CN103553055A - 三氯硅烷的制备方法和三氯硅烷的制备装置 - Google Patents

三氯硅烷的制备方法和三氯硅烷的制备装置 Download PDF

Info

Publication number
CN103553055A
CN103553055A CN201310417262.3A CN201310417262A CN103553055A CN 103553055 A CN103553055 A CN 103553055A CN 201310417262 A CN201310417262 A CN 201310417262A CN 103553055 A CN103553055 A CN 103553055A
Authority
CN
China
Prior art keywords
gas
trichlorosilane
hydrogen
mentioned
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310417262.3A
Other languages
English (en)
Inventor
水岛一树
漆原诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of CN103553055A publication Critical patent/CN103553055A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及一种三氯硅烷的制备方法和三氯硅烷的制备装置。一种装置,其具备:向内部导入四氯硅烷和氢,通过在800℃以上进行还原反应,生成三氯硅烷和氯化氢的反应生成气体的反应室2;将反应室2内部的反应生成气体导出到外部的反应生成气体导出设备4;以及向反应生成气体导出设备4所导出的反应生成气体中混入氢、四氯硅烷或氯化氢,来冷却反应生成气体的冷却气体导入设备5。

Description

三氯硅烷的制备方法和三氯硅烷的制备装置
本申请是原案申请日为2007年10月26日、原案申请号为200780024481.8 (国际申请号为PCT/JP2007/070941)、发明名称为“三氯硅烷的制备方法和三氯硅烷的制备装置”的专利申请的分案申请。
技术领域
本发明涉及将四氯硅烷转换成三氯硅烷的三氯硅烷的制备方法和三氯硅烷的制备装置。
本申请根据2006年11月7日在日本申请的特愿2006-302056号和2007年10月22日在日本申请的特愿2007-273545号主张优先权,将其内容援引到本申请中。
背景技术
高纯度多晶硅例如可以以三氯硅烷(SiHCl3:简称为TCS)、四氯硅烷(SiCl4:简称为STC)和氢作为原料,通过下式(1)所示的三氯硅烷的氢还原反应、下式(2)所示的三氯硅烷的热分解反应来制备。
由多晶硅的上述生成反应排出的气体中,含有未反应的四氯硅烷、三氯硅烷和氢,同时还含有副生的氯化氢和二氯硅烷等低沸点氯硅烷类、四氯乙硅烷或六氯乙硅烷等微量的高沸点氯硅烷类。这些氯硅烷类可以根据沸点进行阶段性蒸馏分离,可以根据需要进行再利用。
例如,可以以由上述生成反应的排气中蒸馏分离而回收的四氯硅烷为原料,通过下式(3)所示的氢加成的转换反应生成三氯硅烷。回收该三氯硅烷,可以将其作为上述多晶硅的制备原料进行再利用。
Figure 24777DEST_PATH_IMAGE002
作为制备该三氯硅烷的装置,例如已知专利文献1中记载的转换反应装置(转化炉)。该转换反应装置是包裹发热体的反应室具有由同心配置的两个管形成的外室和内室双重室,在该反应室的下部设置热交换器,经由该热交换器连接原料气体供给管路和排出管路,所述原料气体供给管路向反应室中供给氢和四氯硅烷,所述排出管路由反应室中排出反应生成气体;在上述热交换器中,将来自反应室排出的反应生成气体的热传递给供给反应室的供给气体,进行预热,同时排出的反应生成气体得以冷却。
专利文献1:日本专利第3781439号公报。
发明内容
发明所要解决的课题
在上述现有的三氯硅烷制备装置中,在反应室下部的热交换器中,通过与供给气体进行热交换而将反应生成气体冷却,但在反应生成气体的冷却过程中,发生三氯硅烷分解成四氯化硅和氢的逆反应。因此,为了尽量不发生逆反应而提高反应生成气体的冷却速度,设法在直至明显不发生逆反应的温度下短时间内骤冷。但是,上述现有的冷却方法由于冷却速度慢,因此无法避免逆反应的发生,出现生成三氯硅烷的转换率变低的不良情形。当在更高的温度下发生转换反应时上述问题增大,特别是在超过1200℃的温度下上述问题显著。
虽然还可以在直至逆反应明显不发生的温度下在1秒以内的极短时间内骤冷,但这种情况下,在冷却过程中副生聚合物,因此存在转换率变低的问题,而且副生的聚合物附着于管路的壁上等出现堵塞管路、无法维持管路等的良好的健全性的不良情形。需要说明的是,该聚合物为含有2个原子以上的硅的Si2Cl6、Si3Cl8、Si2H2Cl4等高价氯硅烷类。
本发明为解决现有三氯硅烷制备方法中的上述问题而设,目的在于提供通过向转换反应生成的混合气体中导入特定的冷却气体,边控制化学反应边骤冷生成的混合气体,可提高转换效率的三氯硅烷的制备方法和三氯硅烷制备装置。
解决课题的方法
本发明涉及通过具有以下[1]~[6]所示的构成来解决上述课题的三氯硅烷的制备方法。
[1] 三氯硅烷的制备方法,该制备方法具有以下步骤:将四氯硅烷和氢导入到反应室内,使之在800℃以上的温度下进行反应,生成包含三氯硅烷和氯化氢的混合气体的步骤;以及由上述反应室导出上述混合气体时,向该混合气体中导入以氢、四氯硅烷或氯化氢中的至少一种为主体的冷却气体来冷却该混合气体的步骤。
[2] 上述[1]的三氯硅烷的制备方法,其中导入到混合气体中的冷却气体的温度为-60℃~650℃。
[3] 上述[1]或[2]的三氯硅烷的制备方法,其中混合气体生成步骤的反应温度为1200℃以上。
[4] 上述[1]~[3]中任一项的三氯硅烷的制备方法,其中导入以氢或四氯硅烷为主体的冷却气体,将上述混合气体冷却至650℃以下。
[5] 上述[1]~[3]中任一项的三氯硅烷的制备方法,其中导入以氯化氢为主体的冷却气体,将上述混合气体在1秒以内冷却至650℃以下。
[6] 上述[1]~[4]中任一项的三氯硅烷的制备方法,其中将导入了冷却气体的混合气体导入到冷却器中,冷凝分离未反应的氢,将分离的含氢气体作为冷却气体进行再利用。
本发明还涉及通过具有以下[7]~[11]所示的构成来解决上述课题的三氯硅烷的制备装置。
[7] 三氯硅烷的制备装置,该制备装置具备以下设备:使四氯硅烷和氢在800℃以上的温度下进行反应生成包含三氯硅烷和氯化氢的混合气体的反应室;将上述混合气体导出到反应室外部的混合气体导出设备;以及将以氢、四氯硅烷或氯化氢中的至少一种为主体的冷却气体导入到上述混合气体中的冷却气体导入设备,该冷却气体导入设备连接在上述混合气体导出设备上。
[8] 上述[7]的三氯硅烷制备装置,其中反应温度为1200℃以上。
[9] 上述[7]或[8]的三氯硅烷制备装置,其中在冷却气体导入设备上连接有以氢或四氯硅烷为主体的冷却气体的供给管路,将以氢或四氯硅烷为主体的冷却气体导入到上述混合气体中,将上述混合气体冷却至650℃以下。
[10] 上述[7]或[8]的三氯硅烷制备装置,其中在冷却气体导入设备上连接有以氯化氢为主体的冷却气体的供给管路,将以氯化氢为主体的冷却气体导入到上述混合气体中,将上述混合气体在1秒以内冷却至650℃以下。
[11] 上述[7]~[10]中任一项的三氯硅烷制备装置,其具备:导入混合气体的冷却器,上述混合气体中导入了冷却气体;以及向冷却气体导入设备中供给经冷却器冷凝分离的以未反应的氢为主体的含氢气体的循环管路。
根据上述[1]的方法和上述[7]的装置,在使四氯硅烷和氢反应生成三氯硅烷的转换反应中,通过向生成的混合气体中导入以氢、四氯硅烷或氯化氢中的至少一种为主体的冷却气体来冷却上述生成混合气体,因此在冷却高温混合气体的同时,三氯硅烷的逆反应被导入的氢、四氯硅烷抑制,聚合物的副生被氯化氢抑制,从而可以提高三氯硅烷的转换率。需要说明的是,关于冷却气体,以氢、四氯硅烷或氯化氢中的至少一种为主体是指在不会大幅度减少这些成分的效果的范围内可以含有少量的其他成分。
导入的氢、四氯硅烷或氯化氢,可以单独混入任一种,也可以同时混入多种。另外,以氢、四氯硅烷或氯化氢为主体的冷却气体的温度可以根据上述生成混合气体的冷却速度来设定,例如如上述[2]所示,使用-60℃~650℃的冷却气体。还可以将冷却气体事先预热后导入。这些冷却气体可以和其它冷却方法结合使用。
在上述[1]的方法和上述[7]的装置中,三氯硅烷的生成转换反应的温度为800℃以上,在上述[3]的方法和上述[8]的装置中,反应温度为1200℃以上。当转换反应温度低于800℃时,三氯硅烷的生成率(转换率)大幅度降低。在1200℃以上的反应温度下转换反应进一步得到促进,可以提高生成三氯硅烷的转换率。
温度越高生成三氯硅烷的转换反应越得到促进,但超过1000℃左右时,反应生成气体中的一部分三氯硅烷分解成氯化氢和中间产物SiCl2。温度越高该分解反应越得以进行,特别是在超过1200℃的温度下,反应生成气体中SiCl2成为主要成分。
本发明的制备方法和制备装置,由于导入到转换反应的生成混合气体中的冷却气体的氢、四氯硅烷或氯化氢对该SiCl2产生作用,因此即使在超过1200℃的温度下进行转换反应的情况下,也能够有效地抑制三氯硅烷分解的逆反应,可以提高生成三氯硅烷的转换率。
在上述[4]的方法和上述[9]的装置中,导入以氢或四氯硅烷为主体的冷却气体,将上述生成气体冷却至650℃以下的温度,因此生成气体被冷却至明显不发生转换反应的逆反应的温度范围,同时转换反应的逆反应被氢或四氯硅烷抑制。需要说明的是,混入的氢或四氯硅烷可以单独导入任一种,或者可以将两者同时导入。
在上述[5]的方法和上述[1]的装置中,导入以氯化氢为主体的冷却气体,将上述生成气体以1秒以内的冷却速度骤冷至650℃以下的温度时,即使在1秒以内的极短时间内骤冷至明显不发生转换反应的逆反应的上述650℃以下的温度范围,聚合物的副生也会被氯化氢抑制。其结果,可以抑制由聚合物的副生而引起的转换率的降低,同时可以抑制转换反应的逆反应,可以进一步提高转换率。并且,可以防止副生的聚合物附着于管路的壁上等堵塞管路的问题,维持管路等的良好状态。在更高的温度下发生转换反应时上述效果变大,特别是在超过1200℃的温度下上述效果显著。
在上述[6]的方法和上述[11]的装置中,将导入了冷却气体的混合气体导入到冷却器中,冷凝分离未反应的氢,将分离的含氢气体作为冷却气体进行再利用,因此可以提高氢的使用效率。
发明效果
如上所述,根据本发明的三氯硅烷的制备方法和三氯硅烷制备装置,在由反应室导出生成气体时,导入以氢、四氯硅烷或氯化氢为主体的冷却气体来冷却上述生成气体,因此高温状态的生成气体被骤冷,同时转换反应的逆反应被抑制,聚合物的副生也被抑制,因此可以以高转换率得到三氯硅烷。
附图简述
图1是显示本发明的三氯硅烷的制备方法和三氯硅烷制备装置的一实施方式的装置整体的构成图。
符号说明
1···三氯硅烷制备装置;
2···反应室;
4···反应生成气体导出设备;
5···冷却气体导入设备;
6···加热设备;
9···气体供给管;
11···排气管;
14···冷却气体导入管。
实施发明的最佳方式
以下,参照图1来具体说明本发明的三氯硅烷的制备方法和三氯硅烷制备装置的实施方式。
图1所示实施方式的三氯硅烷制备装置(转化炉) 1具备:使四氯硅烷和氢在800℃以上进行反应生成三氯硅烷和氯化氢的混合气体的反应室2;连接在反应室2上的气体供给设备3;将上述生成混合气体导出到外部的生成气体导出设备4;以及连接在该生成气体导出设备4上的冷却气体导入设备5。
在反应室2的周围设置有加热该反应室2的加热设备6,并配置绝热材料7使覆盖该反应室2和加热设备6的周围,上述反应室2、加热设备6和绝热材料7收纳在收纳容器8中。
上述加热设备6具备配置在反应室2的周围使包裹反应室2的发热体—加热部6a。该加热部6a由碳形成。加热设备6控制加热,使反应室2内达到800℃~1900℃范围内的温度。需要说明的是,将反应室内设定为1200℃以上的温度时转换率提高。即,利用超过1200℃的温度下的转换反应,可以获取大量的三氯硅烷。
上述反应室2由碳形成,同时可以在该碳的表面涂层碳化硅。另外,上述收纳容器8优选为不锈钢制。
上述气体供给设备3具备:向反应室2中供给原料气体的气体供给管9和连接在该气体供给管9上的混合器10。向该混合器10中供给氢,并从蒸发器(图示省略)供给四氯硅烷,使它们在混合器10中混合,再导入到反应室中。需要说明的是,供给的四氯硅烷中可以包含乙硅烷类,也可以除去乙硅烷类。
连接在反应室2上的上述生成气体导出设备4具备:将反应室内的生成混合气体导出到外部的排气管11;连接在该排气管11上的冷却分离器12;以及连接在冷却分离器12上的蒸馏装置13。该生成气体导出设备4上连接有上述冷却气体导入设备5。该冷却气体导入设备5具备冷却气体导入管14,该冷却气体导入管14连接在上述排气管11的基端部内。
冷却气体导入管14连接在冷却气体的供给源(图示省略)上,通过供给管路(图示省略)连接在例如氢、四氯硅烷或氯化氢的供给源(图示省略)上。通过该冷却气体导入管14将以氢、四氯硅烷或氯化氢为主体的冷却气体导入到生成气体中。
在图1所示的例子中,冷却气体导入管14连接在上述冷却分离器12上,按照在该冷却分离器12中分离的未反应的氢气通过上述冷却气体导入管14被导入到上述排气管11中的方式而形成。
上述冷却气体导入设备5按照可调整导入的冷却气体量,使反应生成气体冷却至650℃以下的温度的方式而形成。需要说明的是,为了测定、控制骤冷的反应生成气体的温度,可以在排气管11的基端部内设置温度传感器。
接下来,对使用上述三氯硅烷制备装置的三氯硅烷的制备方法进行说明。
首先,通过气体供给管9将包含四氯硅烷和氢的原料气体由混合器10导入到反应室2的内部。在反应室内利用加热设备6加热至反应温度,通过原料气体的反应生成三氯硅烷和氯化氢等。该反应生成气体通过排气管11导出到外部。此时,利用冷却气体导入设备5,通过冷却气体导入管14将冷却气体导入到排气管11的基端部内,混入反应生成气体中。
通过导入该冷却气体将高温状态的反应生成气体骤冷至650℃以下的温度。调整冷却气体的温度和导入量,使反应生成气体达到650℃以下。需要说明的是,此时为了得到抑制三氯硅烷的分解所发生的逆反应的充分骤冷效果,优选在1秒以内骤冷至650℃。接下来,将导入了冷却气体的反应生成气体通过排气管11导入到冷却分离器12中,在这里被进一步冷却,分离的三氯硅烷被导入到蒸馏装置13中,冷凝收集。
另外,在图1所示的例子中,在上述冷却分离器12中分离未反应的氢气等,该氢气通过冷却气体导入管14导入到排气管11的基端部内,作为冷却气体进行再利用。
在本发明的实施方式中,在使用氢作为冷却气体的例子中,由反应室2导出反应生成气体时,向反应生成气体中混入氢来冷却反应生成气体,从而使高温状态的反应生成气体骤冷,同时可以抑制转换的逆反应,提高生成三氯硅烷的转换率。在更高的温度下发生转换反应时上述效果变大,特别是在超过1200℃的温度下上述效果显著。特别是混入氢将反应生成气体冷却至650℃以下的温度时,反应生成气体被骤冷至可充分抑制转换反应的逆反应的温度范围,可以提高生成三氯硅烷的转换率。
使用四氯硅烷代替氢或将其与氢一起作为冷却气体时,也可得到与使用氢作为冷却气体时相同的效果。该情况下,可以将由蒸馏装置13分离的一部分四氯硅烷通过冷却气体导入管14导入到排气管11中。
另外,在本发明的实施方式中,在使用氯化氢作为冷却气体的例子中,通过冷却气体导入管14将氯化氢导入到排气管11中,通过混入氯化氢使反应生成气体以1秒以内的冷却速度冷却至650℃以下的温度,抑制聚合物的副生,可以提高三氯硅烷的转换率。
通常,将反应生成气体在1秒以内的极短时间骤冷至明显不发生三氯硅烷的分解所产生的逆反应的温度时,在冷却过程中容易副生聚合物。该聚合物如下产生:如下式(4)所示,由于三氯硅烷的分解生成的SiCl2,再如下式(5)所示,SiCl2与SiCl4发生反应产生聚合物。该SiCl2在高温下更多生成。因此聚合物的副生在以更高的温度下发生转换反应时增大,特别是在超过1200℃的温度下显著。
Figure DEST_PATH_IMAGE003
另一方面,如下式(6)所示,氯化氢与SiCl2反应促进了生成三氯硅烷的反应,因此氯化氢具有抑制上述反应式(4)的聚合物副生的作用。另外,如以下反应式(7)、(8)、(9)等所示,氯化氢还具有分解暂且副生的聚合物的作用。
Figure 754966DEST_PATH_IMAGE004
因此,使用氯化氢作为冷却气体,混入氯化氢将反应生成气体以1秒以内的冷却速度骤冷至650℃以下的温度时,通过导入氯化氢生成气体被骤冷至650℃以下的温度范围,同时聚合物的副生得到抑制,可以提高三氯硅烷的转换率。并且可以防止副生的聚合物附着于管路的壁上堵塞管路等问题,可良好地维持管路等。在更高的温度下发生转换反应时上述效果增大,特别是在超过1200℃的温度下上述效果显著。
实施例
以下,给出本发明的实施例。需要说明的是,本发明的技术范围并不限于上述实施方式和以下实施例,在不脱离本发明要旨的范围内可以加入各种的变更。
[实施例1]
使用图1所示的制备装置,向反应室中供给氢和四氯硅烷的混合气体(H2/STC摩尔比为2),在表1所示的反应温度下进行反应,生成三氯硅烷。通过排气管11将生成的混合气体导出到室外时,通过冷却气体导入管14将表1所示的冷却气体导入到上述生成混合气体中,将生成混合气体冷却至表1所示的温度。其结果见表1。
如表1的结果所示,通过将H2、STC作为冷却气体导入到生成混合气体中,可以将生成混合气体在1秒以内骤冷至650℃以下,可以提高三氯硅烷(TCS)的生成率。
[表1]
Figure DEST_PATH_IMAGE005
[实施例2]
使用HCl作为冷却气体,在表2所示的条件下将HCl导入到生成混合气体中,将生成混合气体冷却至表2所示的温度。其结果见表2。如表2的结果所示,通过将HCl作为冷却气体导入到生成混合气体中,即使骤冷也不会产生聚合物。
[表2]
Figure 597020DEST_PATH_IMAGE006
产业实用性
如上所述,根据本发明的三氯硅烷的制备方法和三氯硅烷制备装置,在由反应室导出生成气体时,导入以氢、四氯硅烷或氯化氢为主体的冷却气体来冷却上述生成气体,因此在使高温状态的生成气体骤冷的同时,转换反应的逆反应得以抑制,还抑制了聚合物的副生,故可以以高转换率得到三氯硅烷。因此,本发明在工业上极为有用。

Claims (4)

1. 三氯硅烷的制备方法,该制备方法具有以下步骤:
将四氯硅烷和氢导入到反应室内,使之在1200℃以上的温度下进行反应,生成包含三氯硅烷和氯化氢的混合气体的步骤;
以及由上述反应室导出上述混合气体时,向该混合气体中导入以氢为主体的冷却气体以将该混合气体冷却至650℃以下的步骤,
且将导入了冷却气体的混合气体导入到冷却器中,冷凝分离未反应的氢,将分离的含氢气体作为冷却气体进行再利用。
2. 权利要求1的三氯硅烷的制备方法,其中,导入到混合气体中的冷却气体的温度为-60℃~650℃。
3. 三氯硅烷的制备装置,该制备装置具备以下设备:
使四氯硅烷和氢在1200℃以上的温度下进行反应,生成包含三氯硅烷和氯化氢的混合气体的反应室;
连接在上述反应室上的气体供给设备;
将上述混合气体导出到反应室外部的混合气体导出设备;
将以氢为主体的冷却气体导入到上述混合气体中,将上述混合气体冷却至650℃以下的冷却气体导入设备;
导入上述混合气体的冷却器,上述混合气体中导入了冷却气体;以及
向上述冷却气体导入设备中供给经冷却器冷凝分离的以未反应的氢为主体的含氢气体的循环管路,
且该冷却气体导入设备连接在上述混合气体导出设备上。
4. 权利要求3的三氯硅烷制备装置,其中,在冷却气体导入设备上连接有以氢为主体的冷却气体的供给管路,将以氢为主体的冷却气体导入到上述混合气体中,将上述混合气体冷却至650℃以下。
CN201310417262.3A 2006-11-07 2007-10-26 三氯硅烷的制备方法和三氯硅烷的制备装置 Pending CN103553055A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-302056 2006-11-07
JP2006302056 2006-11-07
JP2007273545A JP5601438B2 (ja) 2006-11-07 2007-10-22 トリクロロシランの製造方法およびトリクロロシラン製造装置
JP2007-273545 2007-10-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800244818A Division CN101479192A (zh) 2006-11-07 2007-10-26 三氯硅烷的制备方法和三氯硅烷的制备装置

Publications (1)

Publication Number Publication Date
CN103553055A true CN103553055A (zh) 2014-02-05

Family

ID=39364372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310417262.3A Pending CN103553055A (zh) 2006-11-07 2007-10-26 三氯硅烷的制备方法和三氯硅烷的制备装置

Country Status (7)

Country Link
US (1) US20090324477A1 (zh)
EP (1) EP2085359B1 (zh)
JP (1) JP5601438B2 (zh)
KR (1) KR101388323B1 (zh)
CN (1) CN103553055A (zh)
TW (1) TWI448429B (zh)
WO (1) WO2008056550A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397580B2 (ja) * 2007-05-25 2014-01-22 三菱マテリアル株式会社 トリクロロシランの製造方法と製造装置および多結晶シリコンの製造方法
TW201031591A (en) * 2008-10-30 2010-09-01 Mitsubishi Materials Corp Process for production of trichlorosilane and method for use thereof
JP5392488B2 (ja) * 2008-10-30 2014-01-22 三菱マテリアル株式会社 トリクロロシランの製造方法および用途
US8178051B2 (en) * 2008-11-05 2012-05-15 Stephen Michael Lord Apparatus and process for hydrogenation of a silicon tetrahalide and silicon to the trihalosilane
US20100124525A1 (en) * 2008-11-19 2010-05-20 Kuyen Li ZERO-HEAT-BURDEN FLUIDIZED BED REACTOR FOR HYDRO-CHLORINATION OF SiCl4 and M.G.-Si
JP5580749B2 (ja) * 2009-01-30 2014-08-27 電気化学工業株式会社 トリクロロシランの生産方法
JP5412447B2 (ja) * 2009-01-30 2014-02-12 電気化学工業株式会社 炭素含有材料からなる反応容器を備える反応装置、その反応装置の腐食防止方法およびその反応装置を用いたクロロシラン類の生産方法
WO2010100750A1 (ja) * 2009-03-06 2010-09-10 電気化学工業株式会社 トリクロロシラン冷却塔およびそれを用いたトリクロロシラン製造方法
WO2010103632A1 (ja) * 2009-03-11 2010-09-16 電気化学工業株式会社 トリクロロシラン製造装置
JP5633160B2 (ja) * 2009-03-11 2014-12-03 三菱マテリアル株式会社 トリクロロシランの製造装置
EP2415712B1 (en) * 2009-03-30 2017-05-03 Denka Company Limited Method for collection of hexachlorodisilane
JP5436541B2 (ja) * 2009-03-31 2014-03-05 電気化学工業株式会社 反応炉
JP5511794B2 (ja) * 2009-04-01 2014-06-04 電気化学工業株式会社 気相反応装置
WO2010113299A1 (ja) * 2009-04-01 2010-10-07 電気化学工業株式会社 気相反応装置
WO2010113323A1 (ja) * 2009-04-03 2010-10-07 電気化学工業株式会社 カーボン製反応容器の破損防止方法
JP5374581B2 (ja) * 2009-04-03 2013-12-25 電気化学工業株式会社 カーボン製反応容器の破損防止方法
JPWO2010116500A1 (ja) * 2009-04-08 2012-10-11 電気化学工業株式会社 トリクロロシラン冷却塔およびそれを用いたトリクロロシラン製造方法
JP5263013B2 (ja) 2009-06-04 2013-08-14 住友化学株式会社 熱可塑性ポリマー組成物及びその製造方法
US8298490B2 (en) 2009-11-06 2012-10-30 Gtat Corporation Systems and methods of producing trichlorosilane
DE102010000981A1 (de) * 2010-01-18 2011-07-21 Evonik Degussa GmbH, 45128 Closed loop-Verfahren zur Herstellung von Trichlorsilan aus metallurgischem Silicium
DE102010007916B4 (de) * 2010-02-12 2013-11-28 Centrotherm Sitec Gmbh Verfahren zur Hydrierung von Chlorsilanen und Verwendung eines Konverters zur Durchführung des Verfahrens
WO2012047658A1 (en) * 2010-09-27 2012-04-12 Gtat Corporation Heater and related methods therefor
US20120107216A1 (en) * 2010-10-27 2012-05-03 Gt Solar Incorporated Hydrochlorination heater and related methods therefor
US9222733B2 (en) * 2011-02-03 2015-12-29 Memc Electronic Materials S.P.A. Reactor apparatus and methods for reacting compounds
JP5819521B2 (ja) 2011-06-21 2015-11-24 ジーティーエイティー・コーポレーション 四塩化ケイ素の三塩化シランへの変換のための装置および方法
JP5974857B2 (ja) * 2011-11-28 2016-08-23 三菱マテリアル株式会社 トリクロロシラン製造装置
DE102012223784A1 (de) 2012-12-19 2014-06-26 Wacker Chemie Ag Verfahren zur Konvertierung von Siliciumtetrachlorid in Trichlorsilan
EP2969948A1 (en) * 2013-03-13 2016-01-20 SiTec GmbH Temperature management in chlorination processes and systems related thereto
JP6479794B2 (ja) 2013-11-12 2019-03-06 ダウ シリコーンズ コーポレーション ハロシランを製造する方法
CN107207730B (zh) 2014-12-18 2020-12-11 美国陶氏有机硅公司 用于制备芳基官能硅烷的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795913A (fr) * 1972-02-26 1973-06-18 Degussa Procede de preparation de chlorosilanes
US4217334A (en) * 1972-02-26 1980-08-12 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process for the production of chlorosilanes
JPS57156318A (en) * 1981-03-16 1982-09-27 Koujiyundo Silicon Kk Production of trichlorosilane
FR2530638A1 (fr) * 1982-07-26 1984-01-27 Rhone Poulenc Spec Chim Procede de preparation d'un melange a base de trichlorosilane utilisable pour la preparation de silicium de haute purete
JPS6081010A (ja) * 1983-10-13 1985-05-09 Denki Kagaku Kogyo Kk トリクロルシランの製造法
JPS6221707A (ja) * 1985-07-22 1987-01-30 Nippon Steel Corp トリクロルシランの製造方法
JPS638207A (ja) * 1986-06-27 1988-01-14 Mitsubishi Kakoki Kaisha Ltd 四塩化珪素の水素化方法
JPS63112410A (ja) * 1986-10-31 1988-05-17 Nippon Steel Corp トリクロルシランの製造方法
DE3809784C1 (zh) * 1988-03-23 1989-07-13 Huels Ag, 4370 Marl, De
JP2710382B2 (ja) * 1989-01-25 1998-02-10 電気化学工業株式会社 高純度ジクロロシランの製造方法
US5906799A (en) * 1992-06-01 1999-05-25 Hemlock Semiconductor Corporation Chlorosilane and hydrogen reactor
DE102005005044A1 (de) * 2005-02-03 2006-08-10 Consortium für elektrochemische Industrie GmbH Verfahren zur Herstellung von Trichlorsilan mittels thermischer Hydrierung von Siliciumtetrachlorid

Also Published As

Publication number Publication date
WO2008056550A1 (fr) 2008-05-15
EP2085359B1 (en) 2017-11-29
KR101388323B1 (ko) 2014-04-22
TW200918452A (en) 2009-05-01
EP2085359A4 (en) 2011-02-23
US20090324477A1 (en) 2009-12-31
JP5601438B2 (ja) 2014-10-08
TWI448429B (zh) 2014-08-11
KR20090079875A (ko) 2009-07-22
EP2085359A1 (en) 2009-08-05
JP2008137885A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
CN103553055A (zh) 三氯硅烷的制备方法和三氯硅烷的制备装置
CN101479193B (zh) 三氯硅烷的制备方法和三氯硅烷的制备装置
CN101679045B (zh) 三氯硅烷的制备方法和制备装置以及多晶硅的制备方法
CN101519205B (zh) 三氯硅烷的制造方法及制造装置
KR101914535B1 (ko) 다결정질 실리콘 과립 제조용 유동층 반응기 및 제조 방법
CN100593513C (zh) 硅的制造方法
EP2394955B1 (en) Process for producing polycrystalline silicon
KR20150037681A (ko) 트리클로로실란 제조방법
CN101479192A (zh) 三氯硅烷的制备方法和三氯硅烷的制备装置
CN106395832B (zh) 一种四氯化硅氢化方法
CN102674368A (zh) 三氯氢硅生产方法和系统
CN102196995B (zh) 三氯硅烷的制备方法及利用方法
CN107074561A (zh) 使用高效混合式水平反应器的多晶硅制造装置和方法
US20180226249A1 (en) Process for Producing of Polycrystalline Silicon
JP2005314191A (ja) 多結晶シリコンの製造方法
CN211813460U (zh) 一种三氯氢硅的制备系统
JP2009242238A (ja) 多結晶シリコンの製造方法
CN217341280U (zh) 一种制备氯硅烷的装置
CN101837977B (zh) 硅单质的生产方法及生产设备
RU79882U1 (ru) Устройство для напыления поликристаллического кремния

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140205

RJ01 Rejection of invention patent application after publication