。对于单读取测序,对读取1和索引引物制备试剂。对于末端配对的测序,对读取1、索引和读取2引物制备试剂。
试验Fluidigm测序引物和TruSeq测序引物之间相互干扰的PCR实验的结果显示在图32和33。
可查阅以下文件作为测序的参考:Illumina cBotTM User Guide;IlluminaGenome Analyzer IITM User Guide;和Illumina HiSeqTM User Guide。应参考IlluminaGenome Analyzer II User Guide或Illumina HiSeq User Guide对于如何进行测序运行的说明。还可联系Illumina的技术支持。
制备用于在Illumina GAII和HiSeq测序系统上测序的试剂
读取1测序引物HT1/FL1通过在无DNA酶、RNA酶的1.5mL微量离心管中首先用杂交缓冲液(HT1)稀释FL1母液到终浓度500nM来制备(表11)。涡旋试管至少20秒,并离心30秒以旋降(spin down)所有组分。以下说明概述了用于读取1的HT1/FL1测序引物混合物的制备(每mL)。每泳道使用大约300μL,利用cBot Custom Primers Reagent Stage。管条中的定制引物方向与GAII或HiSeq流动小室的泳道对齐。
表11制备HT1/FL1(每mL)的说明
试剂 体积(μL)
HT1缓冲液 990μL
FL1母液(来自附录E) 10μL
1.0mL
索引引物HT1/FL2通过在无DNA酶、RNA酶的1.5mL微量离心管中首先用杂交缓冲液(HT1)稀释FL2母液到终浓度500nM来制备(表12)。涡旋试管至少20秒,并离心30秒以旋降所有组分。以下说明概述了用于索引读取的HT1/FL2索引引物混合物的制备。大约3mL索引测序引物混合物(HP8)用于索引读取。1.5mL TruSeq试剂HP8代替1.5mL HT1/FL2。
表12制备HT1/FL2的说明
试剂 体积
H川缓冲液 1,485μL
厂L]母液@来自附录E 15μL
1.5mL
读取2测序引物HT1/FL1(用于末端配对的测序)通过在无DNA酶、RNA酶的1.5mL微量离心管中首先用杂交缓冲液(HT1)稀释FL1母液到终浓度500nM来制备(表13)。涡旋试管至少20秒,并离心30秒以旋降所有组分。以下说明概述了用于读取2的HT1/FL1测序引物混合物的制备。大约3.2mL读取2测序引物(HP7)用于读取2。1.6mL TruSeq试剂HP7代替1.6mLHT1/FL1。
表13制备读取2测序引物HT1/FL1的说明
试剂 体积
HT1缓冲液 1,584μL
FL1母液(来自附录E) 16μL
1.6mL
进行测序运行
Illumina Genome Analyzer II或HiSeq用户指南提供如何进行测序运行的说明。可选地,可联系Illumina的技术支持。
对于索引读取,1.5mL TruSeq试剂HP8替换为1.5mL索引引物HT1/FL2用于GAII和HiSeq测序运行。用于Illumina的ACCESS ARRAYTM条形码文库中使用的条形码序列设计为使得即使存在测序误差时仍可区分它们。随着平行运行更多样品,区分条形码序列所需的索引读取的长度明显增加。索引读取的建议描述在表14。
表14索引读取建议
每泳道的样品数目 1-384 385-1920
索引读取的长度 8个碱基 10个碱基
制备测序运行时,按照表14中的指导调整索引读取的长度。确保上样到测序仪的测序试剂的体积足够用于索引循环。对于如何实现这些改变的详细说明,查阅IlluminaSequencer User Guide,或联系Illumina的技术支持。

Claims (41)

1.一种扩增靶核酸的方法,所述方法包括:
利用以下扩增靶核酸:
内侧引物组,其中该组包含:
内侧、正向引物,包含靶特异性部分和第一引物结合位点;
内侧、反向引物,包含靶特异性部分和第二引物结合位点,其中所述第一和第二引物结合位点是不同的并且是DNA测序引物的结合位点;
第一外侧引物组,其中该组包含:
第一外侧、正向引物,包含对所述第一引物结合位点特异性的部分;和
第一外侧、反向引物,包含条形码核苷酸序列和对所述第二引物结合位点特异性的部分;
第二外侧引物组,其中该组包含:
第二外侧、正向引物,包含条形码核苷酸序列和对所述第一引物结合位点特异性的部分;和
第二外侧、反向引物,包含对所述第二引物结合位点特异性的部分;
以产生两种靶扩增子,其中:
第一靶扩增子包含5'-第一引物结合位点-靶核苷酸序列-第二引物结合位点-条形码核苷酸序列-3';和
第二靶扩增子包含5'-条形码核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-3';
其中所述方法包括扩增多个核酸靶并产生具有共同的第一引物结合位点和共同的第二引物结合位点的靶扩增子,其中至少一些靶扩增子具有不同的条形码核苷酸序列。
2.如权利要求1所述的方法,其中从给定的靶核酸产生的每个靶扩增子中的所述条形码核苷酸序列是相同的,且其中每个靶扩增子包含仅一个条形码核苷酸序列。
3.如权利要求1-2任一项所述的方法,其中所述外侧引物各自另外包含另外的核苷酸序列,其中:
所述第一外侧、正向引物包含第一另外的核苷酸序列,且所述第一外侧、反向引物包含第二另外的核苷酸序列;和
所述第二外侧、正向引物包含所述第二另外的核苷酸序列,且所述第二外侧、反向引物包含所述第一另外的核苷酸序列;和
所述第一和第二另外的核苷酸序列是不同的;和
所述扩增产生两种靶扩增子,其中:
第一靶扩增子包含5'-第一另外的核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-条形码核苷酸序列-第二另外的核苷酸序列-3';和
第二靶扩增子包含5'-第二另外的核苷酸序列-条形码核苷酸序列-第一引物结合位点-靶核苷酸序列-第二引物结合位点-第一另外的核苷酸序列3'。
4.如权利要求3所述的方法,其中所述第一或第二另外的核苷酸序列包含引物结合位点。
5.如权利要求4所述的方法,其中所述第一和第二另外的核苷酸序列包含引物结合位点。
6.如权利要求3所述的方法,其中所述第一外侧引物组包含为SEQ ID NO:9的PE1-CS1和为SEQ ID NO:10的PE2-BC-CS2,且所述第二外侧引物组包含为SEQ ID NO:11的PE1-CS2和为SEQ ID NO:12的PE2-BC-CS1。
7.如权利要求1所述的方法,其中所述扩增在单个扩增反应中进行。
8.如权利要求1所述的方法,其中所述扩增包括在第一扩增反应中采用所述内侧引物和在第二扩增反应中采用所述外侧引物,其中所述第二扩增反应不同于所述第一扩增反应。
9.如权利要求8所述的方法,其中所述第二扩增反应包括两个分别的扩增反应,其中一个扩增反应采用所述第一外侧引物组且另一个扩增反应采用所述第二外侧引物组。
10.如权利要求9所述的方法,其中汇集在所述两个分别的扩增反应中产生的靶扩增子。
11.如权利要求1所述的方法,其中所述多个靶核酸选自以下组成的组:基因组DNA、cDNA、片段化的DNA、从RNA逆转录的DNA、DNA文库、和从细胞、体液或组织样品提取或扩增的核酸。
12.如权利要求11所述的方法,其中所述多个靶核酸是从福尔马林固定的、石蜡包埋的组织样品扩增的。
13.如权利要求1所述的方法,其中所述方法另外包括测序所述靶扩增子。
14.如权利要求1所述的方法,其中所述方法包括利用结合所述第一和第二另外的核苷酸序列的引物扩增所述靶扩增子以产生用于DNA测序的模板。
15.如权利要求14所述的方法,其中结合所述第一和第二另外的核苷酸序列的引物之一或二者被固定在基质上。
16.如权利要求1所述的方法,其中所述扩增通过等温核酸扩增进行。
17.如权利要求14所述的方法,其中所述方法包括利用所述模板和结合所述第一和第二引物结合位点的靶测序引物进行DNA测序,其中所述靶测序引物引发所述靶核苷酸序列的测序。
18.如权利要求17所述的方法,其中所述靶测序引物以大致上相等的量存在以产生来自每个靶核苷酸序列的5'和3'DNA序列信息。
19.如权利要求14所述的方法,其中所述方法包括利用所述模板和结合所述第一和第二引物结合位点并引发所述条形码核苷酸序列的测序的引物进行DNA测序。
20.如权利要求19所述的方法,其中结合所述第一和第二引物结合位点并引发所述条形码核苷酸序列的测序的所述引物以大致上相等的量存在。
21.如权利要求17所述的方法,其中所述方法包括利用所述模板和结合所述第一和第二引物结合位点并引发所述条形码核苷酸序列的测序的引物进行DNA测序,其中所述引物是引发所述靶核苷酸序列的测序的引物的反向互补物。
22.如权利要求21所述的方法,其中用以引发所述靶核苷酸序列和条形码核苷酸序列的测序的所述引物包含为SEQ ID NO:13的CS1、为SEQ ID NO:14的CS2、为SEQ ID NO:15的CS1rc和为SEQ ID NO:16的CS2rc。
23.如权利要求1所述的方法,其中选择所述条形码核苷酸序列以避免大致上退火到所述靶核酸。
24.如权利要求1所述的方法,其中所述条形码核苷酸序列辨识特定样品。
25.如权利要求1所述的方法,其中所述靶扩增子的平均长度小于200个碱基。
26.如权利要求1所述的方法,其中所述第一扩增反应在约1皮升至约50纳升的范围的体积中进行。
27.如权利要求1所述的方法,其中所述第一扩增反应在约5皮升至约25纳升的范围的体积中进行。
28.如权利要求1所述的方法,其中所述第一扩增反应在扩增之前在微流体装置的分别的区室中形成或被分配到微流体装置的分别的区室中。
29.如权利要求28所述的方法,其中所述微流体装置至少部分地从弹性体材料制造。
30.如权利要求1所述的方法,其中所述第一扩增反应在液滴中进行。
31.如权利要求30所述的方法,其中多个第一扩增反应在乳液中的液滴中进行。
32.一种用于扩增靶核酸以产生权利要求1中定义的所述两种靶扩增子的试剂盒,所述试剂盒包含:
第一外侧引物组,其中该组包含:
第一外侧、正向引物,包含对第一引物结合位点特异性的部分;和
第一外侧、反向引物,包含条形码核苷酸序列和对第二引物结合位点特异性的部分,其中所述第一和第二引物结合位点是不同的并且是DNA测序引物的结合位点;
第二外侧引物组,其中该组包含:
第二外侧、正向引物,包含条形码核苷酸序列和对所述第一引物结合位点特异性的部分;和
第二外侧、反向引物,包含对所述第二引物结合位点特异性的部分。
33.如权利要求32所述的试剂盒,其中所述外侧引物各自另外包含另外的核苷酸序列,其中:
所述第一外侧、正向引物包含第一另外的核苷酸序列,且所述第一外侧、反向引物包含第二另外的核苷酸序列;和
所述第二外侧、正向引物包含所述第二另外的核苷酸序列,且所述第二外侧、反向引物包含所述第一另外的核苷酸序列;且所述第一和第二另外的核苷酸序列是不同的。
34.如权利要求33所述的试剂盒,其中所述第一外侧引物组包含为SEQ ID NO:9的PE1-CS1和为SEQ ID NO:10的PE2-BC-CS2,且所述第二外侧引物组包含为SEQ ID NO:11的PE1-CS2和为SEQ ID NO:12的PE2-BC-CS1。
35.如权利要求32所述的试剂盒,另外包含:
内侧引物组,其中该组包含:
内侧、正向引物,包含靶特异性部分和所述第一引物结合位点;和
内侧、反向引物,包含靶特异性部分和所述第二引物结合位点。
36.如权利要求35所述的试剂盒,包含各自对不同的靶核酸特异性的多个内侧引物组。
37.如权利要求32所述的试剂盒,另外包含结合所述第一和第二引物结合位点并引发所述靶核苷酸序列的测序的DNA测序引物。
38.如权利要求32所述的试剂盒,另外包含结合所述第一和第二引物结合位点并引发所述条形码核苷酸序列的测序的DNA测序引物。
39.如权利要求38所述的试剂盒,其中结合所述第一和第二引物结合位点并引发所述条形码核苷酸序列的测序的引物是引发所述靶核苷酸序列的测序的引物的反向互补物。
40.如权利要求39所述的试剂盒,其中用以引发所述靶核苷酸序列和条形码核苷酸序列的测序的引物包含为SEQ ID NO:13的CS1、为SEQ ID NO:14的CS2、为SEQ ID NO:15的CS1rc和为SEQ ID NO:16的CS2rc。
41.如权利要求32所述的试剂盒,其中所述试剂盒另外包含矩阵型微流体装置。
CN201280033406.9A 2011-05-20 2012-05-21 核酸编码反应 Active CN103890245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011240877.XA CN112592960A (zh) 2011-05-20 2012-05-21 核酸编码反应

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161519348P 2011-05-20 2011-05-20
US61/519,348 2011-05-20
PCT/US2012/038894 WO2012162267A2 (en) 2011-05-20 2012-05-21 Nucleic acid encoding reactions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202011240877.XA Division CN112592960A (zh) 2011-05-20 2012-05-21 核酸编码反应

Publications (2)

Publication Number Publication Date
CN103890245A CN103890245A (zh) 2014-06-25
CN103890245B true CN103890245B (zh) 2020-11-17

Family

ID=47218012

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202011240877.XA Pending CN112592960A (zh) 2011-05-20 2012-05-21 核酸编码反应
CN201280033406.9A Active CN103890245B (zh) 2011-05-20 2012-05-21 核酸编码反应

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202011240877.XA Pending CN112592960A (zh) 2011-05-20 2012-05-21 核酸编码反应

Country Status (6)

Country Link
US (3) US9074204B2 (zh)
EP (1) EP2710172B1 (zh)
CN (2) CN112592960A (zh)
HK (1) HK1198661A1 (zh)
SG (2) SG194745A1 (zh)
WO (1) WO2012162267A2 (zh)

