CN103824988A - 一种复合纳米纤维锂电池隔膜及其制备方法 - Google Patents

一种复合纳米纤维锂电池隔膜及其制备方法 Download PDF

Info

Publication number
CN103824988A
CN103824988A CN201410061996.7A CN201410061996A CN103824988A CN 103824988 A CN103824988 A CN 103824988A CN 201410061996 A CN201410061996 A CN 201410061996A CN 103824988 A CN103824988 A CN 103824988A
Authority
CN
China
Prior art keywords
nano
nano particle
aramid
meta
electrostatic spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410061996.7A
Other languages
English (en)
Other versions
CN103824988B (zh
Inventor
丁彬
翟云云
张世超
毛雪
俞建勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201410061996.7A priority Critical patent/CN103824988B/zh
Publication of CN103824988A publication Critical patent/CN103824988A/zh
Application granted granted Critical
Publication of CN103824988B publication Critical patent/CN103824988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种复合纳米纤维锂电池隔膜及其制备方法,所述复合纳米纤维锂电池隔膜由至少一层含纳米颗粒的间位芳纶纳米纤维膜和至少一层含纳米颗粒的低熔点聚合物纳米纤维膜复合而成,所述含纳米颗粒的纤维膜中的纳米纤维相互交错并在交错点处粘结互连。所述复合纳米纤维锂电池隔膜中纤维表层孔径范围为100~400nm,闭孔温度为130~170℃,闭孔后纤维膜不收缩,在250℃高温下加热1h热收缩率小于2%,拉伸强度为100~1000MPa,兼具热闭合效应、热尺寸稳定性好和强度高的性能。本发明制备工艺简单、成本低,获得的复合纳米纤维锂电池隔膜同时在超级电容器、钠离子电池等储能领域具有广阔的应用前景。

Description

一种复合纳米纤维锂电池隔膜及其制备方法
技术领域
本发明涉及用于锂离子二次电池等储能器件的隔膜材料及其制备方法,特别是涉及一种高性能复合纳米纤维锂电池隔膜及其制备方法,属于锂电池隔膜制造技术领域。
背景技术
锂离子电池因其具有较高的能量密度、较长的循环寿命、可快速充放电、无污染和无记忆效应等优点,已被广泛应用于移动通信、笔记本电脑、小型摄像机等电器设备上,在电动汽车、航天航空、储能以及军事等领域也显示出了良好的应用前景和潜在的经济效益。隔膜作为电池的核心关键部件,主要用于分隔电池的正极与负极,防止两极接触而短路,吸取电解液后允许锂离子的传导;在过度充电或者温度升高时,隔膜通过闭孔来阻隔电流的传导,防止爆炸。
目前锂离子电池隔膜的主流产品为聚丙烯和聚乙烯多孔膜及其与多孔陶瓷涂层的复合膜。其突出的问题是润湿性差、吸液能力弱,难以实现高倍率充放电,在高温循环条件下容易形成枝晶及受热形变大,存在严重的安全隐患。静电纺丝法因其具有可纺聚合物种类多、纤维孔隙率高、孔径分布均匀、膜厚和结构可以精细调控等优点,可用于制备基于多种聚合物的浸润性好、离子导电率高的锂电池隔膜,从而提高电池的充放电性能、容量和循环性能。聚偏氟乙烯因化学稳定性好,被普遍作为一种隔膜材料,引起科研人员的广泛关注,如(CN200910077740.4)、(CN201110003226.3)、(CN201110003213.6),但由于聚偏氟乙烯结晶度较高,致使其离子电导率不高,同时其耐热性也不高,在使用过程中存在安全隐患。为了提高隔膜的耐热性,科研人员主要采取以下两种方法:一是通过溶胶-凝胶原位生成或者添加纳米颗粒或者涂覆含纳米颗粒的溶液的方式提高纳米纤维隔膜的耐热性,如CN200810244343.7、CN201110434221.6、基于静电纺纤维的先进锂离子电池隔膜材料的研究(博士学位论文)、静电纺丝法制备无机改性锂离子电池隔膜(硕士学位论文)、CN201310154350.9和CN201210280002.1,这些方法制备工艺复杂,一般需要涂覆工艺、热压处理或者萃取等工序,同时隔膜闭孔时伴随着体积收缩,膜面积缩小,使隔膜失去正负极之间的隔断作用,造成不安全隐患;二是使用高耐热性的聚合物溶液进行静电纺丝,如CN201210486465.3、CN201210425855.X、CN201010166400.1和CN201210169182.6,该方法制备的纤维膜功能单一,不能同时满足隔膜材料所应具有的优异的热尺寸稳定性和良好的自关闭性能,会使电池发生燃烧、爆炸等潜在危害。中国专利CN200910011641.6公开了一种高性能聚芳醚树脂锂电池隔膜的电纺丝制备方法,该方法制备的隔膜兼具热尺寸稳定性和自关闭功能,但其强度较差(Influence of Collecting on Fiber Orientation,Morphology and TensileProperties ofElectrospun PPESK Fabrics(3.677MPa)),无法满足锂电池的实际生产需求,而且由于在纺丝过程中两种纤维是缠结在一起的,隔膜闭孔时存在发生严重体积收缩的潜在危害。
发明内容
本发明的目的是提供一种具有热关闭效应、热尺寸稳定性好且强度高的高性能复合纳米纤维隔膜及其制备方法。
为了达到上述目的,本发明提供了一种复合纳米纤维锂电池隔膜,其特征在于,由至少一层含纳米颗粒的间位芳纶纳米纤维膜和至少一层含纳米颗粒的低熔点聚合物纳米纤维膜复合而成;所述低熔点聚合物的熔点在130~175℃;所述的含纳米颗粒的间位芳纶纳米纤维膜中的含纳米颗粒的间位芳纶纳米纤维相互交错并在交错点处粘结互连,所述的含纳米颗粒的低熔点聚合物纳米纤维膜中的含纳米颗粒的低熔点聚合物纳米纤维相互交错并在交错点处粘结互连,相邻的含纳米颗粒的纤维膜中的纳米纤维相互交错并在交错点处粘结互连。
本发明还提供了上述复合纳米纤维锂电池隔膜的制备方法,其特征在于,具体步骤包括:用高沸点有机溶剂分别配制含纳米颗粒的间位芳纶静电纺丝溶液和含纳米颗粒的低熔点聚合物静电纺丝溶液;将含纳米颗粒的间位芳纶静电纺丝溶液进行静电纺丝,得到一层含纳米颗粒的间位芳纶纳米纤维膜;以含纳米颗粒的间位芳纶纳米纤维膜作为接收基材,将含纳米颗粒的低熔点聚合物静电纺丝溶液进行静电纺丝,在含纳米颗粒的间位芳纶纳米纤维膜上形成至少一层含纳米颗粒的低熔点聚合物纳米纤维膜,即得到复合纳米纤维锂电池隔膜;或者,以含纳米颗粒的间位芳纶纳米纤维膜作为接收基材,将含纳米颗粒的低熔点聚合物静电纺丝溶液和含纳米颗粒的间位芳纶静电纺丝溶液依次或交替进行静电纺丝,在含纳米颗粒的间位芳纶纳米纤维膜上依次或交替形成至少一层含纳米颗粒的低熔点聚合物纳米纤维膜和至少一层含纳米颗粒的间位芳纶纳米纤维膜,即得到复合纳米纤维锂电池隔膜。
所述的低熔点聚合物在电池温度上升至其熔点时发生熔化,使孔径消失,阻断离子传导,起安全保护作用;所述间位芳纶纳米纤维因其良好的耐热性在低熔点聚合物发生熔化时,保持优异的尺寸稳定性,起力学支撑作用;纳米颗粒的加入将降低隔膜中纳米纤维层的孔径,高沸点有机溶剂的使用使纤维交错点呈现有效粘结互连,从而获得具有热关闭效应、热尺寸稳定性好且强度高的高性能复合纳米纤维锂电池隔膜。
优选地,所述的纳米颗粒为氧化铝、氧化硅、氧化镁、氧化钛、钛酸钡、氧化锆、氧化锌、氧化钡、氮化锂、碳酸钙、碳酸锂、滑石粉和沸石中的一种或多种的组合,纳米颗粒的粒径为5~50nm,纳米颗粒的加入将降低隔膜的孔径。
优选地,所述的低熔点聚合物为聚甲基丙烯酸甲酯、偏氟乙烯基聚合物(聚偏氟乙烯及其共聚物)、聚氨酯和聚氯乙烯中的一种或多种的组合。
优选地,所述的含纳米颗粒的间位芳纶静电纺丝溶液的配制过程为:首先在室温下将卤盐和高沸点有机溶剂以质量比为1∶190~1∶14.8混合,配成离子液体溶剂体系;然后将纳米颗粒以质量比为1∶191~1∶15.8加入到所述离子液体溶剂体系中,超声分散15~60分钟,得到离子液体的纳米颗粒悬浮液;最后将间位芳纶以质量比为1∶24~1∶5.25溶解于所述离子液体的纳米颗粒悬浮液中,搅拌12~24小时,制得含纳米颗粒的间位芳纶静电纺丝溶液。
更优选地,所述的卤盐为氯化锂、氯化钙、氯化镁、氯化钠、氯化铁、溴化钠和溴化锂中的一种或多种的组合。
优选地,所述的含纳米颗粒的低熔点聚合物静电纺丝溶液的配制过程为:先将纳米颗粒以质量比1∶189~1∶13加入到高沸点有机溶剂中,超声分散15~60分钟,得到含纳米颗粒的高沸点有机溶剂,再将低熔点聚合物以质量比1∶19~3∶7溶于所述含纳米颗粒的高沸点有机溶剂中,形成含纳米颗粒的低熔点聚合物静电纺丝溶液,溶液中聚合物的质量分数为5~30%,纳米颗粒的质量分数为0.5~5%。
优选地,所述的高沸点有机溶剂的沸点为152.8~245.2℃。
优选地,所述的高沸点有机溶剂为N-甲基吡咯烷酮、苯甲酸乙酯、硝基苯、2-苯氧基乙醇、甲酰胺、二甲基亚砜、N,N-二甲基乙酰胺和N,N-二甲基甲酰胺中的一种或多种的组合。
优选地,所述的含纳米颗粒的间位芳纶静电纺丝溶液和含纳米颗粒的低熔点聚合物静电纺丝溶液的静电纺丝的具体条件为:在20~28℃,相对湿度20~70%条件下,静电纺丝溶液的流速为0.1~5mL/h,喷丝口与接收装置之间的距离为5~30cm,纺丝电压为10~30kV。
优选地,所述的复合纳米纤维锂电池隔膜的表层平均孔径范围为100~400nm,闭孔温度为130~170℃,闭孔后纤维膜不收缩,在250℃高温下加热1h热收缩率小于2%,拉伸强度为100~1000MPa。
与现有技术相比,本发明的有益效果是:
本发明通过静电纺丝技术一步制备出了强度高、耐高温、而且具有自关闭功能和优异的热尺寸稳定性、闭孔后纤维膜不收缩的高性能复合纳米纤维锂电池隔膜,无需任何后处理,制备工艺简单、成本低廉。所述高性能复合纳米纤维锂电池隔膜中纤维表层平均孔径范围为100~400nm,闭孔温度为130~170℃,闭孔后纤维膜不收缩,在250℃高温下加热1h热收缩率小于2%,拉伸强度为100~1000MPa,兼具热闭合效应、热尺寸稳定性好和强度高的性能。本发明获得的高性能复合纳米纤维锂电池隔膜同时在超级电容器、钠离子电池等储能领域具有广阔的应用前景。
附图说明
图1是高性能复合纳米纤维锂电池隔膜在250℃下加热1小时前后的光学照片。
图2是高性能复合纳米纤维锂电池隔膜在0.2C倍率下的循环充放电曲线。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种间位芳纶-聚偏氟乙烯复合纳米纤维锂电池隔膜,由一层含纳米颗粒的间位芳纶纳米纤维膜和一层含纳米颗粒的低熔点聚合物纳米纤维膜复合而成;所述低熔点聚合物为熔点在168~175℃的聚偏氟乙烯;所述的含纳米颗粒的间位芳纶纳米纤维膜中的含纳米颗粒的间位芳纶纳米纤维相互交错并在交错点处粘结互连,所述的含纳米颗粒的低熔点聚合物纳米纤维膜中的含纳米颗粒的低熔点聚合物纳米纤维相互交错并在交错点处粘结互连,相邻的含纳米颗粒的纤维膜中的纳米纤维相互交错并在交错点处粘结互连。
上述的复合纳米纤维锂电池隔膜的制备方法,具体步骤为:
第一步:在室温下,首先将0.1g氯化锂溶于16.6g二甲基亚砜中,并置于磁力搅拌器上搅拌1小时,形成离子液体溶剂体系;其次将0.1g粒径为5~30nm的氧化钙纳米颗粒加入到离子液体溶剂体系,超声分散30分钟,得到离子液体的纳米颗粒悬浮液;最后将3.2g间位芳纶溶解于离子液体的纳米颗粒悬浮液中,搅拌12小时,制得间位芳纶、卤盐和纳米颗粒质量分数分别为16%、0.5%和0.5%的含纳米颗粒的间位芳纶静电纺丝溶液;
第二步,先将0.1g粒径为10~40nm的氧化硅和氧化铝(质量比2∶8)纳米颗粒加入到17.9g的N,N-二甲基乙酰胺和N,N-二甲基甲酰胺(质量比1∶1)的混合溶剂中,超声分散45分钟,再将2g聚偏氟乙烯溶于所述混合溶剂中,并置于磁力搅拌器上搅拌12小时,形成均相的含纳米颗粒的聚偏氟乙烯静电纺丝溶液,其中,聚偏氟乙烯的质量分数为10%,纳米颗粒的质量分数为0.5%;
第三步,在室温20℃及相对湿度20%的条件下,将所述含纳米颗粒的间位芳纶静电纺丝溶液以铝箔作为接收基材进行静电纺丝,获得含纳米颗粒的间位芳纶纳米纤维膜;所述静电纺丝是指所述含纳米颗粒的间位芳纶静电纺丝溶液以0.1mL/h的流速输入到静电纺丝设备的喷丝头上,同时将喷丝头连接10kV的高压电源进行静电纺丝,接收装置与喷丝头之间的距离为10cm;在室温25℃及相对湿度30%的条件下,以制得的含纳米颗粒的间位芳纶纳米纤维膜为接收基材,将所述含纳米颗粒的聚偏氟乙烯静电纺丝溶液进行静电纺丝,获得高性能的间位芳纶-聚偏氟乙烯复合纳米纤维锂电池隔膜;所述静电纺丝是指所述含纳米颗粒的聚偏氟乙烯静电纺丝溶液以1mL/h的流速输入到静电纺丝设备的喷丝头上,同时将喷丝头连接30kV的高压电源进行静电纺丝,接收装置与喷丝头之间的距离为15cm;所述高性能间位芳纶-聚偏氟乙烯复合纳米纤维锂电池隔膜中纤维表层平均孔径范围为150~400nm,闭孔温度为170℃,闭孔后纤维膜不收缩,在250℃高温下加热1h热收缩率小于1.8%,拉伸强度为450MPa。
实施例2
一种间位芳纶-聚氨酯-间位芳纶复合纳米纤维锂电池隔膜,由一层含纳米颗粒的间位芳纶纳米纤维膜、一层含纳米颗粒的低熔点聚合物纳米纤维膜和一层含纳米颗粒的间位芳纶纳米纤维膜复合而成;所述低熔点聚合物为熔点在158~163℃的聚氨酯;所述的含纳米颗粒的间位芳纶纳米纤维膜中的含纳米颗粒的间位芳纶纳米纤维相互交错并在交错点处粘结互连,所述的含纳米颗粒的低熔点聚合物纳米纤维膜中的含纳米颗粒的低熔点聚合物纳米纤维相互交错并在交错点处粘结互连,相邻的含纳米颗粒的纤维膜中的纳米纤维相互交错并在交错点处粘结互连。
上述的复合纳米纤维锂电池隔膜的制备方法,具体步骤为:
第一步,在室温下,首先将1g氯化钙和氯化铁(质量比1∶1)溶于17.2gN,N-二甲基甲酰胺与N-甲基吡咯烷酮(质量比9∶1)中,并置于磁力搅拌器上搅拌1小时,形成离子液体溶剂体系;其次将1g粒径为10~40nm的氧化硅和氧化铝(质量比2∶8)纳米颗粒加入到离子液体溶剂体系,超声分散30分钟,得到离子液体的纳米颗粒悬浮液;最后将0.8g间位芳纶溶解于离子液体的纳米颗粒悬浮液中,搅拌24小时,制得间位芳纶、卤盐和纳米颗粒质量分数分别为4%、5%和5%的含纳米颗粒的间位芳纶静电纺丝溶液;
第二步,先将1g粒径为7~40nm的氧化锌和氧化锆(质量比3∶7)纳米颗粒加入到18g的N,N-二甲基甲酰胺中,超声分散45分钟,再将1g聚氨酯溶于N,N-二甲基甲酰胺中,并置于磁力搅拌器上搅拌12小时,形成均相的含纳米颗粒的聚氨酯静电纺丝溶液,其中,聚氨酯和纳米颗粒的质量分数均为5%;
第三步,在室温28℃及相对湿度70%的条件下,将所述含纳米颗粒的间位芳纶静电纺丝溶液以无纺布为接收基材进行静电纺丝,获得含纳米颗粒的间位芳纶纳米纤维膜;所述静电纺丝是指所述含纳米颗粒的间位芳纶溶液以2.5mL/h的流速输入到静电纺丝设备的喷丝头上,同时将喷丝头连接30kV的高压电源进行静电纺丝,接收装置与喷丝头之间的距离为30cm;在室温25℃及相对湿度50%的条件下,以制得的含纳米颗粒的间位芳纶纳米纤维膜为接收基材,将所述含纳米颗粒的聚氨酯和间位芳纶静电纺丝溶液依次进行静电纺丝,在含纳米颗粒的间位芳纶纳米纤维膜上依次形成含纳米颗粒的聚氨酯纳米纤维膜和含纳米颗粒的间位芳纶纳米纤维膜,获得高性能的间位芳纶-聚氨酯-间位芳纶复合纳米纤维膜;所述静电纺丝是指所述含纳米颗粒的聚氨酯和间位芳纶溶液分别以5.0mL/h和2.0mL/h的流速输入到静电纺丝设备的喷丝头上,同时将喷丝头连接30kV和25kV的高压电源进行静电纺丝,接收装置与喷丝头之间的距离为30cm和15cm;所述高性能间位芳纶-聚氨酯-间位芳纶复合纳米纤维锂电池隔膜中纤维表层平均孔径范围为100~300nm,闭孔温度为160℃,闭孔后纤维膜不收缩,在250℃高温下加热1h热收缩率小于1.8%,拉伸强度为386MPa。
实施例3
一种间位芳纶-聚氯乙烯/聚(偏氟乙烯-六氟丙烯)复合纳米纤维锂电池隔膜,由一层含纳米颗粒的间位芳纶纳米纤维膜和一层含纳米颗粒的低熔点聚合物纳米纤维膜复合而成;所述低熔点聚合物为熔点在165~175℃的聚氯乙烯和熔点在138~160℃的聚(偏氟乙烯-六氟丙烯);所述的含纳米颗粒的间位芳纶纳米纤维膜中的含纳米颗粒的间位芳纶纳米纤维相互交错并在交错点处粘结互连,所述的含纳米颗粒的低熔点聚合物纳米纤维膜中的含纳米颗粒的低熔点聚合物纳米纤维相互交错并在交错点处粘结互连,相邻的含纳米颗粒的纤维膜中的纳米纤维相互交错并在交错点处粘结互连。
上述的复合纳米纤维锂电池隔膜的制备方法,具体步骤为:
第一步,在室温下,首先将0.6g氯化镁和溴化锂(质量比3∶7)溶于16.8g N,N-二甲基乙酰胺中,并置于磁力搅拌器上搅拌1小时,形成离子液体溶剂体系;其次将0.2g粒径为10~40nm的钛酸钡和沸石(质量比2∶8)纳米颗粒加入到离子液体溶剂体系,超声分散60分钟,得到离子液体的纳米颗粒悬浮液;最后将2.4g间位芳纶溶解于离子液体的纳米颗粒悬浮液中,搅拌15小时,制得间位芳纶、卤盐和纳米颗粒质量分数分别为12%、3%和1%的含纳米颗粒的间位芳纶静电纺丝溶液;
第二步,先将0.2g粒径为10~40nm的氧化硅、氧化铝和氮化锂(质量比1∶1∶8)纳米颗粒加入到13.8g的N,N-二甲基乙酰胺和N,N-二甲基甲酰胺(质量比2∶1)的混合溶剂中,超声分散45分钟,再将6g聚氯乙烯和聚(偏氟乙烯-六氟丙烯)(质量比2∶3)溶于所述混合溶剂中,并置于磁力搅拌器上搅拌12小时,形成均相的含纳米颗粒的聚氯乙烯/聚(偏氟乙烯-六氟丙烯)静电纺丝溶液,其中,聚氯乙烯/聚(偏氟乙烯-六氟丙烯)的质量分数为30%,纳米颗粒的质量分数为1%;
第三步,在室温25℃及相对湿度55%的条件下,将所述含纳米颗粒的间位芳纶溶液以铜网作为接收基材进行静电纺丝,获得含纳米颗粒的间位芳纶纳米纤维膜;所述静电纺丝是指所述含纳米颗粒的间位芳纶溶液以1.5mL/h的流速输入到静电纺丝设备的喷丝头上,同时将喷丝头连接10kV的高压电源进行静电纺丝,接收装置与喷丝头之间的距离为5cm;在室温20℃及相对湿度70%的条件下,以制得的含纳米颗粒的间位芳纶纳米纤维膜为接收基材,将所述含纳米颗粒的聚氯乙烯/聚(偏氟乙烯-六氟丙烯)溶液进行静电纺丝,在含纳米颗粒的间位芳纶纳米纤维膜上形成含纳米颗粒的聚氯乙烯/聚(偏氟乙烯-六氟丙烯)纳米纤维膜,获得高性能的间位芳纶-聚氯乙烯/聚(偏氟乙烯-六氟丙烯)复合纳米纤维膜;所述静电纺丝是指所述含纳米颗粒的聚氯乙烯/聚(偏氟乙烯-六氟丙烯)溶液以5mL/h的流速输入到静电纺丝设备的喷丝头上,同时将喷丝头连接20kV的高压电源进行静电纺丝,接收装置与喷丝头之间的距离为18cm;所述高性能间位芳纶-聚氯乙烯/聚(偏氟乙烯-六氟丙烯)复合纳米纤维锂电池隔膜中纤维表层平均孔径范围为110~340nm,闭孔温度为140℃,闭孔后纤维膜不收缩,在250℃高温下加热1h热收缩率小于1.8%,拉伸强度为100MPa。
实施例4
一种间位芳纶-聚氨酯-聚偏氟乙烯-间位芳纶复合纳米纤维锂电池隔膜,由两层含纳米颗粒的间位芳纶纳米纤维膜和两层含纳米颗粒的低熔点聚合物纳米纤维层复合而成,所述的两层低熔点聚合物纳米纤维层包括一层含纳米颗粒的熔点在158~163℃的聚氨酯纳米纤维膜和一层含纳米颗粒的熔点在168~175℃的聚偏氟乙烯纳米纤维膜;所述的含纳米颗粒的间位芳纶纳米纤维膜中的含纳米颗粒的间位芳纶纳米纤维相互交错并在交错点处粘结互连,所述的含纳米颗粒的低熔点聚合物纳米纤维膜中的含纳米颗粒的低熔点聚合物纳米纤维相互交错并在交错点处粘结互连,相邻的含纳米颗粒的纤维膜中的纳米纤维相互交错并在交错点处粘结互连。
上述的复合纳米纤维锂电池隔膜的制备方法,具体步骤为:
第一步,在室温下,首先将0.4g氯化镁、氯化钙和氯化钠(质量比1∶1∶1)溶于17g N,N-二甲基乙酰胺与二甲基亚砜(质量比7∶3)中,并置于磁力搅拌器上搅拌1小时,形成离子液体溶剂体系;其次将0.6g粒径7~40nm的碳酸锂、氧化锌和滑石粉(质量比2∶1∶3)纳米颗粒加入到离子液体溶剂体系,超声分散45分钟,得到离子液体的纳米颗粒悬浮液;最后将2g间位芳纶溶解于离子液体的纳米颗粒悬浮液中,搅拌16小时,制得间位芳纶、卤盐和纳米颗粒质量分数分别为10%、2%和3%的含纳米颗粒的间位芳纶静电纺丝溶液;
第二步,先将0.2g粒径为10~40nm的氧化钡、氧化铝和碳酸锂(质量比1∶1∶8)纳米颗粒加入到18.4g的N,N-二甲基乙酰胺、N,N-二甲基甲酰胺和二甲基亚砜(质量比1∶1∶1)的混合溶剂中,超声分散75分钟,再将1.4g聚氨酯溶于所述混合溶剂中,并置于磁力搅拌器上搅拌12小时,形成均相的含纳米颗粒的聚氨酯静电纺丝溶液,其中,聚氨酯的质量分数为7%,纳米颗粒的质量分数为1%;
第三步,先将0.3g粒径为10~40nm的氧化钡、钛酸钡和碳酸锂(质量比1∶2∶7)纳米颗粒加入到17.7g的N,N-二甲基乙酰胺、N,N-二甲基甲酰胺和二甲基亚砜(质量比1∶2∶1)的混合溶剂中,超声分散45分钟,再将2.0g聚偏氟乙烯溶于所述混合溶剂中,并置于磁力搅拌器上搅拌12小时,形成均相的含纳米颗粒的聚偏氟乙烯静电纺丝溶液,其中,聚偏氟乙烯的质量分数为10%,纳米颗粒的质量分数为1.5%;
第四步,在室温28℃及相对湿度45%的条件下,将所述含纳米颗粒的间位芳纶溶液以滤纸作为接收基材进行静电纺丝,获得含纳米颗粒的间位芳纶纳米纤维膜;所述静电纺丝是指所述含纳米颗粒的间位芳纶溶液以2.0mL/h的流速输入到静电纺丝设备的喷丝头上,同时将喷丝头连接25kV的高压电源进行静电纺丝,接收装置与喷丝头之间的距离为18cm;在室温28℃及相对湿度20%的条件下,以制得的含纳米颗粒的间位芳纶纳米纤维膜为接收基材,将所述含纳米颗粒的聚氨酯、聚偏氟乙烯和间位芳纶溶液依次进行静电纺丝,在含纳米颗粒的间位芳纶纳米纤维膜上依次形成两层含纳米颗粒的低熔点聚合物纳米纤维膜和一层含纳米颗粒的间位芳纶纳米纤维膜,获得间位芳纶-聚氨酯-聚偏氟乙烯-间位芳纶复合纳米纤维膜;所述静电纺丝是指所述含纳米颗粒的聚氨酯、聚偏氟乙烯和间位芳纶溶液分别以0.5mL/h、2.0mL/h和0.1mL/h的流速输入到静电纺丝设备的喷丝头上,同时将喷丝头连接20kV、30kV和10kV的高压电源进行静电纺丝,接收装置与喷丝头之间的距离为15cm、25cm和5cm;所述高性能的间位芳纶-聚氨酯-聚偏氟乙烯-间位芳纶复合纳米纤维锂电池隔膜中纤维表层平均孔径范围为100~260nm,闭孔温度为160℃,在250℃高温的烘箱中加热1小时后的热收缩率为1%,拉伸强度达到1000MPa。
实施例5
一种高性能间位芳纶-聚(偏氟乙烯-三氟氯乙烯)/聚氯乙烯-间位芳纶-聚甲基丙烯酸甲酯/聚偏氟乙烯-间位芳纶复合纳米纤维锂电池隔膜,由三层含纳米颗粒的间位芳纶纳米纤维膜和两层含纳米颗粒的低熔点聚合物纳米纤维层复合而成。所述的两层含纳米颗粒的低熔点聚合物纳米纤维层包括一层含纳米颗粒的聚(偏氟乙烯-三氟氯乙烯)/聚氯乙烯纳米纤维膜和一层聚甲基丙烯酸甲酯/聚偏氟乙烯纳米纤维膜。所述聚(偏氟乙烯-三氟氯乙烯)的熔点为163~172℃、聚氯乙烯的熔点为165~175℃、聚甲基丙烯酸甲酯的熔点为130~140℃、聚偏氟乙烯的熔点为168~175℃;所述的含纳米颗粒的间位芳纶纳米纤维膜中的含纳米颗粒的间位芳纶纳米纤维相互交错并在交错点处粘结互连,所述的含纳米颗粒的低熔点聚合物纳米纤维膜中的含纳米颗粒的低熔点聚合物纳米纤维相互交错并在交错点处粘结互连,相邻的含纳米颗粒的纤维膜中的纳米纤维相互交错并在交错点处粘结互连。
上述的复合纳米纤维锂电池隔膜的制备方法,具体步骤为:
第一步,在室温下,首先将0.4g氯化铁,溶于16.6gN,N-二甲基甲酰胺与甲酰胺(质量比7∶3)中,并置于磁力搅拌器上搅拌1小时,形成离子液体溶剂体系;其次将0.6g粒径20~100nm的碳酸钙和氮化锂(质量比1∶2)纳米颗粒加入到离子液体溶剂体系,超声分散45分钟,得到离子液体的纳米颗粒悬浮液;最后将2.4g间位芳纶溶解于离子液体的纳米颗粒悬浮液中,搅拌18小时,制得间位芳纶、卤盐和纳米颗粒质量分数分别为12%、2%和3%的含纳米颗粒的间位芳纶静电纺丝溶液;
第二步,先将0.2g粒径为10~40nm的氧化钡、氧化铝和碳酸锂(质量比1∶1∶8)纳米颗粒加入到18.4g的N,N-二甲基乙酰胺、N,N-二甲基甲酰胺和二甲基亚砜(质量比1∶1∶1)的混合溶剂中,超声分散45分钟,再将1.4g聚(偏氟乙烯-三氟氯乙烯)和聚氯乙烯(质量比2∶8)溶于所述混合溶剂中,并置于磁力搅拌器上搅拌12小时,形成均相的含纳米颗粒的聚(偏氟乙烯-三氟氯乙烯)/聚氯乙烯静电纺丝溶液,其中,聚(偏氟乙烯-三氟氯乙烯)/聚氯乙烯的质量分数为14%,纳米颗粒的质量分数为1%;
第三步,先将0.6g粒径为10~40nm的氧化钡、钛酸钡和碳酸锂(质量比1∶2∶7)纳米颗粒加入到17g的N,N-二甲基乙酰胺、2-苯氧基乙醇和苯甲酸乙酯(质量比1∶2∶1)的混合溶剂中,超声分散45分钟,再将2.4g聚甲基丙烯酸甲酯和聚偏氟乙烯(质量比3∶7)溶于所述混合溶剂中,并置于磁力搅拌器上搅拌12小时,形成均相的含纳米颗粒的聚甲基丙烯酸甲酯/聚偏氟乙烯静电纺丝溶液,其中,聚甲基丙烯酸甲酯/聚偏氟乙烯的质量分数为12%,纳米颗粒的质量分数为3%;
第四步,在室温24℃及相对湿度45%的条件下,将所述含纳米颗粒的间位芳纶溶液以铝箔为接收基材进行静电纺丝,获得含纳米颗粒的间位芳纶纳米纤维膜;所述静电纺丝是指所述含纳米颗粒的间位芳纶溶液以2.0mL/h的流速输入到静电纺丝设备的喷丝头上,同时将喷丝头连接25kV的高压电源进行静电纺丝,接收装置与喷丝头之间的距离为18cm;在室温25℃及相对湿度35%的条件下,以制得的含纳米颗粒的间位芳纶纳米纤维膜为接收基材,依次将所述含纳米颗粒的聚(偏氟乙烯-三氟氯乙烯)/聚氯乙烯、间位芳纶、聚甲基丙烯酸甲酯/聚偏氟乙烯和间位芳纶溶液进行静电纺丝,在含纳米颗粒的间位芳纶纳米纤维膜上交替形成含纳米颗粒的低熔点聚合物纳米纤维膜和含纳米颗粒的间位芳纶纳米纤维膜,获得高性能的间位芳纶-聚(偏氟乙烯-三氟氯乙烯)/聚氯乙烯-间位芳纶-聚甲基丙烯酸甲酯/聚偏氟乙烯-间位芳纶复合纳米纤维膜;所述静电纺丝是指所述含纳米颗粒的聚(偏氟乙烯-三氟氯乙烯)/聚氯乙烯、间位芳纶、聚甲基丙烯酸甲酯/聚偏氟乙烯和间位芳纶溶液分别以5mL/h、0.2mL/h、2.5mL/h和0.8mL/h的流速输入到静电纺丝设备的喷丝头上,同时将喷丝头分别连接30kV、25kV、28kV和20kV的高压电源进行静电纺丝,接收装置与喷丝头之间的距离分别为30cm、10cm、20cm和25cm;所述高性能间位芳纶-聚(偏氟乙烯-三氟氯乙烯)/聚氯乙烯-间位芳纶-聚甲基丙烯酸甲酯/聚偏氟乙烯-间位芳纶复合纳米纤维锂电池隔膜中纤维表层平均孔径范围为120~400nm,闭孔温度为130℃,在250℃高温的烘箱中加热1小时后的热收缩率为1.8%,拉伸强度达到753MPa。
图1是实施例1中的高性能复合纳米纤维锂电池隔膜在250℃下加热1小时前后的光学照片,照片显示在250℃加热后1小时后,复合纳米纤维隔膜未发生明显收缩,热收缩率为1.5%,具有良好的耐热性。
图2是实施例1中的高性能复合纳米纤维锂电池隔膜在0.2C倍率下的循环充放电曲线,充放电曲线表明复合纳米纤维隔膜具有良好的循环性能,在0.2C倍率下100次循环后,电池的容量保持率是93.1%。

Claims (10)

1.一种复合纳米纤维锂电池隔膜,其特征在于,由至少一层含纳米颗粒的间位芳纶纳米纤维膜和至少一层含纳米颗粒的低熔点聚合物纳米纤维膜复合而成;所述低熔点聚合物的熔点在130~175℃;所述的含纳米颗粒的间位芳纶纳米纤维膜中的含纳米颗粒的间位芳纶纳米纤维相互交错并在交错点处粘结互连,所述的含纳米颗粒的低熔点聚合物纳米纤维膜中的含纳米颗粒的低熔点聚合物纳米纤维相互交错并在交错点处粘结互连,相邻的含纳米颗粒的纤维膜中的纳米纤维相互交错并在交错点处粘结互连。
2.权利要求1所述的复合纳米纤维锂电池隔膜的制备方法,其特征在于,具体步骤包括:用高沸点有机溶剂分别配制含纳米颗粒的间位芳纶静电纺丝溶液和含纳米颗粒的低熔点聚合物静电纺丝溶液;将含纳米颗粒的间位芳纶静电纺丝溶液进行静电纺丝,得到一层含纳米颗粒的间位芳纶纳米纤维膜;以含纳米颗粒的间位芳纶纳米纤维膜作为接收基材,将含纳米颗粒的低熔点聚合物静电纺丝溶液进行静电纺丝,在含纳米颗粒的间位芳纶纳米纤维膜上形成至少一层含纳米颗粒的低熔点聚合物纳米纤维膜,即得到复合纳米纤维锂电池隔膜;或者,以含纳米颗粒的间位芳纶纳米纤维膜作为接收基材,将含纳米颗粒的低熔点聚合物静电纺丝溶液和含纳米颗粒的间位芳纶静电纺丝溶液依次或交替进行静电纺丝,在含纳米颗粒的间位芳纶纳米纤维膜上依次或交替形成至少一层含纳米颗粒的低熔点聚合物纳米纤维膜和至少一层含纳米颗粒的间位芳纶纳米纤维膜,即得到复合纳米纤维锂电池隔膜。
3.如权利要求2所述的复合纳米纤维锂电池隔膜的制备方法,其特征在于,所述的纳米颗粒为氧化铝、氧化硅、氧化镁、氧化钛、钛酸钡、氧化锆、氧化锌、氧化钡、氮化锂、碳酸钙、碳酸锂、滑石粉和沸石中的一种或多种的组合,纳米颗粒的粒径为5~50nm。
4.如权利要求2所述的复合纳米纤维锂电池隔膜的制备方法,其特征在于,所述的低熔点聚合物为聚甲基丙烯酸甲酯、偏氟乙烯基聚合物、聚氨酯和聚氯乙烯中的一种或多种的组合。
5.如权利要求2所述的复合纳米纤维锂电池隔膜的制备方法,其特征在于,所述的含纳米颗粒的间位芳纶静电纺丝溶液的配制过程为:首先在室温下将卤盐和高沸点有机溶剂以质量比为1∶190~1∶14.8混合,配成离子液体溶剂体系;然后将纳米颗粒以质量比为1∶191~1∶15.8加入到所述离子液体溶剂体系中,超声分散15~60分钟,得到离子液体的纳米颗粒悬浮液;最后将间位芳纶以质量比为1∶24~1∶5.25溶解于所述离子液体的纳米颗粒悬浮液中,搅拌12~24小时,制得含纳米颗粒的间位芳纶静电纺丝溶液。
6.如权利要求5所述的复合纳米纤维锂电池隔膜的制备方法,其特征在于,所述的卤盐为氯化锂、氯化钙、氯化镁、氯化钠、氯化铁、溴化钠和溴化锂中的一种或多种的组合。
7.如权利要求2所述的复合纳米纤维锂电池隔膜的制备方法,其特征在于,所述的含纳米颗粒的低熔点聚合物静电纺丝溶液的配制过程为:先将纳米颗粒以质量比1∶189~1∶13加入到高沸点有机溶剂中,超声分散15~60分钟,得到含纳米颗粒的高沸点有机溶剂,再将低熔点聚合物以质量比1∶19~3∶7溶于所述含纳米颗粒的高沸点有机溶剂中,形成含纳米颗粒的低熔点聚合物静电纺丝溶液,溶液中聚合物的质量分数为5~30%,纳米颗粒的质量分数为0.5~5%。
8.如权利要求2所述的复合纳米纤维锂电池隔膜的制备方法,其特征在于,所述的高沸点有机溶剂为N-甲基吡咯烷酮、苯甲酸乙酯、硝基苯、2-苯氧基乙醇、甲酰胺、二甲基亚砜、N,N-二甲基乙酰胺和N,N-二甲基甲酰胺中的一种或多种的组合。
9.如权利要求2所述的复合纳米纤维锂电池隔膜的制备方法,其特征在于,所述的含纳米颗粒的间位芳纶静电纺丝溶液和含纳米颗粒的低熔点聚合物静电纺丝溶液的静电纺丝的具体条件为:在20~28℃,相对湿度20~70%条件下,静电纺丝溶液的流速为0.1~5mL/h,喷丝口与接收装置之间的距离为5~30cm,纺丝电压为10~30kV。
10.如权利要求2所述的复合纳米纤维锂电池隔膜的制备方法,其特征在于,所述的复合纳米纤维锂电池隔膜的表层平均孔径范围为100~400nm,闭孔温度为130~170℃,闭孔后纤维膜不收缩,在250℃高温下加热1h热收缩率小于2%,拉伸强度为100~1000MPa。
CN201410061996.7A 2014-02-24 2014-02-24 一种复合纳米纤维锂电池隔膜及其制备方法 Active CN103824988B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410061996.7A CN103824988B (zh) 2014-02-24 2014-02-24 一种复合纳米纤维锂电池隔膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410061996.7A CN103824988B (zh) 2014-02-24 2014-02-24 一种复合纳米纤维锂电池隔膜及其制备方法

Publications (2)

Publication Number Publication Date
CN103824988A true CN103824988A (zh) 2014-05-28
CN103824988B CN103824988B (zh) 2016-05-04

Family

ID=50759932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410061996.7A Active CN103824988B (zh) 2014-02-24 2014-02-24 一种复合纳米纤维锂电池隔膜及其制备方法

Country Status (1)

Country Link
CN (1) CN103824988B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979515A (zh) * 2015-07-29 2015-10-14 沧州明珠隔膜科技有限公司 一种芳纶聚合体涂覆的锂离子电池隔膜及其制备方法
CN105420928A (zh) * 2015-11-04 2016-03-23 北京国科华仪科技有限公司 一种柔性的仿贝壳结构电磁屏蔽纤维材料及其制备方法
WO2016095771A1 (zh) * 2014-12-19 2016-06-23 宁波艾特米克锂电科技有限公司 具有热闭孔功能复合纳米纤维隔膜、制备方法和储能器件
CN106170878A (zh) * 2014-02-19 2016-11-30 密执安州立大学董事会 耐受极端电池条件的来自芳族聚酰胺纳米纤维的抑制枝晶的离子导体
CN106450444A (zh) * 2016-10-11 2017-02-22 天津工业大学 一种锂硫电池电解质及其制备方法
CN106601962A (zh) * 2016-11-22 2017-04-26 常州思宇知识产权运营有限公司 一种复合型耐高温锂电池隔膜材料的制备方法
CN107134555A (zh) * 2017-03-27 2017-09-05 湖北猛狮新能源科技有限公司 一种复合耐高温隔膜
CN107177144A (zh) * 2017-06-27 2017-09-19 哈尔滨理工大学 一种三明治结构纳米纤维/聚偏氟乙烯复合介质及其制备方法
CN107742690A (zh) * 2017-10-26 2018-02-27 林高理 一种聚合物锂电池用隔膜的制备方法
CN109346654A (zh) * 2018-09-10 2019-02-15 中原工学院 一种基于氧化锆/芳纶复合纳米纤维的高温闭孔功能电池隔膜材料及其制备方法
CN109667067A (zh) * 2018-12-18 2019-04-23 中国科学院过程工程研究所 一种锆钛酸钡钙基柔性压电复合纤维薄膜及其制备方法和含该薄膜的柔性压电纳米发电机
CN110071246A (zh) * 2018-01-24 2019-07-30 通用汽车环球科技运作有限责任公司 含锂电化学电池的隔膜及其制备方法
CN110409165A (zh) * 2018-04-26 2019-11-05 北京服装学院 一种基于静电纺技术的有机-无机复合纳米纤维膜及其制备方法
CN110453372A (zh) * 2019-08-01 2019-11-15 合肥国轩高科动力能源有限公司 一种复合隔膜及其制备方法和应用
CN110649209A (zh) * 2019-09-26 2020-01-03 佛山科学技术学院 一种锂离子电池隔膜的处理方法及锂离子电池
CN111218841A (zh) * 2019-11-28 2020-06-02 陕西科技大学 一种纳米芳纶纸基材料及其制备方法和应用
CN111411450A (zh) * 2020-02-17 2020-07-14 五邑大学 一种柔性纳米蛛网结构导电聚氨酯薄膜的制备方法及应用
CN112751136A (zh) * 2019-10-31 2021-05-04 中国石油化工股份有限公司 一种纤维杂序交错的锂离子电池隔膜及其制备方法
CN113036308A (zh) * 2021-03-03 2021-06-25 南京航空航天大学 一种锂离子电池复合凝胶隔膜及其制备方法和应用
CN115275505A (zh) * 2022-05-16 2022-11-01 烟台泰和新材料股份有限公司 一种低闭孔高破膜的芳纶锂电池隔膜及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827962A (zh) * 2007-10-18 2010-09-08 帝人高科技产品株式会社 芳族聚酰胺纳米纤维及含有它的纤维结构体
US20100233523A1 (en) * 2006-08-07 2010-09-16 Seong-Mu Jo Heat resisting ultrafine fibrous separator and secondary battery using the same
CN102218871A (zh) * 2011-04-14 2011-10-19 万向电动汽车有限公司 锂离子二次电池用改性隔膜的制备方法及其产品、制备装置
CN102231431A (zh) * 2011-05-06 2011-11-02 浙江大东南集团有限公司 一种锂离子动力电池用复方纳米纤维隔膜及其制造方法
CN102629679A (zh) * 2012-04-28 2012-08-08 中国科学院理化技术研究所 具有复合结构的纳米纤维锂离子电池隔膜材料及其制备方法
CN102668173A (zh) * 2009-11-03 2012-09-12 阿莫绿色技术有限公司 具有耐热性和高强度的超细纤维多孔隔板及其制造方法以及使用所述隔板的二次电池
CN202549958U (zh) * 2011-10-31 2012-11-21 广州丰江电池新技术股份有限公司 一种双隔膜锂离子电池
CN102931370A (zh) * 2012-10-24 2013-02-13 江苏大学 锂离子动力电池有机/无机复合纳米纤维膜及其制备方法
CN103208604A (zh) * 2013-03-18 2013-07-17 厦门大学 一种具有热闭孔功能的电纺复合隔膜
CN203277533U (zh) * 2013-04-27 2013-11-06 中材科技股份有限公司 一种复合锂电池隔膜
CN203386833U (zh) * 2013-06-21 2014-01-08 东华大学 一种静电纺锂离子电池复合隔膜

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233523A1 (en) * 2006-08-07 2010-09-16 Seong-Mu Jo Heat resisting ultrafine fibrous separator and secondary battery using the same
CN101827962A (zh) * 2007-10-18 2010-09-08 帝人高科技产品株式会社 芳族聚酰胺纳米纤维及含有它的纤维结构体
CN102668173A (zh) * 2009-11-03 2012-09-12 阿莫绿色技术有限公司 具有耐热性和高强度的超细纤维多孔隔板及其制造方法以及使用所述隔板的二次电池
CN102218871A (zh) * 2011-04-14 2011-10-19 万向电动汽车有限公司 锂离子二次电池用改性隔膜的制备方法及其产品、制备装置
CN102231431A (zh) * 2011-05-06 2011-11-02 浙江大东南集团有限公司 一种锂离子动力电池用复方纳米纤维隔膜及其制造方法
CN202549958U (zh) * 2011-10-31 2012-11-21 广州丰江电池新技术股份有限公司 一种双隔膜锂离子电池
CN102629679A (zh) * 2012-04-28 2012-08-08 中国科学院理化技术研究所 具有复合结构的纳米纤维锂离子电池隔膜材料及其制备方法
CN102931370A (zh) * 2012-10-24 2013-02-13 江苏大学 锂离子动力电池有机/无机复合纳米纤维膜及其制备方法
CN103208604A (zh) * 2013-03-18 2013-07-17 厦门大学 一种具有热闭孔功能的电纺复合隔膜
CN203277533U (zh) * 2013-04-27 2013-11-06 中材科技股份有限公司 一种复合锂电池隔膜
CN203386833U (zh) * 2013-06-21 2014-01-08 东华大学 一种静电纺锂离子电池复合隔膜

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106170878A (zh) * 2014-02-19 2016-11-30 密执安州立大学董事会 耐受极端电池条件的来自芳族聚酰胺纳米纤维的抑制枝晶的离子导体
US20170062786A1 (en) * 2014-02-19 2017-03-02 The Regents Of The University Of Michigan Dendrite-suppressing ion-conductors from aramid nanofibers withstanding extreme battery conditions
US10651449B2 (en) 2014-02-19 2020-05-12 The Regents Of The University Of Michigan Dendrite-suppressing ion-conductors from aramid nanofibers withstanding extreme battery conditions
WO2016095771A1 (zh) * 2014-12-19 2016-06-23 宁波艾特米克锂电科技有限公司 具有热闭孔功能复合纳米纤维隔膜、制备方法和储能器件
CN104979515A (zh) * 2015-07-29 2015-10-14 沧州明珠隔膜科技有限公司 一种芳纶聚合体涂覆的锂离子电池隔膜及其制备方法
CN105420928A (zh) * 2015-11-04 2016-03-23 北京国科华仪科技有限公司 一种柔性的仿贝壳结构电磁屏蔽纤维材料及其制备方法
CN106450444A (zh) * 2016-10-11 2017-02-22 天津工业大学 一种锂硫电池电解质及其制备方法
CN106601962B (zh) * 2016-11-22 2019-07-26 佛山市顺德区博普丰塑料制品有限公司 一种复合型耐高温锂电池隔膜材料的制备方法
CN106601962A (zh) * 2016-11-22 2017-04-26 常州思宇知识产权运营有限公司 一种复合型耐高温锂电池隔膜材料的制备方法
CN107134555A (zh) * 2017-03-27 2017-09-05 湖北猛狮新能源科技有限公司 一种复合耐高温隔膜
CN107177144A (zh) * 2017-06-27 2017-09-19 哈尔滨理工大学 一种三明治结构纳米纤维/聚偏氟乙烯复合介质及其制备方法
CN107742690A (zh) * 2017-10-26 2018-02-27 林高理 一种聚合物锂电池用隔膜的制备方法
CN110071246B (zh) * 2018-01-24 2022-02-11 通用汽车环球科技运作有限责任公司 含锂电化学电池的隔膜及其制备方法
CN110071246A (zh) * 2018-01-24 2019-07-30 通用汽车环球科技运作有限责任公司 含锂电化学电池的隔膜及其制备方法
CN110409165A (zh) * 2018-04-26 2019-11-05 北京服装学院 一种基于静电纺技术的有机-无机复合纳米纤维膜及其制备方法
CN109346654A (zh) * 2018-09-10 2019-02-15 中原工学院 一种基于氧化锆/芳纶复合纳米纤维的高温闭孔功能电池隔膜材料及其制备方法
CN109667067A (zh) * 2018-12-18 2019-04-23 中国科学院过程工程研究所 一种锆钛酸钡钙基柔性压电复合纤维薄膜及其制备方法和含该薄膜的柔性压电纳米发电机
CN110453372A (zh) * 2019-08-01 2019-11-15 合肥国轩高科动力能源有限公司 一种复合隔膜及其制备方法和应用
CN110649209A (zh) * 2019-09-26 2020-01-03 佛山科学技术学院 一种锂离子电池隔膜的处理方法及锂离子电池
CN110649209B (zh) * 2019-09-26 2022-09-27 佛山科学技术学院 一种锂离子电池隔膜的处理方法及锂离子电池
CN112751136A (zh) * 2019-10-31 2021-05-04 中国石油化工股份有限公司 一种纤维杂序交错的锂离子电池隔膜及其制备方法
CN111218841A (zh) * 2019-11-28 2020-06-02 陕西科技大学 一种纳米芳纶纸基材料及其制备方法和应用
CN111411450A (zh) * 2020-02-17 2020-07-14 五邑大学 一种柔性纳米蛛网结构导电聚氨酯薄膜的制备方法及应用
CN111411450B (zh) * 2020-02-17 2022-06-21 五邑大学 一种柔性纳米蛛网结构导电聚氨酯薄膜的制备方法及应用
CN113036308A (zh) * 2021-03-03 2021-06-25 南京航空航天大学 一种锂离子电池复合凝胶隔膜及其制备方法和应用
CN115275505A (zh) * 2022-05-16 2022-11-01 烟台泰和新材料股份有限公司 一种低闭孔高破膜的芳纶锂电池隔膜及其制备方法

Also Published As

Publication number Publication date
CN103824988B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN103824988A (zh) 一种复合纳米纤维锂电池隔膜及其制备方法
US11411281B2 (en) Multi-layered composite functional separator for lithium-ion battery
Zhu et al. Enhanced wettability and thermal stability of a novel polyethylene terephthalate-based poly (vinylidene fluoride) nanofiber hybrid membrane for the separator of lithium-ion batteries
Huang Separator technologies for lithium-ion batteries
KR101301446B1 (ko) 이차 전지 섬유상 분리막 및 그 제조 방법
CN103147224B (zh) 聚偏氟乙烯基复合纤维膜及其制备方法与应用
CN102969471B (zh) 一种耐高温聚芳砜酰胺基锂离子电池隔膜
CN103181000B (zh) 隔膜的制造方法、由该方法制造的隔膜和具备该隔膜的电化学设备
CN104124427B (zh) 电极、包含该电极的电化学装置和制造该电极的方法
Gong et al. Electrospun coaxial PPESK/PVDF fibrous membranes with thermal shutdown property used for lithium-ion batteries
CN102306726A (zh) 一种复合改性聚烯烃锂离子电池隔膜及其制备方法
Li et al. Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability
CN105428572A (zh) 一种锂离子电池用静电纺丝复合隔膜的制备方法
CN108260363A (zh) 包括粘着层的用于电化学元件的复合隔板、和包括该复合隔板的电化学元件
Wei et al. Core–shell structured nanofibers for lithium ion battery separator with wide shutdown temperature window and stable electrochemical performance
CN103474610A (zh) 一种静电纺丝/静电喷雾制备复合锂离子电池隔膜的方法
CN106328865B (zh) 隔离膜及锂离子二次电池
WO2012167728A1 (en) Battery separator and method for preparing the same
CN103493253A (zh) 隔膜、其制造方法和使用该隔膜的电化学器件
CN104704648A (zh) 制造隔膜的方法、由此制造的隔膜及包含其的电化学装置
CN104409674A (zh) 复合隔膜材料及其制备方法与应用
CN103208604B (zh) 一种具有热闭孔功能的电纺复合隔膜
Gong et al. Thermosensitive polyacrylonitrile/polyethylene oxide/polyacrylonitrile membrane separators for prompt and safer thermal lithium-ion battery shutdown
CN103474600A (zh) 具有交联结构的聚酰亚胺纳米纤维膜的制备方法在锂电池隔膜中的应用
CN104485438B (zh) 高无机固相含量陶瓷隔膜及其在锂离子电池体系中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant