CN103596983A - 抗fgfr4抗体及使用方法 - Google Patents

抗fgfr4抗体及使用方法 Download PDF

Info

Publication number
CN103596983A
CN103596983A CN201280028220.4A CN201280028220A CN103596983A CN 103596983 A CN103596983 A CN 103596983A CN 201280028220 A CN201280028220 A CN 201280028220A CN 103596983 A CN103596983 A CN 103596983A
Authority
CN
China
Prior art keywords
antibody
fgfr4
aminoacid sequence
cell
hvr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280028220.4A
Other languages
English (en)
Other versions
CN103596983B (zh
Inventor
M.丹尼斯
L.德斯诺耶尔斯
D.弗伦奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of CN103596983A publication Critical patent/CN103596983A/zh
Application granted granted Critical
Publication of CN103596983B publication Critical patent/CN103596983B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/567Framework region [FR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Endocrinology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供了抗FGFR4抗体及其使用方法。

Description

抗FGFR4抗体及使用方法
对相关申请的交叉引用
本申请要求2011年4月7日提交的美国专利申请No.61/473,106的优先权,通过提及而将其内容收入本文。
序列表
本申请含有序列表,已经以ASCII格式经EFS-WEB提交且通过述及完整收入本文。2012年3月22日创建的所述ASCII拷贝命名为P4524R1WO.txt,并且大小为37,020个字节。
发明领域
本发明涉及抗FGFR4抗体及其使用方法。
发明背景
成纤维细胞生长因子(FGF)构成22种具有不同生物学活性的结构相关多肽的一个家族;这些信号传导分子大多数通过结合并活化它们的关联受体(FGFR;命名为FGFR1-4)(受体酪氨酸激酶的一个家族)来发挥功能(Eswarakumar et al.,2005;Ornitz and Itoh,2001)。这些受体-配体相互作用导致受体二聚化和自我磷酸化、与膜结合的和胞质的辅助蛋白质形成复合物、及启动多种信号传导级联(Powers et al.,2000)。FGFR-FGF信号传导系统通过调节诸如生长、分化、迁移、形态发生、和血管发生等细胞功能/过程在发育和组织修复中发挥重要作用。
FGFR中的改变(即过表达、突变、易位、和截短)与多种人癌症有关,包括骨髓瘤、乳腺癌、胃癌、结肠癌、膀胱癌、胰腺癌、和肝细胞癌(Bangeet al.,2002;Cappellen et al.,1999;Chesi et al.,2001;Chesi et al.,1997;Gowardhan et al.,2005;Jaakkola et al.,1993;Jang et al.,2001;Jang et al.,2000;Jeffers et al.,2002;Xiao et al.,1998)。肝细胞癌(HCC)是全球癌症相关死亡的主要起因之一,每年引起超过50万例死亡(Shariff et al.,2009)。虽然FGFR4在癌症中的作用仍然有待完全阐明,但是数项发现提示这种受体可能是HCC发生和/或发展中的一个重要角色。FGFR4是人肝细胞中存在的优势FGFR同等型(Kan et al.,1999);我们先前还已经报告了肝组织具有FGFR4的最高转录物水平(Lin et al.,2007)。除了在肝癌(以及数种其它类型的人肿瘤)过表达的FGFR4之外,还在HCC患者样品中观察到数种错义遗传改变;值得注意地,鉴定到FGFR4中高度频繁的G388R单核苷酸多态性(与头和颈癌降低的存活,以及结肠、软组织、前列腺、和乳腺癌更具攻击性的表型有关)(Ho et al.,2009)。而且,先前已经证明了FGF19(即FGFR4特异性配体)在小鼠中的异位表达促进肝细胞增殖、肝细胞发育异常、和瘤形成(Nicholeset al.,2002)。
清楚的是仍然需要具有最适于开发成治疗剂的临床属性的药剂。本文所述发明满足了此需求并提供了其它好处。
通过述及而完整收录本文中引用的所有参考文献(包括专利申请和出版物)。
发明概述
本发明提供抗FGFR4抗体及其使用方法。
一方面,本发明提供了与FGFR4结合的分离的抗体,其中该抗FGFR4抗体以≤1nM的亲和力结合人FGFR4。在一些实施方案中,该抗FGFR4抗体以≤1nM的亲和力结合人、小鼠和猕猴FGFR4。在一些实施方案中,该抗FGFR4抗体以≤0.05nM的亲和力结合人FGFR4。
在一些实施方案中,该抗FGFR4抗体对具有图12D所示氨基酸序列的小鼠C3蛋白不发生实质性结合。
在一些实施方案中,该抗FGFR4抗体结合变性的FGFR4。在一些实施方案中,该抗FGFR4抗体结合还原的、变性的FGFR4。在一些实施方案中,使用Western印迹来测定抗FGFR4抗体对FGFR4的结合。
在一些实施方案中,该抗FGFR4抗体对包含G165A突变的人FGFR4不发生实质性结合。在一些实施方案中,该抗FGFR4抗体结合与包含成熟人FGFR4氨基酸序列的氨基酸编号150至170、基本上由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成或由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成的序列具有至少70%、80%、90%、95%、98%序列同一性或相似性的多肽。在一些实施方案中,该抗FGFR4抗体结合包含成熟人FGFR4氨基酸序列的氨基酸编号150至170、基本上由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成或由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成的多肽。
在一些实施方案中,该抗FGFR4抗体是FGFR4活性的拮抗剂。在一些实施方案中,FGFR4活性为FGF诱导的细胞增殖、FGF对FGFR4的结合、暴露于FGF19的细胞中FGF19介导的对CYP7α7表达的抑制、或FGF19诱导的集落形成。在一些实施方案中,FGF1和/或FGF19对FGFR4的结合受到抑制。在一些实施方案中,抑制FGF1结合FGFR4的IC50为约0.10nM而抑制FGF19结合FGFR4的IC50为约0.10nM。
在一些实施方案中,该抗FGFR4抗体为单克隆抗体。
在一些实施方案中,该抗FGFR4抗体为人抗体、人源化抗体、或嵌合抗体。
在一些实施方案中,该抗FGFR4抗体为结合FGFR4的抗体片段。
在一些实施方案中,该抗体包含(a)HVR-H3,其包含氨基酸序列SEQ IDNO:3,(b)HVR-L3,其包含氨基酸序列SEQ ID NO:6,和(c)HVR-H2,其包含氨基酸序列SEQ ID NO:2。
在一些实施方案中,该抗体包含(a)HVR-H1,其包含氨基酸序列SEQ IDNO:1,(b)HVR-H2,其包含氨基酸序列SEQ ID NO:2,和(c)HVR-H3,其包含氨基酸序列SEQ ID NO:3。在一些实施方案中,该抗体进一步包含(a)HVR-L1,其包含氨基酸序列SEQ ID NO:4;(b)HVR-L2,其包含氨基酸序列SEQ ID NO:5;和(c)HVR-L3,其包含氨基酸序列SEQ ID NO:6。
在一些实施方案中,该抗体包含(a)HVR-L1,其包含氨基酸序列SEQ IDNO:4;(b)HVR-L2,其包含氨基酸序列SEQ ID NO:5;和(c)HVR-L3,其包含氨基酸序列SEQ ID NO:6。在一些实施方案中,该抗体进一步包含SEQ IDNO:9、10、11和/或12的轻链可变域框架序列。
在一些实施方案中,该抗体进一步包含SEQ ID NO:13、14、15和/或16的重链可变域框架序列。
在一些实施方案中,该抗体包含(a)VH序列,其与氨基酸序列SEQ IDNO:7具有至少95%序列同一性;(b)VL序列,其与氨基酸序列SEQ ID NO:8具有至少95%序列同一性;或(c)(a)中的VH序列和(b)中的VL序列。在一些实施方案中,该抗体包含VH序列SEQ ID NO:7。在一些实施方案中,该抗体包含VL序列SEQ ID NO:8。
在一些实施方案中,该抗体包含VH序列SEQ ID NO:7和VL序列SEQ IDNO:8。
在一些实施方案中,该抗体为全长IgG1抗体。
本发明还提供了分离的核酸,其编码本文所述任何抗体。
本发明还提供了宿主细胞,其包含本文所述任何核酸。
本发明还提供了生产抗体的方法,其包括培养本文所述宿主细胞,使得该抗体生成。在一些实施方案中,该方法进一步包括自该宿主细胞回收该抗体。
本发明还提供了免疫偶联物,其包含本文所述任何抗体和细胞毒剂。
本发明还提供了药物配制剂,其包含本文所述任何抗体和药学可接受载体。在一些实施方案中,该药物配制剂进一步包含其它的治疗剂。
本发明还提供了本文所述任何抗体,其用作药物。
在一些实施方案中,该抗体用于治疗癌症。
在一些实施方案中,该抗体用于抑制细胞增殖。
在一些实施方案中,该抗体用于制备药物。
在一些实施方案中,该药物用于治疗癌症。
在一些实施方案中,该药物用于抑制细胞增殖。
本发明还提供了治疗具有癌症的个体的方法,包括对个体施用有效量的本文所述任何抗体。在一些实施方案中,该方法进一步包括对个体施用其它的治疗剂。
本发明还提供了在个体中抑制细胞增殖的方法,包括对个体施用有效量的本文所述任何抗体以抑制细胞增殖。
在一些实施方案中,该癌症为乳腺癌、肺癌、胰腺癌、脑癌、肾癌、卵巢癌、胃癌、白血病、子宫内膜癌、结肠癌、前列腺癌、垂体癌、乳房纤维腺瘤、头和颈癌、软组织癌、成神经细胞瘤、黑素瘤、子宫内膜癌、睾丸癌、胆管癌、胆囊癌和/或肝癌。
在某些实施方案中,该癌展示FGFR4表达(诸如过表达)、扩增、或活化。在某些实施方案中,该癌展示FGFR4扩增。
附图简述
图1:由FGF19介导的肝肿瘤发生需要FGFR4。A,自10月龄FGF19-TG:FGFR4-WT小鼠的肝表面突出的多个、大的、隆起的肿瘤(箭头)(左边小图)。来自10月龄FGF19-TG:FGFR4-KO小鼠的肝(右边小图)。B,与FGFR4-KO或FGFR4-WT小鼠交配的雌性(左边小图)和雄性(右边小图)FGF19-TG或野生型小鼠中的BrdU掺入。C,4月龄用DEN处理的FGF19-TG:FGFR4-WT小鼠的肝表面上的多个、大的、隆起的肿瘤(箭头)。D,用DEN处理的雄性和雌性FGF19-TG小鼠中肝肿瘤的流行性,通过肉眼和组织学检查测定。E,来自用DEN处理的FGF19-TG或野生型雌性(左边小图)和雄性(右边小图)小鼠的肝重。星号(*)指示自7月时间点无法测量用DEN处理的雄性FGF19-TG小鼠的肝重,因为无一存活超过6月龄。F,用DEN处理的FGF19-TG或野生型雌性(左边小图)和雄性(右边小图)FGFR4-KO小鼠的肝重。
图2:LD1结合FGFR4。A,LD1结合人(h)、小鼠(m)、和猕猴(c)FGFR4,但不结合hFGFR1、hFGFR2、或hFGFR3。通过固相结合测定法测定LD1对固定化FGFR Fc嵌合蛋白的结合。B,LD1结合小鼠、猕猴、和人FGFR4的亲和力,通过表面等离振子共振测定。C,LD1对稳定转染HEK293细胞的细胞表面上表达的hFGFR4的结合,通过FACS测定(RFU=相对荧光单位)。D,LD1对固定化的携带点突变的hFGFR4-Flag嵌合蛋白的结合,通过固相结合测定法测量。E,LD1对携带点突变的hFGFR4-Flag嵌合蛋白的结合,通过Western印迹评估。将突变蛋白电泳,并使用LD1、抗FGFR4(8G11)、和抗Flag抗体序贯进行免疫印迹。F,二聚体模型,显示G165(黑色)在结合至FGF19(灰色)的FGFR4(黑色和白色)上的位置。
图3:LD1抑制FGFR4活性。A,LD1抑制FGFR4结合FGF1和FGF19,通过固相结合测定法测定。B,LD1抑制稳定表达FGFR4/R1的BaF3细胞由FGF1刺激的增殖。C,LD1抑制稳定表达FGFR4的L6细胞中的FGFR4信号传导。D,肝肿瘤细胞系的一个子集中FGFR4蛋白质的细胞表面表达,使用LD1通过FACS分析测定。
图4:LD1在肝癌细胞系中抑制FGFR4生物学活性。A,LD1在HEP3B细胞中抑制FGFR4信号传导,通过Western印迹评估。B,LD1抑制HEP3B细胞中受FGFR4调节的CYP7α1表达。CYP7α1水平表述为相对于未处理细胞中的水平的倍数表达。C,LD1抑制一组肝癌细胞系中受FGFR4调节的c-Fos表达。结果表述为相对于未处理细胞中的c-Fos水平的倍数表达。D,用FGFR4shRNA多西环素诱导型载体稳定转染的JHH5细胞中通过阻抑FGFR4表达来抑制集落形成。E,LD1抑制HCC细胞系集落形成。F,LD1抑制的肝癌细胞系集落形成的计数。数值表述为不添加LD1的情况下计数的集落数目的百分比。
图5:LD1的体内功效。A,LD1抑制小鼠肝中受FGF19调节的c-Fos表达。结果表述为相对于未处理小鼠的肝中的c-Fos水平的倍数表达。B,LD1(30mg/kg;每周两次)在体内抑制HUH7异种移植物肿瘤生长。C,LD1对来自图5B的HUH7异种移植物肿瘤中FGFR4、CYP7α1、c-Fos、和egr-1的mRNA表达的影响。D,自用对照抗体处理的用DEN加速的FGF19-TG:FGFR4-WT小鼠的肝表面突出的多个、大的、隆起的肿瘤(箭头)(上部小图)。用LD1处理的用DEN加速的FGF19-TG:FGFR4-WT小鼠的肝(下部小图)。E,用对照抗体、LD1、或1A6(抗FGF19抗体)处理的用DEN加速的FGF19-TG:FGFR4-WT小鼠的肝重。
图6:FGFR4表达在癌症中失调。A,线-框图(whisker-box plot)显示人肿瘤和正常组织中的FGFR4表达,通过BioExpress数据库的mRNA分析测定。中心线指示中值;框代表第一和第三个四分位数之间的四分位间范围。“线”自四分位间延伸至极值的位置。B,乳腺(100倍放大率)和胰腺(100倍放大率)腺癌和肝细胞癌(200倍放大率和400倍放大率)的样品中的FGFR4免疫染色。C,一组人正常肝和肝肿瘤中的FGFR4mRNA表达,通过qRT-PCR测定。每份样品的数值表述为相对于样品N1中观察到的水平的倍数表达。
图7:肝癌细胞系中的FGFR表达。A,一组肝肿瘤细胞系中的FGFR4mRNA表达,通过qRT-PCR测定。数值表述为相对于JHH4细胞系中的FGFR1水平的倍数表达。B,与图7A中同一组细胞系中的FGFR4蛋白质表达,通过Western印迹测定。
图8:LD1在HUH7细胞中抑制FGFR4生物学活性。LD1在HUH7细胞中抑制受FGFR4调节的CYP7α1阻抑。CYP7α1水平以相对于未处理细胞中的水平的倍数表达来表述。
图9:LD1的体内功效。LD1(30mg/kg)在体内抑制HUH7异种移植物肿瘤生长。以两周一次模态评估了LD1的抗肿瘤功效。
图10:抗FGFR4的小鼠和人源化变体的可变域序列。将小鼠LD1和人源化变体hLD1.vB和hLD1.v22的氨基酸序列与曲妥单抗中使用的(A)人卡帕I(huKI)和(B)人VH亚组III(huIII)可变域框架比对。以虚线框突显差异,并依照Kabat对位置编号。基于序列、结构和接触CDR定义的组合(MacCallumRM et al.,J of Molec Biol(1996);262:732-45)选择自小鼠LD1嫁接入人可变卡帕I和亚组III共有框架的高变区,并以框标示。人源化期间改变轻链中的三个微调(vernier)位置以恢复亲和力;预期这些位置不是表面暴露的。
图11:抗FGFR4抗体变体的药动学和分布。(A)使用FGFR4ELISA比较chLD1和hLD1.vB对FGFR4的结合。(B)CRL nu/nu小鼠中HUH7人肝细胞癌异种移植物模型中chLD1、hLD1.vB和媒介的16天肿瘤体积的比较。每周两次以30mg/kg施用抗体(每组10只小鼠)。只有chLD1相对于PBS对照有效降低肿瘤生长(p值=0.014),而hLD1.vB并非显著有效(p值=0.486)。(C)药动学,给chLD1和hLD1.vBNCR裸小鼠IV服用1或20mg/kg,并使用FGFR4ELISA分析样品。使用IgG ELISA获得相似结果(未显示)。(D)NCR裸小鼠中125I-chLD1和125I-hLD1.vB的组织分布。给小鼠服用125I-chLD1或125I-hLD1.vB任一,并在给药后2小时测定每克组织注射剂量百分比(%ID/g),如方法中所述。
图12:hLD1.vB和小鼠C3d之间的相互作用的鉴定。(A)在PBS/BSA或NCR裸小鼠、大鼠、人和猕猴血浆中温育48小时后chLD1(阴影线柱)和hLD1.vB(白色柱)的检测。使用FGFR4ELISA测定百分比回收。(B)125I-chLD1(实线)和125I-hLD1.vB(虚线)的血浆结合分析。迹线偏置(off-set);点指示150kDa峰的位置。将抗体在小鼠血浆中温育0和48小鼠,接着使用大小排阻HPLC进行分析。对于PBS/BSA、人血浆或猕猴血浆中的温育,见图15。所有温育在与IgG对应的预期150kDa处产生峰。在含有hLD1.vB的小鼠血浆样品中只观察到更高分子量峰。初始时间点揭示大约270kDa和大约550kDa处另外的峰,而在48小时,只观察到270kDa峰。于pH4温育hLD1.vB/小鼠血浆时未观察到高分子量峰,指示这些高分子量峰的存在是pH依赖性的(图15)。(C)小鼠血浆的免疫沉淀。将chLD1和hLD1.vB在小鼠血浆中于37℃温育24小时,并通过大小排阻HPLC进行分析。然后将蛋白G珠添加至级分,接着进行SDS-PAGE分析。在与hLD1.vB/小鼠血浆样品(道3)中存在的270kDa峰对应的级分中检测到大约37kDa处的条带,但是来自猕猴或人血浆或PBS/BSA的样品中不然(图15)。在单独的小鼠血浆(道4)或与chLD1一起温育的小鼠血浆(道2)中未观察到此条带。道1运行蛋白质分子量标志物。(D)自hLD1.vB免疫沉淀获得的小鼠C3的MS/MS序列覆盖。显示了小鼠C3的序列(SEQ ID NO:38),并以下划线标示编码C3d的区域。鉴定的肽如下:
DVPAADLSDQVPDTDSETRIILQGSPVVQMAEDAVDGER(SEQ ID NO:17)
RQEALELIKKGYTQQLAFK(SEQ ID NO:18)
AAFNNRPPSTWLTAYVVK(SEQ ID NO:19)
AANLIAIDSHVLCGAVK(SEQ ID NO:20)
QKPDGVFQEDGPVIHQEMIGGFR(SEQ ID NO:21)
EADVSLTAFVLIALQEARDICEGQVNSLPGSINKAGEYIEASYMNLQRPYTVAIAGYALALMNK(SEQ ID NO:22)
WEEPDQQLYNVEATSY(SEQ ID NO:23)
YYGGGYGSTQATFMVFQALAQYQTDVPDHK(SEQ ID NO:24)
GTLSVVAVYHAK(SEQ ID NO:25)
DLELLASGVDR(SEQ ID NO:26)
NTLIIYLEK(SEQ ID NO:27)。
图13:亲和力成熟的抗FGFR4变体缺乏C3d结合。(A)FGFR4结合的检测,将chLD1、hLD1.vB和hLD1.v22在NCR裸、C3野生型(wt)和C3ko小鼠血清中温育16小时,之后使用FGFR4ELISA进行评估。将样品针对在PBS/0.5%BSA中温育的相同样品标准化。(B)hLD1.v22缺乏小鼠C3d免疫沉淀。通过SDS-PAGE分析使用chLD1(道2)、hLD1.vB(道3)和hLD1.v22(道4)来自NCR裸小鼠血浆的免疫沉淀。只在hLD1.vB/小鼠血浆样品中检测到~37kDa条带。道1运行蛋白质分子量标志物。
图14:C3d结合的丧失恢复药动学和功效。(A)C3wt和C3ko小鼠中chLD1和hLD1.vB的药动学分析。以20mg/kg IV服用抗体;使用FGFR4ELISA监测它们在血液中的浓度。C3ko小鼠中hLD1.vB的清除与C3ko和C3wt小鼠二者中的chLD1的清除相似。(B)NCR裸小鼠中chLD1hLD1.vB和hLD1.v22的药动学分析。以20mg/kg IV服用抗体;使用FGFR4ELISA监测它们在血液中的浓度。hLD1.v22的清除与chLD1的清除相似。(C)CRL nu/nu小鼠中HUH7人HCC异种移植物模型中chLD1hLD1.vB和hLD1.v22的比较。每周一次以30mg/kg服用抗体(每组10只小鼠),并监测肿瘤体积4周。第21天,chLD1和hLD1.v22(分别为p值=7x10-7和3x10-5)相对于PBS对照(空心方形)有效降低肿瘤生长,而hLD1.vB只是略微有效(p值=0.011)。
图15:来自体外(A-B)和体内研究(C)样品的血浆中放射性标记的chLD1和hLD1.vB的大小排阻HPLC分析。将125I-hLD1.vB(A)和125I-chLD1(B)添加至PBS/BSA或小鼠、人和猕猴血浆,并在0或48小时通过大小排阻HPLC进行分析。所有迹线揭示IgG预期150kDa处的峰(右边的峰)。只在含有hLD1.vB的初始小鼠血浆样品中观察到大约270kDa(中间的峰)和大约550kDa(左边的峰)处更高分子量的峰;在48小时,只观察到另外的270kDa峰。对于pH4.0的小鼠血浆中的hLD1.vB未观察到这些高分子量峰,指示高分子量峰的生成是pH依赖性的。在猕猴或人血浆中或在任何添加chLD1的血浆中未检测到高分子量峰;(C)体内小鼠血浆样品。给小鼠服用~0.1mg/kg抗体,比活性chLD1为12.52μCi/μg,hLD1.vB为9.99μCi/ug。在0.25、2、5、24、72和120小时收集血清样品。所有迹线揭示峰IgG预期150kDa处的峰(右边的峰)。只在hLD1.vB血清样品中观察到~270kDa(中间的峰)和~550kDa(左边的峰)处更高分子量的峰。对chLD1未观察到高分子量峰。
图16:免疫沉淀和SDS-PAGE分析。将抗体在血浆中于37℃温育24小时,然后通过大小排阻HPLC进行分级。将蛋白G珠添加至含有高分子量峰的大小排阻HPLC级分。通过SDS-PAGE分析下拉样品(pull-down sample)。(A)体外大鼠血浆;(B)体外猕猴血浆;(C)体外人血浆。在与hLD1.vB一起温育的大鼠样品中检测到~37kDa蛋白质,但是在猕猴和人样品中不然(它们各自凝胶的道4)。在任何空白血浆中(每块凝胶的道2)或在chLD1样品中(每块凝胶的道3)没有观察到~37kDa蛋白质的条带。道1运行蛋白质分子量标志物。(D)体内小鼠血浆。如“方法”中所述给小鼠服用hLD1.vB或chLD1。然后将蛋白G珠添加至自给药时间点后2小时收集的血清样品并通过SDS-PAGE进行分析。在hLD1.vB(道3)中观察到~37kDa的条带,但是chLD1血清样品(道2)不然。道1运行蛋白质分子量标志物。
图17:添加至C3wt血清、C3ko小鼠血清、和PBS/BSA的chLD1和hLD1.vB的ELISA检测。将抗体在血清或PBS/BSA中温育过夜,然后通过ELISA进行分析。相对于PBS/BSA,在C3ko小鼠血清完全回收hLD1.vB,但是C3wt小鼠血清不然。自所有基质完全回收chLD1。
图18:显示GenBank登录号AAB25788的例示性人FGFR4氨基酸序列。
发明详述
I.定义
出于本文中的目的,“受体人框架”指包含自人免疫球蛋白框架或如下文定义的人共有框架衍生的轻链可变域(VL)框架或重链可变域(VH)框架的氨基酸序列的框架。自人免疫球蛋白框架或人共有框架“衍生”的受体人框架可以包含其相同的氨基酸序列,或者它可以含有氨基酸序列变化。在一些实施方案中,氨基酸变化的数目是10或更少、9或更少、8或更少、7或更少、6或更少、5或更少、4或更少、3或更少、或2或更少。在一些实施方案中,VL受体人框架与VL人免疫球蛋白框架序列或人共有框架序列在序列上相同。
“亲和力”指分子(例如抗体)的单一结合位点与其结合配偶体(例如抗原)之间全部非共价相互作用总和的强度。除非另有指示,如本文中使用的,“结合亲和力”指反映结合对的成员(例如抗体和抗原)之间1:1相互作用的内在结合亲和力。分子X对其配偶体Y的亲和力通常可以用解离常数(Kd)来表述。亲和力可以通过本领域知道的常用方法来测量,包括本文中所描述的方法。下文描述了用于测量结合亲和力的具体的说明性和例示性的实施方案。
“亲和力成熟的”抗体指在一个或多个高变区(HVR)中具有一处或多处改变的抗体,与不拥有此类改变的亲本抗体相比,此类改变导致该抗体对抗原的亲和力改善。
抗血管发生剂指阻断或在某种程度上干扰血管发育的化合物。抗血管发生因子可以是例如结合涉及促进血管发生的生长因子或生长因子受体的小分子或抗体。在一个实施方案中,抗血管发生剂是结合血管内皮生长因子(VEGF)的抗体,诸如贝伐单抗
Figure BDA0000432912460000101
术语“抗FGFR4抗体”和“结合FGFR4的抗体”指能够以足够亲和力结合FGFR4,使得该抗体可作为诊断剂和/或治疗剂用于靶向FGFR4的抗体。在一个实施方案中,根据例如通过放射免疫测定法(RIA)的测量,抗FGFR4抗体结合无关的、非FGFR4的蛋白质的程度小于该抗体对FGFR4的结合的约10%。在某些实施方案中,结合FGFR4的抗体具有≤1μM、≤100nM、≤10nM、≤1nM、≤0.1nM、≤0.01nM、或≤0.001nM(例如10-8M或更少,例如10-8M到10-13M,例如10-9M到10-13M)的解离常数(Kd)。在某些实施方案中,抗FGFR4抗体结合在来自不同物种的FGFR4中保守的FGFR4表位。
本文中的术语“抗体”以最广义使用,并且涵盖各种抗体结构,包括但不限于单克隆抗体、多克隆抗体、多特异性抗体(例如双特异性抗体)、和抗体片段,只要它们展现出期望的抗原结合活性。
“抗体片段”指与完整抗体不同的分子,其包含完整抗体的一部分且结合完整抗体结合的抗原。抗体片段的例子包括但不限于Fv、Fab、Fab’、Fab’-SH、F(ab’)2;双抗体;线性抗体;单链抗体分子(例如scFv);和由抗体片段形成的多特异性抗体。
与参照抗体“结合相同表位的抗体”指在竞争测定法中将参照抗体对其抗原的结合阻断50%或更多的抗体,且相反,参照抗体在竞争测定法中将该抗体对其抗原的结合阻断50%或更多。本文中提供了例示性的竞争测定法。
在用于本文时,术语“FGFR4”指来自任何脊椎动物来源,包括哺乳动物诸如灵长类(例如人)和啮齿类(例如小鼠和大鼠)的任何天然FGFR4,除非另有说明。该术语涵盖“全长”,未加工的FGFR4以及FGFR4因细胞中的加工所致的任何形式。该术语还涵盖FGFR4的天然存在变体,例如剪接变体或等位变体。一种例示性人FGFR4的氨基酸序列显示于图18。
“FGFR4活化”指FGFR4受体的活化或磷酸化。一般而言,FGFR4活化导致信号转导(例如由FGFR4受体的细胞内激酶结构域引起的,磷酸化FGFR4或底物多肽中的酪氨酸残基)。FGFR4活化可以由FGFR4配体(Gas6)结合感兴趣FGFR4受体来介导。Gas6对FGFR4的结合可活化FGFR4的激酶结构域并由此导致FGFR4中酪氨酸残基的磷酸化和/或其它的底物多肽中酪氨酸残基的磷酸化。
术语“癌症”和“癌性”指向或描述哺乳动物中特征通常为细胞生长/增殖不受调控的生理疾患。癌症的例子包括但不限于癌、淋巴瘤(例如何杰金氏(Hodgkin)淋巴瘤和非何杰金氏淋巴瘤)、母细胞瘤、肉瘤和白血病。此类癌症的更具体例子包括鳞状细胞癌、小细胞肺癌、非小细胞肺癌、肺的腺癌、肺的鳞癌、腹膜癌、肝细胞癌、胃肠癌、胰腺癌、胶质瘤、宫颈癌、卵巢癌、肝癌(liver cancer)、膀胱癌、肝瘤(hepatoma)、乳腺癌、结肠癌、结肠直肠癌、子宫内膜癌或子宫癌、唾液腺癌、肾癌、前列腺癌、外阴癌、甲状腺癌、肝癌(hepatic carcinoma)、白血病和其它淋巴增殖性病症、及各种类型的头和颈癌。
术语“细胞增殖性病症”和“增殖性病症”指与一定程度的异常细胞增殖有关的病症。在一个实施方案中,细胞增殖性病症指癌症。
“化疗剂”指可用于治疗癌症的化学化合物。化疗剂的实例包括烷化剂类(alkylating agents),诸如塞替派(thiotepa)和环磷酰胺(cyclophosphamide)
Figure BDA0000432912460000121
磺酸烷基酯类(alkyl sulfonates),诸如白消安(busulfan)、英丙舒凡(improsulfan)和哌泊舒凡(piposulfan);氮丙啶类(aziridines),诸如苯佐替派(benzodepa)、卡波醌(carboquone)、美妥替派(meturedepa)和乌瑞替派(uredepa);乙撑亚胺类(ethylenimines)和甲基蜜胺类(methylamelamines),包括六甲蜜胺(altretamine)、三乙撑蜜胺(triethylenemelamine)、三乙撑磷酰胺(triethylenephosphoramide)、三乙撑硫代磷酰胺(triethylenethiophosphoramide)和三羟甲蜜胺(trimethylolomelamine);番荔枝内酯类(acetogenin)(尤其是布拉他辛(bullatacin)和布拉他辛酮(bullatacinone));δ-9-四氢大麻酚(tetrahydrocannabinol)(屈大麻酚(dronabinol),
Figure BDA0000432912460000122
);β-拉帕醌(lapachone);拉帕醇(lapachol);秋水仙素类(colchicines);白桦脂酸(betulinicacid);喜树碱(camptothecin)(包括合成类似物托泊替康(topotecan)
Figure BDA0000432912460000123
CPT-11(伊立替康(irinotecan),
Figure BDA0000432912460000124
)、乙酰喜树碱、东莨菪亭(scopoletin)和9-氨基喜树碱);苔藓抑素(bryostatin);callystatin;CC-1065(包括其阿多来新(adozelesin)、卡折来新(carzelesin)和比折来新(bizelesin)合成类似物);鬼臼毒素(podophyllotoxin);鬼臼酸(podophyllinic acid);替尼泊苷(teniposide);隐藻素类(cryptophycins)(特别是隐藻素1和隐藻素8);多拉司他汀(dolastatin);duocarmycin(包括合成类似物,KW-2189和CB1-TM1);艾榴塞洛素(eleutherobin);pancratistatin;sarcodictyin;海绵抑素(spongistatin);氮芥类(nitrogen mustards),诸如苯丁酸氮芥(chlorambucil)、萘氮芥(chlornaphazine)、胆磷酰胺(cholophosphamide)、雌莫司汀(estramustine)、异环磷酰胺(ifosfamide)、双氯乙基甲胺(mechlorethamine)、盐酸氧氮芥(mechlorethamine oxide hydrochloride)、美法仑(melphalan)、新氮芥(novembichin)、苯芥胆甾醇(phenesterine)、泼尼莫司汀(prednimustine)、曲磷胺(trofosfamide)、尿嘧啶氮芥(uracil mustard);亚硝脲类(nitrosoureas),诸如卡莫司汀(carmustine)、氯脲菌素(chlorozotocin)、福莫司汀(fotemustine)、洛莫司汀(lomustine)、尼莫司汀(nimustine)和雷莫司汀(ranimustine);抗生素类,诸如烯二炔类抗生素(enediyne)(如加利车霉素(calicheamicin),尤其是加利车霉素γ1I和加利车霉素ωI1(参见例如Nicolaou等人,Angew.Chem Intl.Ed.Engl.,33:183-186(1994));CDP323,一种口服α-4整联蛋白抑制剂;蒽环类抗生素(dynemicin),包括dynemicin A;埃斯波霉素(esperamicin);以及新制癌素(neocarzinostatin)发色团和相关色蛋白烯二炔类抗生素发色团)、阿克拉霉素(aclacinomycin)、放线菌素(actinomycin)、氨茴霉素(anthramycin)、偶氮丝氨酸(azaserine)、博来霉素(bleomycin)、放线菌素C(cactinomycin)、carabicin、洋红霉素(carminomycin)、嗜癌霉素(carzinophilin)、色霉素(chromomycin)、放线菌素D(dactinomycin)、柔红霉素(daunorubicin)、地托比星(detorubicin)、6-二氮-5-氧-L-正亮氨酸、多柔比星(doxorubicin)(包括
Figure BDA0000432912460000131
吗啉代多柔比星、氰基吗啉代多柔比星、2-吡咯代多柔比星、盐酸多柔比星脂质体注射剂
Figure BDA0000432912460000132
脂质体多柔比星TLC D-99PEG化脂质体多柔比星和脱氧多柔比星)、表柔比星(epirubicin)、依索比星(esorubicin)、伊达比星(idarubicin)、麻西罗霉素(marcellomycin)、丝裂霉素类(mitomycins)诸如丝裂霉素C、霉酚酸(mycophenolic acid)、诺拉霉素(nogalamycin)、橄榄霉素(olivomycin)、培洛霉素(peplomycin)、泊非霉素(potfiromycin)、嘌呤霉素(puromycin)、三铁阿霉素(quelamycin)、罗多比星(rodorubicin)、链黑菌素(streptonigrin)、链佐星(streptozocin)、杀结核菌素(tubercidin)、乌苯美司(ubenimex)、净司他丁(zinostatin)、佐柔比星(zorubicin);抗代谢物类,诸如甲氨蝶呤、吉西他滨(gemcitabine)
Figure BDA0000432912460000135
替加氟(tegafur)
Figure BDA0000432912460000136
卡培他滨(capecitabine)
Figure BDA0000432912460000137
埃坡霉素(epothilone)和5-氟尿嘧啶(5-FU);叶酸类似物,诸如二甲叶酸(denopterin)、甲氨蝶呤、蝶酰三谷氨酸(pteropterin)、三甲曲沙(trimetrexate);嘌呤类似物,诸如氟达拉滨(fludarabine)、6-巯基嘌呤(mercaptopurine)、硫咪嘌呤(thiamiprine)、硫鸟嘌呤(thioguanine);嘧啶类似物,诸如安西他滨(ancitabine)、阿扎胞苷(azacitidine)、6-氮尿苷、卡莫氟(carmofur)、阿糖胞苷(cytarabine)、双脱氧尿苷(dideoxyuridine)、去氧氟尿苷(doxifluridine)、依诺他滨(enocitabine)、氟尿苷(floxuridine);雄激素类,诸如卡鲁睾酮(calusterone)、丙酸屈他雄酮(dromostanolone propionate)、表硫雄醇(epitiostanol)、美雄烷(mepitiostane)、睾内酯(testolactone);抗肾上腺类,诸如氨鲁米特(aminoglutethimide)、米托坦(mitotane)、曲洛司坦(trilostane);叶酸补充剂,诸如亚叶酸(folinic acid);醋葡醛内酯(aceglatone);醛磷酰胺糖苷(aldophosphamide glycoside);氨基乙酰丙酸(aminolevulinic acid);恩尿嘧啶(eniluracil);安吖啶(amsacrine);bestrabucil;比生群(bisantrene);依达曲沙(edatraxate);地磷酰胺(defosfamide);地美可辛(demecolcine);地吖醌(diaziquone);elfornithine;依利醋铵(elliptinium acetate);epothilone;依托格鲁(etoglucid);硝酸镓;羟脲(hydroxyurea);香菇多糖(lentinan);氯尼达明(lonidamine);美登木素生物碱类(maytansinoids),诸如美登素(maytansine)和安丝菌素(ansamitocin);米托胍腙(mitoguazone);米托蒽醌(mitoxantrone);莫哌达醇(mopidamol);二胺硝吖啶(nitracrine);喷司他丁(pentostatin);蛋氨氮芥(phenamet);吡柔比星(pirarubicin);洛索蒽醌(losoxantrone);2-乙基酰肼(ethylhydrazide);丙卡巴肼(procarbazine);
Figure BDA0000432912460000141
多糖复合物(JHS NaturalProducts,Eugene,OR);雷佐生(razoxane);根霉素(rhizoxin);西索菲兰(sizofiran);螺旋锗(spirogermanium);细交链孢菌酮酸(tenuazonic acid);三亚胺醌(triaziquone);2,2',2''-三氯三乙胺;单端孢菌素类(trichothecenes)(尤其是T-2毒素、疣孢菌素(verrucarin)A、杆孢菌素(roridin)A和蛇行菌素(anguidin));乌拉坦(urethan);长春地辛(vindesine)(
Figure BDA0000432912460000142
);达卡巴嗪(dacarbazine);甘露醇氮芥(mannomustine);二溴甘露醇(mitobronitol);二溴卫矛醇(mitolactol);哌泊溴烷(pipobroman);gacytosine;阿糖胞苷(arabinoside)(“Ara-C”);塞替派(thiotepa);类紫杉醇(taxoids),例如帕利他塞(paclitaxel)
Figure BDA0000432912460000144
清蛋白改造的纳米颗粒剂型帕利他塞(ABRAXANETM)和多西他塞(doxetaxel)
Figure BDA0000432912460000145
苯丁酸氮芥(chlorambucil);6-硫鸟嘌呤(thioguanine);巯基嘌呤(mercaptopurine);甲氨蝶呤(methotrexate);铂类似物,诸如顺铂(cisplatin)、奥沙利铂(oxaliplatin)(例如
Figure BDA0000432912460000146
)和卡铂(carboplatin);长春药类(vincas),其阻止微管蛋白聚合形成微管,包括长春碱(vinblastine)
Figure BDA0000432912460000147
长春新碱(vincristine)长春地辛(vindesine)
Figure BDA0000432912460000149
和长春瑞滨(vinorelbine)
Figure BDA00004329124600001410
依托泊苷(etoposide)(VP-16);异环磷酰胺(ifosfamide);米托蒽醌(mitoxantrone);亚叶酸(leucovorin);能灭瘤(novantrone);依达曲沙(edatrexate);道诺霉素(daunomycin);氨基蝶呤(aminopterin);伊本膦酸盐(ibandronate);拓扑异构酶抑制剂RFS2000;二氟甲基鸟氨酸(DMFO);类维A酸(retinoids),诸如维A酸(retinoic acid),包括贝沙罗汀(bexarotene)
Figure BDA00004329124600001411
二膦酸盐类(bisphosphonates),诸如氯膦酸盐(clodronate)(例如
Figure BDA00004329124600001412
Figure BDA00004329124600001413
)、依替膦酸钠(etidronate)NE-58095、唑来膦酸/唑来膦酸盐(zoledronicacid/zoledronate)阿伦膦酸盐(alendronate)
Figure BDA0000432912460000152
帕米膦酸盐(pamidronate)
Figure BDA0000432912460000153
替鲁膦酸盐(tiludronate)
Figure BDA0000432912460000154
或利塞膦酸盐(risedronate)
Figure BDA0000432912460000155
以及曲沙他滨(troxacitabine)(1,3-二氧戊环核苷胞嘧啶类似物);反义寡核苷酸,特别是抑制牵涉异常细胞增殖的信号途经中的基因表达的反义寡核苷酸,诸如例如PKC-α、Raf、H-Ras和表皮生长因子受体(EGF-R);疫苗,诸如
Figure BDA0000432912460000156
疫苗和基因疗法疫苗,例如
Figure BDA0000432912460000157
疫苗、
Figure BDA0000432912460000158
疫苗和
Figure BDA0000432912460000159
疫苗;拓扑异构酶1抑制剂(例如);rmRH(例如
Figure BDA00004329124600001511
);BAY439006(sorafenib;Bayer);SU-11248(sunitinib,
Figure BDA00004329124600001512
Pfizer);哌立福辛(perifosine),COX-2抑制剂(如塞来考昔(celecoxib)或艾托考昔(etoricoxib)),蛋白体抑制剂(例如PS341);bortezomib
Figure BDA00004329124600001513
CCI-779;tipifarnib(R11577);orafenib,ABT510;Bcl-2抑制剂,诸如oblimersensodium
Figure BDA00004329124600001514
pixantrone;EGFR抑制剂(见下文定义);酪氨酸激酶抑制剂(见下文定义);丝氨酸-苏氨酸激酶抑制剂,诸如雷帕霉素(rapamycin)(sirolimus,
Figure BDA00004329124600001515
);法尼基转移酶抑制剂,诸如lonafarnib(SCH6636,SARASARTM);及任何上述各项的药学可接受盐、酸或衍生物;以及两种或更多种上述各项的组合,诸如CHOP(环磷酰胺、多柔比星、长春新碱和泼尼松龙联合疗法的缩写)和FOLFOX(奥沙利铂(ELOXATINTM)联合5-FU和亚叶酸的治疗方案的缩写)。
如本文中定义的化疗剂包括起调节、降低、阻断或抑制可促进癌生长的激素效果作用的“抗激素剂”或“内分泌治疗剂”类。它们自身可以是激素,包括但不限于:具有混合的激动剂/拮抗剂特性的抗雌激素类,包括他莫昔芬(tamoxifen)(NOLVADEX)、4-羟基他莫昔芬、托瑞米芬(toremifene)
Figure BDA00004329124600001516
艾多昔芬(idoxifene)、屈洛昔芬(droloxifene)、雷洛昔芬(raloxifene)
Figure BDA00004329124600001517
曲沃昔芬(trioxifene)、那洛昔芬(keoxifene),和选择性雌激素受体调节剂类(SERM),诸如SERM3;没有激动剂特性的纯的抗雌激素类,诸如氟维司群(fulvestrant)
Figure BDA00004329124600001518
和EM800(此类药剂可阻断雌激素受体(ER)二聚化、抑制DNA结合、提高ER周转、和/或遏制ER水平);芳香酶抑制剂类,包括类固醇芳香酶抑制剂类,诸如福美坦(formestane)和依西美坦(exemestane)
Figure BDA00004329124600001519
和非类固醇芳香酶抑制剂类,诸如阿那曲唑(anastrozole)
Figure BDA00004329124600001520
来曲唑(letrozole)
Figure BDA00004329124600001521
和氨鲁米特(aminoglutethimide),和其它芳香酶抑制剂类,包括伏氯唑(vorozole)
Figure BDA0000432912460000161
醋酸甲地孕酮(megestrol acetate)
Figure BDA0000432912460000162
法倔唑(fadrozole)和4(5)-咪唑;促黄体生成激素释放激素激动剂类,包括亮丙瑞林(leuprolide)(
Figure BDA0000432912460000164
)、戈舍瑞林(goserelin)、布舍瑞林(buserelin)和曲普瑞林(triptorelin);性类固醇类(sex steroids),包括妊娠素类(progestine),诸如醋酸甲地孕酮和醋酸甲羟孕酮(medroxyprogesteroneacetate),雌激素类,诸如二乙基己烯雌酚(diethylstilbestrol)和普雷马林(premarin),和雄激素类/类视黄酸类,诸如氟甲睾酮(fluoxymesterone)、所有反式视黄酸(transretionic acid)和芬维A胺(fenretinide);奥那司酮(onapristone);抗孕酮类;雌激素受体下调剂类(ERD);抗雄激素类,诸如氟他米特(flutamide)、尼鲁米特(nilutamide)和比卡米特(bicalutamide);及任何上述物质的药剂学可接受的盐、酸或衍生物;以及两种或多种上述物质的组合。
术语“嵌合”抗体指其中的重和/或轻链的一部分自特定的来源或物种衍生,而重和/或轻链的剩余部分自不同来源或物种衍生的抗体。
抗体的“类”指其重链拥有的恒定域或恒定区的类型。抗体有5大类:IgA、IgD、IgE、IgG、和IgM,并且这些中的几种可以进一步分成亚类(同种型),例如,IgG1、IgG2、IgG3、IgG4、IgA1、和IgA2。与不同类免疫球蛋白对应的重链恒定域分别称作α、δ、ε、γ、和μ。
术语“细胞抑制剂”指在体外或在体内阻滞细胞生长的化合物或组合物。如此,细胞抑制剂可以是显著降低处于S期的细胞百分比的药剂。细胞抑制剂的其它的例子包括通过诱导G0/G1停滞或M期停滞来阻断细胞周期行进的药剂。人源化抗Her2抗体曲妥单抗
Figure BDA0000432912460000165
是诱导G0/G1阻滞的细胞抑制剂的一个例子。经典的M期阻断剂包括长春药类(vincas)(长春新碱(vincristine)和长春碱(vinblastine))、紫杉烷类(taxanes)、和拓扑异构酶II抑制剂诸如多柔比星(doxorubicin)、表柔比星(epirubicin)、柔红霉素(daunorubicin)、依托泊苷(etoposide)和博来霉素(bleomycin)。某些阻滞G1的药剂也溢出进入S期停滞,例如DNA烷化剂类诸如他莫昔芬(tamoxifen)、泼尼松(prednisone)、达卡巴嗪(dacarbazine)、双氯乙基甲胺(mechlorethamine)、顺铂(cisplatin)、甲氨蝶呤(methotrexate)、5-氟尿嘧啶(5-fluorouracil)和ara-C。更多信息可参见Mendelsohn和Israel编,《The Molecular Basis of Cancer》,第1章,题为“Cellcycle regulation,oncogenes,and antieioplastic drugs”,Murakaini等,W.B.Saunders,Philadelphia,1995,例如第13页。紫杉烷类(帕利他塞(paclitaxel)和多西他赛(docetaxel))是衍生自紫杉树的抗癌药。衍生自欧洲紫杉的多西他赛(
Figure BDA0000432912460000171
Rhone-Poulenc Rorer)是帕利他塞(
Figure BDA0000432912460000172
Bristol-Myers Squibb)的半合成类似物。帕利他塞和多西他赛促进由微管蛋白二聚体装配成微管并通过防止解聚使微管稳定,导致对细胞中有丝分裂的抑制。
在用于本文时,术语“细胞毒剂”指抑制或阻止细胞功能和/或引起细胞死亡或破坏的物质。细胞毒剂包括但不限于:放射性同位素(例如At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、P32、Pb212和Lu的放射性同位素);化学治疗剂或药物(例如甲氨蝶呤(methotrexate)、阿霉素(adriamycin)、长春花生物碱类(vinca alkaloids)(长春新碱(vincristine)、长春碱(vinblastine)、依托泊苷(etoposide))、多柔比星(doxorubicin)、美法仑(melphalan)、丝裂霉素(mitomycin)C、苯丁酸氮芥(chlorambucil)、柔红霉素(daunorubicin)或其它嵌入剂);生长抑制剂;酶及其片段,诸如溶核酶;抗生素;毒素,诸如小分子毒素或者细菌、真菌、植物或动物起源的酶活性毒素,包括其片段和/或变体;及下文公开的各种抗肿瘤或抗癌剂。
“展示FGFR4表达、扩增或活化”的癌或生物学样品指在诊断测试中表达(包括过表达)FGFR4,具有扩增的FGFR4基因,和/或以其它方式展现出FGFR4活化或磷酸化的癌或生物学样品。
“效应器功能”指那些可归于抗体Fc区且随抗体同种型而变化的生物学活性。抗体效应器功能的例子包括:C1q结合和补体依赖性细胞毒性(CDC);Fc受体结合;抗体依赖性细胞介导的细胞毒性(ADCC);吞噬作用;细胞表面受体(例如B细胞受体)下调;和B细胞活化。
药剂(例如药物配制剂)的“有效量”指在必需的剂量和时段上有效实现期望的治疗或预防结果的量。
本文中的术语“Fc区”用于定义免疫球蛋白重链中至少含有恒定区一部分的C端区。该术语包括天然序列Fc区和变体Fc区。在一个实施方案中,人IgG重链Fc区自Cys226,或自Pro230延伸至重链的羧基端。然而,Fc区的C端赖氨酸(Lys447)可以存在或不存在。除非本文中另有规定,Fc区或恒定区中的氨基酸残基的编号方式依照EU编号系统,又称作EU索引,如记载于Kabat等,Sequences of Proteins of Immunological Interest,第5版Public HealthService,National Institutes of Health,Bethesda,MD,1991。
“框架”或“FR”指除高变区(HVR)残基外的可变域残基。一般地,可变域的FR由4个FR域组成:FR1、FR2、FR3、和FR4。因而,HVR和FR序列在VH(或VL)中一般以如下的顺序出现:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。
术语“全长抗体”、“完整抗体”、和“全抗体”在本文中可互换使用,指与天然抗体结构具有基本上类似的结构或者具有含有如本文中所限定的Fc区的重链的抗体。
术语“宿主细胞”、“宿主细胞系”、和“宿主细胞培养物”可互换使用,并且指已经导入外源核酸的细胞,包括此类细胞的后代。宿主细胞包括“转化体”和“经转化的细胞”,其包括原代的经转化的细胞及自其衍生的后代而不考虑传代的次数。后代在核酸内容物上可以与亲本细胞不完全相同,而是可以含有突变。本文中包括具有与在初始转化细胞中筛选或选择的相同功能或生物学活性的突变体后代。
“人抗体”指拥有与由人或人细胞生成的或利用人抗体全集或其它人抗体编码序列自非人来源衍生的抗体的氨基酸序列对应的氨基酸序列的抗体。人抗体的此定义明确排除包含非人抗原结合残基的人源化抗体。
“人共有框架”指代表人免疫球蛋白VL或VH框架序列选集中最常存在的氨基酸残基的框架。通常,人免疫球蛋白VL或VH序列选集来自可变域序列亚组。通常,序列亚组是如Kabat等,Sequences of Proteins of ImmunologicalInterest,第五版,NIH Publication91-3242,Bethesda MD(1991),第1-3卷中的亚组。在一个实施方案中,对于VL,亚组是如Kabat等,见上文中的亚组κI。在一个实施方案中,对于VH,亚组是如Kabat等,见上文中的亚组III。
“人源化”抗体指包含来自非人HVR的氨基酸残基和来自人FR的氨基酸残基的嵌合抗体。在某些实施方案中,人源化抗体会包含至少一个,通常两个基本上整个可变域,其中所有或基本上所有HVR(例如,CDR)对应于非人抗体的那些,且所有或基本上所有FR对应于人抗体的那些。任选地,人源化抗体可以至少包含自人抗体衍生的抗体恒定区的一部分。抗体,例如非人抗体的“人源化形式”指已经经历人源化的抗体。
在用于本文时,术语“高变区”或“HVR”指抗体可变域中在序列上高变的和/或形成结构上限定的环(“高变环”)的每个区。一般地,天然的4链抗体包含6个HVR;三个在VH中(H1、H2、H3),且三个在VL中(L1、L2、L3)。HVR一般包含来自高变环和/或来自“互补决定区”(CDR)的氨基酸残基,后一种是最高序列变异性的和/或牵涉抗原识别。例示性高变区存在于氨基酸残基26-32(L1)、50-52(L2)、91-96(L3)、26-32(H1)、53-55(H2)、和96-101(H3)(Chothia和Lesk,J.Mol.Biol.196:901-917(1987))。例示性CDR(CDR-L1、CDR-L2、CDR-L3、CDR-H1、CDR-H2、和CDR-H3)存在于氨基酸残基L1的24-34、L2的50-56、L3的89-97、H1的31-35B、H2的50-65、和H3的95-102(Kabat等,Sequences of Proteins of Immunological Interest,第5版PublicHealth Service,National Institutes of Health,Bethesda,MD(1991))。除了VH中的CDR1外,CDR一般包含形成高变环的氨基酸残基。CDR还包含“特异性决定残基”,或“SDR”,其是接触抗原的残基。SDR包含在称作缩短的-CDR,或a-CDR的CDR区内。例示性的a-CDR(a-CDR-L1、a-CDR-L2、a-CDR-L3、a-CDR-H1、a-CDR-H2、和a-CDR-H3)存在于L1的氨基酸残基31-34、L2的50-55、L3的89-96、H1的31-35B、H2的50-58、和H3的95-102(见Almagro和Fransson,Front.Biosci.13:1619-1633(2008))。除非另有指示,可变域中的HVR残基和其它残基(例如,FR残基)在本文中依照Kabat等,见上文编号。
“免疫缀合物”指与一种或多种异源分子,包括但不限于细胞毒剂缀合的抗体。
“个体”或“受试者”是哺乳动物。哺乳动物包括但不限于驯养的动物(例如,牛、绵羊、猫、犬、和马)、灵长类(例如,人和非人灵长类诸如猴)、家兔、和啮齿类(例如,小鼠和大鼠)。在某些实施方案中,个体或受试者是人。
“抑制细胞生长或增殖”意味着将细胞的生长或增殖降低至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、或100%,而且包括诱导细胞死亡。
“分离的抗体”指已经与其天然环境的组分分开的抗体。在一些实施方案中,抗体纯化至大于95%或99%的纯度,如通过例如电泳(例如,SDS-PAGE、等电聚焦(IEF)、毛细管电泳)或层析(例如,离子交换或反相HPLC)测定的。关于用于评估抗体纯度的方法的综述,见例如Flatman等,J.Chromatogr.B848:79-87(2007)。
“分离的核酸”指已经与其天然环境的组分分开的核酸分子。分离的核酸包括通常含有核酸分子的细胞中含有的核酸分子,但是核酸分子在染色体外或在与其天然染色体位置不同的染色体位置处存在。
“编码抗FGFR4抗体的分离的核酸”指编码抗体重和轻链(或其片段)的一种或多种核酸分子,包括单一载体或不同载体中的此类核酸分子,和存在于宿主细胞中的一个或多个位置的此类核酸分子。
如本文中使用的,就本发明抗体而言,短语“很少至没有结合”表示抗体没有显示有生物学意义的量的结合。正如本领域会理解的,可以定量或定性测定活性的量,只要能进行本发明抗体和参照对应物之间的比较。可以依照本领域已知的任何测定法或技术来测量或检测活性,例如本文中描述的那些。对于本发明的抗体及其参照对应物,可以平行地或在分开的运行中测定活性的量。
在用于本文时,术语“单克隆抗体”指从一群基本上同质的抗体获得的抗体,即构成群体的各个抗体是相同的和/或结合相同表位,除了例如含有天然存在的突变或在单克隆抗体制备物的生成期间发生的可能的变体抗体外,此类变体一般以极小量存在。与通常包含针对不同决定簇(表位)的不同抗体的多克隆抗体制备物不同,单克隆抗体制备物的每种单克隆抗体针对抗原上的单一决定簇。如此,修饰语“单克隆”指示抗体自一群基本上同质的抗体获得的特性,而不应解释为要求通过任何特定方法来生成抗体。例如,可以通过多种技术来生成要依照本发明使用的单克隆抗体,包括但不限于杂交瘤方法、重组DNA方法、噬菌体展示方法、和利用含有所有或部分人免疫球蛋白基因座的转基因动物的方法,本文中描述了用于生成单克隆抗体的此类方法和其它例示性方法。
“裸抗体”指未与异源模块(例如细胞毒性模块)或放射性标记物缀合的抗体。裸抗体可以存在于药物配制剂中。
“天然抗体”指具有不同结构的天然存在的免疫球蛋白分子。例如,天然IgG抗体是约150,000道尔顿的异四聚糖蛋白,由二硫化物键合的两条相同轻链和两条相同重链构成。从N至C端,每条重链具有一个可变区(VH),又称作可变重域或重链可变域,接着是三个恒定域(CH1、CH2、和CH3)。类似地,从N至C端,每条轻链具有一个可变区(VL),又称作可变轻域或轻链可变域,接着是一个恒定轻(CL)域。根据其恒定域氨基酸序列,抗体轻链可归入两种类型中的一种,称作卡帕(κ)和拉姆达(λ)。
术语“包装插页”用于指治疗产品的商业包装中通常包含的用法说明书,其含有关于涉及此类治疗产品应用的适应症、用法、剂量、施用、联合疗法、禁忌症和/或警告的信息。
关于参照多肽序列的“百分比(%)氨基酸序列同一性”定义为比对序列并在必要时引入缺口以获取最大百分比序列同一性后,且不将任何保守替代视为序列同一性的一部分时,候选序列中与参照多肽序列中的氨基酸残基相同的氨基酸残基的百分率。为测定百分比氨基酸序列同一性目的的对比可以以本领域技术范围内的多种方式进行,例如使用公众可得到的计算机软件,诸如BLAST、BLAST-2、ALIGN或Megalign(DNASTAR)软件。本领域技术人员可以决定用于比对序列的合适参数,包括对所比较序列全长获得最大对比所需的任何算法。然而,为了本发明的目的,%氨基酸序列同一性值是使用序列比较计算机程序ALIGN-2产生的。ALIGN-2序列比较计算机程序由Genentech,Inc.编写,并且源代码已经连同用户文档一起提交给美国版权局(US Copyright Office,Washington D.C.,20559),其中其以美国版权注册号TXU510087注册。公众自Genentech,Inc.,South San Francisco,California可获得ALIGN-2程序,或者可以从源代码编译。ALIGN2程序应当编译成在UNIX操作系统,包括数码UNIX V4.0D上使用。所有序列比较参数由ALIGN-2程序设定且不变。
在采用ALIGN-2来比较氨基酸序列的情况中,给定氨基酸序列A相对于(to)、与(with)、或针对(against)给定氨基酸序列B的%氨基酸序列同一性(或者可表述为具有或包含相对于、与、或针对给定氨基酸序列B的某一%氨基酸序列同一性的给定氨基酸序列A)如下计算:
分数X/Y乘100
其中X是由序列比对程序ALIGN-2在该程序的A和B比对中评分为相同匹配的氨基酸残基数,且其中Y是B中的氨基酸残基总数。应当领会,若氨基酸序列A的长度与氨基酸序列B的长度不相等,则A相对于B的%氨基酸序列同一性将不等于B相对于A的%氨基酸序列同一性。除非另有明确说明,本文中所使用的所有%氨基酸序列同一性值都是依照上一段所述,使用ALIGN-2计算机程序获得的。
术语“药物配制剂”指处于如下的形式,使得容许其中含有的活性成分的生物学活性是有效的,且不含对会接受配制剂施用的受试者具有不可接受的毒性的别的组分的制剂。
“药学可接受载体”指药物配制剂中与活性成分不同的,且对受试者无毒的成分。药学可接受载体包括但不限于缓冲剂、赋形剂、稳定剂、或防腐剂。
在用于本文时,“治疗”(及其语法变化形式,诸如“处理”或“处置”)指试图改变所治疗个体的自然进程的临床干预,可以是为了预防或在临床病理学的进程中进行。治疗的期望效果包括但不限于预防疾病的发生或复发、缓解症状、削弱疾病的任何直接或间接病理学后果、预防转移、减缓疾病进展的速率、改善或减轻疾病状态、及免除或改善预后。在有些实施方案中,本发明的抗体用于延迟疾病的发生/发展,或用于减缓疾病的进展。
术语“肿瘤”指所有赘生性(neoplastic)细胞生长和增殖,无论是恶性的还是良性的,及所有癌前(pre-cancerous)和癌性细胞和组织。术语“癌症”、“癌性”、“细胞增殖性病症”、“增殖性病症”和“肿瘤”在本文中提到时并不互相排斥。
术语“可变区”或“可变域”指抗体重或轻链中牵涉抗体结合抗原的域。天然抗体的重链和轻链可变域(分别为VH和VL)一般具有类似的结构,其中每个域包含4个保守的框架区(FR)和3个高变区(HVR)。(见例如Kindt等KubyImmunology,第6版,W.H.Freeman and Co.,第91页(2007))。单个VH或VL域可以足以赋予抗原结合特异性。此外,可以分别使用来自结合抗原的抗体的VH或VL域筛选互补VL或VH域的文库来分离结合特定抗原的抗体。见例如,Portolano等,J.Immunol.150:880-887(1993);Clarkson等,Nature352:624-628(1991)。
在用于本文时,术语“载体”指能够增殖与其连接的另一种核酸的核酸分子。该术语包括作为自身复制型核酸结构的载体及整合入接受其导入的宿主细胞的基因组中的载体。某些载体能够指导与其可操作连接的核酸的表达。此类载体在本文中称为“表达载体”。
“VH亚组III共有框架”包含自Kabat等人的可变重亚组III中的氨基酸序列获得的共有序列。在一个实施方案中,VH亚组III共有框架氨基酸序列包含下述序列每一项的至少部分或整个:EVQLVESGGGLVQPGGSLRLSCAAS(SEQ ID NO:13)-H1-WVRQAPGKGLEWV(SEQ ID NO:14)-H2-RFTISRDNSKNTLYLQMNSLRAEDTAVYYC(SEQ ID NO:15)-H3-WGQGTLVTVSS(SEQ ID NO:16)。
“VL亚组I共有框架”包含自Kabat等人的可变轻卡帕亚组I中的氨基酸序列获得的共有序列。在一个实施方案中,VL亚组I共有框架氨基酸序列包含下述序列每一项的至少部分或整个:DIQMTQSPSSLSASVGDRVTITC(SEQID NO:28)-L1-WYQQKPGKAPKLLIY(SEQ ID NO:29)-L2-GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC(SEQ ID NO:30)-L3-FGQGTKVEIK(SEQ ID NO:31)。
术语“消耗性/衰竭性”病症(例如衰竭综合征、恶病质、肌肉减少症(sarcopenia))指由不希望的和/或不健康的体重减轻或体细胞质量减轻引起的病症。在老年人中以及在AIDS和癌症患者中,消耗性疾病可导致不希望的体重减轻,包括脂肪和无脂肪隔室二者。消耗性疾病可以由不当摄食和/或与不适和/或衰老过程有关的代谢变化所致。癌症患者和AIDS患者,以及接受大量手术或具有慢性感染、免疫学疾病、甲状腺功能亢进、克罗恩氏病、心理性疾病、慢性心力衰竭或其它严重创伤的患者经常遭受消耗性疾病,有时也称为恶病质、代谢障碍、和进食障碍。恶病质还表现为高代谢和分解代谢过度。尽管恶病质和消耗性疾病经常互换使用,指消耗性疾患,但是至少有一项研究将恶病质与衰竭综合征区分开,即丧失无脂肪物质,特别是体细胞物质(Mayer,1999,J.Nutr.129(1S Suppl.):256S-259S)。肌肉减少症,另一种影响衰老个体的此类病症,通常表现为丧失肌肉物质。如上所述末期消耗性疾病可以在患有恶病质或肌肉减少症的个体中发生。
II.组合物和方法
一方面,本发明部分基于多种FGFR4结合剂(诸如抗体及其片段)的鉴定。在某些实施方案中,提供了与FGFR4结合的抗体。本发明的抗体可用于例如癌症、肝病和消瘦(消耗性疾病)的诊断和治疗。
A.例示性抗FGFR4抗体
一方面,本发明提供结合FGFR4的分离的抗体。
在某些实施方案中,抗FGFR4抗体以≤1nM的亲和力结合人FGFR4。在一些实施方案中,抗FGFR4抗体以≤0.05nM的亲和力结合人FGFR4。
在某些实施方案中,抗FGFR4抗体以≤1nM的亲和力结合小鼠FGFR4。
在某些实施方案中,抗FGFR4抗体以≤1nM的亲和力结合猕猴FGFR4。
在某些实施方案中,抗FGFR4抗体以≤1nM的亲和力结合人、小鼠和猕猴FGFR4。
在某些实施方案中,抗FGFR4抗体对人FGFR1、人FGFR2和/或人FGFR3不发生实质性结合。在某个实施方案中,抗FGFR4抗体对人FGFR1、人FGFR2和/或人FGFR3显示很少的结合或不结合。
在某些实施方案中,抗FGFR4抗体对小鼠C3蛋白(在一些实施方案中,具有图12D所示氨基酸序列的小鼠C3蛋白)不发生实质性结合。在某个实施方案中,抗FGFR4抗体对小鼠C3蛋白(在一些实施方案中,具有图12D所示氨基酸序列的小鼠C3蛋白)显示很少的结合或不结合。
在某些实施方案中,该抗FGFR4抗体是人源化抗FGFR4抗体,其中该抗体对人FGFR4的单价亲和力与包含SEQ ID NO:8和7分别所示轻链和重链可变序列的鼠抗体的单价亲和力基本上相同。在一些实施方案中,该抗FGFR4抗体是人源化的和亲和力成熟的抗体。
在某些实施方案中,抗FGFR4抗体是FGFR4活性的拮抗剂。
在某些实施方案中,抗FGFR4抗体抑制FGF结合FGFR4。在一些实施方案中,FGF1和/或FGF19对FGFR4的结合受到抑制。在一些实施方案中,抑制FGF1结合FGFR4的IC50为约0.10nM。在一些实施方案中,抑制FGF19结合FGFR4的IC50为约0.10nM。
在某些实施方案中,抗FGFR4抗体抑制细胞增殖。在一些实施方案中,增殖为FGF诱导的细胞增殖。在一些实施方案中,细胞增殖为BAF3/FGFR4转基因细胞增殖。
在某些实施方案中,抗FGFR4抗体抑制FGF(例如FGF1)刺激的表达FGFR4的细胞增殖。在一些实施方案中,该细胞为HUH7细胞。
在某些实施方案中,抗FGFR4抗体抑制暴露于FGF19的细胞中FGF19介导的对CYP7α7表达的抑制。
在某些实施方案中,抗FGFR4抗体抑制暴露于FGF19的细胞中FGF19诱导的FGFR4、MAPK、FRS2和/或ERK2磷酸化。
在某些实施方案中,抗FGFR4抗体抑制FGF19诱导的集落形成。在一些实施方案中,集落形成为HCC细胞系集落形成。在一些实施方案中,该HCC细胞系为JHH5。
在某些实施方案中,抗FGFR4抗体结合变性的FGFR4。在一些实施方案中,抗FGFR4抗体结合还原的、变性的FGFR4。在一些实施方案中,使用Western印迹来测定对还原的、变性的FGFR4的结合。
在某些实施方案中,抗FGFR4抗体结合在细胞表面表达的FGFR4。在一些实施方案中,该细胞为HUH7或JHH5细胞。
在某些实施方案中,抗FGFR4抗体对包含G165A突变的人FGFR4不发生实质性结合。在某些实施方案中,抗FGFR4抗体对包含G165A突变的人FGFR4显示很少的结合或不结合。
在某些实施方案中,抗FGFR4抗体结合包含成熟人FGFR4氨基酸序列的氨基酸编号150至170、基本上由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成或由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成的多肽。在某些实施方案中,抗FGFR4抗体结合包含成熟人FGFR4氨基酸序列的氨基酸编号145至180、基本上由成熟人FGFR4氨基酸序列的氨基酸编号145至180组成或由成熟人FGFR4氨基酸序列的氨基酸编号145至180组成的多肽。
在某些实施方案中,抗FGFR4抗体结合与包含成熟人FGFR4氨基酸序列的氨基酸编号150至170、基本上由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成或由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成的序列具有至少70%、80%、90%、95%、98%序列同一性或相似性的多肽。在某些实施方案中,抗FGFR4抗体结合与包含成熟人FGFR4氨基酸序列的氨基酸编号145-180、基本上由成熟人FGFR4氨基酸序列的氨基酸编号145-180组成或由成熟人FGFR4氨基酸序列的氨基酸编号145至180组成的序列具有至少70%、80%、90%、95%、98%序列同一性或相似性的多肽。
在某些实施方案中,抗FGFR4抗体抑制FGFR4二聚化。
在某些实施方案中,抗FGFR4抗体在FGFR4二聚化界面处结合。
在某些实施方案中,抗FGFR4抗体抑制肿瘤生长。在一些实施方案中,肿瘤生长为肝肿瘤生长。
一方面,本发明提供了抗FGFR4抗体,其包含至少一种、两种、三种、四种、五种、或六种选自下述的HVR:(a)HVR-H1,其包含氨基酸序列NHWMN(SEQ ID NO:1);(b)HVR-H2,其包含氨基酸序列MILPVDSETTLEQKFKD(SEQ ID NO:2);(c)HVR-H3,其包含氨基酸序列GDISLFDY(SEQ ID NO:3);(d)HVR-L1,其包含氨基酸序列RTSQDISNFLN(SEQ ID NO:4);(e)HVR-L2,其包含氨基酸序列YTSRLHS(SEQ ID NO:5);和(f)HVR-L3,其包含氨基酸序列QQGNALPYT(SEQ ID NO:6)。
一方面,本发明提供一种抗体,其包含至少一种、至少两种、或所有三种选自下述的VH HVR序列:(a)HVR-H1,其包含氨基酸序列SEQ ID NO:1;(b)HVR-H2,其包含氨基酸序列SEQ ID NO:2;和(c)HVR-H3,其包含氨基酸序列SEQ ID NO:3。在一个实施方案中,该抗体包含HVR-H3,其包含氨基酸序列SEQ ID NO:3。在另一个实施方案中,该抗体包含HVR-H3和HVR-L3,该HVR-H3包含氨基酸序列SEQ ID NO:3,该HVR-L3包含氨基酸序列SEQ ID NO:6。在又一个实施方案中,该抗体包含HVR-H3、HVR-L3和HVR-L2,该HVR-H3包含氨基酸序列SEQ ID NO:3,该HVR-L3包含氨基酸序列SEQ ID NO:6,该HVR-H2包含氨基酸序列SEQ ID NO:2。在又一个实施方案中,该抗体包含:(a)HVR-H1,其包含氨基酸序列SEQ ID NO:1;(b)HVR-H2,其包含氨基酸序列SEQ ID NO:2;和(c)HVR-H3,其包含氨基酸序列SEQ ID NO:3。
另一方面,本发明提供一种抗体,其包含至少一种、至少两种、或所有三种选自下述的VL HVR序列:(a)HVR-L1,其包含氨基酸序列SEQ ID NO:4;(b)HVR-L2,其包含氨基酸序列SEQ ID NO:5;和(c)HVR-L3,其包含氨基酸序列SEQ ID NO:6。在一个实施方案中,该抗体包含:(a)HVR-L1,其包含氨基酸序列SEQ ID NO:4;(b)HVR-L2,其包含氨基酸序列SEQ ID NO:5;和(c)HVR-L3,其包含氨基酸序列SEQ ID NO:6。
另一方面,本发明的抗体包含:(a)VH结构域,其包含至少一种、至少两种、或所有三种选自下述的VH HVR序列:(i)HVR-H1,其包含氨基酸序列SEQ ID NO:1,(ii)HVR-H2,其包含氨基酸序列SEQ ID NO:2,和(iii)HVR-H3,其包含氨基酸序列SEQ ID NO:3;和(b)VL结构域,其包含至少一种、至少两种、或所有三种选自下述的VL HVR序列:(i)HVR-L1,其包含氨基酸序列SEQ ID NO:4,(ii)HVR-L2,其包含氨基酸序列SEQ ID NO:5,和(c)HVR-L3,其包含氨基酸序列SEQ ID NO:6。
另一方面,本发明提供一种抗体,其包含:(a)HVR-H1,其包含SEQ IDNO:1的氨基酸序列;(b)HVR-H2,其包含SEQ ID NO:2的氨基酸序列;(c)HVR-H3,其包含SEQ ID NO:3的氨基酸序列;(d)HVR-L1,其包含SEQ IDNO:4的氨基酸序列;(e)HVR-L2,其包含SEQ ID NO:5的氨基酸序列;和(f)HVR-L3,其包含选自SEQ ID NO:6的氨基酸序列。
另一方面,抗FGFR4抗体包含与氨基酸序列EVQLVESGGGLVQPGGSLRLSCAASGYTFTNHWMNWVRQAPGKGLEWVGMILPVDSETTLEQKFKDRFTISADTSKNTAYLQMNSLRAEDTAVYYCTRGDISLFDYWGQGTLVTVSS(SEQ ID NO:7)具有至少90%,91%,92%,93%,94%,95%,96%,97%,98%,99%,或100%序列同一性的重链可变域(VH)序列。在某些实施方案中,具有至少90%,91%,92%,93%,94%,95%,96%,97%,98%,或99%同一性的VH序列相对于参照序列包含替代(例如保守替代)、插入、或删除,但是包含该序列的抗FGFR4抗体保留结合FGFR4的能力。在某些实施方案中,在SEQ ID NO:7中替代、插入和/或删除了总共1至10个氨基酸。在某些实施方案中,替代、插入、或删除发生在HVR以外的区域中(即在FR中)。任选地,抗FGFR4抗体包含SEQ ID NO:7中的VH序列,包括该序列的翻译后修饰。在一个特别的实施方案中,该VH包含一种、两种或三种选自下述的HVR:(a)HVR-H1,其包含氨基酸序列SEQ ID NO:1,(b)HVR-H2,其包含氨基酸序列SEQ ID NO:2,和(c)HVR-H3,其包含氨基酸序列SEQ ID NO:3。
另一方面,提供一种抗FGFR4抗体,其中该抗体包含与氨基酸序列DIQMTQSPSSLSASVGDRVTITCRTSQDISNFLNWYQQKPGKAFKILISYTSRLHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGNALPYTFGQGTKVEIKR(SEQ ID NO:8)具有至少90%,91%,92%,93%,94%,95%,96%,97%,98%,99%,或100%序列同一性的轻链可变域(VL)。在某些实施方案中,具有至少90%,91%,92%,93%,94%,95%,96%,97%,98%,或99%同一性的VL序列相对于参照序列包含替代(例如保守替代)、插入、或删除,但是包含该序列的抗FGFR4抗体保留结合FGFR4的能力。在某些实施方案中,在SEQ IDNO:8中替代、插入和/或删除了总共1至10个氨基酸。在某些实施方案中,替代、插入、或删除发生在HVR以外的区域中(即在FR中)。任选地,抗FGFR4抗体包含SEQ ID NO:8中的VL序列,包括该序列的翻译后修饰。在一个特别的实施方案中,该VL包含一种、两种或三种选自下述的HVR:(a)HVR-L1,其包含氨基酸序列SEQ ID NO:4;(b)HVR-L2,其包含氨基酸序列SEQ IDNO:5;和(c)HVR-L3,其包含氨基酸序列SEQ ID NO:6。
另一方面,提供一种抗FGFR4抗体,其中该抗体包含上文提供的任何实施方案中的VH和上文提供的任何实施方案中的VL。在一个实施方案中,该抗体包含分别SEQ ID NO:7和SEQ ID NO:8中的VH和VL序列,包括那些序列的翻译后修饰。
在任何上述实施方案中,抗FGFR4抗体是人源化的。在一个实施方案中,抗FGFR4抗体包含任何上述实施方案中的HVR,而且进一步包含受体人框架,例如人免疫球蛋白框架或人共有框架。本发明的抗体可包含任何合适框架可变域序列,前提是对FGFR4的结合活性得到实质性保留,例如,在一些实施方案中,本发明的抗体包含人亚组III重链框架共有序列。在这些抗体的一个实施方案中,框架共有序列包含第71位、第73位、和/或第78位处的替代。在这些抗体的一些实施方案中,第71位为A,第73位为T和/或第78位为A。在一个实施方案中,这些抗体包含huMAb4D5-8(
Figure BDA0000432912460000281
Genentech,Inc.,South San Francisco,CA,USA)(也可见美国专利No.6,407,213和No.5,821,337及Lee et al.,J.Mol.Biol.(2004)340(5):1073-1093)的重链可变域框架序列。在一个实施方案中,框架序列包含下述受体人框架:DIQMTQSPSSLSASVGDRVTITC(SEQ ID NO:9)-L1-WYQQKPGKAFKILIS(SEQ ID NO:10)-L2-GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC(SEQ IDNO:11)-L3-FGQGTKVEIK(SEQ ID NO:12)。
在又一个方面,本发明提供与本文中提供的抗FGFR4抗体结合相同表位的抗FGFR4抗体。例如,在某些实施方案中,提供与包含VH序列SEQ ID NO:7和VL序列SEQ ID NO:8的抗FGFR4抗体结合相同表位的抗体。在某些实施方案中,提供结合在图18所示序列(SEQ ID NO:39)的氨基酸145-180组成的FGFR4片段内的表位的抗体。
在又一个方面,本发明提供与包含VH序列SEQ ID NO:7和VL序列SEQID NO:8的抗FGFR4抗体竞争对人FGFR4的结合的抗FGFR4抗体。
在本发明的又一个方面,依照任何上述实施方案的抗FGFR4抗体是单克隆抗体,包括嵌合抗体、人源化抗体或人抗体。在一个实施方案中,抗FGFR4抗体是抗体片段,例如Fv、Fab、Fab’、scFv、双抗体、或F(ab’)2片段。在另一个实施方案中,抗体是全长抗体,例如完整IgG1抗体或其它抗体类或同种型,如本文中定义的。
在又一个方面,依照任何上述实施方案的抗体可单一地或组合地掺入下文1-7节中描述的任何特征:
1.抗体亲和力
在某些实施方案中,本文中提供的抗体具有≤1μM、≤100nM、≤10nM、≤1nM、≤0.1nM、≤0.01nM、或≤0.001nM的解离常数(Kd)(例如10-8M或更少,例如10-8M至10-13M,例如,10-9M至10-13M)。
在一个实施方案中,Kd是通过如下述测定法所述用Fab型式的感兴趣抗体及其抗原实施的放射性标记抗原结合测定法(RIA)来测量的。通过在存在未标记抗原的滴定系列的情况中用最小浓度的(125I)标记抗原平衡Fab,然后用抗Fab抗体包被板捕捉结合的抗原来测量Fab对抗原的溶液结合亲和力(见例如Chen等,J.Mol.Biol.293:865-881(1999))。为了建立测定法的条件,将
Figure BDA0000432912460000291
多孔板(Thermo Scientific)用50mM碳酸钠(pH9.6)中的5μg/ml捕捉用抗Fab抗体(Cappel Labs)包被过夜,随后用PBS中的2%(w/v)牛血清清蛋白于室温(约23℃)封闭2-5小时。在非吸附板(Nunc#269620)中,将100pM或26pM125I-抗原与连续稀释的感兴趣Fab(例如与Presta等,Cancer Res.57:4593-4599(1997)中抗VEGF抗体,Fab-12的评估一致)混合。然后将感兴趣的Fab温育过夜;然而,温育可持续更长时间(例如约65小时)以确保达到平衡。此后,将混合物转移至捕捉板,于室温温育(例如1小时)。然后除去溶液,并用PBS中的0.1%聚山梨酯20
Figure BDA0000432912460000292
洗板8次。平板干燥后,加入150μl/孔闪烁液(MICROSCINT-20TM;Packard),然后在TOPCOUNTTM伽马计数器(Packard)上对平板计数10分钟。选择各Fab给出小于或等于最大结合之20%的浓度用于竞争性结合测定法。
依照另一个实施方案,Kd是使用表面等离振子共振测定法使用-2000或-3000(BIAcore,Inc.,Piscataway,NJ)于25℃使用固定化抗原CM5芯片在约10个响应单位(RU)测量的。简言之,依照供应商的用法说明书用盐酸N-乙基-N’-(3-二甲氨基丙基)-碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)活化羧甲基化右旋糖苷生物传感器芯片(CM5,BIACORE,Inc.)。将抗原用10mM乙酸钠pH4.8稀释至5μg/ml(约0.2μM),然后以5μl/分钟的流速注射以获得约10个响应单位(RU)的偶联蛋白质。注入抗原后,注入1M乙醇胺以封闭未反应基团。为了进行动力学测量,于25℃以约25μl/分钟的流速注入在含0.05%聚山梨酯20(TWEEN-20TM)表面活性剂的PBS(PBST)中两倍连续稀释的Fab(0.78nM至500nM)。使用简单一对一朗格缪尔(Langmuir)结合模型(
Figure BDA0000432912460000295
Evaluation Software version3.2)通过同时拟合结合和解离传感图计算结合速率(kon)和解离速率(koff)。平衡解离常数(Kd)以比率koff/kon计算。见例如Chen等,J.Mol.Biol.293:865-881(1999)。如果根据上文表面等离振子共振测定法,结合速率超过106M-1S-1,那么结合速率可使用荧光淬灭技术来测定,即根据分光计诸如配备了断流装置的分光光度计(Aviv Instruments)或8000系列SLM-AMINCOTM分光光度计(ThermoSpectronic)中用搅拌比色杯的测量,在存在浓度渐增的抗原的情况中,测量PBS pH7.2中20nM抗抗原抗体(Fab形式)于25℃的荧光发射强度(激发=295nm;发射=340nm,16nm带通)的升高或降低。
2.抗体片段
在某些实施方案中,本文中提供的抗体是抗体片段。抗体片段包括但不限于Fab、Fab’、Fab’-SH、F(ab’)2、Fv、和scFv片段,及下文所描述的其它片段。关于某些抗体片段的综述,见Hudson等Nat.Med.9:129-134(2003)。关于scFv片段的综述,见例如Pluckthün,于The Pharmacology of MonoclonalAntibodies,第113卷,Rosenburg和Moore编,(Springer-Verlag,New York),第269-315页(1994);还可见WO93/16185;及美国专利No.5,571,894和5,587,458。关于包含补救受体结合表位残基,并且具有延长的体内半衰期的Fab和F(ab’)2片段的讨论,见美国专利No.5,869,046。
双抗体是具有两个抗原结合位点的抗体片段,其可以是二价的或双特异性的。见例如EP404,097;WO1993/01161;Hudson等,Nat.Med.9:129-134(2003);及Hollinger等,Proc.Natl.Acad.Sci.USA90:6444-6448(1993)。三抗体和四抗体也记载于Hudson等,Nat.Med.9:129-134(2003)。
单域抗体是包含抗体的整个或部分重链可变域或整个或部分轻链可变域的抗体片段。在某些实施方案中,单域抗体是人单域抗体(Domantis,Inc.,Waltham,MA;见例如美国专利No.6,248,516B1)。
可以通过多种技术,包括但不限于对完整抗体的蛋白水解消化及重组宿主细胞(例如大肠杆菌或噬菌体)的生成来生成抗体片段,如本文中所描述的。
3.嵌合的和人源化的抗体
在某些实施方案中,本文中提供的抗体是嵌合抗体。某些嵌合抗体记载于例如美国专利No.4,816,567;及Morrison等,Proc.Natl.Acad.Sci.USA,81:6851-6855(1984))。在一个例子中,嵌合抗体包含非人可变区(例如,自小鼠、大鼠、仓鼠、家兔、或非人灵长类,诸如猴衍生的可变区)和人恒定区。在又一个例子中,嵌合抗体是“类转换的”抗体,其中类或亚类已经自亲本抗体的类或亚类改变。嵌合抗体包括其抗原结合片段。
在某些实施方案中,嵌合抗体是人源化抗体。通常,将非人抗体人源化以降低对人的免疫原性,同时保留亲本非人抗体的特异性和亲和力。一般地,人源化抗体包含一个或多个可变域,其中HVR,例如CDR(或其部分)自非人抗体衍生,而FR(或其部分)自人抗体序列衍生。任选地,人源化抗体还会至少包含人恒定区的一部分。在一些实施方案中,将人源化抗体中的一些FR残基用来自非人抗体(例如衍生HVR残基的抗体)的相应残基替代,例如以恢复或改善抗体特异性或亲和力。
人源化抗体及其生成方法综述于例如Almagro和Fransson,Front.Biosci.13:1619-1633(2008),并且进一步记载于例如Riechmann等,Nature332:323-329(1988);Queen等,Proc.Nat’l Acad.Sci.USA86:10029-10033(1989);美国专利No.5,821,337,7,527,791,6,982,321和7,087,409;Kashmiri等,Methods36:25-34(2005)(描述了SDR(a-CDR)嫁接);Padlan,Mol.Immunol.28:489-498(1991)(描述了“重修表面”);Dall’Acqua等,Methods36:43-60(2005)(描述了“FR改组”);及Osbourn等,Methods36:61-68(2005)和Klimka等,Br.J.Cancer,83:252-260(2000)(描述了FR改组的“引导选择”方法)。
可以用于人源化的人框架区包括但不限于:使用“最佳拟合(best-fit)”方法选择的框架区(见例如Sims等J.Immunol.151:2296(1993));自轻或重链可变区的特定亚组的人抗体的共有序列衍生的框架区(见例如Carter等Proc.Natl.Acad.Sci.USA,89:4285(1992);及Presta等J.Immunol.,151:2623(1993));人成熟的(体细胞突变的)框架区或人种系框架区(见例如Almagro和Fransson,Front.Biosci.13:1619-1633(2008));和通过筛选FR文库衍生的框架区(见例如Baca等,J.Biol.Chem.272:10678-10684(1997)及Rosok等,J.Biol.Chem.271:22611-22618(1996))。
4.人抗体
在某些实施方案中,本文中提供的抗体是人抗体。可以使用本领域中已知的多种技术来生成人抗体。一般地,人抗体记载于van Dijk和van de Winkel,Curr.Opin.Pharmacol.5:368-74(2001)及Lonberg,Curr.Opin.Immunol.20:450-459(2008)。
可以通过对转基因动物施用免疫原来制备人抗体,所述转基因动物已经修饰为响应抗原性攻击而生成完整人抗体或具有人可变区的完整抗体。此类动物通常含有所有或部分人免疫球蛋白基因座,其替换内源免疫球蛋白基因座,或者其在染色体外存在或随机整合入动物的染色体中。在此类转基因小鼠中,一般已经将内源免疫球蛋白基因座灭活。关于自转基因动物获得人抗体的方法的综述,见Lonberg,Nat.Biotech.23:1117-1125(2005)。还可见例如美国专利No.6,075,181和6,150,584,其描述了XENOMOUSETM技术;美国专利No.5,770,429,其描述了
Figure BDA0000432912460000321
技术;美国专利No.7,041,870,其描述了
Figure BDA0000432912460000322
技术,和美国专利申请公开文本No.US2007/0061900,其描述了
Figure BDA0000432912460000323
技术)。可以例如通过与不同人恒定区组合进一步修饰来自由此类动物生成的完整抗体的人可变区。
也可以通过基于杂交瘤的方法生成人抗体。已经描述了用于生成人单克隆抗体的人骨髓瘤和小鼠-人异骨髓瘤细胞系(见例如Kozbor J.Immunol.,133:3001(1984);Brodeur等,Monoclonal Antibody Production Techniques andApplications,第51-63页(Marcel Dekker,Inc.,New York,1987);及Boerner等,J.Immunol.,147:86(1991))。经由人B细胞杂交瘤技术生成的人抗体也记载于Li等,Proc.Natl.Acad.Sci.USA,103:3557-3562(2006)。其它方法包括那些例如记载于美国专利No.7,189,826(其描述了自杂交瘤细胞系生成单克隆人IgM抗体)和Ni,Xiandai Mianyixue,26(4):265-268(2006)(其描述了人-人杂交瘤)的。人杂交瘤技术(Trioma技术)也记载于Vollmers和Brandlein,Histology and Histopathology,20(3):927-937(2005)及Vollmers和Brandlein,Methods and Findings in Experimental and Clinical Pharmacology,27(3):185-91(2005)。
也可以通过分离自人衍生的噬菌体展示文库选择的Fv克隆可变域序列生成人抗体。然后,可以将此类可变域序列与期望的人恒定域组合。下文描述了自抗体文库选择人抗体的技术。
5.文库衍生的抗体
可以通过对组合文库筛选具有期望的一种或多种活性的抗体来分离本发明的抗体。例如,用于生成噬菌体展示文库并对此类文库筛选拥有期望结合特征的抗体的多种方法是本领域中已知的。此类方法综述于例如Hoogenboom等于Methods in Molecular Biology178:1-37(O’Brien等编,Human Press,Totowa,NJ,2001),并且进一步记载于例如McCafferty等,Nature348:552-554;Clackson等,Nature352:624-628(1991);Marks等,J.Mol.Biol.222:581-597(1992);Marks和Bradbury,于Methods in Molecular Biology248:161-175(Lo编,Human Press,Totowa,NJ,2003);Sidhu等,J.Mol.Biol.338(2):299-310(2004);Lee等,J.Mol.Biol.340(5):1073-1093(2004);Fellouse,Proc.Natl.Acad.Sci.USA101(34):12467-12472(2004);及Lee等,J.Immunol.Methods284(1-2):119-132(2004)。
在某些噬菌体展示方法中,将VH和VL基因的全集分别通过聚合酶链式反应(PCR)克隆,并在噬菌体文库中随机重组,然后可以对所述噬菌体文库筛选抗原结合噬菌体,如记载于Winter等,Ann.Rev.Immunol.,12:433-455(1994)的。噬菌体通常以单链Fv(scFv)片段或以Fab片段展示抗体片段。来自经免疫的来源的文库提供针对免疫原的高亲和力抗体,而不需要构建杂交瘤。或者,可以(例如自人)克隆天然全集以在没有任何免疫的情况中提供针对一大批非自身和还有自身抗原的抗体的单一来源,如由Griffiths等,EMBO J,12:725-734(1993)描述的。最后,也可以通过自干细胞克隆未重排的V基因区段,并使用含有随机序列的PCR引物编码高度可变的CDR3区并在体外实现重排来合成生成未免疫文库,如由Hoogenboom和Winter,J.Mol.Biol.,227:381-388(1992)所描述的。描述人抗体噬菌体文库的专利公开文本包括例如:美国专利No.5,750,373、和美国专利公开文本No.2005/0079574,2005/0119455,2005/0266000,2007/0117126,2007/0160598,2007/0237764,2007/0292936和2009/0002360。
认为自人抗体文库分离的抗体或抗体片段是本文中的人抗体或人抗体片段。
6.多特异性抗体
在某些实施方案中,本文中提供的抗体是多特异性抗体,例如双特异性抗体。多特异性抗体是对至少两个不同位点具有结合特异性的单克隆抗体。在某些实施方案中,结合特异性之一针对FGFR4,而另一种针对任何其它抗原。在某些实施方案中,双特异性抗体可以结合FGFR4的两个不同表位。也可以使用双特异性抗体来将细胞毒剂定位于表达FGFR4的细胞。双特异性抗体可以以全长抗体或抗体片段制备。
用于生成多特异性抗体的技术包括但不限于具有不同特异性的两对免疫球蛋白重链-轻链对的重组共表达(见Milstein和Cuello,Nature305:537(1983))、WO93/08829、和Traunecker等,EMBO J.10:3655(1991))、和“突起-入-空穴”工程化(见例如美国专利No.5,731,168)。也可以通过用于生成抗体Fc-异二聚体分子的工程化静电操纵效应(WO2009/089004A1);交联两个或更多个抗体或片段(见例如美国专利No.4,676,980,及Brennan等,Science,229:81(1985));使用亮氨酸拉链来生成双特异性抗体(见例如Kostelny等,J.Immunol.,148(5):1547-1553(1992));使用用于生成双特异性抗体片段的“双抗体”技术(见例如Hollinger等,Proc.Natl.Acad.Sci.USA,90:6444-6448(1993));及使用单链Fv(sFv)二聚体(见例如Gruber等,J.Immunol.,152:5368(1994));及如例如Tutt等J.Immunol.147:60(1991)中所描述的,制备三特异性抗体来生成多特异性抗体。
本文中还包括具有三个或更多个功能性抗原结合位点的工程化改造抗体,包括“章鱼抗体”(见例如US2006/0025576A1)。
本文中的抗体或片段还包括包含结合FGFR4及另一种不同抗原的抗原结合位点的“双重作用FAb”或“DAF”(见例如US2008/0069820)。
7.抗体变体
在某些实施方案中,涵盖本文中提供的抗体的氨基酸序列变体。例如,可以期望改善抗体的结合亲和力和/或其它生物学特性。可以通过将合适的修饰引入编码抗体的核苷酸序列中,或者通过肽合成来制备抗体的氨基酸序列变体。此类修饰包括例如对抗体的氨基酸序列内的残基的删除、和/或插入和/或替代。可以进行删除、插入、和替代的任何组合以得到最终的构建体,只要最终的构建体拥有期望的特征,例如,抗原结合。
a)替代、插入、和删除变体
在某些实施方案中,提供了具有一处或多处氨基酸替代的抗体变体。替代诱变感兴趣的位点包括HVR和FR。保守替代在表1中在“保守的替代”的标题下显示。更实质的变化在表1中在“例示性替代”的标题下提供,并且如下文参照氨基酸侧链类别进一步描述的。可以将氨基酸替代引入感兴趣的抗体中,并且对产物筛选期望的活性,例如保留/改善的抗原结合、降低的免疫原性、或改善的ADCC或CDC。
表1
Figure BDA0000432912460000341
依照共同的侧链特性,氨基酸可以如下分组:
(1)疏水性的:正亮氨酸,Met,Ala,Val,Leu,Ile;
(2)中性、亲水性的:Cys,Ser,Thr,Asn,Gln;
(3)酸性的:Asp,Glu;
(4)碱性的:His,Lys,Arg;
(5)影响链取向的残基:Gly,Pro;
(6)芳香族的:Trp,Tyr,Phe。
非保守替代会需要用这些类别之一的成员替换另一个类别的。
一类替代变体牵涉替代亲本抗体(例如人源化或人抗体)的一个或多个高变区残基。一般地,为进一步研究选择的所得变体相对于亲本抗体会具有某些生物学特性的改变(例如改善)(例如升高的亲和力、降低的免疫原性)和/或会基本上保留亲本抗体的某些生物学特性。例示性的替代变体是亲和力成熟的抗体,其可以例如使用基于噬菌体展示的亲和力成熟技术诸如本文中所描述的那些技术来方便地生成。简言之,将一个或多个HVR残基突变,并将变体抗体在噬菌体上展示,并对其筛选特定的生物学活性(例如结合亲和力)。
可以对HVR做出变化(例如,替代),例如以改善抗体亲和力。可以对HVR“热点”,即由在体细胞成熟过程期间以高频率经历突变的密码子编码的残基(见例如Chowdhury,Methods Mol.Biol.207:179-196(2008)),和/或SDR(a-CDR)做出此类变化,其中对所得的变体VH或VL测试结合亲和力。通过次级文库的构建和再选择进行的亲和力成熟已经记载于例如Hoogenboom等于Methods in Molecular Biology178:1-37(O’Brien等编,Human Press,Totowa,NJ,(2001))。在亲和力成熟的一些实施方案中,通过多种方法(例如,易错PCR、链改组、或寡核苷酸指导的诱变)将多样性引入为成熟选择的可变基因。然后,创建次级文库。然后,筛选文库以鉴定具有期望的亲和力的任何抗体变体。另一种引入多样性的方法牵涉HVR指导的方法,其中将几个HVR残基(例如,一次4-6个残基)随机化。可以例如使用丙氨酸扫描诱变或建模来特异性鉴定牵涉抗原结合的HVR残基。特别地,经常靶向CDR-H3和CDR-L3。
在某些实施方案中,可以在一个或多个HVR内发生替代、插入、或删除,只要此类变化不实质性降低抗体结合抗原的能力。例如,可以对HVR做出保守变化(例如,保守替代,如本文中提供的),其不实质性降低结合亲和力。此类变化可以在HVR“热点”或SDR外部。在上文提供的变体VH和VL序列的某些实施方案中,每个HVR是未改变的,或者含有不超过1、2或3处氨基酸替代。
一种可用于鉴定抗体中可以作为诱变靶位的残基或区域的方法称作“丙氨酸扫描诱变”,如由Cunningham和Wells(1989)Science,244:1081-1085所描述的。在此方法中,将残基或靶残基的组(例如,带电荷的残基诸如arg、asp、his、lys、和glu)鉴定,并用中性或带负电荷的氨基酸(例如,丙氨酸或多丙氨酸)替换以测定抗体与抗原的相互作用是否受到影响。可以在对初始替代表明功能敏感性的氨基酸位置引入进一步的替代。或者/另外,利用抗原-抗体复合物的晶体结构来鉴定抗体与抗原间的接触点。作为替代的候选,可以靶向或消除此类接触残基和邻近残基。可以筛选变体以确定它们是否含有期望的特性。
氨基酸序列插入包括长度范围为1个残基至含有100或更多个残基的多肽的氨基和/或羧基端融合,及单个或多个氨基酸残基的序列内插入。末端插入的例子包括具有N端甲硫氨酰基残基的抗体。抗体分子的其它插入变体包括抗体的N或C端与酶(例如对于ADEPT)或延长抗体的血清半衰期的多肽的融合物。
b)糖基化变体
在某些实施方案中,改变本文中提供的抗体以提高或降低抗体糖基化的程度。可以通过改变氨基酸序列,使得创建或消除一个或多个糖基化位点来方便地实现对抗体的糖基化位点的添加或删除。
在抗体包含Fc区的情况中,可以改变其附着的碳水化合物。由哺乳动物细胞生成的天然抗体通常包含分支的、双触角寡糖,其一般通过N连接附着于Fc区的CH2域的Asn297。见例如Wright等TIBTECH15:26-32(1997)。寡糖可以包括各种碳水化合物,例如,甘露糖、N-乙酰葡糖胺(GlcNAc)、半乳糖、和唾液酸,以及附着于双触角寡糖结构“主干”中的GlcNAc的岩藻糖。在一些实施方案中,可以对本发明抗体中的寡糖进行修饰以创建具有某些改善的特性的抗体变体。
在一个实施方案中,提供了抗体变体,其具有缺乏附着(直接或间接)于Fc区的岩藻糖的碳水化合物结构。例如,此类抗体中的岩藻糖量可以是1%至80%、1%至65%、5%至65%或20%至40%。通过相对于附着于Asn297的所有糖结构(例如,复合的、杂合的和高甘露糖的结构)的总和,计算Asn297处糖链内岩藻糖的平均量来测定岩藻糖量,如通过MALDI-TOF质谱术测量的,例如如记载于WO2008/077546的。Asn297指位于Fc区中的约第297位(Fc区残基的Eu编号方式)的天冬酰胺残基;然而,Asn297也可以由于抗体中的微小序列变异而位于第297位上游或下游约±3个氨基酸,即在第294位和第300位之间。此类岩藻糖基化变体可以具有改善的ADCC功能。见例如美国专利公开文本No.US2003/0157108(Presta,L.);US2004/0093621(KyowaHakko Kogyo Co.,Ltd)。涉及“脱岩藻糖基化的”或“岩藻糖缺乏的”抗体变体的出版物的例子包括:US2003/0157108;WO2000/61739;WO2001/29246;US2003/0115614;US2002/0164328;US2004/0093621;US2004/0132140;US2004/0110704;US2004/0110282;US2004/0109865;WO2003/085119;WO2003/084570;WO2005/035586;WO2005/035778;WO2005/053742;WO2002/031140;Okazaki等J.Mol.Biol.336:1239-1249(2004);Yamane-Ohnuki等Biotech.Bioeng.87:614(2004)。能够生成脱岩藻糖基化抗体的细胞系的例子包括蛋白质岩藻糖基化缺陷的Lec13CHO细胞(Ripka等Arch.Biochem.Biophys.249:533-545(1986);美国专利申请No US2003/0157108A1,Presta,L;及WO2004/056312A1,Adams等,尤其在实施例11),和敲除细胞系,诸如α-1,6-岩藻糖基转移酶基因FUT8敲除CHO细胞(见例如Yamane-Ohnuki等Biotech.Bioeng.87:614(2004);Kanda,Y.等,Biotechnol.Bioeng.,94(4):680-688(2006);及WO2003/085107)。
进一步提供了具有两分型寡糖的抗体变体,例如其中附着于抗体Fc区的双触角寡糖是通过GlcNAc两分的。此类抗体变体可以具有降低的岩藻糖基化和/或改善的ADCC功能。此类抗体变体的例子记载于例如WO2003/011878(Jean-Mairet等);美国专利No.6,602,684(Umana等);及US2005/0123546(Umana等)。还提供了在附着于Fc区的寡糖中具有至少一个半乳糖残基的抗体变体。此类抗体变体可以具有改善的CDC功能。此类抗体变体记载于例如WO1997/30087(Patel等);WO1998/58964(Raju,S.);及WO1999/22764(Raju,S.)。
c)Fc区变体
在某些实施方案中,可以将一处或多处氨基酸修饰引入本文中提供的抗体的Fc区中,由此生成Fc区变体。Fc区变体可以包含在一个或多个氨基酸位置包含氨基酸修饰(例如替代)的人Fc区序列(例如,人IgG1、IgG2、IgG3或IgG4Fc区)。
在某些实施方案中,本发明涵盖拥有一些但不是所有效应器功能的抗体变体,所述效应器功能使其成为如下应用的期望候选物,其中抗体的体内半衰期是重要的,而某些效应器功能(诸如补体和ADCC)是不必要的或有害的。可以进行体外和/或体内细胞毒性测定法以确认CDC和/或ADCC活性的降低/消减。例如,可以进行Fc受体(FcR)结合测定法以确保抗体缺乏FcγR结合(因此有可能缺乏ADCC活性),但是保留FcRn结合能力。介导ADCC的主要细胞NK细胞仅表达FcγRIII,而单核细胞表达FcγRI、FcγRII和FcγRIII。在Ravetch和Kinet,Annu.Rev.Immunol.9:457-492(1991)的第464页上的表3中汇总了造血细胞上的FcR表达。评估感兴趣分子的ADCC活性的体外测定法的非限制性例子记载于美国专利No.5,500,362(见例如Hellstrom,I.等Proc.Nat’l Acad.Sci.USA83:7059-7063(1986))和Hellstrom,I等,Proc.Nat’l Acad.Sci.USA82:1499-1502(1985);5,821,337(见Bruggemann,M.等,J.Exp.Med.166:1351-1361(1987))。或者,可以采用非放射性测定方法(见例如用于流式细胞术的ACTITM非放射性细胞毒性测定法(CellTechnology,Inc.MountainView,CA;和CytoTox
Figure BDA0000432912460000391
非放射性细胞毒性测定法(Promega,Madison,WI))。对于此类测定法有用的效应细胞包括外周血单个核细胞(PBMC)和天然杀伤(NK)细胞。或者/另外,可以在体内评估感兴趣分子的ADCC活性,例如在动物模型中,诸如披露于Clynes等Proc.Nat’l Acad.Sci.USA95:652-656(1998)的。也可以实施C1q结合测定法以确认抗体不能结合C1q,并且因此缺乏CDC活性。见例如WO2006/029879和WO2005/100402中的C1q和C3c结合ELISA。为了评估补体激活,可以实施CDC测定法(见例如Gazzano-Santoro等,J.Immunol.Methods202:163(1996);Cragg,M.S.等,Blood101:1045-1052(2003);及Cragg,M.S.和M.J.Glennie,Blood103:2738-2743(2004))。也可以使用本领域中已知的方法来实施FcRn结合和体内清除/半衰期测定(见例如Petkova,S.B.等,Int’l.Immunol.18(12):1759-1769(2006))。
具有降低的效应器功能的抗体包括那些具有Fc区残基238,265,269,270,297,327和329中的一个或多个的替代的(美国专利No.6,737,056)。此类Fc突变体包括在氨基酸位置265、269、270、297和327中的两处或更多处具有替代的Fc突变体,包括残基265和297替代成丙氨酸的所谓的“DANA”Fc突变体(美国专利No.7,332,581)。
描述了具有改善的或降低的对FcR的结合的某些抗体变体(见例如美国专利No.6,737,056;WO2004/056312,及Shields等,J.Biol.Chem.9(2):6591-6604(2001))。
在某些实施方案中,抗体变体包含具有改善ADCC的一处或多处氨基酸替代,例如Fc区的位置298、333、和/或334(残基的EU编号方式)的替代的Fc区。
在一些实施方案中,对Fc区做出改变,其导致改变的(即,改善的或降低的)C1q结合和/或补体依赖性细胞毒性(CDC),例如,如记载于美国专利No.6,194,551、WO99/51642、及Idusogie等J.Immunol.164:4178-4184(2000)的。
具有延长的半衰期和改善的对新生儿Fc受体(FcRn)的结合的抗体记载于US2005/0014934A1(Hinton等),新生儿Fc受体(FcRn)负责将母体IgG转移至胎儿(Guyer等,J.Immunol.117:587(1976)及Kim等,J.Immunol.24:249(1994))。那些抗体包含其中具有改善Fc区对FcRn结合的一处或多处替代的Fc区。此类Fc变体包括那些在Fc区残基238,256,265,272,286,303,305,307,311,312,317,340,356,360,362,376,378,380,382,413,424或434中的一处或多处具有替代,例如,Fc区残基434的替代的(美国专利No.7,371,826)。
还可见Duncan和Winter,Nature322:738-40(1988);美国专利No.5,648,260;美国专利No.5,624,821;及WO94/29351,其关注Fc区变体的其它例子。
d)经半胱氨酸工程化改造的抗体变体
在某些实施方案中,可以期望创建经半胱氨酸工程化改造的抗体,例如,“thioMAb”,其中抗体的一个或多个残基用半胱氨酸残基替代。在具体的实施方案中,替代的残基存在于抗体的可接近位点。通过用半胱氨酸替代那些残基,反应性硫醇基团由此定位于抗体的可接近位点,并且可以用于将抗体与其它模块,诸如药物模块或接头-药物模块缀合,以创建免疫缀合物,如本文中进一步描述的。在某些实施方案中,可以用半胱氨酸替代下列残基之任一个或多个:轻链的V205(Kabat编号方式);重链的A118(EU编号方式);和重链Fc区的S400(EU编号方式)。可以如例如美国专利No.7,521,541所述生成经半胱氨酸工程化改造的抗体。
e)抗体衍生物
在某些实施方案中,可以进一步修饰本文中提供的抗体以含有本领域知道的且易于获得的额外非蛋白质性质模块。适合于抗体衍生化的模块包括但不限于水溶性聚合物。水溶性聚合物的非限制性例子包括但不限于聚乙二醇(PEG)、乙二醇/丙二醇共聚物、羧甲基纤维素、右旋糖苷、聚乙烯醇、聚乙烯吡咯烷酮、聚-1,3-二氧戊环、聚-1,3,6-三口恶烷、乙烯/马来酸酐共聚物、聚氨基酸(均聚物或随机共聚物)、和右旋糖苷或聚(n-乙烯吡咯烷酮)聚乙二醇、丙二醇均聚物、环氧丙烷/环氧乙烷共聚物、聚氧乙烯化多元醇(例如甘油)、聚乙烯醇及其混合物。由于其在水中的稳定性,聚乙二醇丙醛在生产中可能具有优势。聚合物可以是任何分子量,而且可以是分支的或不分支的。附着到抗体上的聚合物数目可以变化,而且如果附着了超过一个聚合物,那么它们可以是相同或不同的分子。一般而言,可根据下列考虑来确定用于衍生化的聚合物的数目和/或类型,包括但不限于抗体要改进的具体特性或功能、抗体衍生物是否将用于指定条件下的治疗等。
在另一个实施方案中,提供了抗体和可以通过暴露于辐射选择性加热的非蛋白质性质模块的缀合物。在一个实施方案中,非蛋白质性质模块是碳纳米管(Kam等,Proc.Natl.Acad.Sci.USA102:11600-11605(2005))。辐射可以是任何波长的,并且包括但不限于对普通细胞没有损害,但是将非蛋白质性质模块加热至抗体-非蛋白质性质模块附近的细胞被杀死的温度的波长。
B.重组方法和组合物
可以使用重组方法和组合物来生成抗体,例如,如记载于美国专利No.4,816,567的。在一个实施方案中,提供了编码本文中所描述的抗FGFR4抗体的分离的核酸。此类核酸可以编码包含抗体VL的氨基酸序列和/或包含VH的氨基酸序列(例如,抗体的轻和/或重链)。在又一个实施方案中,提供了包含此类核酸的一种或多种载体(例如,表达载体)。在又一个实施方案中,提供了包含此类核酸的宿主细胞。在一个此类实施方案中,宿主细胞包含(例如,已经用下列载体转化):(1)包含核酸的载体,所述核酸编码包含抗体的VL的氨基酸序列和包含抗体的VH的氨基酸序列,或(2)第一载体和第二载体,所述第一载体包含编码包含抗体的VL的氨基酸序列的核酸,所述第二载体包含编码包含抗体的VH的氨基酸序列的核酸。在一个实施方案中,宿主细胞是真核的,例如中国仓鼠卵巢(CHO)细胞或淋巴样细胞(例如,Y0、NS0、Sp20细胞)。在一个实施方案中,提供了生成抗FGFR4抗体的方法,其中该方法包括在适合于表达抗体的条件下培养包含编码抗体的核酸的宿主细胞,如上文提供的,并且任选地,自宿主细胞(或宿主细胞培养液)回收抗体。
对于抗FGFR4抗体的重组生成,将编码抗体的核酸(例如如上文所描述的)分离,并插入一种或多种载体中,以在宿主细胞中进一步克隆和/或表达。可以使用常规规程将此类核酸容易地分离并测序(例如,通过使用寡核苷酸探针来进行,所述寡核苷酸探针能够特异性结合编码抗体的重和轻链的基因)。
适合于克隆或表达抗体编码载体的宿主细胞包括本文中所描述的原核或真核细胞。例如,可以在细菌中生成抗体,特别是在不需要糖基化和Fc效应器功能时。对于抗体片段和多肽在细菌中的表达,见例如美国专利No.5,648,237,5,789,199和5,840,523(还可见Charlton,Methods in MolecularBiology,第248卷(B.K.C.Lo编,Humana Press,Totowa,NJ,2003),第245-254页,其描述了抗体片段在大肠杆菌(E.coli.)中的表达)。表达后,可以将抗体在可溶性级分中自细菌细胞团糊分离,并可以进一步纯化。
在原核生物外,真核微生物诸如丝状真菌或酵母是适合于抗体编码载体的克隆或表达宿主,包括其糖基化途径已经“人源化”,导致生成具有部分或完全人的糖基化样式的抗体的真菌和酵母菌株。见Gerngross,Nat.Biotech.22:1409-1414(2004),及Li等,Nat.Biotech.24:210-215(2006)。
适合于表达糖基化抗体的宿主细胞也自多细胞生物体(无脊椎动物和脊椎动物)衍生。无脊椎动物细胞的例子包括植物和昆虫细胞。已经鉴定出许多杆状病毒株,其可以与昆虫细胞一起使用,特别是用于转染草地夜蛾(Spodoptera frugiperda)细胞。
也可以利用植物细胞培养物作为宿主。见例如美国专利No.5,959,177,6,040,498,6,420,548,7,125,978和6,417,429(其描述了用于在转基因植物中生成抗体的PLANTIBODIESTM技术)。
也可以使用脊椎动物细胞作为宿主。例如,适合于在悬浮液中生长的哺乳动物细胞系可以是有用的。有用的哺乳动物宿主细胞系的其它例子是经SV40转化的猴肾CV1系(COS-7);人胚肾系(293或293细胞,如记载于例如Graham等,J.Gen Virol.36:59(1977)的);幼年仓鼠肾细胞(BHK);小鼠塞托利(sertoli)细胞(TM4细胞,如记载于例如Mather,Biol.Reprod.23:243-251(1980)的);猴肾细胞(CV1);非洲绿猴肾细胞(VERO-76);人宫颈癌细胞(HELA);犬肾细胞(MDCK;牛鼠(buffalo rat)肝细胞(BRL3A);人肺细胞(W138);人肝细胞(Hep G2);小鼠乳房肿瘤(MMT060562);TRI细胞,如记载于例如Mather等,Annals N.Y.Acad.Sci.383:44-68(1982)的;MRC5细胞;和FS4细胞。其它有用的哺乳动物宿主细胞系包括中国仓鼠卵巢(CHO)细胞,包括DHFR-CHO细胞(Urlaub等,Proc.Natl.Acad.Sci.USA77:4216(1980));和骨髓瘤细胞系诸如Y0、NS0和Sp2/0。关于适合于抗体生成的某些哺乳动物宿主细胞系的综述,见例如Yazaki和Wu,Methods in Molecular Biology,第248卷(B.K.C.Lo编,Humana Press,Totowa,NJ),第255-268页(2003)。
C.测定法
可以通过本领域中已知的多种测定法对本文中提供的抗FGFR4抗体鉴定、筛选、或表征其物理/化学特性和/或生物学活性。
1.结合测定法和其它测定法
一方面,对本发明的抗体测试其抗原结合活性,例如通过已知的方法诸如ELISA或Western印迹等来进行。
另一方面,可使用竞争测定法来鉴定与抗体LD1竞争对FGFR4的结合的抗体。在某些实施方案中,此类竞争性抗体结合与抗体LD1所结合表位相同的表位(例如线性或构象表位)。用于定位抗体所结合表位的详细例示性方法见Morris(1996)“Epitope Mapping Protocols”,Methods in Molecular Biologyvol.66(Humana Press,Totowa,NJ)。
在一种例示性竞争测定法中,在包含第一经标记抗体(其结合FGFR4,例如抗体LD1)和第二未标记抗体(其要测试与第一抗体竞争对FGFR4的结合的能力)的溶液中温育固定化FGFR4。第二抗体可存在于杂交瘤上清液中。作为对照,在包含第一经标记抗体但不包含第二未标记抗体的溶液中温育固定化FGFR4。在允许第一抗体结合FGFR4的条件下温育后,除去过量的未结合抗体,并测量与固定化FGFR4联合的标记物的量。如果测试样品中与固定化FGFR4联合的标记物的量与对照样品相比实质性降低,那么这指示第二抗体与第一抗体竞争对FGFR4的结合。参见Harlow and Lane(1988)Antibodies:A Laboratory Manual ch.14(Cold Spring Harbor Laboratory,Cold Spring Harbor,NY)。
2.活性测定法
一方面,提供了用于鉴定具有生物学活性的抗FGFR4抗体的测定法。生物学活性可包括例如抑制:FGF(例如FGF1)刺激的表达FGFR4的细胞(例如HUH7细胞)增殖,FGF19介导的对暴露于FGF19的细胞中CYP7α7表达的抑制,FGF19诱导的对暴露于FGF19的细胞中FGFR4、MAPK、FRS2和/或ERK2的磷酸化,及FGF19诱导的集落形成(在一些实施方案中,HCC细胞系集落形成)。
还提供了在体内和/或在体外具有此类生物学活性的抗体。
在某些实施方案中,对本发明的抗体测试此类生物学活性。本文中描述了用于测试此类生物学活性的测定法。
在某些实施方案中,对本发明的抗体测试其在体外抑制细胞生长或增殖的能力。抑制细胞生长或增殖的测定法是本领域公知的。细胞增殖的某些测定法,以本文所述“细胞杀伤”测定法为例,测量细胞存活力(viability)。这样的一种测定法是CellTiter-GloTM发光细胞存活力测定法,其可购自Promega(Madison,WI)。该测定法基于存在的ATP(有代谢活性的细胞的一项指标)的量化来测定培养物中的可存活细胞数。参见Crouch等(1993)J.Immunol.Meth.160:81-88;美国专利No.6602677。该测定法可以以96孔或384孔形式进行,使之适应自动化高通量筛选(HTS)。参见Cree等(1995)AntiCancer Drugs6:398-404。该测定法规程牵涉直接向培养细胞添加单一试剂(
Figure BDA0000432912460000441
试剂)。这导致细胞溶解和通过萤光素酶反应产生的发光信号的生成。发光信号与存在的ATP的量成正比,后者直接与培养物中存在的可存活细胞数成正比。可以通过光度计或CCD照相机成像装置来记录数据。发光输出表述成相对光单位(RLU)。
细胞增殖的另一种测定法是“MTT”测定法,一种测量3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑氮溴化物被线粒体还原酶氧化成甲
Figure BDA0000432912460000442
(formazan)的比色测定法。像CellTiter-GloTM测定法一样,此测定法指示细胞培养物中存在的有代谢活性的细胞的数目。参见例如Mosmann(1983)J.Immunol.Meth.65:55-63;及Zhang等(2005)Cancer Res.65:3877-3882。
用于任何上述体外测定法的细胞包括天然表达FGFR4或经改造而表达FGFR4的细胞或细胞系。此类细胞包括相对于同一组织起源的正常细胞过表达FGFR4的肿瘤细胞。此类细胞还包括表达FGFR4的细胞系(包括肿瘤细胞系)和在正常情况下不表达FGFR4但经编码FGFR4的核酸转染的细胞系。本文中提供的、供任何上述体外测定法中使用的例示性细胞系包括HCC细胞系HUH7。
一方面,对本发明的抗FGFR4抗体测试其在体内抑制细胞生长或增殖的能力。在某些实施方案中,对本发明的抗FGFR4抗体测试其在体内抑制肿瘤生长的能力。体内模型系统,诸如异种移植物模型,可用于此类测试。在一种例示性异种移植物系统中,将人肿瘤细胞导入适当免疫受损的非人动物,例如无胸腺的“裸”小鼠。将本发明的抗体施用于所述动物。测量抗体抑制或降低肿瘤生长的能力。在上述异种移植物系统的某些实施方案中,所述人肿瘤细胞是来自人类患者的肿瘤细胞。此类异种移植物模型可购自OncotestGmbH(Frieberg,Germany)。在某些实施方案中,上述人肿瘤细胞是来自人肿瘤细胞系的细胞,诸如HUH7HCC肿瘤细胞。在某些实施方案中,通过皮下注射或通过移植入合适的位点(诸如乳房脂肪垫),将人肿瘤细胞导入适当免疫受损的非人动物。在某些实施方案中,异种移植物模型是过表达FGF19的转基因小鼠,例如本文及nicholes et al,Am J Pathol160:2295-2307中记载的。
要理解,任何上述测定法可以使用本发明的免疫偶联物替换或补充抗FGFR4抗体来进行。
要理解,任何上述测定法可以使用抗FGFR4抗体和其它的治疗剂,诸如化疗剂来进行。
D.免疫缀合物
本发明还提供了包含与一种或多种细胞毒剂,诸如化疗剂或药物、生长抑制剂、毒素(例如蛋白质毒素,细菌、真菌、植物或动物起源的酶活性毒素,或其片段)、或放射性同位素缀合的本文中的抗FGFR4抗体的免疫缀合物。
在另一个实施方案中,免疫缀合物是抗体-药物缀合物(ADC),其中抗体与一种或多种药物缀合,包括但不限于美登木素生物碱(见美国专利No.5,208,020、5,416,064和欧洲专利EP0 425 235B1);auristatin诸如单甲基auristatin药物模块DE和DF(MMAE和MMAF)(见美国专利No.5,635,483和5,780,588及7,498,298);多拉司他汀(dolastatin);加利车霉素(calicheamicin)或其衍生物(见美国专利No.5,712,374,5,714,586,5,739,116,5,767,285,5,770,701,5,770,710,5,773,001和5,877,296;Hinman等,Cancer Res.53:3336-3342(1993);及Lode等,Cancer Res.58:2925-2928(1998));蒽环类抗生素诸如道诺霉素(daunomycin)或多柔比星(doxorubicin)(见Kratz等,CurrentMed.Chem.13:477-523(2006);Jeffrey等,Bioorganic&Med.Chem.Letters16:358-362(2006);Torgov等,Bioconj.Chem.16:717-721(2005);Nagy等,Proc.Natl.Acad.Sci.USA97:829-834(2000);Dubowchik等,Bioorg.&Med.Chem.Letters12:1529-1532(2002);King等,J.Med.Chem.45:4336-4343(2002);及美国专利No.6,630,579);甲氨蝶呤;长春地辛(vindesine);紫杉烷(taxane)诸如多西他赛(docetaxel)、帕利他塞、larotaxel、tesetaxel、和ortataxel;单端孢霉素(trichothecene);和CC1065。
在另一个实施方案中,免疫缀合物包含与酶活性毒素或其片段缀合的如本文中所描述的抗体,所述酶活性毒素包括但不限于白喉A链、白喉毒素的非结合活性片段、外毒素A链(来自铜绿假单胞菌(Pseudomonas aeruginosa))、蓖麻毒蛋白(ricin)A链、相思豆毒蛋白(abrin)A链、蒴莲根毒蛋白(modeccin)A链、α-帚曲霉素(sarcin)、油桐(Aleutites fordii)毒蛋白、香石竹(dianthin)毒蛋白、美洲商陆(Phytolaca americana)蛋白(PAPI、PAPII和PAP-S)、苦瓜(Momordica charantia)抑制物、麻疯树毒蛋白(curcin)、巴豆毒蛋白(crotin)、肥皂草(sapaonaria officinalis)抑制剂、白树毒蛋白(gelonin)、丝林霉素(mitogellin)、局限曲菌素(restrictocin)、酚霉素(phenomycin)、依诺霉素(enomycin)和单端孢菌素(trichothecenes)。
在一个实施方案中,免疫缀合物包含与放射性原子缀合以形成放射性缀合物的如本文中所描述的抗体。多种放射性同位素可用于生成放射性缀合物。例子包括At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、P32、Pb212和Lu的放射性同位素。在使用放射性缀合物进行检测时,它可以包含供闪烁法研究用的放射性原子,例如tc99m或I123,或供核磁共振(NMR)成像(又称为磁共振成像,mri)用的自旋标记物,诸如再一次的碘-123、碘-131、铟-111、氟-19、碳-13、氮-15、氧-17、钆、锰或铁。
可以使用多种双功能蛋白质偶联剂来生成抗体和细胞毒剂的缀合物,诸如N-琥珀酰亚氨基3-(2-吡啶基二硫代)丙酸酯(SPDP),琥珀酰亚氨基-4-(N-马来酰亚氨基甲基)环己烷-1-羧酸酯(SMCC),亚氨基硫烷(IT),亚氨酸酯(诸如盐酸己二酰亚氨酸二甲酯)、活性酯类(诸如辛二酸二琥珀酰亚氨基酯)、醛类(诸如戊二醛)、双叠氮化合物(诸如双(对-叠氮苯甲酰基)己二胺)、双重氮衍生物(诸如双(对-重氮苯甲酰基)-乙二胺)、二异硫氰酸酯(诸如甲苯2,6-二异氰酸酯)、和双活性氟化合物(诸如1,5-二氟-2,4-二硝基苯)的双功能衍生物。例如,可以如Vitetta等,Science238:1098(1987)中所述制备蓖麻毒蛋白免疫毒素。碳-14标记的1-异硫氰酸苄基-3-甲基二亚乙基三胺五乙酸(MX-DTPA)是用于将放射性核苷酸与抗体偶联的例示性螯合剂。参见WO94/11026。接头可以是便于在细胞中释放细胞毒性药物的“可切割接头”。例如,可使用酸不稳定接头、肽酶敏感性接头、光不稳定接头、二甲基接头或含二硫化物接头(Chari等,Cancer Res52:127-131(1992);美国专利No.5,208,020)。
本文中的免疫缀合物或ADC明确涵盖,但不限于用交联试剂制备的此类缀合物,所述交联试剂包括但不限于BMPS、EMCS、GMBS、HBVS、LC-SMCC、MBS、MPBH、SBAP、SIA、SIAB、SMCC、SMPB、SMPH、sulfo-EMCS、sulfo-GMBS、sulfo-KMUS、sulfo-MBS、sulfo-SIAB、sulfo-SMCC、和sulfo-SMPB,及SVSB(琥珀酰亚氨基-(4-乙烯基砜)苯甲酸酯),它们是商品化的(例如,来自Pierce Biotechnology,Inc.,Rockford,IL.,U.S.A)。
E.用于诊断和检测的方法和组合物
在某些实施方案中,本文中提供的任何抗FGFR4抗体可用于检测生物学样品中FGFR4的存在。在用于本文时,术语“检测”涵盖定量或定性检测。在某些实施方案中,生物学样品包含细胞或组织,诸如乳腺/乳房、胰、食管、肺和/或脑。
在一个实施方案中,提供了在诊断或检测方法中使用的抗FGFR4抗体。在又一方面,提供了检测生物学样品中FGFR4的存在的方法。在某些实施方案中,该方法包括在容许抗FGFR4抗体结合FGFR4的条件下使生物学样品与抗FGFR4抗体接触,如本文中所描述的,并检测是否在抗FGFR4抗体与FGFR4之间形成复合物。此类方法可以是体外或体内方法。在一个实施方案中,使用抗FGFR4抗体来选择适合用抗FGFR4抗体治疗的受试者,例如其中FGFR4是一种用于选择患者的生物标志。
可使用本发明的抗体来诊断的例示性病症包括癌症(例如乳腺癌、肺癌、胰腺癌、脑癌、肾癌、胃癌、白血病、子宫内膜癌、结肠癌、前列腺癌、垂体癌、乳房纤维腺瘤、头和颈癌、软组织癌、成神经细胞瘤、黑素瘤、子宫内膜癌、睾丸癌、胆管癌、胆囊癌和肝癌)。
在某些实施方案中,提供了经标记的抗FGFR4抗体。标记物包括但不限于直接检测的标记物或模块(诸如荧光、发色、电子致密、化学发光、和放射性标记物)、及例如经由酶反应或分子相互作用间接检测的模块,诸如酶或配体。例示性的标记物包括但不限于放射性同位素32P、14C、125I、3H、和131I、荧光团诸如稀土螯合物或荧光素及其衍生物、罗丹明(rhodamine)及其衍生物、丹酰、伞形酮、萤光素酶,例如,萤火虫萤光素酶和细菌萤光素酶(美国专利No.4,737,456)、萤光素、2,3-二氢酞嗪二酮、辣根过氧化物酶(HRP)、碱性磷酸酶、β-半乳糖苷酶、葡糖淀粉酶、溶菌酶、糖类氧化酶,例如,葡萄糖氧化酶、半乳糖氧化酶、和葡萄糖-6-磷酸脱氢酶、杂环氧化酶诸如尿酸酶和黄嘌呤氧化酶(其与采用过氧化氢氧化染料前体的酶诸如HRP偶联)、乳过氧化物酶、或微过氧化物酶、生物素/亲合素、自旋标记物、噬菌体标记物、稳定的自由基、等等。
F.药物配制剂
通过混合具有期望纯度的此类抗体与一种或多种任选的药学可接受载体(Remington’s Pharmaceutical Sciences第16版,Osol,A.编(1980))混合以冻干配制剂或水性溶液形式制备如本文中所描述的抗FGFR4抗体的药物配制剂。一般地,药学可接受载体在所采用的剂量和浓度对接受者是无毒的,而且包括但不限于缓冲剂,诸如磷酸盐、柠檬酸盐、和其它有机酸;抗氧化剂,包括抗坏血酸和甲硫氨酸;防腐剂(诸如氯化十八烷基二甲基苄基铵;氯化己烷双胺;苯扎氯铵、苯索氯铵;酚、丁醇或苯甲醇;对羟基苯甲酸烃基酯,诸如对羟基苯甲酸甲酯或丙酯;邻苯二酚;间苯二酚;环己醇;3-戊醇;和间甲酚);低分子量(少于约10个残基)多肽;蛋白质,诸如血清清蛋白、明胶或免疫球蛋白;亲水性聚合物,诸如聚乙烯吡咯烷酮;氨基酸,诸如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或赖氨酸;单糖、二糖和其它碳水化合物,包括葡萄糖、甘露糖或糊精;螯合剂,诸如EDTA;糖类,诸如蔗糖、甘露醇、海藻糖或山梨醇;成盐相反离子,诸如钠;金属复合物(例如Zn-蛋白质复合物);和/或非离子表面活性剂,诸如聚乙二醇(PEG)。本文中的例示性的药学可接受载体进一步包含间质药物分散剂诸如可溶性中性活性透明质酸酶糖蛋白(sHASEGP),例如人可溶性PH-20透明质酸酶糖蛋白,诸如rHuPH20(
Figure BDA0000432912460000481
Baxter International,Inc.)。某些例示性的sHASEGP和使用方法,包括rHuPH20记载于美国专利公开文本No.2005/0260186和2006/0104968。在一方面,将sHASEGP与一种或多种别的糖胺聚糖酶诸如软骨素酶组合。
例示性的冻干抗体配制剂记载于美国专利No.6,267,958。水性抗体配制剂包括那些记载于美国专利No.6,171,586和WO2006/044908的,后一种配制剂包含组氨酸-乙酸盐缓冲液。
本文中的配制剂还可含有超过一种所治疗具体适应症所必需的活性组分,优选那些活性互补且彼此没有不利影响的化合物。例如,可能希望进一步提供EGFR拮抗剂(诸如厄洛替尼)、抗血管发生剂(诸如VEGF拮抗剂,诸如抗VEGF抗体)或化疗剂(诸如紫杉烷类或铂剂)。此类活性组分适于以有效用于所需目的的量而组合存在。
活性成分可包载于例如通过凝聚技术或通过界面聚合制备的微胶囊中(例如分别是羟甲基纤维素或明胶微胶囊和聚(甲基丙烯酸甲酯)微胶囊),在胶状药物投递系统中(例如脂质体、清蛋白微球体、微乳剂、纳米颗粒和纳米胶囊),或在粗滴乳状液中。此类技术披露于例如Remington'sPharmaceutical Sciences,第16版,Osol,A.编(1980)。
可以制备持续释放制剂。持续释放制剂的合适的例子包括含有抗体的固体疏水性聚合物的半透性基质,该基质为成形商品形式,例如膜,或微胶囊。
用于体内施用的配制剂一般是无菌的。无菌性可容易地实现,例如通过穿过无菌滤膜过滤。
G.治疗性方法和组合物
可以在治疗性方法中使用本文中提供的任何抗FGFR4抗体。
在一方面,提供了作为药物使用的抗FGFR4抗体。在其它的方面,提供了在治疗癌症中使用的抗FGFR4抗体。在其它的方面,提供了在治疗肝病(例如硬化)中使用的抗FGFR4抗体。在其它的方面,提供了在治疗消耗性病症中使用的抗FGFR4抗体。在某些实施方案中,提供了在治疗方法中使用的抗FGFR4抗体。在某些实施方案中,本发明提供了在治疗具有癌症的个体的方法中使用的抗FGFR4抗体,所述方法包括对个体施用有效量的抗FGFR4抗体。在某些实施方案中,本发明提供了在治疗具有肝病症(诸如硬化)的个体的方法中使用的抗FGFR4抗体,所述方法包括对个体施用有效量的抗FGFR4抗体。在一个此类实施方案中,所述方法进一步包括对个体施用有效量的至少一种其它的治疗剂,例如如下文所描述的。在又一些实施方案中,本发明提供了在抑制细胞增殖中使用的抗FGFR4抗体。
在某些实施方案中,本发明提供了在个体中抑制细胞增殖的方法中使用的抗FGFR4抗体,所述方法包括对个体施用有效量的抗FGFR4抗体以抑制细胞增殖。依照任何上述实施方案的“个体”优选是人。
在又一方面,本发明提供了抗FGFR4抗体在制造或制备药物中的用途。在一个实施方案中,药物用于治疗癌症。在又一个实施方案中,所述药物用于治疗癌症的方法,包括对具有癌症的个体施用有效量的药物。在一个实施方案中,药物用于治疗肝病症(诸如硬化、非酒精性脂肪肝疾病、胆汁性肝硬化、硬化性胆管炎、渐进性家族性肝内胆汁淤积)。在又一个实施方案中,所述药物用于治疗肝病症(诸如硬化、非酒精性脂肪肝疾病、胆汁性肝硬化、硬化性胆管炎、渐进性家族性肝内胆汁淤积)的方法,包括对具有肝病症的个体施用有效量的药物。在一个此类实施方案中,所述方法进一步包括对个体施用有效量的至少一种其它的治疗剂,例如如下文所描述的。在又一个实施方案中,药物用于抑制细胞增殖。在又一个实施方案中,药物用于在个体中抑制细胞增殖的方法,所述方法包括对个体施用有效量的药物以抑制细胞增殖。依照任何上述实施方案的“个体”可以是人。
在又一方面,本发明提供了治疗癌症的方法。在一个实施方案中,所述方法包括对具有此类癌症的个体施用有效量的抗FGFR4抗体。在一个此类实施方案中,所述方法进一步包括对个体施用有效量的至少一种其它的治疗剂,如下文所描述的。依照任何上述实施方案的“个体”可以是人。
在又一方面,本发明提供了治疗肝病症(诸如硬化、非酒精性脂肪肝疾病、胆汁性肝硬化、硬化性胆管炎、渐进性家族性肝内胆汁淤积)的方法。在一个实施方案中,所述方法包括对具有此类肝病症的个体施用有效量的抗FGFR4抗体。在一个此类实施方案中,所述方法进一步包括对个体施用有效量的至少一种其它的治疗剂,如下文所描述的。依照任何上述实施方案的“个体”可以是人。
在又一个方面,本发明提供了用于治疗消耗性病症的方法。在一个实施方案中,所述方法包括对具有此类消耗性病症的个体施用有效量的抗FGFR4抗体。在一个此类实施方案中,所述方法进一步包括对个体施用有效量的至少一种其它的治疗剂,如下文所描述的。依照任何上述实施方案的“个体”可以是人。
在又一个方面,本发明提供了用于在个体中抑制细胞增殖的方法。在一个实施方案中,所述方法包括对个体施用有效量的抗FGFR4抗体以抑制细胞增殖。在一个实施方案中,“个体”是人。
在又一方面,本发明提供了药物配制剂,其包含本文中提供的任何抗FGFR4抗体,例如在任何上述治疗性方法中使用。在一个实施方案中,药物配制剂包含本文中提供的任何抗FGFR4抗体和药学可接受载体。在另一个实施方案中,药物配制剂包含本文中提供的任何抗FGFR4抗体和至少一种其它的治疗剂,例如如下文所描述的。
可以单独或与疗法中的其它药剂组合使用本发明的抗体。例如,可以与至少一种其它的治疗剂共施用本发明的抗体。在某些实施方案中,其它的治疗剂是化学治疗剂。在某些实施方案中,其它的治疗剂是抗血管发生剂。
上文记录的此类联合疗法涵盖联合施用(其中两种或更多种治疗剂包含在相同或不同配制剂中),和分开施用,在该情况中,可以在施用其它的治疗剂和/或佐剂之前、同时、和/或之后发生本发明的抗体的施用。也可以与放射疗法组合使用本发明的抗体。
可以通过任何合适的手段,包括胃肠外、肺内、和鼻内,及若期望用于局部治疗的话,损伤内施用来施用本发明的抗体(和任何其它的治疗剂)。胃肠外输注包括肌肉内、静脉内、动脉内、腹膜内、或皮下施用。部分根据施用是短暂的还是长期的,剂量给药可以通过任何合适的路径,例如通过注射,诸如静脉内或皮下注射进行。本文中涵盖各种剂量给药日程表,包括但不限于单次施用或在多个时间点里的多次施用、推注施用、和脉冲输注。
本发明的抗体应当以一种符合良好的医学实践的方式配制、确定剂量及给药。关于这一点考虑的因素包括在治疗的特定病症、在治疗的特定哺乳动物、患者个体的临床状态、病因、药物递送部位、给药方法、服药日程以及其它为开业医生所知的因素。抗体无需但可任选地与一种或多种目前用于预防或治疗所述病症的药物一起配制。上述其它药物的有效量取决于配方中所存在的抗体的量、所治疗病症的类型、以及其它上述讨论的因素。这些药物通常以相同的剂量使用并具有本文中所描述的给药途径,或以约1-99%的本文所描述的剂量使用,或以任何剂量并通过任何途径使用,所述剂量和途径是凭经验确定的/经临床测定合适的。
为了预防或治疗疾病,本发明的抗体(当单独或与一种或多种其它其它的治疗剂联合使用时)的合适剂量应取决于所要治疗的疾病的类型、抗体的种类、疾病的严重性和病程、所给予抗体的预防或治疗目的、之前的治疗、患者的临床史和对抗体的应答、以及主治医师的斟酌决定。抗体适合于在一次或一系列的治疗中给予患者。取决于疾病的类型和严重性,约1μg/kg-15mg/kg(例如0.1mg/kg-10mg/kg)的抗体可作为首次候选用量给予患者,无论是例如通过一次或多次单独的给药或通过连续输注。取决予上述提及的因素,一个典型的日剂量可在约1μg/kg-100mg/kg或更多的范围内。对于几天或更长时间的重复给药,取决于病情,治疗应通常持续直至出现病症得到期望的抑制为止。上述剂量可间歇给予,如每周或每三周给予一次(如使得患者得到约2-约20个,或例如约6个剂量的抗体)。可给予初始较高的负荷剂量,接着给予一个或多个较低的剂量。然而,可使用其它给药方案。通过常规技术和测定方法易于监测该治疗的进展。
应当理解,可以替换抗FGFR4抗体及在抗FGFR4抗体外使用本发明的免疫缀合物实施任何上述配制剂或治疗性方法。
H.制品
在本发明的另一方面,提供了一种制品,其含有可用于治疗、预防和/或诊断上文所描述的病症的材料。制品包含容器和容器上或与容器联合的标签或包装插页。合适的容器包括例如瓶、管形瓶、注射器、IV溶液袋、等等。容器可以由多种材料诸如玻璃或塑料形成。容器容纳单独或与另一种组合物组合有效治疗、预防和/或诊断状况的组合物,并且可以具有无菌存取口(例如,容器可以是具有由皮下注射针可穿过的塞子的管形瓶或静脉内溶液袋)。组合物中的至少一种活性剂是本发明的抗体。标签或包装插页指示使用组合物来治疗选择的状况。此外,制品可以包含(a)具有其中含有的组合物的第一容器,其中组合物包含本发明的抗体;和(b)具有其中含有的组合物的第二容器,其中组合物包含其它的细胞毒性或其它方面治疗性的药剂。在本发明的此实施方案中的制品可以进一步包含包装插页,其指示可以使用组合物来治疗特定的状况。或者/另外,制品可以进一步包含第二(或第三)容器,其包含药学可接受缓冲液,诸如抑菌性注射用水(BWFI)、磷酸盐缓冲盐水、Ringer氏溶液和右旋糖溶液。它可以进一步包含从商业和用户观点看期望的其它材料,包括其它缓冲液、稀释剂、滤器、针、和注射器。
应当理解,任何上述制品可包括本发明的免疫缀合物来代替或补充抗FGFR4抗体。
III.实施例
A.抗FGFR4抗体处理抑制肝细胞癌
材料和方法
计算机表达分析。对于表达分析,用自BioExpressTM数据库(Gene Logic,Gaithersburg,MD)摘取的标准化基因表达数据为FGFR4生成了框图(box-plot)和线图(whisker-plot)。使用与探针204579_at有关的信号评估FGFR4表达在正常和癌组织中的分布。
免疫组织化学。使用Trilogy(Cell Marque,Rocklin,CA)处理福尔马林固定、石蜡包埋组织切片进行抗原修复,然后与10μg/ml抗FGFR4抗体(8G11;Genentech,South San Francisco,CA)一起温育。使用生物素化二抗ABC-HRP试剂(Vector Laboratories,Burlingame,CA)和金属增强型DAB比色法过氧化物酶底物(Thermo Fisher Scientific,Rockford,IL)实现免疫染色。
半定量RT-PCR。使用RNeasy试剂盒(Qiagen,Valencia,CA)提取总RNA。使用特异性引物和荧光探针扩增和量化基因表达(31)。将基因特异性信号针对RPL19持家基因标准化。所有TaqMan qRT-PCR试剂购自AppliedBiosystems(Foster City,CA)。对每种条件分析最少三套数据。数据表述为均值±SEM。
免疫沉淀和免疫印迹。用补充有完整无EDTA蛋白酶抑制剂混合物(Roche,Indianapolis,IN)、磷酸酶抑制剂混合物1和2(Sigma-Aldrich,St.Louis,MO)、2mM氟化钠、和2mM原钒酸钠的RIPA裂解缓冲液(Millipore,Billerica,MA)制备培养细胞或冷冻组织的裂解物。使用针对FGFR4(8G11;Genentech)、FGFR3(Santa Cruz Biotechnology,Santa Cruz,CA)、FGFR2(GeneTex,Irvine,CA)和FGFR1(Santa Cruz Biotechnology)的抗体通过免疫印迹分析来分析通过BCA测定法(Thermo Fisher Scientific)测定的等量的蛋白质。对于人肝裂解物,免疫印迹分析之前有FGFR4免疫沉淀,如先前所述(16)。
FGFR4单克隆抗体的生成。用重组人和小鼠FGFR4-Fc嵌合蛋白(Genentech)免疫FGFR4缺无小鼠。8周后收集脾并生成杂交瘤。收集培养物上清液,并通过固相抗体结合测定法针对免疫原进行筛选。使用固相受体结合测定法对阳性细胞系进一步筛选它们抑制FGF1和FGF19结合人和小鼠FGFR4的功效。将生成LD1的杂交瘤亚克隆两次以确保单克隆性。
LD1的分子克隆。使用RNeasy迷你试剂盒(Qiagen)自生成muLD1的杂交瘤细胞提取总RNA。使用逆转录-PCR(RT-PCR)扩增轻链可变域和重链可变域。正向引物是对轻链可变区和重链可变区的NH2端氨基酸序列特异性的。分别地,设计轻链和重链反向引物来与轻链恒定域和重链第一恒定域中在物种间高度保守的区域退火。将扩增的轻链可变域克隆入包含人κ恒定域的哺乳动物表达载体。将扩增的重链可变域插入编码全长人IgG1恒定域的哺乳动物表达载体。如先前所述瞬时表达嵌合抗体(16)。实施例的这个A部分(包括图1-9)中描述的实验使用嵌合LD1。
固相抗体结合测定法。将Maxisorp96孔板用50μl2μg/ml抗人免疫球蛋白Fc片段特异性(Jackson ImmunoResearch Laboratories,West Grove,PA)或抗FLAG抗体(Sigma-Aldrich)于4℃包被过夜。将非特异性结合位点用200μlPBS/3%牛血清清蛋白(BSA)饱和1小时,并将PBS/0.3%BSA中的FGFR-IgG(Genentech和R&D Systems,Minneapolis,MN)或带FLAG标签的FGFR4(FGFR4ΔTM-FLAG)温育1小时。清洗板,并与PBS/0.3%BSA中的抗FGFR4抗体一起温育1小时。使用HRP偶联的抗IgG(Jackson ImmunoResearchLaboratories)和TMB过氧化物酶显色底物(KPL,Gaithersburg,MD)检测结合的抗体。
流式细胞术分析。用含有5mM EDTA的PBS重悬浮用于流式细胞术分析的细胞,并用含有2%热灭活胎牛血清(FBS)的PBS清洗。在冰上进行所有后续步骤。将细胞(1x106个)与一抗(LD1或同种型对照)一起温育30分钟,接着与藻红蛋白(PE)偶联的抗人IgG抗体(Jackson ImmunoResearch)一起温育。用FACScan流式细胞仪(BD Biosciences,San Jose,CA)分析细胞。
DNA构建物。如先前所述克隆人FGFR4(hFGFR4)cDNA(16)。还将FGFR4的胞外域亚克隆入表达载体pCMV-Tag4A(Stratagene,La Jolla,CA)以获得在C端带有FLAG标签的分泌形式的FGFR4(FGFR4ΔTM-Flag)。使用QuikChange XL定点诱变试剂盒(Stratagene)在FGFR4ΔTM-Flag构建物中引入单核苷酸突变。我们还生成了包含相融合的人FGFR4胞外和跨膜域(FGFR4的氨基酸残基M1-G392)和人FGFR1胞质域(FGFR1的氨基酸残基K398-R820)的人FGFR4FGFR1嵌合构建物(hFGFR4/R1)。连接FGFR4(粗体)和FGFR1(平常)的氨基酸序列是···AVLLLLAGLYRGKMKSG·(SEQ IDNO:32)··。将hFGFR4cDNA或hFGFR4/R1cDNA连接入pQCXIP逆转录病毒双顺反子表达载体(Clontech Laboratories,Mountain View,CA)。
FGFR4ΔTM-Flag条件化培养基。用野生型或突变型FGFR4ΔTM-Flag构建物或相应空载体转染HEK293细胞,并维持在无血清PS25培养基中72至96小时。所得培养基过滤,补充HEPES pH7.2(终浓度40mM)和蛋白酶抑制剂,并保存于4℃直至使用。
细胞培养和稳定细胞系。HEK293、HEPG2、和HEP3B细胞得自美国典型培养物保藏中心(ATCC,Manassas,VA),并在补充有10%FBS和2mM L-谷氨酰胺的F12:DMEM混合物(50:50)中维持。HUH7和PLC/PRF/5细胞在DMEM高葡萄糖、10%FBS中培养。JHH4、JHH5、和JHH7细胞购自日本癌症研究资源库(Tokyo,Japan),并在补充有10%FBS和2mM L-谷氨酰胺的Williams培养基E中维持。SNU449细胞得自ATCC,并在含有10%FBS和2mML-谷氨酰胺的RPMI1640中维持。BaF3细胞在补充有10%FBS、1ng/ml IL-3、和2mM L-谷氨酰胺的RPMI1640(Life Technologies,Carlsbad,CA)中维持。L6细胞得自ATCC,并在补充有10%FBS的DMEM高葡萄糖中维持。
依照制造商的推荐用空、hFGFR4、或hFGFR4/R1逆转录病毒表达载体感染BaF3和L6细胞的培养物,并在含有2.5μg/mL嘌呤霉素(LifeTechnologies)的培养基中选择10至12天。使用抗FGFR4抗体(8G11;Genentech)通过荧光激活细胞分选(FACS)自选定集合分离第五百分位的最高表达细胞。在含有2.5μg/mL嘌呤霉素的完全培养基中维持表达高水平FGFR4、高水平FGFR4/R1的细胞的所得集合和用空载体稳定转染的对照细胞。
促有丝分裂测定法。将BaF3/对照、BaF3/FGFR4、和BaF3/FGFR4/R1细胞清洗两次,并在补充有10%FBS、2mM L-谷氨酰胺、和2μg/ml肝素的RPMI1640中接种96孔板(22,500个细胞/孔)。将FGF添加至每个孔,并将细胞于37℃温育72小时。使用CellTiter Glo(Promega,Madison,WI)依照制造商的推荐测量相对细胞密度。
FGF途径激活的抗FGFR4抗体抑制。在LD1或同种型对照抗体缺失或存在下将细胞血清饥饿24小时。然后将它们用5ng/ml FGF1(FGF酸性,R&DSystems)和10μg/ml肝素刺激5分钟。用补充有完整无EDTA蛋白酶抑制剂混合物(Roche)、磷酸酶抑制剂混合物1和2(Sigma-Aldrich)、2mM氟化钠、和2mM原钒酸钠的RIPA裂解缓冲液(Millipore)裂解细胞。使用针对磷酸ERK1/2、磷酸FRS2、ERK1/2(Cell Signaling Technology,Danvers,MA)、和FRS2(Millipore)的抗体通过免疫印迹分析等量的蛋白质。
克隆原(clonogenic)测定法。在6孔板中在2ml培养基/孔中接种HUH7(5,000个细胞/孔)、PLC/PRF/5(2,000个细胞/孔)、JHH5(500个细胞/孔)、或JHH5/hFGFR4shRNA(500个细胞/孔)细胞,一式三份。接种后3小时,在有或无抗FGFR4抗体(chLD1;Genentech)的情况下处理HUH7和PLC/PRF/5细胞。实验期间(14天)每周两次更换抗体。对于JHH5和JHH5/hFGFR4shRNA细胞,接种后3小时在有或无2mg/ml多西环素的情况下启动处理,并在实验期间每周更换三次。用PBS清洗细胞,并用0.5%结晶紫溶液染色。使用MetaMorph软件(Molecular Devices,Sunnyvale,CA)对集落计数。
体内实验。所有动物方案得到了科研动物护理和使用委员会的批准。5至6周龄的雌性nu/nu小鼠得自Charles River Laboratories International(Wilmington,MA)。给小鼠随意提供标准饲料和水直至注射前12小时,此时取出饲料。给予小鼠腹膜内(IP)注射(10mg/kg)对照或抗FGFR4(chLD1)抗体。18小时后,小鼠静脉内(IV)接受媒介(PBS)或1mg/kg FGF19。30分钟后,对来自所有组的小鼠进行尸检,并收集组织样品,在液氮中冷冻,并保存于-70℃。使用RNeasy试剂盒(Qiagen)制备来自冷冻组织样品的总RNA。对3至5只动物的组分析每种条件。数据表述为均值±SEM,且通过Student’s t检验进行分析。
对于异种移植物实验,给6至8周龄nu/nu雌性小鼠(Charles RiverLaboratories International)皮下接种5x106个细胞(200ul/小鼠)和Matrigel(BDBiosciences)。7天后,将携带等同体积(~150mm3)的肿瘤的小鼠随机化分组(n=10),并每周两次IP处理。用电子测径器(Fowler Sylvac Ultra-Cal MarkIII;Fred V.Fowler Company,Newton,MA)测量肿瘤,并使用公式(W2x L)/2计算平均肿瘤体积,其中W和L分别为较小直径和较大直径。数据表述为均值肿瘤体积±SEM且通过Student’s t检验进行分析。
如先前描述的生成FGF19转基因小鼠(32)。如先前报告的构建FGFR4缺无突变体(FGFR4-KO)动物(33)且由W.L.McKeehan依照材料转移协议(University of Texas Southwestern Medical Center,Dallas,TX)提供。通过将年轻成年FGF19-TG雄性与年轻成年FGFR4-KO雌性杂交来生成既过表达FGF19又缺失FGFR4受体的小鼠(FGF19-TG:FGFR4-KO)。在断奶时通过尾DNA PCR确认了两个基因工程事件的存在。
结果
FGF19转基因小鼠中的肝癌发生需要FGFR4。先前显示了转基因小鼠中的FGF19外源表达到10月龄时引起HCC(18)。为了评估FGFR4是否涉及这种由FGF19介导的肿瘤发生,我们将FGF19转基因(FGF19-TG)小鼠与FGFR4敲除(FGFR4-KO)小鼠或FGFR4野生型(FGFR4-WT)小鼠交配。在各个时间点对小鼠进行尸检,并通过实施肉眼和组织学检查及通过测量瘤形成前(preneoplastic)肝细胞增殖(即BrdU掺入)来评估肝癌发生。先前描述了FGF19-TG:FGFR4-WT小鼠中HCC的发生(18)。与FGF19-TG:FGFR4-WT小鼠相反,FGF19-TG:FGFR4-KO小鼠在此实验期间的任何时间不发生肝细胞瘤形成的肉眼或组织学证据(图1A)。还有,瘤形成前肝细胞增殖在具有FGFR4-WT基因型的FGF19-TG小鼠中显著升高,但是在FGF19-TG:FGFR4-KO同窝幼仔中不明显(图1B)。与先前报告的雌性FGF19-TG小鼠中肿瘤发生频率和严重性更高一致(18),BrdU掺入在FGF19-TG:FGFR4-WT雌性中与对应雄性相比增加(比较图1B的左边和右边小图)。我们还在FGF19-TG小鼠中评估了强力致肝癌物二乙基亚硝胺(DEN)对HCC发生的影响。施用DEN在FGF19-TG:FGFR4-WT小鼠中加速HCC发生。与未用DEN处理的FGF19-TG:FGFR4-WT小鼠的10月龄相比,到4月龄在来自所有用DEN处理的FGF19-TG:FGFR4-WT动物的肝中看到整个范围的瘤形成前和瘤形成损伤–改变的(嗜碱性)肝焦点、中心周围肝细胞发育异常、充分分化的肝细胞瘤、和攻击性肝细胞癌(图1D)。在所有时间点来自几乎所有FGF19-TG:FGFR4-WT小鼠的肝的主要形态学特征是在多片叶上具有肉眼看明显的HCC结节(图1C)。通过测量肝重评估了肿瘤负荷。相对肝重在用DEN处理的FGF19-TG:FGFR4-WT小鼠中在所有时间点逐渐升高(图1E)。有趣的是,肝重增加在雌性中(6个月时2.7倍)比在雄性中(6个月时1.8倍)要更加显著(比较图1E的左边和右边小图)。应当注意,无一雄性存活超过6月龄(图1E)。在FGFR4-KO小鼠中通过消除FGFR4表达消除了在用DEN处理的FGF19-TG:FGFR4-WT小鼠中观察到的肝癌发生。因而,FGF19-TG:FGFR4-KO小鼠的相对肝重在成年期间保持恒定(图1F)。这些结果提示小鼠中由FGF19促进的肝癌发生需要FGFR4表达。
抗FGFR4中和性单克隆抗体的生成。为了评估靶向FGFR4在HCC中是否能具有治疗影响,我们通过用重组小鼠和人FGFR4免疫FGFR4-KO小鼠,生成了FGFR4特异性单克隆抗体。依据结合小鼠、猕猴、和人FGFR4的特异性(图2A),选择所得克隆之一(称作LD1)。这种抗体不结合小鼠或人FGFR1、FGFR2、或FGFR3(图2A)。表面等离振子共振分析揭示了LD1以相当的亲和力结合小鼠、猕猴、和人FGFR4(图2B)。我们使用流式细胞术来评估LD1是否结合细胞表面上存在的FGFR4。LD1对用人FGFR4稳定转染的HEK293细胞的特异性结合与添加的抗体浓度成正比(图2C)。LD1不结合用空载体稳定转染的对照HEK293细胞。这些数据一起证明LD1特异性结合小鼠、猕猴、和人FGFR4且还识别在细胞表面表达的人受体。
为了为LD1定位FGFR4表位,我们比较了小鼠和人FGFR1、FGFR2、FGFR3、和FGFR4的氨基酸序列。基于它们在FGFR4直系同源物之间的相似性和它们在FGFR1-3直系同源物中的不相似性选择了八个氨基酸。将FGFR4中的这些氨基酸用FGFR3中等同位置处存在的氨基酸替代以生成人FGFR4的八种不同突变体构建物。表达这些构建物并使用固相结合测定法评估LD1结合。LD1同等好地结合野生型FGFR4和大多数突变体构建物;G165A是LD1结合受到削弱的唯一FGFR4突变体(图2D)。LD1不结合阴性对照野生型FGFR3(图2D)。我们还使用免疫印迹分析测试了LD1对突变体构建物的结合。将所有先前描述的蛋白质构建物还原,变性,电泳,并电转移至硝酸纤维素。将硝酸纤维素膜与LD1、识别不同表位的抗FGFR4抗体(8G11)、或抗FLAG抗体一起序贯温育。抗FLAG抗体和8G11检测到野生型FGFR4和所有FGFR4突变体构建物,而LD1同等好地检测到所有构建体但G165A突变体除外(图2E)。在对照道中通过任何抗体没有检测到蛋白质条带(图2E)。我们生成了FGFR4二聚体结合两分子FGF19的三维模型以显现G165的位置(图2F)。G165位于FGFR4-FGF19复合物的中央,在两个FGFR4亚基之间的接触点。这些结果一起显示G165对于LD1与人FGFR4的相互作用是至关重要的。LD1结合还原且变性的FGFR4还提示表位不依赖于三级构象。
我们接着使用固相受体结合测定法来测试LD1是否能阻断FGF1和FGF19结合FGFR4。LD1抑制FGF结合是剂量依赖性的且IC50对FGF1达到0.093±0.006nM,对FGF19达到0.102±0.003nM(图3A)。为了评估LD1是否能抑制细胞表面表达的FGFR4的功能,我们首先利用用编码FGFR4胞外域和FGFR1胞内域(BaF3/FGFR4/R1)的嵌合构建物稳定转染的BaF3小鼠前B细胞系(pro-Bcell line)。野生型BaF3细胞系是不表达任何FGFR的白介素-3(IL-3)依赖性细胞系。用FGFR转染的BaF3细胞在IL-3缺失下在用FGF和肝素刺激时增殖(21)。转染这种构建物容许我们用FGF替代IL-3来支持BaF3细胞的生长。在5nM FGF1存在下,LD1抑制BaF3/FGFR4/R1细胞增殖,IC50为17.4±5.4nM(图3B)。
我们还使用用表达FGFR4的载体稳定转染的L6大鼠骨骼肌细胞系(L6/FGFR4)来评估LD1对FGF信号传导的影响。将FGF1和肝素添加至L6/FGFR4细胞培养物激活FGFR途径,如通过FGFR底物2(FRS2)和受胞外信号调节的激酶1/2(ERK1/2)的磷酸化证明的,而LD1以剂量依赖性方式抑制这些第二信使由配体诱导的磷酸化(图3C)。有趣的是,添加LD1还触发这些细胞中总FRS2含量的升高(图3C)。
使用流式细胞术,我们评估了LD1的结合并确认了FGFR4在HCC细胞系的一个子集的细胞表面上的表达。LD1结合PLC/PRF/5的程度最高,而结合HUH7和JHH5细胞的程度要低些(图3D)。对照抗体对这些细胞的表面的结合可忽略(图3D)。而且,LD1和对照抗体对BaF3细胞(其用作阴性对照,因为它们不表达FGFR4)的表面的结合也可忽略(图3D)。
LD1在肝癌细胞系中抑制FGFR4功能。使用具有各种水平的内源FGFR(即FGFR1-4)表达的肝癌细胞系表征了LD1的抑制活性(图7)。在HEP3B细胞中,添加FGF19触发FRS2和ERK1/2的磷酸化,而LD1抑制由FGF19刺激的FRS2磷酸化(图4A),与它对L6/FGFR4细胞的效果相似。然而,LD1没有可觉察地改变ERK1/2磷酸化(图4A)。
在肝细胞系中细胞色素P4507α1(CYP7α1)和c-Fos的表达受FGF19调控(16,22)。我们测试了LD1是否能抑制这种由FGF19介导的基因调控。在HEB3B细胞中,添加FGF19将CYP7α1的表达降低81%(图4B)。添加LD1恢复67%的CYP7α1基础表达(图4B)。在不添加FGF19时,LD1将CYP7α1表达提高2倍(图4B)。虽然添加FGF19在HUH7细胞中不影响CYP7α1表达,但是添加LD1具有与HEP3B细胞中相似的效果,即在FGF19存在或缺失下分别将这种基因的表达提高2.9和3.5倍(图8)。添加阴性对照抗体在HEP3B或HUH7细胞任一中对CYP7α1表达没有影响(分别为图4B和8)。有趣的是,添加LD1在HEP3B和HUH7细胞二者中导致在不外源添加FGFR4配体时上调CYP7α1表达。这指示LD1抑制可能通过FGFR4配体自分泌/旁分泌环来维持的FGFR4基础活性。
为了进一步评估LD1对FGFR4基础活性的影响,我们测量了在不外源添加FGFR4配体时的c-Fos表达。先前显示激活FGFR4途径提高c-Fos的表达(16)。添加LD1将c-Fos的基础表达在JHH5、JHH7、和HUH7细胞系中降低50%及在PLC/PRF/5细胞系中降低75%;添加对照抗体对基础c-Fos表达没有影响(图4C)。这些结果证明LD1抑制FGFR4基础活性的能力。
LD1抑制集落形成。我们首先通过用多西环素诱导型FGFR4特异性shRNA或对照shRNA稳定转染的JHH5细胞测量集落形成。虽然用对照构建物转染的JHH5细胞在多西环素缺失或存在下形成集落的能力没有差异,但是与在多西环素缺失下的细胞相比,将多西环素添加至用FGFR4shRNA构建物转染的JHH5细胞将集落形成抑制76%(图4D)。这个结果提示FGFR4涉及肝癌细胞系的集落形成。
我们接着测试LD1抑制一组肝癌细胞系的集落形成的能力。将LD1添加至JHH5、HUH7、和PLC/PRF/5细胞的培养物引起剂量形成的剂量依赖性降低,分别达到26%、50%、和82%的最大抑制(图4F)。图4E显示了PLC/PRF/5和HUH7细胞培养物的代表例。添加对照抗体不影响集落形成(图4E和4F)。这些结果指示LD1在肝癌细胞系中抑制由FGFR4介导的集落形成。
LD1抑制FGFR4体内活性。我们通过测量注射LD1或对照抗体的小鼠的肝中由FGF19触发的c-Fos诱导,评估了LD1的体内功效。我们选择监测c-Fos对FGF19的响应,因为肝中的c-Fos诱导对FGF19刺激敏感(16)。用FGF19处理的小鼠的肝中的c-Fos表达与用磷酸盐缓冲盐水(PBS)处理的小鼠的肝相比要高53倍(图5A)。注射FGF19之前18小时施用LD1将c-Fos诱导降低3.5倍(图5A)。LD1还将未处理小鼠中的c-Fos表达的基础水平降低6倍(图5A)。与未处理小鼠相比,注射对照抗体不改变基础的或由FGF19刺激的c-Fos表达(图5A)。这些数据证明LD1在抑制基础的和由FGF19刺激的FGFR4活性方面的体内功效。
LD1在体内抑制肿瘤生长。为了检查LD1在抑制肿瘤生长方面的体内功效,我们首先利用HUH7肝癌细胞系异种移植物模型。给携带已建立肿瘤(大约150mm3)的小鼠每周一次服用30mg/kg LD1、30mg/kg对照抗体、或PBS。13天后,用PBS或对照抗体任一处理的小鼠的HUH7肿瘤生长至平均大小720mm3(图5B)。然而,用LD1处理的小鼠的HUH7肿瘤生长至平均大小28mm3,与对照抗体或PBS相比肿瘤生长抑制96%(图5B)。在重复实验中,每周两次施用30mg/kg LD1引起完全肿瘤生长抑制(图9)。在尸检时,切下肿瘤并评估LD1对FGFR4和受FGFR4调节的基因的表达的影响。施用LD1不影响HUH7异种移植物肿瘤中的FGFR4表达(图5C)。然而,与在用PBS处理的小鼠的肿瘤中测量的CYP7α1表达水平相比,LD1将CYP7α1的表达提高3倍(图5C)。与用PBS处理的小鼠相比,LD1还将c-Fos和egr-1的表达分别降低17和6倍(图5C)。
为了进一步评估LD1的体内功效,我们使用FGF19-TG小鼠模型。在15日龄时用DEN处理FGF19-TG小鼠以加速肿瘤发生,然后在4周龄时随机分组入3个分组。一组接受对照抗体,另两组以每周一次的基础,接受LD1或抗FGF19抗体(1A6)任一。先前显示1A6在FGF19-TG小鼠中预防肿瘤形成(23)。6个月后,将小鼠尸检并切出肝进行分析。用对照抗体处理的小鼠的肝在多片叶上具有肉眼看明显的大结节(图5D)。然而,用LD1(图5D)或1A6处理的小鼠的肝没有瘤形成的证据。我们还测量了肝重以评估肿瘤负荷,因为先前在FGF19-TG模型中显示这个参数与百分比肿瘤体积强相关(18,23)。来自用LD1或1A6处理的小鼠的肝的重量(分别为p=0.035和p=0.052)比来自用对照抗体处理的小鼠的肝的重量显著降低(图5E)。用LD1处理的小鼠和用1A6处理的小鼠之间肝重的差异不显著(p=0.439)(图5E)。这些数据一起清楚地证明LD1在临床前模型中在抑制肝细胞癌方面的体内功效。
FGFR4表达在癌症中改变。我们通过分析BioExpress数据库(GeneLogic,Inc.,Gaithersburg,MD,USA)评估了多种人正常和癌性组织中的FGFR4表达。FGFR4表达在大多数类型的癌症中高度可变。与正常组织相比,FGFR4表达在肝、结肠直肠、胃、食道、和睾丸癌中升高,但是在肾、肺、淋巴样、和小肠癌中降低(图6A)。使用免疫组织化学(IHC),我们在一组肺、乳腺、胰腺、和卵巢腺癌、肺鳞状细胞癌、肝细胞癌、甲状腺癌、和正常肺、胰腺、和甲状腺样品中定位了FGFR4。FGFR4检测给出了正常和瘤形成上皮细胞中的膜和胞质染色(图6B显示了代表例)。与正常组织相比,在肿瘤样品中通常发现更高级别的染色。来自胰腺(41%的标本中)、乳腺(46%)、肺(31%)、卵巢(41%)、结肠(90%)、肝(33%)、和甲状腺(11%)(表2和参考文献23)的肿瘤中明显可见抗FGFR4中等至显著的标记。
表2:正常和癌组织中的FGFR4表达。通过FGFR4免疫染色的组织病理学评估测定的,正常和癌组织中FGFR4表达的流行度。
Figure BDA0000432912460000611
Figure BDA0000432912460000621
先前还通过原位杂交确认了FGFR4在人HCC中的广泛表达(23)。因为早就提示FGFR4和HCC之间的联系,所以我们决定使用定量实时聚合酶链式反应(qRT-PCR)在23份原发性人肝肿瘤和11份正常肝中进一步评估FGFR4表达。将FGFR4在每份样品中的表达相对于此受体在第一份正常肝样品(N1)中的表达标准化。FGFR4在肝肿瘤中的平均水平(1.22±0.05倍)与正常肝(0.90±0.04倍)相比适度升高,但是将该群体看做整体时该差异没有达到统计学显著性(p=0.23)(图6C)。然而,FGFR4表达在一个肿瘤子集(7/23;30%)中显著更高(超过2倍)。这些结果说明FGFR4表达在数个类型的癌症中失调。FGFR4在一个肝肿瘤子集中升高的表达提示它可能代表治疗一个诊断选定患者群体中的肝癌的有吸引力的靶物。
在这项研究中,我们提供了证据证明FGFR4参与肝细胞癌且用FGFR4灭活性抗体治疗能提供抗肿瘤效果。为了评估FGFR4在肝肿瘤发生中的参与,我们使用经遗传工程改造的小鼠模型。显示了FGF19的外源表达在小鼠中促进肝细胞增殖、肝细胞发育异常、和HCC发生。而且,我们和其他人证明了FGF19的肝特异性活性需要Klothoβ(16,19,24)。因为KLB和FGFR4在肝中表达最高,所以我们假设FGFR4途径的失调对由FGF19介导的肝肿瘤发生负有责任。为了验证这种假说,我们将FGF19-TG小鼠与FGFR4-KO小鼠交配。只在具有FGFR4-WT背景的FGF19-TG小鼠中发生瘤形成前(preneoplastic)肝细胞增殖和肝细胞瘤形成。FGFR4-KO小鼠中消除了肝肿瘤发生。通过施用强力致肝癌物二乙基亚硝胺,我们进一步攻击小鼠。用DEN处理在具有FGFR4-WT背景的FGF19-TG小鼠中加速HCC发生,而在FGFR4-KO小鼠中没有找到肝瘤形成的证据。清楚的结论是FGF19促进的肝肿瘤发生需要FGFR4。
这些数据一起提示FGFR4、肝肿瘤发生、和肝癌进展之间的联系。因此,FGFR4是潜在治疗靶,而且它的抑制对肝癌患者可提供治疗好处。为此目的,我们开发了抗FGFR4中和性抗体(LD1)。LD1结合FGFR4并抑制配体结合、途径激活、基因表达调节、细胞增殖、和集落形成(在体外)。通过评估LD1与在FGFR4直系同源物之间相似但FGFR1-3直系同源物中不相似的位点处携带点突变的FGFR4构建物的相互作用,定位了LD1结合FGFR4的位点;将FGFR4中的这些氨基酸残基用FGFR3中等同位置处存在的氨基酸残基替代。LD1结合野生型FGFR4和除G165A突变体以外的所有突变体FGFR4构建物。用丙氨酸替换FGFR4第165位甘氨酸几乎消除LD1结合。LD1对FGFR4的强特异性组合FGFR间此区域的高同一性,强调此残基对LD1结合的重要性。FGFR4中的甘氨酸165对应于FGFR1中的丙氨酸171。有趣的是,丙氨酸171是FGFR1二聚体界面中最接近的残基(25)。穿过二聚体的轴,一个受体的丙氨酸171的侧链与相邻受体的丙氨酸171形成疏水性接触。FGFR的这个区域中的序列保守性与这个区域形成受体-受体界面一致(25)。如此,LD1对FGFR中这个等同区域的结合有可能破坏受体二聚化。由配体诱导的受体二聚化对于FGFR活化是至关重要的(26,27)。因此,抑制FGFR4二聚化是LD1的潜在作用机制。早就为其它治疗性抗体描述了相似的作用机制(28)。
我们显示了在体内,LD1通过抑制对FGFR4下游基因的调控及通过阻断肿瘤生长而作用于肝癌异种移植物肿瘤。而且,施用LD1抑制FGF19-TG小鼠中HCC的形成和发生。
这些数据证明FGFR4涉及促进肿瘤发生和癌症进展。特别地,我们的结果提示FGFR4可能在肝细胞癌中发挥重要作用。数条证据支持这种假说。FGFR4是人肝细胞中存在的优势FGFR同等型(15)。我们先前报告了肝组织具有最高的FGFR4和KLB转录物水平,二者对于通过这种信号传导复合物实现的由配体刺激的活性都是至关重要的(16)。而且,FGF19(即FGFR4特异性配体)中小鼠的异位表达促进肝细胞增殖、肝细胞发育异常、和瘤形成(18),而且报告了由FGF19诱导的肝细胞增殖是由FGFR4唯一介导的(24)。一项最近的报告提示FGFR4通过调控甲胎蛋白分泌、增殖、抗凋亡对HCC进展也有重大贡献(17)。还显示了FGFR4表达促进对化疗的抗性(29)。应当注意,有一个小组报告了FGFR4在小鼠中的保护作用,而非HCC促进效果(30)。可能的情况是背景因素(包括配体的身份和浓度以及共受体表达和FGFR的水平)可能调控FGFR4在肿瘤发生中的作用。例如,我们发现FGFR4表达在原发性肝肿瘤的一个子集中显著提高,提示FGFR4可能代表治疗一个诊断选定患者群体中的肝癌的有吸引力的靶物。鉴于越来越多的证据表明FGFR4参与肝肿瘤发生和HCC进展,我们相信包括抗FGFR4中和性抗体在内的治疗性干预在肝癌治疗中有可能是有益的。
部分参考文献列表
1.Ornitz,D.M.,and Itoh,N.2001.Fibroblast growth factors.GenomeBiol2:REVIEWS3005.
2.Eswarakumar,V.P.,Lax,I.,and Schlessinger,J.2005.Cellularsignaling by fibroblast growth factor receptors.Cytokine Growth Factor Rev16:139-149.
3.Powers,C.J.,McLeskey,S.W.,and Wellstein,A.2000.Fibroblastgrowth factors,their receptors and signaling.Endocr Relat Cancer7:165-197.
4.Bange,J.,Prechtl,D.,Cheburkin,Y.,Specht,K.,Harbeck,N.,Schmitt,M.,Knyazeva,T.,Muller,S.,Gartner,S.,Sures,I.,et al.2002.Cancerprogression and tumor cell motility are associated with the FGFR4Arg(388)allele.Cancer Res62:840-847.
5.Cappellen,D.,De Oliveira,C.,Ricol,D.,de Medina,S.,Bourdin,J.,Sastre-Garau,X.,Chopin,D.,Thiery,J.P.,and Radvanyi,F.1999.Frequentactivating mutations of FGFR3in human bladder and cervix carcinomas.NatGenet23:18-20.
6.Chesi,M.,Brents,L.A.,Ely,S.A.,Bais,C.,Robbiani,D.F.,Mesri,E.A.,Kuehl,W.M.,and Bergsagel,P.L.2001.Activated fibroblast growth factorreceptor3is an oncogene that contributes to tumor progression in multiplemyeloma.Blood97:729-736.
7.Chesi,M.,Nardini,E.,Brents,L.A.,Schrock,E.,Ried,T.,Kuehl,W.M.,and Bergsagel,P.L.1997.Frequent translocation t(4;14)(p16.3;q32.3)in multiplemyeloma is associated with increased expression and activating mutations offibroblast growth factor receptor3.Nat Genet16:260-264.
8.Gowardhan,B.,Douglas,D.A.,Mathers,M.E.,McKie,A.B.,McCracken,S.R.,Robson,C.N.,and Leung,H.Y.2005.Evaluation of thefibroblast growth factor system as a potential target for therapy in human prostatecancer.Br J Cancer92:320-327.
9.Jaakkola,S.,Salmikangas,P.,Nylund,S.,Partanen,J.,Armstrong,E.,Pyrhonen,S.,Lehtovirta,P.,and Nevanlinna,H.1993.Amplification of fgfr4gene in human breast and gynecological cancers.Int J Cancer54:378-382.
10.Jang,J.H.,Shin,K.H.,and Park,J.G.2001.Mutations in fibroblastgrowth factor receptor2and fibroblast growth factor receptor3genes associatedwith human gastric and colorectal cancers.Cancer Res61:3541-3543.
11.Jang,J.H.,Shin,K.H.,Park,Y.J.,Lee,R.J.,McKeehan,W.L.,and Park,J.G.2000.Novel transcripts of fibroblast growth factor receptor3reveal aberrantsplicing and activation of cryptic splice sequences in colorectal cancer.CancerRes60:4049-4052.
12.Jeffers,M.,LaRochelle,W.J.,and Lichenstein,H.S.2002.Fibroblastgrowth factors in cancer:therapeutic possibilities.Expert Opin Ther Targets6:469-482.
13.Xiao,S.,Nalabolu,S.R.,Aster,J.C.,Ma,J.,Abruzzo,L.,Jaffe,E.S.,Stone,R.,Weissman,S.M.,Hudson,T.J.,and Fletcher,J.A.1998.FGFR1isfused with a novel zinc-finger gene,ZNF198,in the t(8;13)leukaemia/lymphomasyndrome.Nat Genet18:84-87.
14.Shariff,M.I.,Cox,I.J.,Gomaa,A.I.,Khan,S.A.,Gedroyc,W.,andTaylor-Robinson,S.D.2009.Hepatocellular carcinoma:current trends inworldwide epidemiology,risk factors,diagnosis and therapeutics.Expert RevGastroenterol Hepatol3:353-367.
15.Kan,M.,Wu,X.,Wang,F.,and McKeehan,W.L.1999.Specificity forfibroblast growth factors determined by heparan sulfate in a binary complex withthe receptor kinase.J Biol Chem274:15947-15952.
16.Lin,B.C.,Wang,M.,Blackmore,C.,and Desnoyers,L.R.2007.Liver-specific activities of FGF19require Klotho beta.J Biol Chem282:27277-27284.
17.Ho,H.K.,Pok,S.,Streit,S.,Ruhe,J.E.,Hart,S.,Lim,K.S.,Loo,H.L.,Aung,M.O.,Lim,S.G.,and Ullrich,A.2009.Fibroblast growth factor receptor4regulates proliferation,anti-apoptosis and alpha-fetoprotein secretion duringhepatocellular carcinoma progression and represents a potential target fortherapeutic intervention.J Hepatol50:118-127.
18.Nicholes,K.,Guillet,S.,Tomlinson,E.,Hillan,K.,Wright,B.,Frantz,G.D.,Pham,T.A.,Dillard-Telm,L.,Tsai,S.P.,Stephan,J.P.,et al.2002.A mousemodel of hepatocellular carcinoma:ectopic expression of fibroblast growthfactor19in skeletal muscle of transgenic mice.Am J Pathol160:2295-2307.
19.Kurosu,H.,Choi,M.,Ogawa,Y.,Dickson,A.S.,Goetz,R.,Eliseenkova,A.V.,Mohammadi,M.,Rosenblatt,K.P.,Kliewer,S.A.,and Kuro-o,M.2007.Tissue-specific expression of betaKlotho and fibroblast growth factor(FGF)receptor isoforms determines metabolic activity of FGF19and FGF21.JBiol Chem282:26687-26695.
20.Pai,R.,Dunlap,D.,Qing,J.,Mohtashemi,I.,Hotzel,K.,and French,D.M.2008.Inhibition of fibroblast growth factor19reduces tumor growth bymodulating beta-catenin signaling.Cancer Res68:5086-5095.
21.Ornitz,D.M.,Yayon,A.,Flanagan,J.G.,Svahn,C.M.,Levi,E.,andLeder,P.1992.Heparin is required for cell-free binding of basic fibroblastgrowth factor to a soluble receptor and for mitogenesis in whole cells.Mol CellBiol12:240-247.
22.Holt,J.A.,Luo,G.,Billin,A.N.,Bisi,J.,McNeill,Y.Y.,Kozarsky,K.F.,Donahee,M.,Wang da,Y.,Mansfield,T.A.,Kliewer,S.A.,et al.2003.Definitionof a novel growth factor-dependent signal cascade for the suppression of bile acidbiosynthesis.Genes Dev17:1581-1591.
23.Desnoyers,L.R.,Pai,R.,Ferrando,R.E.,Hotzel,K.,Le,T.,Ross,J.,Carano,R.,D'Souza,A.,Qing,J.,Mohtashemi,I.,et al.2008.Targeting FGF19inhibits tumor growth in colon cancer xenograft and FGF19transgenichepatocellular carcinoma models.Oncogene27:85-97.
24.Wu,X.,Ge,H.,Gupte,J.,Weiszmann,J.,Shimamoto,G.,Stevens,J.,Hawkins,N.,Lemon,B.,Shen,W.,Xu,J.,et al.2007.Co-receptor requirementsfor fibroblast growth factor-19signaling.J Biol Chem282:29069-29072.
25.Plotnikov,A.N.,Schlessinger,J.,Hubbard,S.R.,and Mohammadi,M.1999.Structural basis for FGF receptor dimerization and activation.Cell98:641-650.
26.Ibrahimi,O.A.,Yeh,B.K.,Eliseenkova,A.V.,Zhang,F.,Olsen,S.K.,Igarashi,M.,Aaronson,S.A.,Linhardt,R.J.,and Mohammadi,M.2005.Analysisof mutations in fibroblast growth factor(FGF)and a pathogenic mutation in FGFreceptor(FGFR)provides direct evidence for the symmetric two-end model forFGFR dimerization.Mol Cell Biol25:671-684.
27.Mohammadi,M.,Olsen,S.K.,and Ibrahimi,O.A.2005.Structuralbasis for fibroblast growth factor receptor activation.Cytokine Growth FactorRev16:107-137.
28.Agus,D.B.,Akita,R.W.,Fox,W.D.,Lewis,G.D.,Higgins,B.,Pisacane,P.I.,Lofgren,J.A.,Tindell,C.,Evans,D.P.,Maiese,K.,et al.2002.Targetingligand-activated ErbB2signaling inhibits breast and prostate tumor growth.Cancer Cell2:127-137.
29.Roidl,A.,Berger,H.J.,Kumar,S.,Bange,J.,Knyazev,P.,and Ullrich,A.2009.Resistance to chemotherapy is associated with fibroblast growth factorreceptor4up-regulation.Clin Cancer Res15:2058-2066.
30.Huang,X.,Yang,C.,Jin,C.,Luo,Y.,Wang,F.,and McKeehan,W.L.2009.Resident hepatocyte fibroblast growth factor receptor4limitshepatocarcinogenesis.Mol Carcinog48:553-562.
31.Winer,J.,Jung,C.K.,Shackel,I.,and Williams,P.M.1999.Development and validation of real-time quantitative reversetranscriptase-polymerase chain reaction for monitoring gene expression incardiac myocytes in vitro.Anal Biochem270:41-49.
32.Tomlinson,E.,Fu,L.,John,L.,Hultgren,B.,Huang,X.,Renz,M.,Stephan,J.P.,Tsai,S.P.,Powell-Braxton,L.,French,D.,et al.2002.Transgenicmice expressing human fibroblast growth factor-19display increased metabolicrate and decreased adiposity.Endocrinology143:1741-1747.
33.Yu,C.,Wang,F.,Kan,M.,Jin,C.,Jones,R.B.,Weinstein,M.,Deng,C.X.,and McKeehan,W.L.2000.Elevated cholesterol metabolism and bile acidsynthesis in mice lacking membrane tyrosine kinase receptor FGFR4.J BiolChem275:15482-15489.
B.人源化针对FGF受体4的抗体期间鉴定和消除的高度特异性脱靶结合
材料和方法
使用Sulfo-NHS-LC-生物素(Pierce;产品目录21335)将FGFR4生物素化。
嵌合LD1的生成–如本文中所述,使用在CHO细胞中表达并如14所述纯化的人FGF受体4(FGFR4)胞外域对balb/c小鼠进行免疫接种。当在基于蛋白质的ELISA中对克隆筛选阻断FGF19结合FGFR4的能力时鉴定出表达LD1的杂交瘤。
使用标准方法自提取自LD1生成杂交瘤细胞的总RNA克隆小鼠LD1可变域。用针对轻链恒定域(CL)和重链第一恒定域(CH1)的简并反向引物和对VL和VH区的N端氨基酸序列特异性的正向引物使用RT-PCR扩增轻链可变域(VL)和重链可变域(VH)。然后将这些可变域以符合读码框的方式克隆入包含相应人轻链和重链恒定区的载体。
LD1的人源化和亲和力成熟–将LD1的高变区嫁接入曲妥单抗中使用的人卡帕I(huKI)和人VH亚组III(huIII)可变域框架。经由添加小鼠微调(vernier)位置使用框架修复来优化FGFR4结合亲和力,直至鉴定出完全恢复FGFR4结合亲和力的最少框架变化组合33
使用一种软随机化策略对作为单价Fab-P3融合物在噬菌体上展示的hLD1.vB进行亲和力成熟。将序列多样性分开引入每个高变区,使得朝向鼠高变区序列的倾向得以维持,这使用一种污染寡核苷酸合成策略来进行34。对于每一个多样化位置,用70-10-10-10核苷酸混合物污染编码野生型氨基酸的密码子,导致每一个位置处平均50%的突变率。
使用一种可溶性选择方法对hLD1.vB多样化噬菌体文库进行淘选35。这种办法依赖于溶液中低浓度生物素化FGFR4的较短结合期,接着是固定化中性亲合素上噬菌体结合FGFR4的较短的5分钟捕捉。在捕捉步骤之前添加过量的未标记FGFR4(超过100nM)以提高解离选择严格性。通过将孔用100mM HCl温育30分钟来洗脱结合的噬菌体,用1M Tris pH8中和,并使用XL1-Blue细胞和M13/KO7辅助噬菌体扩增。将噬菌体抗体重定格式成全长IgG,在哺乳动物细胞中瞬时表达,并通过蛋白A层析进行纯化。
亲和力测定–使用BIAcoreTM-2000通过表面等离振子共振实施亲和力测定。在CM5传感器芯片上在10mM乙酸钠pH4.8中固定化大约50RUhLD1.vB IgG,并以流速30μl/min注射FGFR4在PBST中的连续2倍稀释液(0.48-1000nM)。对每份样品分析4分钟结合和10分钟解离。每次注射后,使用10mM甘氨酸pH1.7再生芯片。通过减去来自以相似密度固定化无关IgG的流动室的RU来修正结合响应。使用同时拟合kon和koff的1:1朗格缪尔(Languir)模型进行动力学分析。
异种移植物实验–所有动物方案得到了Genentech科研动物护理和使用委员会的批准。自Charles River Laboratories International(株代码088)获得7周龄雌性nu/nu(裸-CRL)小鼠。在无特定病原体条件下维持小鼠。在HBSS/Matrigel(1:1v/v;BD Biosciences,产品目录354234)中在0.2mL体积中将HUH7细胞(5x106;Japan Health science Research Resources Bank,产品目录JCRB0403)皮下植入小鼠体侧。每周两次用测径器测量肿瘤,并使用公式计算肿瘤体积:V=0.5xLxW2,其中L和W分别为肿瘤的长度和宽度。当均值肿瘤体积达到145mm3时,将小鼠随机化分组(n=15),并用0.2mL腹膜内注射媒介(PBS)、30mg/kg chLD1、30mg/kg hLD1.vB、或30mg/kghLD1.v22每周一次处理。处理后,如上所述测量肿瘤体积。使用下述公式计算百分比肿瘤生长抑制(%TGI),其中C=对照媒介组第21天均值肿瘤体积且T=来自给予测试处理的小鼠的每个组的第21天均值体积:%TGI=100x((C-T)/C)。分析数据,并用JMP软件6.0版(SAS Institute;Cary,NC)使用时序检验来评估各组间肿瘤倍增差异。以均值肿瘤体积±SEM呈现数据。
小鼠中的药动学研究–NCR裸小鼠由Taconic(产品目录NCRNU)供应。将C3敲除小鼠36与C57BL/6小鼠回交至少10代。将后代互交以生成C3敲除小鼠和野生型对照。在这项研究中,将它们分别称作C3ko和C3wt小鼠。
经尾静脉对称重15.5-38.3g的小鼠施用一剂1、5或20mg/kg体重IV推注抗FGFR4抗体。在选定时间点,直至给药后28天,经眼眶后采血或心脏穿刺收集血液样品(n=3只小鼠每个时间点)并分离血清。将血清样品保存于-80℃,直至使用ELISA测定抗FGFR4抗体血清浓度。
使用WinNonlin Enterprise5.2.1版(Pharsight Corp.,)使用抗FGFR4抗体血清浓度-时间概况来评估PK参数。因为对每个组测定了一个浓度-时间概况,所以获得并报告每个PK参数的一个估值,连同每个PK参数的拟合的标准误差(SE)。使用对每个组施用的标称剂量进行建模。
放射性碘化–使用间接Iodogen添加方法37对抗体进行放射性碘化。使用在PBS中预平衡的NAP5TM柱(GE Healthcare Life Sciences,产品目录17-0853-01)纯化放射性标记的蛋白质。体外研究中使用的分子的比活性,chLD1为14.38μCi/μg,hLD1.vB为15.05μCi/μg。体内研究中使用的分子的比活性,chLD1为12.52μCi/μg,hLD1.vB为9.99μCi/μg。放射性碘化后,通过大小排阻高效液相层析(HPLC)、十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)、和ELISA表征放射性碘化的抗体,是完整的且保留与未标记抗体相当的抗原结合。
体外温育–对于在血清中温育,将抗体添加至NCR裸鼠、C3ko或C3wt小鼠血清36、和PBS+0.5%BSA,终浓度200μg/ml。制备等分试样(100μl)并在温和旋转下于37℃温育。于0、4、8、24、48、和96小时将样品转移至干冰并保存于-70℃,直至ELISA分析。
对于在血浆中温育,将抗体添加至猕猴、人、大鼠(Bioreclamation LLC,产品目录分别为CYNPLLIHP、HMLLIHP、和RATPLLIHP)、和NCR裸小鼠血浆(Taconic,产品目录NCRNU-E)和PBS+0.5%BSA,终浓度200μg/ml±125I-抗体,终浓度5x106CPM/ml。制备等分试样(100μl)并在温和旋转下于37℃温育。于0、24、和48小时将样品转移至干冰并保存于-70℃,直至通过大小排阻HPLC进行分析(125I-抗体+未标记抗体样品)或进行蛋白G提取,接着是SDS-PAGE(未标记抗体样品)。
组织分布研究–雌性NCR裸小鼠接受一剂IV推注125I-chLD1(300μCi/kg)±未标记的chLD1(20mg/kg)或125I-hLD1.vB(300μCi/kg)±未标记的hLD1.vB(20mg/kg)。于给药后15分钟和2、5、24、72、和120小时收集血液并为血清进行加工。将血清冷冻于-70℃,直至通过大小排阻HPLC进行分析并进行蛋白G提取,接着是SDS-PAGE分离。还使用Wallac1480Wizard3”(EC&G Wallac,产品目录1480-011)获得了总放射性计数。于给药后2、72、和120小时收集肝、肺、肾、和心,并冷冻于-70℃,直至分析总放射性。依照IACUC指南操作所有动物。
IgG和FGFR4ELISA–使用FGFR4ELISA测量FGFR4特异性IgG。在微量滴定板上固定化FGFR4,添加在Magic缓冲液+0.35M NaCl(1x PBSpH7.4、0.5%BSA、0.05%Tween-20、0.25%Chaps、5mM EDTA、0.2%BgG、0.35M NaCl、15ppm Proclin)中稀释的LD1标准品(chLD1、hLD1.vB、或hLD1.v22)和样品,并用偶联至辣根过氧化物酶的F(ab’)2山羊抗huIgG Fc(HRP,Jackson,产品目录109-036-098)检测捕捉IgG。
使用人Fc ELISA测定总抗体,即在用F(ab’)2家兔抗huIgG Fc(Jackson,产品目录号309-006-008)包被的微量滴定板上温育稀释样品,并用偶联有HRP的F(ab’)2山羊抗huIgG Fc(Jackson,产品目录号109-036-098)检测。使用TMB过氧化物酶底物溶液进行显色(Moss,产品目录号TMBE-1000),并添加1M H3PO4来终止反应。在微量板读数仪(Biotek EL311或等同物)上于450/620nm读板。
大小排阻HPLC–使用PhenomenexTMBioSep-SEC-S3000柱(300x7.8mm,5μm柱;Torrance,产品目录00H-2146-KO)在PBS中实施大小排阻HPLC,样品始于pH4.0和pH7.0。在PBS中稀释pH7.0的样品;通过用200mM柠檬酸pH3.0降低pH来生成pH4.0的样品。流速为0.5ml/min,持续30分钟,等度(isocratic)。将ChemStation模拟-数字变换器设为25,000U/mV,峰宽2秒,裂隙4nM(Agilent Technologies;产品目录35900E)。用与标准Agilent1100HPLC模块系统(Santa Clara,CA)联线的raytest Ramona90(raytest USA Inc.;Wilmington,NC)检测放射性。
蛋白G珠提取和SDS-PAGE分离–将Triton X-100(终浓度1%(v/v))添加至自大小排阻HPLC收集的级分,接着添加蛋白G珠(GE Lifesciences Inc,产品目录17-0885-01)。将样品在温和旋转下于4℃温育过夜,然后将珠用PBS+1%Triton X-100清洗四次。拆分每份样品,并将一半的样品使用
Figure BDA0000432912460000711
样品还原试剂(产品目录NP0004)还原。用4x LDS样品缓冲液(pH8.4)(产品目录NP00007)±样品还原试剂处理珠,并于99℃温育5分钟;然后用
Figure BDA0000432912460000714
1x MOPS SDS运行缓冲液(产品目录NP0001)应用于
Figure BDA0000432912460000715
4-12%Bis-Tris凝胶(产品目录NP0321BOX)。将凝胶用考马斯蓝R250染料染色。所有
Figure BDA0000432912460000716
试剂得自Invitrogen公司。
质谱术和生物信息学分析–如先前所述38处理自SDS-PAGE切下的样品。简言之,在快速溶液微波辅助胰蛋白酶消化后,通过反相层析将肽分开,并直接洗脱入纳米喷射电离源,喷射电压2kV,并使用LTQ XL-Orbitrap质谱仪(ThermoFisher)进行分析。在FTMS中以60,000分辨率分析先驱离子。在LTQ中实施MS/MS,以数据依赖性模式运转仪器,其中对最丰富的前10种离子进行片段化。使用Mascot搜索算法(Matrix Sciences)或通过重新解读来搜索数据。
对于搜索Mascot数据:搜索标准包括完全MS容限20ppm、MS/MS容限0.5Da(Lys上有GlyGly)、甲硫氨酸氧化、Cys上的+57Da和ST的磷酸化及Y作为可变修饰,具有多至3处错误切割。针对Swissprot数据库的哺乳动物子集搜索数据。
结果
LD1的人源化和标准。已经显示了人嵌合抗体LD1(chLD1)结合人FGFR4,阻断由FGF19和其它FGF配体进行的信号传导,且在HUH7人肝细胞癌(HCC)异种移植物模型中阻抑肿瘤生长14。作为LD1人源化的第一步,将chLD1的轻链和重链可变域与曲妥单抗中使用的人卡帕I(huKI)和人VH亚组III(huIII)可变域框架比对(图10)。将来自chLD1的高变区嫁接入这些人可变框架以生成直接CDR嫁接物(hLD1.vA)15,16。通过表面等离振子共振与chLD1比较结合FGFR4时,hLD1.vA的亲和力降低了约5倍(未显示)。探索了在轻链和重链可变域二者中多个微调位置替代小鼠序列作为改进结合的手段,并导致LC中三个重要小鼠微调位置的鉴定:P44F,L46I和Y49S。在hLD1.vB中引入这些变化,其具有与chLD1相当的对FGFR4的亲和力(表3)。
表3:抗FGFR4抗体变体的结合动力学。使用表面等离振子共振测量人FGFR4结合固定化抗体变体的结合和解离速率。
令人惊讶的,尽管FGFR4结合亲和力相似(图11A),但是与chLD1相比,hLD1.vB降低了在nu/nu小鼠中在HUH7人HCC异种移植物模型中的抗肿瘤功效(图11B)。9天后,用PBS处理的小鼠的HUH7肿瘤生长至平均体积大约700mm3。在chLD1处理组中,平均HUH7肿瘤体积为大约400mm3,与PBS处理动物中的肿瘤相比抑制肿瘤生长43%。然而,用hLD1.vB处理的小鼠中的平均肿瘤体积为大约600mm3,与PBS处理动物中的肿瘤相比抑制肿瘤生长14%。
在无胸腺NCR裸小鼠中进行的chLD1和hLD1.vB药动学评估揭示了chLD1和hLD1.vB二者在1mg/kg IV的快速清除(分别为140和132mL/d/kg),提示由靶物介导的清除机制。这种清除机制表现出在更高剂量20mg/kg对于chLD1是饱和的。在这个剂量,观察到的清除(11.7mL/d/kg;图11C)在对一种典型人源化抗体在小鼠中观察到靶物不依赖性清除的范围(6-12mL/d/kg)内(文献17和P.Theil个人通信)。然而,hLD1.vB仍旧快速清除(34.2mL/d/kg;图11C)。这提示hLD1.vB可能有别的清除机制负责小鼠异种移植物模型中明显的功效缺失。
与PK发现一致,使用125I-chLD1和125I-hLD1.vB进行的生物分布研究揭示了显著不同的分布概况(图11D)。由于FGFR4在肝细胞上的高表达,125I-chLD1快速且特异性分布至肝,同时在等同的剂量到2小时时在肝中只发现有限量的125I-hLD1.vB(~80对35%ID/g)。相反,在血液中对这些抗体观察到的分布颠倒了,提示与会导致总体放射活性损失的抗体体内稳定性损失相反,有一种竞争相互作用阻止hLD1.vB分布至肝。
C3干扰的鉴定。试图解释在chLD1和hLD1.vB之间观察到的体内差异,我们评估了抗体在血浆中的稳定性以及可能影响它们的功能的潜在脱靶血浆或组织相互作用。如下评估了血浆稳定性,即将chLD1或hLD1.vB在小鼠、大鼠、猴或人血浆中于37℃温育48小时,接着评估FGFR4结合活性和总人IgG浓度二者。虽然通过IgG ELISA测量的总chLD1或hLD1.vB浓度没有变化(未显示),但是通过FGFR4ELISA检测的hLD1.vB回收与PBS/BSA中的对照温育相比在小鼠和大鼠血浆中显著降低(降低~30%)(图12A)。比较而言,chLD1FGFR4结合活性在测试的任何条件中没有损失。hLD1.vB回收的显著降低(具体是来自啮齿类血浆)提示该损失不是由于降解,更有可能是啮齿类血浆中干扰复合物的形成。因为hLD1.vB与小鼠血浆的相互作用可导致生成更高分子量的复合物,还在血浆中温育碘化的chLD1和hLD1.vB,并使用大小排阻HPLC进行分析。只在含有125I-hLD1.vB的小鼠血浆样品中检测到高分子量峰,但是125I-chLD1不然。除了150kDa处的预期抗体峰之外,最初还检测到与约270和约550kDa对应的峰(图12B),然而,到48小时时,只剩下150和270kDa峰;不再观察到550kDa峰。在猕猴和人血浆或含有hLD1.vB的PBS/BSA中或在含有chLD1的任何样品中检测不到这些较高分子量峰(图15)。有趣的是,这些高分子量峰的存在直接与在FGFR4ELISA中获得的抗体回收数据有关。而且,这些峰的存在当在pH4.0实施分析时降低(图15),进一步支持与小鼠血清的hLD1.vB依赖性相互作用。
小鼠血浆的免疫沉淀揭示了一种使用hLD1.vB选择性拉下但使用chLD1不然的约37kDa的蛋白质(图12C)。与来自大小排阻HPLC的发现一致,在大鼠中观察到此37kDa蛋白质条带,但是猕猴和人血浆样品不然(图16A-C)。而且,在来自服用hLD1.vB的小鼠的血浆中检测到该蛋白质(图16D)。自37kDa小鼠血浆蛋白质衍生的胰蛋白酶消化肽的MS/MS分析将此条带鉴定为衍生自小鼠补体C3(图12D)。C3的直接涉及得到了在来自C3敲除(ko)小鼠的血浆中温育hLD1.vB的完全回收的支持(图17)。
亲和力成熟和C3结合的再评估。chLD1和hLD1.vB二者分享相同的人恒定区和互补决定区(CDR),因此区别仅在于它们的可变域框架。而且,用于人源化hLD1.vB的轻链和重链可变域框架与数种人源化抗体分享很高程度的同源性,包括尚未报告展现与小鼠血清蛋白质相互作用的曲妥单抗。如此,hLD1.vB与小鼠C3的脱靶相互作用最有可能源自小鼠LD1CDR与人可变域框架的特定组合。
我们推理hLD1.vB的CDR序列中的一些改变(源自噬菌体上展示的Fab片段的亲和力成熟)可导致改善的针对FGFR4的亲和力,伴随着小鼠C3结合的损失。作为IgG表达噬菌体选择的变体,并使用免疫沉淀测定法偶联SDS-PAGE分析筛选FGFR4结合亲和力以及与小鼠C3的潜在相互作用。与hLD1.vB相比在CDR-H2中具有3处氨基酸改变(H52L、S53V和D60E,图10)的一种变体,即hLD1.v22显示改善的针对FGFR4的结合亲和力(表3)和结合补体C3b的损失(图13B)二者。
在于20mg/kg比较C3ko小鼠与C3wt小鼠的药动学研究中评估了小鼠补体C3改变hLD1.vB和hLD1.v22体内清除的程度。正如先前在NCR小鼠中观察到的,hLD1.vB在C3wt小鼠中自循环快速清除(29mL/d/kg);然而,chLD1和hLD1.vB二者在C3ko小鼠中具有相似的药动学概况(清除分别为8.7和9.3mL/d/kg)(图14A和表4)。
表4:抗FGF.R4变体以20mg/kg IV给药的药动学参数
Figure BDA0000432912460000741
这些数据与组织分布数据一致,并确认了在体内与小鼠补体C3的特异性相互作用导致hLD1.vB的快速清除。因为hLD1.vB的清除在C3ko小鼠中得到显著改进且hLD1.v22不结合C3,所以我们预期hLD1.v22在NCR裸小鼠中会具有与chLD1相似的药动学概况。如图14B所示,chLD1和hLD1.v22在NCR裸小鼠中的清除是相似的(分别为11.8和11.3mL/d/kg),同时与我们先前的发现一致,hLD1.vB被快速清除(46.7mL/d/kg)。
评估了hLD1.v22在HUH7HCC异种移植物模型中抑制肿瘤生长的能力,与chLD1和hLD1.vB进行比较。21天后,用PBS处理的小鼠的HUH7肿瘤生长至平均体积大约2,100mm3(图14C)。在PBS处理组的15只动物中,由于肿瘤体积限制(大约2,500mm3),在研究结束之前对3只动物处以安乐死。在hLD1.vB处理组中,平均HUH7肿瘤体积为大约1,200mm3,代表与PBS处理动物中的肿瘤相比抑制肿瘤生长43%。然而,用hLD1.v22处理的小鼠中的平均肿瘤体积为大约530mm3。这个结果与chLD1处理小鼠相当,其中平均HUH7肿瘤体积为大约350mm3。对于hLD1.v22和chLD1处理组二者,这与PBS媒介处理组相比分别代表肿瘤尺寸缩小75%和83%。用hLD1.vB(12.2天)、hLD1.v22(15.8天)或chLD1(17.1天)处理的组的肿瘤倍增时间显著大于PBS处理组(8.2天)。另外,hLD1.v22或chLD1处理组的肿瘤倍增时间显著比hLD1.vB处理组要长。与hLD1.vB相比,hLD1.v22和chLD1二者的相似体内性能强烈暗示与小鼠补体C3的特异性脱靶相互作用引起升高的清除,导致hLD1.vB暴露更低和功效降低。
如此,抗FGFR4抗体hLD1.v22的生成具有下述步骤:1)生成包含LD1鼠VL和VH域和人IgG1恒定域的人嵌合LD1(chLD1);2)将来自chLD1的6个鼠HVR嫁接入人VL卡帕I和人VH亚组III可变域框架,产生直接HCR嫁接物,生成抗体hLD1.vA。抗体hLD1.vA对FGFR4的结合比ChLD1低约5倍;3)引入轻链突变P44F、L46I和Y49S产生抗体hLD1.vB。抗体hLD1.vB对人FGFR4的结合比抗体chLD1弱约2倍,但是hLD1.vB具有与chLD1相比降低的体内肿瘤功效、快速的体内清除,而且发现结合小鼠补体蛋白C3;4)实施了亲和力成熟,而且将三处变化添加至HVR H2(H52L、S53V、D60E)改进对FGFR4的结合亲和力并消除对小鼠补体c3蛋白的结合。所得人源化且亲和力成熟的抗体(抗体hLD1.v22)具有与chLD1相当的体内功效、pK和组织分布。而且,已经测定了抗体hLD1.v22至少具有与亲本chLD1抗体相当的生物学活性,例如在人异种移植物肿瘤研究中抑制癌症。
部分参考文献列表
1.James LC,Roversi P,Tawfik DS.Antibody multispecificity mediatedby conformational diversity.Science2003;299:1362-7.
2.Krishnan L,Sahni G,Kaur KJ,Salunke DM.Role of antibody paratopeconformational flexibility in the manifestation of molecular mimicry.Biophys J2008;94:1367-76.
3.Notkins AL.Polyreactivity of antibody molecules.Trends Immunol2004;25:174-9.
4.Thorpe IF,Brooks CL,3rd.Molecular evolution of affinity andflexibility in the immune system.Proc Natl Acad Sci U S A2007;104:8821-6.
5.Yin J,Beuscher AEt,Andryski SE,Stevens RC,Schultz PG.Structuralplasticity and the evolution of antibody affinity and specificity.J Mol Biol2003;330:651-6.
6.Thielges MC,Zimmermann J,Yu W,Oda M,Romesberg FE.Exploringthe energy landscape of antibody-antigen complexes:protein dynamics,flexibility,and molecular recognition.Biochemistry2008;47:7237-47.
7.Feyen O,Lueking A,Kowald A,Stephan C,Meyer HE,Gobel U,et al.Off-target activity of TNF-αinhibitors characterized by protein biochips.Analytical and Bioanalytical Chemistry2008;391:1713-20.
8.Kijanka G,Ipcho S,Baars S,Chen H,Hadley K,Beveridge A,et al.Rapid characterization of binding specificity and cross-reactivity of antibodiesusing recombinant human protein arrays.J Immunol Methods2009;340:132-7.
9.Lueking A,Beator J,Patz E,Mullner S,Mehes G,Amersdorfer P.Determination and validation of off-target activities of anti-CD44variant6antibodies using protein biochips and tissue microarrays.Biotechniques2008;45:Pi-v.
10.Wu H,Pfarr DS,Johnson S,Brewah YA,Woods RM,Patel NK,et al.Development of motavizumab,an ultra-potent antibody for the prevention ofrespiratory syncytial virus infection in the upper and lower respiratory tract.JMol Biol2007;368:652-65.
11.Rosenwald S,Kafri R,Lancet D.Test of a statistical model formolecular recognition in biological repertoires.J Theor Biol2002;216:327-36.
12.James LC,Tawfik DS.The specificity of cross-reactivity:promiscuousantibody binding involves specific hydrogen bonds rather than nonspecifichydrophobic stickiness.Protein Sci2003;12:2183-93.
13.Kramer A,Keitel T,Winkler K,Stocklein W,Hohne W,Schneider-Mergener J.Molecular basis for the binding promiscuity of an anti-p24(HIV-1)monoclonal antibody.Cell1997;91:799-809.
14.French DM,Lin BC,Wang M,
Figure BDA0000432912460000771
 K,Bolon B,Ferrando R,et al.Targeting FGFR4Inhibits Hepatocellular Carcinoma in Preclinical AnimalModels.J Clin Invest2011;Submitted.
15.Dennis MS.Humanization by CDR Repair In:Shire S,Gombotz W,Bechtold-Peters K,Andya J,eds.Pharmaceutical Aspects of MonoclonalAntibodies.New York:Co-published by the Association for PharmaceuticalScientists&Springer,2010:9-28.
16.MacCallum RM,Martin ACR,Thornton JT.Antibody-antigeninteractions:Contact analysis and binding site topography.Journal of MolecularBiology1996;262:732-45.
17.Adams CW,Allison DE,Flagella K,Presta L,Clarke J,Dybdal N,et al.Humanization of a recombinant monoclonal antibody to produce a therapeuticHER dimerization inhibitor,pertuzumab.Cancer Immunol Immunother2006;55:717-27.
18.Kim SJ,Park Y,Hong HJ.Antibody engineering for the development oftherapeutic antibodies.Mol Cells2005;20:17-29.
19.Lutz HU,Jelezarova E.Complement amplification revisited.MolImmunol2006;43:2-12.
20.Sahu A,Lambris JD.Structure and biology of complement protein C3,a connecting link between innate and acquired immunity.ImmunologicalReviews2001;180:35-48.
21.Manderson AP,Pickering MC,Botto M,Walport MJ,Parish CR.Continual low-level activation of the classical complement pathway.Journal ofExperimental Medince2001;194:747-56.
22.Thurman JM,Holers VM.The central role of the alternativecomplement pathway in human disease.The Journal of Immunology2006;176:1305-10.
23.Sahu A,Pangburn MK.Covalent attachment of human complement C3to IgG.The Journal of Biological Chemistry1994;269:28997-9002.
24.Vidarte L,Pastor C,Mas S,Blazquez AB,de los Rios V,Guerrero R,etal.Serine132is the C3covalent attachment point on the CH1domain of humanIgG1.J Biol Chem2001;276:38217-23.
25.Osmers I,Szalai AJ,Tenner AJ,Barnum SR.Complement in BuB/BnJmice revisited:serum C3levels and complement opsonic activity are not elevated.Mol Immunol2006;43:1722-5.
26.Otte L,Knaute T,Schneider-Mergener J,Kramer A.Molecular basisfor the binding polyspecificity of an anti-cholera toxin peptide3monoclonalantibody.J Mol Recognit2006;19:49-59.
27.Arenkov P,Kukhtin A,Gemmell A,Voloshchuck S,Chupeeva V,Mirzabekov A.Protein microchips:use for immunoassay and enzymatic reactions.Analytical Biochemistry2000;278:123-31.
28.Ge H.UPA,a universal protein array system for quantitative detectedprotein-protein,protein-DNA,protein-RNA,and protein-ligand interactions.Nucleic Acids Research2000;28:i-vii.
29.Fodor SP,Read JL,Pirrung MC,Stryer L,Lu AT,Solas D.Light-directed,spatially addressable parallel chemical synthesis.Science1991;251:767-73.
30.Forster R,Valin M,Lemarchand T,Palate B,Fifre A.Validation oftissue cross reactivity(TCR)studies:Tissue cross reactivity of anti-humanCD209in cynomolgus tissues.Toxicology Letters2009;189:S100-S.
31.Kallioniemi O-P,Wagner U,Kononen J,Sauter G.Tissue microarraytechnology for high-throughput molecular profiling of cancer.Human MolecularGenetics2001;10:657-62.
32.Lynch C,Grewel I.Preclinical safety evaluation of monoclonalantibodies.In:Chernajovsky Y,Nissim A,eds.Therapeutic Antibodies:Handbook of Experimental Pharmacology.Berlin:Springer-Verlag,2008:19-44.
33.Dennis MS.CDR Repair:A novel approach to antibody humaization.In:Shire SJ,Gombotz W,Bechtold-Peters K,Adndya J,eds.Current Trends inMonoclonal Antibody Development and Manufacturing.New York:Springer,2010:9-28.
34.Gallop MA,Barrett RW,Dower WJ,Fodor SPA,Gordon EM.Applications of combinatorial technologies to drug discovery.1.Background andpeptide combinatorial libraries.J Med Chem1994;37:1233-51.
35.Lee CV,Liang W-C,Dennis MS,Eigenbrot C,Sidhu SS,Fuh G.High-affinity human antibodies from phage-displayed synthetic Fab libraries witha single framework scaffold.J Mol Bio2004;340:1073-93.
36.Circolo A,Garnier G,Fukuda W,Wang X,Hidvegi T,Szalai AJ,et al.Genetic disruption of the murine complement C3promoter region generatesdeficient mice with extrahepatic expression of C3mRNA.Immunopharmacology1999;42:135-49.
37.Chizzonite R,Truitt T,Podlaski FJ,Wolitzky AG,Quinn PM,Nunes P,et al.IL-12:Monocloncal antibodies specific for the40-kDa subunit blockreceptor binding and biological activity on activated human lymphoblasts.TheJournal of Immunology1991;147:1548-56.
38.Jin Z,Li Y,Pitti R,Lawrence D,Pham VC,Lill JR,et al.Cullin3-basedpolyubiquitination and p62-dependent aggregation of caspase-8mediate extrinsicapoptosis signaling.Cell2009;137:721-35.
虽然出于清楚理解的目的,前述发明已经作为例示和例子相当详细地进行了描述,但是说明书和实施例不应解释为限制本发明的范围。通过提及而明确将本文中引用的所有专利和科学文献的公开内容完整收录。
Figure IDA0000432912530000011
Figure IDA0000432912530000031
Figure IDA0000432912530000041
Figure IDA0000432912530000051
Figure IDA0000432912530000061
Figure IDA0000432912530000071
Figure IDA0000432912530000081
Figure IDA0000432912530000091
Figure IDA0000432912530000101
Figure IDA0000432912530000111
Figure IDA0000432912530000121
Figure IDA0000432912530000131
Figure IDA0000432912530000141
Figure IDA0000432912530000151
Figure IDA0000432912530000161
Figure IDA0000432912530000171

Claims (41)

1.一种结合FGFR4的分离的抗体,其中该抗FGFR4抗体以≤1nM的亲和力结合人FGFR4。
2.权利要求1的分离的抗体,其中该抗FGFR4抗体以≤1nM的亲和力结合人、小鼠和猕猴FGFR4。
3.权利要求2的分离的抗体,其中该抗FGFR4抗体以≤0.05nM的亲和力结合人FGFR4。
4.权利要求1-3任一项的分离的抗体,其中该抗FGFR4抗体对具有图12D所示氨基酸序列的小鼠C3蛋白不发生实质性结合。
5.权利要求1-4任一项的分离的抗体,其中该抗FGFR4抗体对包含G165A突变的人FGFR4不发生实质性结合。
6.权利要求1-5任一项的分离的抗体,其中该抗FGFR4抗体结合与如下序列具有至少70%、80%、90%、95%、98%序列同一性或相似性的多肽:包含成熟人FGFR4氨基酸序列的氨基酸编号150至170的序列、基本上由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成的序列或由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成的序列。
7.权利要求6的分离的抗体,其中该抗FGFR4抗体结合如下多肽:包含成熟人FGFR4氨基酸序列的氨基酸编号150至170的多肽、基本上由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成的多肽或由成熟人FGFR4氨基酸序列的氨基酸编号150至170组成的多肽。
8.权利要求1-7任一项的抗体,其中该抗FGFR4抗体是FGFR4活性的拮抗剂。
9.权利要求8的抗体,其中FGFR4活性为FGF诱导的细胞增殖、FGF对FGFR4的结合、暴露于FGF19的细胞中FGF19介导的对CYP7α7表达的抑制或FGF19诱导的集落形成。
10.权利要求9的抗体,其中FGF1和/或FGF19对FGFR4的结合受到抑制。
11.权利要求10的抗体,其中抑制FGF1结合FGFR4的IC50为约0.10nM且抑制FGF19结合FGFR4的IC50为约0.10nM。
12.权利要求1-11任一项的抗体,其为单克隆抗体。
13.权利要求1-11任一项的抗体,其为人抗体、人源化抗体或嵌合抗体。
14.权利要求1-11任一项的抗体,其为结合FGFR4的抗体片段。
15.权利要求1-14任一项的抗体,其中该抗体包含(a)HVR-H3,其包含氨基酸序列SEQ ID NO:3,(b)HVR-L3,其包含氨基酸序列SEQ ID NO:6,和(c)HVR-H2,其包含氨基酸序列SEQ ID NO:2。
16.权利要求1-14任一项的抗体,其中该抗体包含(a)HVR-H1,其包含氨基酸序列SEQ ID NO:1,(b)HVR-H2,其包含氨基酸序列SEQ ID NO:2,和(c)HVR-H3,其包含氨基酸序列SEQ ID NO:3。
17.权利要求16的抗体,其进一步包含(a)HVR-L1,其包含氨基酸序列SEQID NO:4;(b)HVR-L2,其包含氨基酸序列SEQ ID NO:5;和(c)HVR-L3,其包含氨基酸序列SEQ ID NO:6。
18.权利要求1-14任一项的抗体,其包含(a)HVR-L1,其包含氨基酸序列SEQID NO:4;(b)HVR-L2,其包含氨基酸序列SEQ ID NO:5;和(c)HVR-L3,其包含氨基酸序列SEQ ID NO:6。
19.权利要求1-18任一项的抗体,其进一步包含SEQ ID NO:9、10、11和/或12的轻链可变域框架序列。
20.权利要求1-19任一项的抗体,其进一步包含SEQ ID NO:13、14、15和/或16的重链可变域框架序列。
21.权利要求1-20任一项的抗体,其包含(a)VH序列,其与氨基酸序列SEQID NO:7具有至少95%序列同一性;(b)VL序列,其与氨基酸序列SEQ IDNO:8具有至少95%序列同一性;或(c)(a)中的VH序列和(b)中的VL序列。
22.权利要求21的抗体,其包含VH序列SEQ ID NO:7。
23.权利要求21的抗体,其包含VL序列SEQ ID NO:8。
24.一种抗体,其包含VH序列SEQ ID NO:7和VL序列SEQ ID NO:8。
25.权利要求1-24任一项的抗体,其为全长IgG1抗体。
26.一种分离的核酸,其编码权利要求1-24任一项的抗体。
27.一种宿主细胞,其包含权利要求26的核酸。
28.一种生产抗体的方法,其包括培养权利要求27的宿主细胞,使得抗体生成。
29.权利要求28的方法,其进一步包括自宿主细胞回收抗体。
30.一种免疫偶联物,其包含权利要求1-24任一项的抗体和细胞毒剂。
31.一种药物组合物,其包含权利要求1-24任一项的抗体和医学可接受载体。
32.权利要求16的药物组合物,其进一步包含其它的治疗剂。
33.权利要求1-24任一项的抗体,其用作药物。
34.权利要求1-24任一项的抗体,其用于治疗癌症。
35.权利要求1-24任一项的抗体,其用于抑制细胞增殖。
36.权利要求1-24任一项的抗体,其用于制备药物。
37.权利要求36的用途,其中该药物用于治疗癌症。
38.权利要求36的用途,其中该药物用于抑制细胞增殖。
39.一种治疗具有癌症的个体的方法,其包括对个体施用有效量的权利要求1-24任一项的抗体。
40.权利要求39的方法,其进一步包括对个体施用其它的治疗剂。
41.一种在个体中抑制细胞增殖的方法,其包括对个体施用有效量的权利要求1-24任一项的抗体以抑制细胞增殖。
CN201280028220.4A 2011-04-07 2012-04-06 抗fgfr4抗体及使用方法 Expired - Fee Related CN103596983B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161473106P 2011-04-07 2011-04-07
US61/473,106 2011-04-07
PCT/US2012/032491 WO2012138975A1 (en) 2011-04-07 2012-04-06 Anti-fgfr4 antibodies and methods of use

Publications (2)

Publication Number Publication Date
CN103596983A true CN103596983A (zh) 2014-02-19
CN103596983B CN103596983B (zh) 2016-10-26

Family

ID=45952667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280028220.4A Expired - Fee Related CN103596983B (zh) 2011-04-07 2012-04-06 抗fgfr4抗体及使用方法

Country Status (10)

Country Link
US (2) US9266955B2 (zh)
EP (1) EP2694551A1 (zh)
JP (1) JP2014516511A (zh)
KR (1) KR20140021589A (zh)
CN (1) CN103596983B (zh)
BR (1) BR112013024717A2 (zh)
CA (1) CA2828890A1 (zh)
MX (1) MX342240B (zh)
RU (1) RU2013143358A (zh)
WO (1) WO2012138975A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109069606A (zh) * 2016-04-29 2018-12-21 辉瑞大药厂 干扰素β抗体及其用途
CN111315777A (zh) * 2017-08-16 2020-06-19 埃克兹瑞斯公司 抗-fgfr4的单克隆抗体
CN111471109A (zh) * 2020-04-08 2020-07-31 中国科学院深圳先进技术研究院 一种抗成纤维细胞生长因子受体4单克隆抗体及其制备方法和用途
WO2021093250A1 (zh) * 2019-11-15 2021-05-20 深圳宾德生物技术有限公司 一种靶向fgfr4的单链抗体、嵌合抗原受体、嵌合抗原受体t细胞及其制备方法和应用

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088266A2 (en) 2010-12-22 2012-06-28 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of fgfr3
PT3495367T (pt) 2012-06-13 2020-11-12 Incyte Holdings Corp Compostos tricíclicos substituídos como inibidores de fgfr
WO2014026125A1 (en) 2012-08-10 2014-02-13 Incyte Corporation Pyrazine derivatives as fgfr inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
WO2014165287A1 (en) * 2013-03-12 2014-10-09 The Translational Genomics Research Institute Hybridoma clones and monoclonal antibodies to fibroblast growth factor 4
TWI647220B (zh) 2013-03-15 2019-01-11 美商西建卡爾有限責任公司 雜芳基化合物及其用途
NZ711376A (en) 2013-03-15 2020-01-31 Sanofi Sa Heteroaryl compounds and uses thereof
AU2014228746B2 (en) 2013-03-15 2018-08-30 Celgene Car Llc Heteroaryl compounds and uses thereof
TWI715901B (zh) 2013-04-19 2021-01-11 美商英塞特控股公司 作為fgfr抑制劑之雙環雜環
ES2682493T3 (es) 2013-10-25 2018-09-20 Novartis Ag Compuestos derivados de piridilo bicíclicos fusionados a anillo como inhibidores de FGFR4
CN103558372B (zh) * 2013-11-08 2017-02-15 博弈诺生物科技(无锡)有限公司 一种elisa用的抗原标准品和样本稀释液的制备方法
US10780182B2 (en) 2014-04-25 2020-09-22 The Trustees Of The University Of Pennsylvania Methods and compositions for treating metastatic breast cancer and other cancers in the brain
WO2015175639A1 (en) 2014-05-13 2015-11-19 The Trustees Of The University Of Pennsylvania Compositions comprising aav expressing dual antibody constructs and uses thereof
US20170348234A1 (en) * 2014-07-24 2017-12-07 Memorial Sloan-Kettering Cancer Center Method and composition for targeted delivery of therapeutic agents
PL3180356T3 (pl) * 2014-08-11 2020-04-30 Daiichi Sankyo Europe Gmbh Ludzkie przeciwciało anty-fgfr4
US20180185341A1 (en) 2014-10-03 2018-07-05 Novartis Ag Use of ring-fused bicyclic pyridyl derivatives as fgfr4 inhibitors
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
WO2016134294A1 (en) 2015-02-20 2016-08-25 Incyte Corporation Bicyclic heterocycles as fgfr4 inhibitors
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
CN113004278B (zh) 2015-02-20 2023-07-21 因赛特控股公司 作为fgfr抑制剂的双环杂环
CN107667092B (zh) 2015-03-25 2021-05-28 诺华股份有限公司 作为fgfr4抑制剂的甲酰化n-杂环衍生物
EP3095465A1 (en) 2015-05-19 2016-11-23 U3 Pharma GmbH Combination of fgfr4-inhibitor and bile acid sequestrant
MA43416A (fr) 2015-12-11 2018-10-17 Regeneron Pharma Méthodes pour ralentir ou empêcher la croissance de tumeurs résistantes au blocage de l'egfr et/ou d'erbb3
WO2018055503A1 (en) 2016-09-20 2018-03-29 Novartis Ag Combination comprising a pd-1 antagonist and an fgfr4 inhibitor
PL3534902T3 (pl) 2016-11-02 2023-03-27 Novartis Ag Skojarzenia inhibitorów fgfr4 i sekwestrantów kwasów żółciowych
EP3535587B1 (en) * 2016-11-04 2020-10-14 Centro de Investigación Biomédica en Red (CIBER-ISCIII) Mass spectrometry-based methods for the detection of circulating histones h3 and h2b in plasma from sepsis or septic shock (ss) patients
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
WO2019213544A2 (en) 2018-05-04 2019-11-07 Incyte Corporation Solid forms of an fgfr inhibitor and processes for preparing the same
CR20200591A (es) 2018-05-04 2021-03-31 Incyte Corp Sales de un inhibidor de fgfr
CA3108282A1 (en) 2018-08-02 2020-02-06 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
WO2020185532A1 (en) 2019-03-08 2020-09-17 Incyte Corporation Methods of treating cancer with an fgfr inhibitor
WO2021007269A1 (en) 2019-07-09 2021-01-14 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
TW202128685A (zh) 2019-10-14 2021-08-01 美商英塞特公司 作為fgfr抑制劑之雙環雜環
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
EP4069696A1 (en) 2019-12-04 2022-10-12 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
CA3162010A1 (en) 2019-12-04 2021-06-10 Incyte Corporation Derivatives of an fgfr inhibitor
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
WO2023113806A1 (en) 2021-12-16 2023-06-22 Affinia Therapeutics, Inc. Recombinant aav for treatment of neural disease
WO2022221193A1 (en) 2021-04-12 2022-10-20 Affinia Therapeutics Inc. Recombinant aav for treatment of neural disease
KR20240011714A (ko) 2021-04-27 2024-01-26 제너레이션 바이오 컴퍼니 치료용 항체를 발현하는 비바이러스성 dna 벡터 및 이의 용도
CA3220274A1 (en) 2021-06-09 2022-12-15 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
CA3226366A1 (en) * 2021-07-09 2023-01-12 Dyne Therapeutics, Inc. Muscle targeting complexes and formulations for treating dystrophinopathies
US11771776B2 (en) 2021-07-09 2023-10-03 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
WO2023177655A1 (en) 2022-03-14 2023-09-21 Generation Bio Co. Heterologous prime boost vaccine compositions and methods of use
US11931421B2 (en) 2022-04-15 2024-03-19 Dyne Therapeutics, Inc. Muscle targeting complexes and formulations for treating myotonic dystrophy
TW202402797A (zh) 2022-05-19 2024-01-16 美商泰拉生物科學公司 使用ppar促效劑及fgfr4抑制劑之療法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004204A2 (fr) * 2008-07-08 2010-01-14 Sanofi-Aventis Antagonistes specifiques du recepteur fgf-r4
WO2010026291A1 (en) * 2008-09-03 2010-03-11 Licentia Ltd. Materials and methods for inhibiting cancer cell invasion related to fgfr4

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4737456A (en) 1985-05-09 1988-04-12 Syntex (U.S.A.) Inc. Reducing interference in ligand-receptor binding assays
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US6548640B1 (en) 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
EP0307434B2 (en) 1987-03-18 1998-07-29 Scotgen Biopharmaceuticals, Inc. Altered antibodies
US5770701A (en) 1987-10-30 1998-06-23 American Cyanamid Company Process for preparing targeted forms of methyltrithio antitumor agents
US5606040A (en) 1987-10-30 1997-02-25 American Cyanamid Company Antitumor and antibacterial substituted disulfide derivatives prepared from compounds possessing a methyl-trithio group
US5750373A (en) 1990-12-03 1998-05-12 Genentech, Inc. Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants
ES2052027T5 (es) 1988-11-11 2005-04-16 Medical Research Council Clonacion de secuencias de dominio variable de inmunoglobulina.
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
CA2026147C (en) 1989-10-25 2006-02-07 Ravi J. Chari Cytotoxic agents comprising maytansinoids and their therapeutic use
US5959177A (en) 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
EP1400536A1 (en) 1991-06-14 2004-03-24 Genentech Inc. Method for making humanized antibodies
GB9114948D0 (en) 1991-07-11 1991-08-28 Pfizer Ltd Process for preparing sertraline intermediates
EP0861893A3 (en) 1991-09-19 1999-11-10 Genentech, Inc. High level expression of immunoglobulin polypeptides
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
AU675929B2 (en) 1992-02-06 1997-02-27 Curis, Inc. Biosynthetic binding protein for cancer marker
EP0752248B1 (en) 1992-11-13 2000-09-27 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US5635483A (en) 1992-12-03 1997-06-03 Arizona Board Of Regents Acting On Behalf Of Arizona State University Tumor inhibiting tetrapeptide bearing modified phenethyl amides
US5780588A (en) 1993-01-26 1998-07-14 Arizona Board Of Regents Elucidation and synthesis of selected pentapeptides
JPH08511420A (ja) 1993-06-16 1996-12-03 セルテック・セラピューテイクス・リミテッド 抗 体
US5773001A (en) 1994-06-03 1998-06-30 American Cyanamid Company Conjugates of methyltrithio antitumor agents and intermediates for their synthesis
US5789199A (en) 1994-11-03 1998-08-04 Genentech, Inc. Process for bacterial production of polypeptides
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US5712374A (en) 1995-06-07 1998-01-27 American Cyanamid Company Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates
US5714586A (en) 1995-06-07 1998-02-03 American Cyanamid Company Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
GB9603256D0 (en) 1996-02-16 1996-04-17 Wellcome Found Antibodies
US6171586B1 (en) 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
ATE296315T1 (de) 1997-06-24 2005-06-15 Genentech Inc Galactosylierte glykoproteine enthaltende zusammensetzungen und verfahren zur deren herstellung
US6040498A (en) 1998-08-11 2000-03-21 North Caroline State University Genetically engineered duckweed
US6602677B1 (en) 1997-09-19 2003-08-05 Promega Corporation Thermostable luciferases and methods of production
ATE419009T1 (de) 1997-10-31 2009-01-15 Genentech Inc Methoden und zusammensetzungen bestehend aus glykoprotein-glykoformen
US6610833B1 (en) 1997-11-24 2003-08-26 The Institute For Human Genetics And Biochemistry Monoclonal human natural antibodies
DK1034298T3 (da) 1997-12-05 2012-01-30 Scripps Research Inst Humanisering af murint antistof
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
EP1068241B1 (en) 1998-04-02 2007-10-10 Genentech, Inc. Antibody variants and fragments thereof
PT1071700E (pt) 1998-04-20 2010-04-23 Glycart Biotechnology Ag Modificação por glicosilação de anticorpos para melhorar a citotoxicidade celular dependente de anticorpos
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
KR100940380B1 (ko) 1999-01-15 2010-02-02 제넨테크, 인크. 효과기 기능이 변화된 폴리펩티드 변이체
ES2571230T3 (es) 1999-04-09 2016-05-24 Kyowa Hakko Kirin Co Ltd Procedimiento para controlar la actividad de una molécula inmunofuncional
KR100797667B1 (ko) 1999-10-04 2008-01-23 메디카고 인코포레이티드 외래 유전자의 전사를 조절하는 방법
US7125978B1 (en) 1999-10-04 2006-10-24 Medicago Inc. Promoter for regulating expression of foreign genes
JP4668498B2 (ja) 1999-10-19 2011-04-13 協和発酵キリン株式会社 ポリペプチドの製造方法
US20030180714A1 (en) 1999-12-15 2003-09-25 Genentech, Inc. Shotgun scanning
AU767394C (en) 1999-12-29 2005-04-21 Immunogen, Inc. Cytotoxic agents comprising modified doxorubicins and daunorubicins and their therapeutic use
NZ521540A (en) 2000-04-11 2004-09-24 Genentech Inc Multivalent antibodies and uses therefor
US7064191B2 (en) 2000-10-06 2006-06-20 Kyowa Hakko Kogyo Co., Ltd. Process for purifying antibody
CN102311986B (zh) 2000-10-06 2015-08-19 协和发酵麒麟株式会社 产生抗体组合物的细胞
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
ES2405944T3 (es) 2000-11-30 2013-06-04 Medarex, Inc. Ácidos nucleicos que codifican las secuencias de inmunoglobulina humana reorganizadas a partir de ratones transcromoscómicos transgénicos zadas
CA2838062C (en) 2001-08-03 2015-12-22 Roche Glycart Ag Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
AU2002337935B2 (en) 2001-10-25 2008-05-01 Genentech, Inc. Glycoprotein compositions
US20040093621A1 (en) 2001-12-25 2004-05-13 Kyowa Hakko Kogyo Co., Ltd Antibody composition which specifically binds to CD20
CN100531796C (zh) * 2002-01-31 2009-08-26 马普科技促进协会 Fgfr激动剂
AU2003236020B2 (en) 2002-04-09 2009-03-19 Kyowa Hakko Kirin Co., Ltd. Cell with depression or deletion of the activity of protein participating in GDP-fucose transport
JPWO2003084569A1 (ja) 2002-04-09 2005-08-11 協和醗酵工業株式会社 抗体組成物含有医薬
WO2003085118A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Procede de production de composition anticorps
CN102911987B (zh) 2002-04-09 2015-09-30 协和发酵麒麟株式会社 基因组被修饰的细胞
AU2003236018A1 (en) 2002-04-09 2003-10-20 Kyowa Hakko Kirin Co., Ltd. METHOD OF ENHANCING ACTIVITY OF ANTIBODY COMPOSITION OF BINDING TO FcGamma RECEPTOR IIIa
US20050031613A1 (en) 2002-04-09 2005-02-10 Kazuyasu Nakamura Therapeutic agent for patients having human FcgammaRIIIa
NZ556507A (en) 2002-06-03 2010-03-26 Genentech Inc Synthetic antibody phage libraries
US7361740B2 (en) 2002-10-15 2008-04-22 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
BRPI0316779B1 (pt) 2002-12-16 2020-04-28 Genentech Inc anticorpo humanizado que liga cd20 humano, composição, artigo manufaturado, método de indução da apoptose, método de tratamento de câncer cd20 positivo, métodos de tratamento de doenças autoimunes, ácidos nucléicos isolados, vetores de expressão, células hospedeiras, método para a produção de um anticorpo 2h7 humanizado, polipeptídeo isolado, formulação líquida, método de tratamento de artrite reumatóide (ra) e anticorpos de ligação de cd20 humanizados
WO2004065416A2 (en) 2003-01-16 2004-08-05 Genentech, Inc. Synthetic antibody phage libraries
US7871607B2 (en) 2003-03-05 2011-01-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
AU2004279742A1 (en) 2003-10-08 2005-04-21 Kyowa Hakko Kirin Co., Ltd. Fused protein composition
CA2542125A1 (en) 2003-10-09 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. Process for producing antibody composition by using rna inhibiting the function of .alpha.1,6-fucosyltransferase
PT1680140E (pt) * 2003-10-16 2011-05-31 Imclone Llc Inibidores do receptor-1 do factor de crescimento de fibroblastos e m?todos de tratamento destes
RS58420B1 (sr) 2003-11-05 2019-04-30 Roche Glycart Ag Cd20 antitela sa povećanim afinitetom za vezivanje fc receptora i efektornom funkcijom
BR122018071808B8 (pt) 2003-11-06 2020-06-30 Seattle Genetics Inc conjugado
JPWO2005053742A1 (ja) 2003-12-04 2007-06-28 協和醗酵工業株式会社 抗体組成物を含有する医薬
US20070248605A1 (en) * 2003-12-19 2007-10-25 Five Prime Therapetutics, Inc. Fibroblast Growth Factor Receptors 1,2,3, and 4 as Targets for Therapeutic Intervention
WO2005097832A2 (en) 2004-03-31 2005-10-20 Genentech, Inc. Humanized anti-tgf-beta antibodies
US7785903B2 (en) 2004-04-09 2010-08-31 Genentech, Inc. Variable domain library and uses
PL1737891T3 (pl) 2004-04-13 2013-08-30 Hoffmann La Roche Przeciwciała przeciw selektynie p
TWI309240B (en) 2004-09-17 2009-05-01 Hoffmann La Roche Anti-ox40l antibodies
CA2580141C (en) 2004-09-23 2013-12-10 Genentech, Inc. Cysteine engineered antibodies and conjugates
JO3000B1 (ar) 2004-10-20 2016-09-05 Genentech Inc مركبات أجسام مضادة .
EP2465870A1 (en) 2005-11-07 2012-06-20 Genentech, Inc. Binding polypeptides with diversified and consensus VH/VL hypervariable sequences
US20070237764A1 (en) 2005-12-02 2007-10-11 Genentech, Inc. Binding polypeptides with restricted diversity sequences
WO2007134050A2 (en) 2006-05-09 2007-11-22 Genentech, Inc. Binding polypeptides with optimized scaffolds
WO2008027236A2 (en) 2006-08-30 2008-03-06 Genentech, Inc. Multispecific antibodies
EP1918376A1 (en) * 2006-11-03 2008-05-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. FGFR4 promotes cancer cell resistance in response to chemotherapeutic drugs
US8394927B2 (en) * 2006-11-03 2013-03-12 U3 Pharma Gmbh FGFR4 antibodies
US20080226635A1 (en) 2006-12-22 2008-09-18 Hans Koll Antibodies against insulin-like growth factor I receptor and uses thereof
CN100592373C (zh) 2007-05-25 2010-02-24 群康科技(深圳)有限公司 液晶显示面板驱动装置及其驱动方法
SI2235064T1 (sl) 2008-01-07 2016-04-29 Amgen Inc. Metoda za izdelavo heterodimernih molekul - protitelesa fc z uporabo elektrostatičnih usmerjevalnih učinkov

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004204A2 (fr) * 2008-07-08 2010-01-14 Sanofi-Aventis Antagonistes specifiques du recepteur fgf-r4
CN102149730A (zh) * 2008-07-08 2011-08-10 赛诺菲-安万特 Fgf-r4受体特异性拮抗剂
WO2010026291A1 (en) * 2008-09-03 2010-03-11 Licentia Ltd. Materials and methods for inhibiting cancer cell invasion related to fgfr4

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHAOYUAN CHEN ET AL.,: "Generation and characterization of a panel of monoclonal antibodies specific for human fibroblast growth factor receptor 4 (FGFR4)", 《HYBRIDOMA》, vol. 24, no. 3, 31 December 2005 (2005-12-31), pages 152 - 159, XP002467618, DOI: 10.1089/hyb.2005.24.152 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109069606A (zh) * 2016-04-29 2018-12-21 辉瑞大药厂 干扰素β抗体及其用途
CN111315777A (zh) * 2017-08-16 2020-06-19 埃克兹瑞斯公司 抗-fgfr4的单克隆抗体
WO2021093250A1 (zh) * 2019-11-15 2021-05-20 深圳宾德生物技术有限公司 一种靶向fgfr4的单链抗体、嵌合抗原受体、嵌合抗原受体t细胞及其制备方法和应用
CN111471109A (zh) * 2020-04-08 2020-07-31 中国科学院深圳先进技术研究院 一种抗成纤维细胞生长因子受体4单克隆抗体及其制备方法和用途
CN111471109B (zh) * 2020-04-08 2021-07-23 中国科学院深圳先进技术研究院 一种抗成纤维细胞生长因子受体4单克隆抗体及其制备方法和用途
WO2021203700A1 (zh) * 2020-04-08 2021-10-14 中国科学院深圳先进技术研究院 一种抗成纤维细胞生长因子受体4单克隆抗体及其制备方法和用途

Also Published As

Publication number Publication date
US20140037624A1 (en) 2014-02-06
WO2012138975A1 (en) 2012-10-11
CA2828890A1 (en) 2012-10-11
MX342240B (es) 2016-09-21
MX2013011479A (es) 2013-11-04
JP2014516511A (ja) 2014-07-17
EP2694551A1 (en) 2014-02-12
US9266955B2 (en) 2016-02-23
US20160237157A1 (en) 2016-08-18
RU2013143358A (ru) 2015-05-20
BR112013024717A2 (pt) 2017-08-08
KR20140021589A (ko) 2014-02-20
CN103596983B (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
CN103596983B (zh) 抗fgfr4抗体及使用方法
CN102906117B (zh) 抗lrp6抗体
CN103080136B (zh) 抗Axl抗体及使用方法
CN102378767B (zh) 抗-fgfr3抗体及其使用方法
US10266602B2 (en) Compositions and methods for diagnosis and treatment of hepatic cancers
CN101437852B (zh) 抗tat226抗体和免疫偶联物
CN110418851A (zh) 癌症的治疗和诊断方法
CN104011078B (zh) 抗聚泛素抗体及使用方法
CN106132439A (zh) 包含抗血管发生剂和ox40结合激动剂的组合疗法
CN102892779B (zh) 神经调节蛋白拮抗剂及其在治疗癌症中的用途
CN107810011A (zh) 使用抗ox40抗体治疗癌症的方法
JP2014516511A5 (zh)
CN107109484A (zh) 用于ox40激动剂治疗的功效预测和评估的方法和生物标志物
CN107787331A (zh) 抗her2抗体和使用方法
CN109196121A (zh) 用于癌症的治疗和诊断方法
CN103781493A (zh) 抗c-met抗体配制剂
CN106604933A (zh) 抗pd‑l1抗体及其诊断用途
KR20170086540A (ko) T 세포 면역 하위세트를 검출하기 위한 검정 및 그의 사용 방법
CN103025353A (zh) 治疗方法
CN103890007A (zh) 神经调节蛋白抗体及其用途
CN105744954A (zh) 抗rspo2和/或抗rspo3抗体及其用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1190734

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: F. HOFFMANN-LA ROCHE AG

Free format text: FORMER OWNER: GENENTECH INC.

Effective date: 20141102

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20141102

Address after: Basel

Applicant after: F. Hoffmann-La Roche AG

Address before: American California

Applicant before: Genentech Inc.

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1190734

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161026

Termination date: 20170406

CF01 Termination of patent right due to non-payment of annual fee