Families Citing this family (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712639B1 (en) 2005-04-06 2008-08-27 Maurice Stroun Method for the diagnosis of cancer by detecting circulating DNA and RNA
CN102203287B (zh) * 2008-08-26 2017-09-19 弗卢迪格姆公司 增加样本和/或靶通量的测定方法
AU2010232439C1 (en) 2009-04-02 2017-07-13 Fluidigm Corporation Multi-primer amplification method for barcoding of target nucleic acids
US8747776B2 (en) * 2009-10-27 2014-06-10 The Regents Of The University Of Michigan Microfluidic platform for discrete cell assay
US9315857B2 (en) 2009-12-15 2016-04-19 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse label-tags
US8835358B2 (en) 2009-12-15 2014-09-16 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
ES2595433T3 (es) 2010-09-21 2016-12-30 Population Genetics Technologies Ltd. Aumento de la confianza en las identificaciones de alelos con el recuento molecular
WO2012129363A2 (en) 2011-03-24 2012-09-27 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
WO2012162267A2 (en) 2011-05-20 2012-11-29 Fluidigm Corporation Nucleic acid encoding reactions
EP2723906A4 (en) * 2011-06-27 2015-02-25 Univ Florida METHOD FOR REDUCING GENOMIC COMPLEXITY AND DETECTION OF POLYMORPHISM
US9725765B2 (en) 2011-09-09 2017-08-08 The Board Of Trustees Of The Leland Stanford Junior University Methods for obtaining a sequence
PL2814959T3 (pl) 2012-02-17 2018-07-31 Fred Hutchinson Cancer Research Center Kompozycje i sposoby do dokładnej identyfikacji mutacji
ES2776673T3 (es) 2012-02-27 2020-07-31 Univ North Carolina Chapel Hill Métodos y usos para etiquetas moleculares
SG11201405274WA (en) 2012-02-27 2014-10-30 Cellular Res Inc Compositions and kits for molecular counting
US9670529B2 (en) 2012-02-28 2017-06-06 Population Genetics Technologies Ltd. Method for attaching a counter sequence to a nucleic acid sample
EP3305918B1 (en) 2012-03-05 2020-06-03 President and Fellows of Harvard College Methods for epigenetic sequencing
WO2013138510A1 (en) * 2012-03-13 2013-09-19 Patel Abhijit Ajit Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing
JP6445426B2 (ja) 2012-05-10 2018-12-26 ザ ジェネラル ホスピタル コーポレイション ヌクレオチド配列を決定する方法
SG11201407901PA (en) 2012-05-21 2015-01-29 Fluidigm Corp Single-particle analysis of particle populations
US20150011396A1 (en) 2012-07-09 2015-01-08 Benjamin G. Schroeder Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
EP4001426A1 (en) 2012-08-13 2022-05-25 The Regents of The University of California Methods and systems for detecting biological components
US20160040229A1 (en) 2013-08-16 2016-02-11 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11913065B2 (en) 2012-09-04 2024-02-27 Guardent Health, Inc. Systems and methods to detect rare mutations and copy number variation
KR102393608B1 (ko) 2012-09-04 2022-05-03 가던트 헬쓰, 인크. 희귀 돌연변이 및 카피수 변이를 검출하기 위한 시스템 및 방법
US10876152B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
JP2015536141A (ja) * 2012-11-01 2015-12-21 ザ チャールズ スターク ドレイパー ラボラトリー インク 生物試料のエクスビボマイクロ流体分析
CA2889862C (en) * 2012-11-05 2021-02-16 Rubicon Genomics, Inc. Barcoding nucleic acids
WO2014100866A1 (en) * 2012-12-28 2014-07-03 Fleury S.A. Method for complete tracking of a set of biological samples containing dna or rna through molecular barcode identification during laboratorial workflow and kit for collecting biological samples containing dna or rna
DK3553175T3 (da) * 2013-03-13 2021-08-23 Illumina Inc Fremgangsmåde til fremstilling af et nukleinsyresekvenseringsbibliotek
WO2014152155A1 (en) * 2013-03-14 2014-09-25 The Broad Institute, Inc. Massively multiplexed rna sequencing
ES2908751T3 (es) 2013-03-15 2022-05-03 Labrador Diagnostics Llc Amplificación de ácidos nucleicos
US10450595B2 (en) 2013-03-15 2019-10-22 Theranos Ip Company, Llc Nucleic acid amplification
EP2971130A4 (en) 2013-03-15 2016-10-05 Nugen Technologies Inc SEQUENTIAL SEQUENCING
KR20150132481A (ko) 2013-03-15 2015-11-25 테라노스, 인코포레이티드 핵산 증폭
CA2906824C (en) 2013-03-15 2023-10-03 Theranos, Inc. Nucleic acid amplification
CA2908361C (en) 2013-04-17 2023-09-26 Pioneer Hi-Bred International, Inc. Methods for characterizing dna sequence composition in a genome
EP2805769A1 (en) * 2013-05-24 2014-11-26 European Molecular Biology Laboratory Methods for nano-scale single cell analysis
JP6636917B2 (ja) 2013-06-28 2020-01-29 エックス−ボディ インコーポレイテッド 標的細胞に特異的な標的エピトープの同定のための、標的抗原探索、表現型スクリーニングおよびそれらの使用
TWI805996B (zh) 2013-08-05 2023-06-21 美商扭轉生物科技有限公司 重新合成之基因庫
SG10201806890VA (en) 2013-08-28 2018-09-27 Cellular Res Inc Massively parallel single cell analysis
US9582877B2 (en) 2013-10-07 2017-02-28 Cellular Research, Inc. Methods and systems for digitally counting features on arrays
CN105849264B (zh) 2013-11-13 2019-09-27 纽亘技术公司 用于鉴别重复测序读数的组合物和方法
CA2933387C (en) 2013-12-11 2023-05-02 The Regents Of The University Of California Methods for labeling dna fragments to reconstruct physical linkage and phase
CN106062214B (zh) 2013-12-28 2020-06-09 夸登特健康公司 用于检测遗传变异的方法和系统
US9663831B2 (en) 2014-01-25 2017-05-30 uBiome, Inc. Method and system for microbiome analysis
WO2015112948A2 (en) * 2014-01-27 2015-07-30 Iafrate Anthony John Methods for determining a nucleotide sequence
CA2938080A1 (en) * 2014-01-27 2015-07-30 The General Hospital Corporation Methods of preparing nucleic acids for sequencing
US20150298091A1 (en) 2014-04-21 2015-10-22 President And Fellows Of Harvard College Systems and methods for barcoding nucleic acids
CN105087756A (zh) * 2014-04-23 2015-11-25 北京贝瑞和康生物技术有限公司 一种无创检测胎儿耳聋致病基因突变的方法及试剂盒
CN106460051A (zh) * 2014-05-08 2017-02-22 富鲁达公司 集成的单细胞测序
GB201409282D0 (en) * 2014-05-23 2014-07-09 Univ Sydney Tech Sequencing process
WO2015179706A1 (en) * 2014-05-23 2015-11-26 Fluidigm Corporation Haploidome determination by digitized transposons
EP3160654A4 (en) 2014-06-27 2017-11-15 The Regents of The University of California Pcr-activated sorting (pas)
EP3161152B1 (en) * 2014-06-30 2018-12-26 Illumina, Inc. Methods and compositions using one-sided transposition
US11015225B2 (en) * 2014-07-28 2021-05-25 Alberto Bardelli Method of treating cancer based on identifying mutations in the extracellular domain III of epidermal growth factor receptor gene
AU2015296029B2 (en) * 2014-08-01 2022-01-27 Dovetail Genomics, Llc Tagging nucleic acids for sequence assembly
SG11201700891SA (en) 2014-08-06 2017-03-30 Nugen Technologies Inc Digital measurements from targeted sequencing
US20160115473A1 (en) * 2014-08-14 2016-04-28 Abbott Molecular Inc. Multifunctional oligonucleotides
DK3192869T3 (da) 2014-09-12 2019-05-20 Mgi Tech Co Ltd Isoleret oligonukleotid og anvendelse deraf i nukleinsyresekvensering
US10434507B2 (en) 2014-10-22 2019-10-08 The Regents Of The University Of California High definition microdroplet printer
CN104313172A (zh) * 2014-11-06 2015-01-28 中国海洋大学 一种大量样本同时分型的方法
US10900065B2 (en) 2014-11-14 2021-01-26 University Of Washington Methods and kits for labeling cellular molecules
WO2016115457A1 (en) 2015-01-16 2016-07-21 California Institute Of Technology Methods and devices for micro-isolation, extraction, and/or analysis of microscale components in an array
EP3763825B1 (en) * 2015-01-23 2023-10-04 Qiagen Sciences, LLC High multiplex pcr with molecular barcoding
CN115011670A (zh) 2015-02-04 2022-09-06 加利福尼亚大学董事会 通过在离散实体中条形码化对核酸进行测序
CA2975852A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
CA2975855A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
DK3256604T3 (da) * 2015-02-10 2020-05-25 Illumina Inc Fremgangsmåder og sammensætninger til analyse af cellebestanddele
SG11201706730XA (en) 2015-02-17 2017-09-28 Dovetail Genomics Llc Nucleic acid sequence assembly
ES2824700T3 (es) 2015-02-19 2021-05-13 Becton Dickinson Co Análisis unicelular de alto rendimiento que combina información proteómica y genómica
SG11201706636PA (en) 2015-02-27 2017-09-28 Fluidigm Corp Single-cell nucleic acids for high-throughput studies
US9727810B2 (en) 2015-02-27 2017-08-08 Cellular Research, Inc. Spatially addressable molecular barcoding
US10221448B2 (en) 2015-03-06 2019-03-05 Pillar Biosciences Inc. Selective amplification of overlapping amplicons
AU2016229372B2 (en) * 2015-03-06 2020-01-30 Pillar Biosciences Inc. Selective amplification of overlapping amplicons
GB2554572B (en) 2015-03-26 2021-06-23 Dovetail Genomics Llc Physical linkage preservation in DNA storage
EP3277843A2 (en) * 2015-03-30 2018-02-07 Cellular Research, Inc. Methods and compositions for combinatorial barcoding
JP2018511341A (ja) 2015-04-17 2018-04-26 プレジデント アンド フェローズ オブ ハーバード カレッジ 遺伝子配列決定および他の適用のためのバーコード化システムおよび方法
US10385387B2 (en) 2015-04-20 2019-08-20 Pacific Biosciences Of California, Inc. Methods for selectively amplifying and tagging nucleic acids
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
CN107580632B (zh) 2015-04-23 2021-12-28 贝克顿迪金森公司 用于全转录组扩增的方法和组合物
ES2961374T3 (es) 2015-04-24 2024-03-11 Atila Biosystems Incorporated Amplificación con cebadores de composición de nucleótidos limitada
BR112017025254A2 (pt) * 2015-05-27 2018-08-07 Quest Diagnostics Investments Incorporated ?métodos para detecção de pelo menos uma mutação em uma pluralidade de genes relacionados ao câncer, selecionar um indivíduo para tratamento e prever a probabilidade de capacidade de resposta ao tratamento?
WO2016196229A1 (en) 2015-06-01 2016-12-08 Cellular Research, Inc. Methods for rna quantification
GB2539675B (en) 2015-06-23 2017-11-22 Cs Genetics Ltd Libraries of multimeric barcoding reagents and kits thereof for labelling nucleic acids for sequencing
WO2017004083A1 (en) * 2015-06-29 2017-01-05 The Regents Of The University Of California Methods of producing nucleic acid libraries and compositions and kits for practicing same
CN106795569B (zh) 2015-07-07 2017-12-05 上海真固生物科技有限公司 减少引物二聚体扩增的方法
CA2994601C (en) * 2015-08-06 2020-08-25 F. Hoffmann-La Roche Ag Target enrichment by single probe primer extension
US11302416B2 (en) 2015-09-02 2022-04-12 Guardant Health Machine learning for somatic single nucleotide variant detection in cell-free tumor nucleic acid sequencing applications
WO2017044574A1 (en) 2015-09-11 2017-03-16 Cellular Research, Inc. Methods and compositions for nucleic acid library normalization
US10844373B2 (en) 2015-09-18 2020-11-24 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
KR20180058772A (ko) 2015-09-22 2018-06-01 트위스트 바이오사이언스 코포레이션 핵산 합성을 위한 가요성 기판
AU2016341198B2 (en) 2015-10-19 2023-03-09 Dovetail Genomics, Llc Methods for genome assembly, haplotype phasing, and target independent nucleic acid detection
WO2017074934A1 (en) * 2015-10-28 2017-05-04 Wafergen, Inc. Single cell capture with capture chips
KR20180097536A (ko) * 2015-11-04 2018-08-31 아트레카, 인크. 단일 세포와 연관된 핵산의 분석을 위한 핵산 바코드의 조합 세트
CN108603180A (zh) 2015-11-25 2018-09-28 豪夫迈·罗氏有限公司 聚合酶复合体的纯化
US9895673B2 (en) 2015-12-01 2018-02-20 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
CA3006994A1 (en) 2015-12-16 2017-06-22 Fluidigm Corporation High-level multiplex amplification
WO2017106768A1 (en) 2015-12-17 2017-06-22 Guardant Health, Inc. Methods to determine tumor gene copy number by analysis of cell-free dna
KR20180116377A (ko) 2016-02-23 2018-10-24 더브테일 제노믹스 엘엘씨 게놈 어셈블리를 위한 페이징된 판독 세트의 생성 및 반수체형 페이징
MX2018011429A (es) * 2016-03-25 2019-06-06 Karius Inc Añadiduras de ácidos nucleicos sintéticos.
US11384382B2 (en) 2016-04-14 2022-07-12 Guardant Health, Inc. Methods of attaching adapters to sample nucleic acids
US20190085406A1 (en) 2016-04-14 2019-03-21 Guardant Health, Inc. Methods for early detection of cancer
US10822643B2 (en) 2016-05-02 2020-11-03 Cellular Research, Inc. Accurate molecular barcoding
IL262946B2 (en) 2016-05-13 2023-03-01 Dovetail Genomics Llc Retrieving long-range grip information from preserved samples
WO2017201331A2 (en) * 2016-05-20 2017-11-23 Trovagene, Inc. Oligonucleotide sequences for detection of low abundance target sequences and kits thereof
US10301677B2 (en) 2016-05-25 2019-05-28 Cellular Research, Inc. Normalization of nucleic acid libraries
CN109074430B (zh) 2016-05-26 2022-03-29 贝克顿迪金森公司 分子标记计数调整方法
US10640763B2 (en) 2016-05-31 2020-05-05 Cellular Research, Inc. Molecular indexing of internal sequences
US10202641B2 (en) 2016-05-31 2019-02-12 Cellular Research, Inc. Error correction in amplification of samples
US10590451B2 (en) * 2016-07-01 2020-03-17 Personal Genomics, Inc. Methods of constructing a circular template and detecting DNA molecules
CA3030430A1 (en) 2016-07-15 2018-01-18 The Regents Of The University Of California Methods of producing nucleic acid libraries
CN110352253A (zh) * 2016-07-22 2019-10-18 核素示踪有限公司 扩增核酸序列的方法
EP3494214A4 (en) * 2016-08-05 2020-03-04 Bio-Rad Laboratories, Inc. SECOND RANK DIRECT
CN110088290A (zh) 2016-08-10 2019-08-02 加利福尼亚大学董事会 在乳液微滴中结合多重置换扩增和pcr
CA3034769A1 (en) 2016-08-22 2018-03-01 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
US10417457B2 (en) 2016-09-21 2019-09-17 Twist Bioscience Corporation Nucleic acid based data storage
WO2018058073A2 (en) 2016-09-26 2018-03-29 Cellular Research, Inc. Measurement of protein expression using reagents with barcoded oligonucleotide sequences
KR20210158870A (ko) 2016-09-30 2021-12-31 가던트 헬쓰, 인크. 무세포 핵산의 다중-해상도 분석 방법
US9850523B1 (en) 2016-09-30 2017-12-26 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
WO2018081113A1 (en) 2016-10-24 2018-05-03 Sawaya Sterling Concealing information present within nucleic acids
EP3539035B1 (en) 2016-11-08 2024-04-17 Becton, Dickinson and Company Methods for expression profile classification
KR20190077061A (ko) 2016-11-08 2019-07-02 셀룰러 리서치, 인크. 세포 표지 분류 방법
KR102514213B1 (ko) 2016-12-16 2023-03-27 트위스트 바이오사이언스 코포레이션 면역 시냅스의 변이체 라이브러리 및 그의 합성
EP3571308A4 (en) 2016-12-21 2020-08-19 The Regents of The University of California GENOMIC SEQUENCING OF SINGLE CELLS USING HYDROGEL-BASED DROPS
JP6234542B1 (ja) 2016-12-27 2017-11-22 株式会社 TL Genomics 胎児細胞由来染色体dnaの取得方法
JP7104048B2 (ja) 2017-01-13 2022-07-20 セルラー リサーチ, インコーポレイテッド 流体チャネルの親水性コーティング
CN110382708A (zh) 2017-02-01 2019-10-25 赛卢拉研究公司 使用阻断性寡核苷酸进行选择性扩增
EP3586255A4 (en) 2017-02-22 2021-03-31 Twist Bioscience Corporation NUCLEIC ACID-BASED DATA STORAGE
CN110913865A (zh) 2017-03-15 2020-03-24 特韦斯特生物科学公司 免疫突触的变体文库及其合成
US11584958B2 (en) 2017-03-31 2023-02-21 Grail, Llc Library preparation and use thereof for sequencing based error correction and/or variant identification
US11628437B2 (en) 2017-04-03 2023-04-18 The Charles Stark Draper Laboratory, Inc. Microfluidic system for evaluation of chemotherapeutic and immunotherapeutic drugs
CA3059559A1 (en) 2017-06-05 2018-12-13 Becton, Dickinson And Company Sample indexing for single cells
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
SG11201912057RA (en) 2017-06-12 2020-01-30 Twist Bioscience Corp Methods for seamless nucleic acid assembly
US11186862B2 (en) 2017-06-20 2021-11-30 Bio-Rad Laboratories, Inc. MDA using bead oligonucleotide
JP2020532964A (ja) 2017-08-11 2020-11-19 アティラ バイオシステムズ インコーポレイテッドAtila Biosystems Incorporated ヌクレオチド組成が限定されたプライマーを用いたデジタル増幅
CN111566125A (zh) 2017-09-11 2020-08-21 特韦斯特生物科学公司 Gpcr结合蛋白及其合成
EP3682027A1 (en) 2017-09-15 2020-07-22 H. Hoffnabb-La Roche Ag Hybridization-extension-ligation strategy for generating circular single-stranded dna libraries
WO2019060771A2 (en) 2017-09-22 2019-03-28 University Of Washington IN SITU COMBINATORY MARKING OF CELLULAR MOLECULES
CN111971124B (zh) * 2017-09-25 2022-08-23 普莱克斯姆公司 寡核苷酸编码的化学文库
US10501739B2 (en) 2017-10-18 2019-12-10 Mission Bio, Inc. Method, systems and apparatus for single cell analysis
US10894242B2 (en) 2017-10-20 2021-01-19 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
US11099202B2 (en) 2017-10-20 2021-08-24 Tecan Genomics, Inc. Reagent delivery system
US10267790B1 (en) * 2017-11-17 2019-04-23 Ultima Genomics, Inc. Systems for biological sample processing and analysis
EP3728636A1 (en) 2017-12-19 2020-10-28 Becton, Dickinson and Company Particles associated with oligonucleotides
KR20200106067A (ko) 2018-01-04 2020-09-10 트위스트 바이오사이언스 코포레이션 Dna 기반 디지털 정보 저장
JP7296969B2 (ja) 2018-01-12 2023-06-23 クラレット バイオサイエンス, エルエルシー 核酸を解析するための方法および組成物
JP7096893B2 (ja) * 2018-02-05 2022-07-06 エフ.ホフマン-ラ ロシュ アーゲー 単一分子のための一本鎖環状dna鋳型の作製
WO2019157034A1 (en) * 2018-02-07 2019-08-15 Nugen Technologies, Inc. Library preparation
CN112513268A (zh) * 2018-02-08 2021-03-16 通用测序技术公司 用于核酸测序的追踪核酸片段来源的方法和组合物
EP3775266A4 (en) * 2018-04-05 2021-06-30 Massachusetts Eye and Ear Infirmary METHOD OF MANUFACTURING AND USING COMBINATIONAL BAR-CODED NUCLEIC ACID LIBRARIES WITH DEFINED VARIATION
US11773441B2 (en) 2018-05-03 2023-10-03 Becton, Dickinson And Company High throughput multiomics sample analysis
JP7358388B2 (ja) 2018-05-03 2023-10-10 ベクトン・ディキンソン・アンド・カンパニー 反対側の転写物末端における分子バーコーディング
WO2019222706A1 (en) 2018-05-18 2019-11-21 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
AU2019280712A1 (en) 2018-06-06 2021-01-07 The Regents Of The University Of California Methods of producing nucleic acid libraries and compositions and kits for practicing same
US11639517B2 (en) 2018-10-01 2023-05-02 Becton, Dickinson And Company Determining 5′ transcript sequences
CN109411011B (zh) * 2018-11-06 2022-05-17 苏州泓迅生物科技股份有限公司 一种引物组的设计方法及其应用
US11932849B2 (en) 2018-11-08 2024-03-19 Becton, Dickinson And Company Whole transcriptome analysis of single cells using random priming
EP3894552A1 (en) 2018-12-13 2021-10-20 Becton, Dickinson and Company Selective extension in single cell whole transcriptome analysis
BR112020026667A2 (pt) * 2018-12-19 2021-07-27 Illumina, Inc. métodos para melhorar a prioridade de clonalidade do agrupamento de polinucleotídeo
CN111379032A (zh) * 2018-12-28 2020-07-07 北京贝瑞和康生物技术有限公司 一种用于构建同时实现基因组拷贝数变异检测和基因突变检测的测序文库的方法和试剂盒
US11371076B2 (en) 2019-01-16 2022-06-28 Becton, Dickinson And Company Polymerase chain reaction normalization through primer titration
EP3914728B1 (en) 2019-01-23 2023-04-05 Becton, Dickinson and Company Oligonucleotides associated with antibodies
JP2022519045A (ja) 2019-01-31 2022-03-18 ガーダント ヘルス, インコーポレイテッド 無細胞dnaを単離するための組成物および方法
CA3131689A1 (en) 2019-02-26 2020-09-03 Twist Bioscience Corporation Variant nucleic acid libraries for glp1 receptor
CN113785057A (zh) 2019-02-26 2021-12-10 特韦斯特生物科学公司 用于抗体优化的变异核酸文库
US11965208B2 (en) 2019-04-19 2024-04-23 Becton, Dickinson And Company Methods of associating phenotypical data and single cell sequencing data
CA3138806A1 (en) 2019-05-22 2020-11-26 Dalia Dhingra Method and apparatus for simultaneous targeted sequencing of dna, rna and protein
WO2020247685A2 (en) * 2019-06-04 2020-12-10 Universal Sequencing Technology Corporation Methods of barcoding nucleic acid for detection and sequencing
US11332738B2 (en) 2019-06-21 2022-05-17 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
WO2021003255A1 (en) 2019-07-01 2021-01-07 Mission Bio Method and apparatus to normalize quantitative readouts in single-cell experiments
US11939622B2 (en) 2019-07-22 2024-03-26 Becton, Dickinson And Company Single cell chromatin immunoprecipitation sequencing assay
CN114729350A (zh) 2019-11-08 2022-07-08 贝克顿迪金森公司 使用随机引发获得用于免疫组库测序的全长v(d)j信息
WO2021097252A1 (en) * 2019-11-13 2021-05-20 Bradley Bernstein Methylation assays and uses thereof
WO2021118435A1 (en) 2019-12-09 2021-06-17 Laboratorios Maymó S.A. Rapid amplification and genotyping of nucleic acid sequences
GB2589869A (en) * 2019-12-09 2021-06-16 Univ Oxford Innovation Ltd Method for whole genome sequencing of picogram quantities of DNA
WO2021146207A1 (en) 2020-01-13 2021-07-22 Becton, Dickinson And Company Methods and compositions for quantitation of proteins and rna
US20230151441A1 (en) * 2020-04-02 2023-05-18 The Broad Institute, Inc. Sequencing-based population scale screening
WO2021231779A1 (en) 2020-05-14 2021-11-18 Becton, Dickinson And Company Primers for immune repertoire profiling
US11932901B2 (en) 2020-07-13 2024-03-19 Becton, Dickinson And Company Target enrichment using nucleic acid probes for scRNAseq
CN116635533A (zh) 2020-11-20 2023-08-22 贝克顿迪金森公司 高表达的蛋白和低表达的蛋白的谱分析
CN113252892B (zh) * 2021-06-22 2021-11-02 北京市肝病研究所 一种用于提高病原微生物抗原检测灵敏度的探针及试剂盒
WO2023235179A1 (en) * 2022-05-30 2023-12-07 The Regents Of The University Of California Methods and compositions for generating spatially resolved genomic profiles from tissues

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197196A1 (en) 1985-03-08 1986-10-15 The University Of Rochester Electro-electron optical oscilloscope system for time-resolving picosecond electrical waveforms
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US5066584A (en) 1988-09-23 1991-11-19 Cetus Corporation Methods for generating single stranded dna by the polymerase chain reaction
EP0795029A1 (en) * 1994-12-08 1997-09-17 Pabio Chemical labelling of objects
WO1997045559A1 (en) 1996-05-29 1997-12-04 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions
HUP0003944A3 (en) * 1996-06-06 2003-08-28 Lynx Therapeutics Inc Hayward Sequencing by ligation of encoded adaptors
US5858671A (en) * 1996-11-01 1999-01-12 The University Of Iowa Research Foundation Iterative and regenerative DNA sequencing method
US6521428B1 (en) 1999-04-21 2003-02-18 Genome Technologies, Llc Shot-gun sequencing and amplification without cloning
US6709816B1 (en) * 1999-10-18 2004-03-23 Affymetrix, Inc. Identification of alleles
US6618679B2 (en) 2000-01-28 2003-09-09 Althea Technologies, Inc. Methods for analysis of gene expression
US20010026919A1 (en) 2000-02-08 2001-10-04 Alex Chenchik Nucleic acid assays employing universal arrays
US6605451B1 (en) 2000-06-06 2003-08-12 Xtrana, Inc. Methods and devices for multiplexing amplification reactions
AU8356201A (en) 2000-08-11 2002-02-25 Agilix Corp Ultra-sensitive detection systems
GB0022458D0 (en) 2000-09-13 2000-11-01 Medical Res Council Directed evolution method
WO2002023163A1 (en) 2000-09-15 2002-03-21 California Institute Of Technology Microfabricated crossflow devices and methods
US20040110191A1 (en) 2001-01-31 2004-06-10 Winkler Matthew M. Comparative analysis of nucleic acids using population tagging
EP1384022A4 (en) 2001-04-06 2004-08-04 California Inst Of Techn AMPLIFICATION OF NUCLEIC ACID USING MICROFLUIDIC DEVICES
US7153656B2 (en) 2001-09-11 2006-12-26 Los Alamos National Security, Llc Nucleic acid sequence detection using multiplexed oligonucleotide PCR
WO2003033741A1 (en) 2001-10-16 2003-04-24 Aclara Biosciences, Inc. Universal e-tag primer and probe compositions and methods
US20030077611A1 (en) 2001-10-24 2003-04-24 Sention Methods and systems for dynamic gene expression profiling
US20030119004A1 (en) 2001-12-05 2003-06-26 Wenz H. Michael Methods for quantitating nucleic acids using coupled ligation and amplification
WO2003060159A2 (en) 2002-01-15 2003-07-24 Matforsk Methods of nucleic acid amplification
EP2666849A3 (en) 2002-04-01 2014-05-28 Fluidigm Corporation Microfluidic particle-analysis systems
WO2004022721A2 (en) 2002-09-06 2004-03-18 The Trustees Of Boston University Quantification of gene expression
WO2004027082A2 (en) 2002-09-19 2004-04-01 Applera Corporation Methods and compositions for detecting targets
WO2004040001A2 (en) 2002-10-02 2004-05-13 California Institute Of Technology Microfluidic nucleic acid analysis
US20040086892A1 (en) 2002-11-06 2004-05-06 Crothers Donald M. Universal tag assay
US8323897B2 (en) 2002-12-04 2012-12-04 Applied Biosystems, Llc Multiplex amplification of polynucleotides
US20040110153A1 (en) 2002-12-10 2004-06-10 Affymetrix, Inc. Compleixity management of genomic DNA by semi-specific amplification
US7575865B2 (en) 2003-01-29 2009-08-18 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
ES2396245T3 (es) * 2003-01-29 2013-02-20 454 Life Sciences Corporation Método de amplificación y secuenciamiento de ácidos nucleicos
US20040209299A1 (en) * 2003-03-07 2004-10-21 Rubicon Genomics, Inc. In vitro DNA immortalization and whole genome amplification using libraries generated from randomly fragmented DNA
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
DE602004018631D1 (de) * 2003-04-24 2009-02-05 Afshin Ahmadian En
CN101001960A (zh) * 2003-06-27 2007-07-18 西北大学 基于生物条形码检测靶分析物
AU2004254367B2 (en) * 2003-06-27 2008-06-19 Nanosphere, Inc. Bio-barcode based detection of target analytes
CA2536565A1 (en) 2003-09-10 2005-05-12 Althea Technologies, Inc. Expression profiling using microarrays
KR100571817B1 (ko) 2003-09-19 2006-04-17 삼성전자주식회사 태그 서열에 혼성화하는 검출 프로브를 이용하는 표적핵산의 검출방법
JP4999460B2 (ja) 2003-10-13 2012-08-15 ゲナコ・バイオメデイカル・プロダクツ・インコーポレイテツド 核酸のプライマーに基づく増幅のための方法及びキット
JP2007509613A (ja) 2003-10-16 2007-04-19 ジェノミック ヘルス, インコーポレイテッド 遺伝子発現プロファイリングのためのqRT−PCRアッセイシステム
WO2005064020A1 (en) 2003-12-23 2005-07-14 Autogenomics, Inc. Multiplexed nucleic acid analysis with high specificity
EP1730312B1 (en) 2004-03-24 2008-07-02 Applera Corporation Encoding and decoding reactions for determining target polynucleotides
WO2005107938A2 (en) 2004-05-02 2005-11-17 Fluidigm Corporation Thermal reaction device and method for using the same
US20060053503A1 (en) 2004-07-30 2006-03-09 Ut-Battelle, Llc Cranial and vertebral defects associated with loss-of-function of Nell
EP1789589B1 (en) 2004-08-24 2010-11-24 Cornell Research Foundation, Inc. Detection of nucleic acid differences using endonuclease cleavage/ligase releasing reactions and capillary electrophoresis or microarrays
EP1831401B1 (en) 2004-12-29 2010-02-10 Applied Biosystems, LLC Methods, compositions, and kits for forming self-complementary polynucleotides
EP1874957A1 (en) * 2005-04-20 2008-01-09 Sedna Biotechnologies AB Method for amplification
US20060263789A1 (en) * 2005-05-19 2006-11-23 Robert Kincaid Unique identifiers for indicating properties associated with entities to which they are attached, and methods for using
EP1885890A4 (en) 2005-05-26 2010-01-20 Univ Boston QUANTIFICATION OF NUCLEIC ACIDS AND PROTEINS VIA OLIGONUCLEOTIDE MASS LABELS
AU2006341607B2 (en) 2005-05-31 2011-03-17 Applied Biosystems, Llc. Multiplexed amplification of short nucleic acids
EP1915618A4 (en) 2005-06-02 2009-09-30 Fluidigm Corp ANALYSIS USING MICROFLUIDIC SEPARATION DEVICES
US20090233291A1 (en) * 2005-06-06 2009-09-17 454 Life Sciences Corporation Paired end sequencing
US20070020640A1 (en) 2005-07-21 2007-01-25 Mccloskey Megan L Molecular encoding of nucleic acid templates for PCR and other forms of sequence analysis
US9285297B2 (en) 2005-08-22 2016-03-15 Applied Biosystems, Llc Device, system, and method for depositing processed immiscible-fluid-discrete-volumes
EP1938101A2 (en) 2005-09-13 2008-07-02 Fluidigm Corporation Microfluidic assay devices and methods
JP5237099B2 (ja) 2005-09-29 2013-07-17 キージーン ナムローゼ フェンノートシャップ 変異させた集団のハイスループットスクリーニング
US7537897B2 (en) 2006-01-23 2009-05-26 Population Genetics Technologies, Ltd. Molecular counting
EP1994179A2 (en) 2006-02-18 2008-11-26 Michael Strathmann Massively multiplexed sequencing
ES2301342B1 (es) * 2006-03-14 2009-05-01 Oryzon Genomics, S.A. "metodo de analisis de acidos nucleicos".
US8828661B2 (en) 2006-04-24 2014-09-09 Fluidigm Corporation Methods for detection and quantification of nucleic acid or protein targets in a sample
US20080124721A1 (en) * 2006-06-14 2008-05-29 Martin Fuchs Analysis of rare cell-enriched samples
US20080131937A1 (en) 2006-06-22 2008-06-05 Applera Corporation Conversion of Target Specific Amplification to Universal Sequencing
CN1896284B (zh) * 2006-06-30 2013-09-11 博奥生物有限公司 一种鉴别等位基因类型的方法
WO2008015396A2 (en) * 2006-07-31 2008-02-07 Solexa Limited Method of library preparation avoiding the formation of adaptor dimers
DK2518162T3 (en) 2006-11-15 2018-06-18 Biospherex Llc Multi-tag sequencing and ecogenomic analysis
US9938641B2 (en) 2006-12-18 2018-04-10 Fluidigm Corporation Selection of aptamers based on geometry
US8157434B2 (en) 2007-01-19 2012-04-17 Fluidigm Corporation High efficiency and high precision microfluidic devices and methods
EP2108042A4 (en) 2007-02-02 2010-04-14 California Inst Of Techn SURFACE CHEMISTRY AND DEPOSITION TECHNIQUES
WO2008093098A2 (en) * 2007-02-02 2008-08-07 Illumina Cambridge Limited Methods for indexing samples and sequencing multiple nucleotide templates
CN101067156A (zh) 2007-05-18 2007-11-07 中国人民解放军第三军医大学第一附属医院 一种基于选择性探针的多重pcr方法及其应用
GB0712882D0 (en) 2007-07-03 2007-08-15 Leicester University Of Nucleic acid amplification
US9689031B2 (en) * 2007-07-14 2017-06-27 Ionian Technologies, Inc. Nicking and extension amplification reaction for the exponential amplification of nucleic acids
WO2009015296A1 (en) 2007-07-24 2009-01-29 The Regents Of The University Of California Microfabricated dropley generator
US20090053719A1 (en) 2007-08-03 2009-02-26 The Chinese University Of Hong Kong Analysis of nucleic acids by digital pcr
US9440231B2 (en) 2007-08-14 2016-09-13 Fluidigm Corporation Polymer microfluidic biochip fabrication
WO2009036525A2 (en) 2007-09-21 2009-03-26 Katholieke Universiteit Leuven Tools and methods for genetic tests using next generation sequencing
US8268564B2 (en) * 2007-09-26 2012-09-18 President And Fellows Of Harvard College Methods and applications for stitched DNA barcodes
US20090163366A1 (en) 2007-12-24 2009-06-25 Helicos Biosciences Corporation Two-primer sequencing for high-throughput expression analysis
EP2247727A4 (en) 2008-02-12 2011-08-03 Nugen Technologies Inc PROCESS FOR ARCHIVING AND CLONING EXPANSION
US20110053806A1 (en) 2008-02-22 2011-03-03 Fluidigm Corporation Integrated carrier for microfluidic device
US9487822B2 (en) 2008-03-19 2016-11-08 Fluidigm Corporation Method and apparatus for determining copy number variation using digital PCR
US9328172B2 (en) * 2008-04-05 2016-05-03 Single Cell Technology, Inc. Method of obtaining antibodies of interest and nucleotides encoding same
WO2010009365A1 (en) 2008-07-18 2010-01-21 Raindance Technologies, Inc. Droplet libraries
WO2010021936A1 (en) 2008-08-16 2010-02-25 The Board Of Trustees Of The Leland Stanford Junior University Digital pcr calibration for high throughput sequencing
CN102203287B (zh) 2008-08-26 2017-09-19 弗卢迪格姆公司 增加样本和/或靶通量的测定方法
US8748103B2 (en) * 2008-11-07 2014-06-10 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
SG183029A1 (en) 2009-01-13 2012-08-30 Fluidigm Corp Single-cell nucleic acid analysis
US8450063B2 (en) 2009-01-28 2013-05-28 Fluidigm Corporation Determination of copy number differences by amplification
WO2010111231A1 (en) 2009-03-23 2010-09-30 Raindance Technologies, Inc. Manipulation of microfluidic droplets
US20120010091A1 (en) * 2009-03-30 2012-01-12 Illumina, Inc. Gene expression analysis in single cells
US20100285537A1 (en) 2009-04-02 2010-11-11 Fluidigm Corporation Selective tagging of short nucleic acid fragments and selective protection of target sequences from degradation
AU2010232439C1 (en) 2009-04-02 2017-07-13 Fluidigm Corporation Multi-primer amplification method for barcoding of target nucleic acids
ES2672122T3 (es) * 2009-10-29 2018-06-12 Ngk Insulators, Ltd. Método para la detección de un ácido nucleico diana
US8617817B2 (en) * 2010-02-12 2013-12-31 Genisphere, Llc Whole transciptome sequencing
EP2569453B1 (en) 2010-05-14 2015-12-16 Fluidigm Corporation Nucleic acid isolation methods
SG185543A1 (en) 2010-05-14 2012-12-28 Fluidigm Corp Assays for the detection of genotype, mutations, and/or aneuploidy
EP2601307A4 (en) * 2010-08-06 2014-01-01 Capitalbio Corp MICROARRAY TEST WITH PARTICLES FOR THE ANALYSIS OF MOLECULAR INTERACTIONS
US20120034603A1 (en) * 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
CA2814049C (en) * 2010-10-08 2021-07-13 President And Fellows Of Harvard College High-throughput single cell barcoding
MX2017015093A (es) * 2011-01-11 2023-03-10 Seegene Inc Detección de secuencias de ácido nucleico objetivo mediante ensayo de escisión y extensión del pto.
EP2675819B1 (en) * 2011-02-18 2020-04-08 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
KR101322880B1 (ko) * 2011-03-04 2013-10-29 한국과학기술원 Sdl-pcr을 이용한 유전자 분석방법
WO2012129363A2 (en) * 2011-03-24 2012-09-27 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
WO2012135658A2 (en) * 2011-03-30 2012-10-04 Noblegen Biosciences, Inc. Sequence preserved dna conversion for optical nanopore sequencing
EP2702175B1 (en) 2011-04-25 2018-08-08 Bio-Rad Laboratories, Inc. Methods and compositions for nucleic acid analysis
CA2835942C (en) * 2011-05-19 2019-01-22 Sequenom, Inc. Products and processes for multiplex nucleic acid identification
WO2012162267A2 (en) 2011-05-20 2012-11-29 Fluidigm Corporation Nucleic acid encoding reactions
EP2714938B1 (en) 2011-05-27 2017-11-15 President and Fellows of Harvard College Methods of amplifying whole genome of a single cell
US9586987B2 (en) 2011-09-08 2017-03-07 Kabushiki Kaisha Dnaform Primer set for isothermal amplication of a target nucleic acid sequence
SG11201405274WA (en) * 2012-02-27 2014-10-30 Cellular Res Inc Compositions and kits for molecular counting
SG11201407901PA (en) 2012-05-21 2015-01-29 Fluidigm Corp Single-particle analysis of particle populations
JP6558830B2 (ja) * 2012-06-15 2019-08-14 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 複数転写産物のハイスループットシークエンシング
DK2872629T3 (da) * 2012-07-03 2019-12-09 Integrated Dna Tech Inc Tm-forstærkede blokeringsoligonukleotider og lokkemidler til forbedret target-berigesle og reduceret off-target-udvælgelse
WO2014108850A2 (en) * 2013-01-09 2014-07-17 Yeda Research And Development Co. Ltd. High throughput transcriptome analysis
GB2525568B (en) * 2013-03-15 2020-10-14 Abvitro Llc Single cell barcoding for antibody discovery
US10081825B2 (en) 2013-03-15 2018-09-25 Aegea Biotechnologies, Inc. Methods for amplification of nucleic acids utilizing a circularized template prepared from a target nucleic acid
SG10201806890VA (en) * 2013-08-28 2018-09-27 Cellular Res Inc Massively parallel single cell analysis
GB201317301D0 (en) * 2013-09-30 2013-11-13 Linnarsson Sten Method for capturing and encoding nucleic acid from a plurality of single cells
SG11201706636PA (en) 2015-02-27 2017-09-28 Fluidigm Corp Single-cell nucleic acids for high-throughput studies
CA3006994A1 (en) 2015-12-16 2017-06-22 Fluidigm Corporation High-level multiplex amplification
CN109661474A (zh) 2016-07-14 2019-04-19 富鲁达公司 单细胞转录物测序

Also Published As

Publication number Publication date
HK1198661A1 (zh) 2015-05-22
US20220119874A1 (en) 2022-04-21
US9074204B2 (en) 2015-07-07
WO2012162267A2 (en) 2012-11-29
EP2710172A2 (en) 2014-03-26
US20160208322A1 (en) 2016-07-21
SG10201605049QA (en) 2016-07-28
CN103890245A (zh) 2014-06-25
US10501786B2 (en) 2019-12-10
CN112592960A (zh) 2021-04-02
WO2012162267A3 (en) 2014-05-15
EP2710172B1 (en) 2017-03-29
SG194745A1 (en) 2013-12-30
US20130005585A1 (en) 2013-01-03
EP2710172A4 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
US20220119874A1 (en) Nucleic acid encoding reactions
US11747327B2 (en) Compositions and methods for molecular labeling
US9840732B2 (en) Single-particle analysis of particle populations
US20210324446A1 (en) Multi-primer amplification method for barcoding of target nucleic acids
EP2569453B1 (en) Nucleic acid isolation methods
US20220088560A1 (en) High-level multiplex amplification

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1198661

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant