CN103415925A - 具有单片集成的量子点器件的半导体芯片载体及其制造方法 - Google Patents

具有单片集成的量子点器件的半导体芯片载体及其制造方法 Download PDF

Info

Publication number
CN103415925A
CN103415925A CN2011800640375A CN201180064037A CN103415925A CN 103415925 A CN103415925 A CN 103415925A CN 2011800640375 A CN2011800640375 A CN 2011800640375A CN 201180064037 A CN201180064037 A CN 201180064037A CN 103415925 A CN103415925 A CN 103415925A
Authority
CN
China
Prior art keywords
semiconductor
semi
polycrystalline
material according
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800640375A
Other languages
English (en)
Inventor
L·皮尔·德罗什蒙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN103415925A publication Critical patent/CN103415925A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02535Group 14 semiconducting materials including tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种三维多晶半导体材料,其提供了形成具有小于或等于50nm的标称最大晶粒直径的单个晶粒的主要成分以及在单个晶粒之间形成边界的次要成分。

Description

具有单片集成的量子点器件的半导体芯片载体及其制造方法
参考相关申请
本申请要求2010年11月3日递交的名称为“完全集成的硅载体中的量子点场效应晶体管及其制造方法”的61/409,846号美国临时申请的优先权。
技术领域
本发明总体上涉及在纳米尺寸级别下在结构上设计为并化学地处理为显示三维电子气的性能的块体(bulk)半导体材料,具体地,涉及将这些单一的半导体材料并入用于将包含较大的微电子系统的附加的半导体芯片与其他单片集成至载体表面的有源电或光电子器件电互连的半导体载体中。
背景技术
本发明具体涉及由均匀分布的纳米级多晶粒组成的块体半导体材料,其中多晶晶粒的直径限制在纳米实际尺寸上以使半导体材料的纳米结构在多晶晶粒内引起赋予块体半导体三维(3D)电子气的电学或光学性能(这里指“一般介电性能”)的量子-尺寸效应。本发明另外具体的实施例涉及将导电或电绝缘材料电扩散至纳米级多晶晶粒的晶界中的方法和过程。
本发明总体上涉及有源电子、光子或光电子器件的单片装配,该器件包含具有厚度大于50nm的半导体材料的层,其在用于将各种附加的半导体芯片电互连至更复杂的微电子系统中的半导体芯片载体上表现出3D电子气的一般介电性能。这些各种有源电子或光电子器件可以包括,但不限于,高功率密度/高速功率管理电路、稳定的时钟发生器、电信号调制器、光学传感器、光学功率发生器、光学信号发生器和/或调制器或热电系统,
1.现有技术的说明
T.J.Phillips等人(7173292号美国专利),(以下简称Phillips'292),教导了由应用于窄带隙半导体材料的调制-掺杂场效应(MODFET)晶体管或高电子迁移率(HEMT)晶体管中的碰撞电离引起的逃逸电流(雪崩击穿)可以通过形成量子阱场效应晶体管(QWFET)而得到减轻或实质上消除。量子阱FET由包含一种或多种宽带隙半导体的较薄的多层结构组成。(参见图1和2)。图1示出了包含嵌入两个宽带隙半导体层3、4之间的量子阱区2的QWFET1的垂直横截面。该量子阱区2由多个不同的半导体层5、6、7组成。中间层6形成了主要导电通道,其以形成辅助导电通道的半导体材料5、7为界,其中辅助导电通道具有半导体带隙21、22,其大于用于形成主要导电通道6的层中的半导体材料的带隙23,但小于宽带隙半导体层3、4的带隙24、25。图2示出了从由X-X’所定义的横截面视图观察图1中所示的层状半导体结构的典型能带隙图20。
场效应器件通过在两个导电的掺杂源极8和漏极9区之间插入量子阱区2来形成。当供应给源极11的电流被漏极12聚集起来时,施加在栅极10上的电偏压接着用于调制该电流。QWFET器件中可获得的高电荷载流子迁移率允许报道为250GHz至1THz之间的范围中的较高的转换速度,因此其具有高转换速度系统或毫米-波通信系统中的价值。
在QWFET器件中,中间层6必须足够薄(20-50nm)以通过主要导电通道中含有的量子阱中的量子化效应形成二维(2-D)电子气。量子化效应由中间层6的纳米级厚度和带边26、27的高度产生,其中带边26、27通过接触形成量子阱28的半导体层5、7产生。这些量子化效应产生高电子迁移率2-电子气的离散能级29、30。半导体层5、7提供较高的电离阈值,其通过碰撞电离过程来防止中间层6中的主要导电通道中流动的电流经受雪崩击穿。用于主要通道中的低带隙半导体材料的实例为锑化铟(InSb)、砷化铟(InAs)、砷锑化铟(InAs(1-y)Sby)、锑化镓铟(In(1-x)Gax Sb)和/或砷化镓铟(In(1-x)Gax As)。
2.术语的定义
术语“有源组件”在这里理解为其传统定义:需要电功率来运行并能够产生功率增益的电路的元件。
术语“碱金属”在这里理解为其传统定义:周期表的IA族中的金属元素组,其由锂、钠、钾、铷、铯和钫组成。
术语“碱土金属”在这里理解为其传统定义:周期表的IIA族中给出的金属元素组,其由镁、钙、锶、钡和镭组成。
术语“非晶材料”在这里理解为不包含原子元素的周期性晶格或没有中程(超过数十纳米的距离)至长程(超过数百纳米的距离)的晶级的材料。
术语“化学复杂性”、“组分复杂性”、“化学上复杂”或“组分上复杂”在这里理解为材料,如金属或超合金、化合物半导体或由周期表的三种(3)或更多种元素组成的陶瓷。
术语“芯片载体”在这里理解为构建在半导体基板中的互联结构,其中半导体基板含有接线元件以及在一个或多个贴装在芯片载体的表面上的集成电路与它们可以连接的较大的电系统之间发送电信号的嵌入式有源组件。
术语“电子气”在这里理解为其普遍接受的定义:通过隧穿过程在改性固体内自由移动并具有比其在类似的非改性固体中通常应具有的迁移率更高的电子(或空穴)的聚集,其中由固体的改性(典型地为纳米级分层)产生的量子化效应引起量子势阱,该量子势阱控制并定义电子(空穴)的传输性能并且最小化位于量子势阱内的电子(空穴)之间的相互作用。
术语“FET”在这里理解为其普遍接受的定义:场效应晶体管,其中施加在绝缘栅极上的电压引起了经过用于调制源极与漏极之间的电流的绝缘体的电场。
术语“卤素”在这里理解为其传统定义:包含在周期表的VIIA族中的非金属元素,其由氟、氯、溴、碘和砹组成。
术语“卤化的”在这里理解为其传统定义:已经用卤素处理或化合的分子或物质。
术语“集成电路”在这里理解为嵌入了较大、非常大或超大数量的晶体管元件的半导体芯片。
术语“LCD”在这里理解为使用液相前驱体溶液来将任意组分或化学复杂性的材料制造为非晶层压片材或独立体或者制造为具有原子级化学均匀性和可控制为纳米级尺寸的微结构的晶体层压片材或独立体的方法。
术语“液相前驱体溶液”在这里理解为碳氢化合物分子的溶液,该溶液还含有是或不是它们所溶解的碳氢化合物分子的有机酸盐的可溶有机金属化合物。
术语“微结构”在这里理解为其定义形成材料物质的元素组成以及晶粒的实际尺寸。
术语“失配材料”在这里理解为其定义两种具有不同晶格结构或晶格常数相差5%或更多和/或热膨胀系数相差10%或更多的材料。
术语“纳米级”在这里理解为其定义以从1纳米(nm)到数百纳米(nm)范围的长度测量的物理尺寸。
术语“光电子器件”在这里理解为使用电信号调制具有由电磁波谱的光学、红外(近、中或远)、毫米波、亚毫米波或紫外光(近或远)区定义的能量特性的光学信号—或反之亦然—的任何器件。
术语“无源组件”在这里理解为其传统定义:不需要电功率来运行并能够改变电信号的振幅和/或相位或用作能量储存器件的电路的元件。
术语“光子器件”在这里理解为使用具有由光学、红外(近、中或远)、毫米波、亚毫米波或紫外光(近或远)电磁波谱定义的能量特性的信号来调制一种或多种具有由电磁波谱的光、红外(近、中或远)、毫米波、亚毫米波或紫外光(近或远)区定义的能量特性的附加信号的器件。
术语“功率FET”在这里理解为大信号垂直配置的MOSFET的普遍接受的定义,并且其包含多通道(MUCHFET)、V型槽MOSFET、截短的V型槽MOSFET、双扩散DMOSFET、调制-掺杂晶体管(MODFET)、异质结晶体管(HETFET)以及绝缘栅极双极型晶体管(IGBT)。
术语“量子点”在这里理解为其传统意义:足够小以引起显示电子气的电子、光学或光电子特性的量子-尺寸效应的材料区域。
术语“标准工作温度”在这里理解为-40°C与+125°C之间的温度范围。
术语“紧密度公差”或“临界公差”在这里理解为性能值,如在标准工作温度下变化小于±1%的电容、电感或电阻。
术语“II-VI化合物半导体”在这里理解为其传统意义:描述包含至少一种由锌(Zn)、镉(Cd)或汞(Hg)组成的周期表的IIB族元素,以及至少一种由氧(O)、硫(S)、硒(Se)或碲(Te)组成的周期表的VI族元素的化合物半导体。
术语“III-V化合物半导体”在这里理解为其传统意义:描述包含至少一种由硼(B)、铝(Al)、镓(Ga)和铟(In)组成的周期表的III族半金属元素,以及至少一种由氮(N)、磷(P)、砷(As)、锑(Sb)或铋(Bi)组成的周期表的V族气体或半金属元素的化合物半导体。
术语“IV-IV化合物半导体”在这里理解为其传统意义:描述包含多种由碳(C)、硅(Si)、锗(Ge)、锡(Sn)或铅(Pb)组成的周期表的IV族元素的化合物半导体。
术语“IV-VI化合物半导体”在这里理解为其传统意义:描述包含至少一种由碳(C)、硅(Si)、锗(Ge)、锡(Sn)或铅(Pb)组成的周期表的IV族元素,以及至少一种由硫(S)、硒(Se)或碲(Te)组成的周期表的VI族元素的化合物半导体。
发明内容
本发明总体上涉及含有以高转换速度运行的系统的完全集成的半导体芯片载体,具体地,涉及允许包含显示出量子-尺寸效应或遍及块体材料层的量子点的特性的块体材料层的有源器件的单片集成的过程和方法。
本发明的一个实施例提供了一种三维多晶半导体材料,其包含形成具有小于或等于50nm的标称最大晶粒直径的单个晶粒的主要成分以及在单个晶粒之间形成边界的次要成分。
次要成分可以包围主要成分的晶粒。多晶材料内的量子尺寸效应可以引起量子阱的自由电子气特性。多晶材料可以形成三维量子阱结构。次要成分的摩尔浓度可以在多晶材料的0.0001mol%与0.75mol%之间。可以构成晶粒的主要成分为硅、锗、锡或任何他们的混合物。形成晶界的次要成分可以为绝缘、半绝缘或半导体材料,其由包含周期表的第一(I)族的碱金属元素或第二(II)族的碱土金属元素,或具有类似于碱或碱土金属的化学性能的过渡金属,以及选自周期表的第七(VII)族的卤族元素的金属卤化物组成。绝缘或半绝缘材料具有可以大于构成多晶晶粒的半导体材料的带隙的能带隙。形成晶界的次要成分可以为由周期表的第一(I)族的碱金属元素或第二(II)族的碱土金属元素,或具有类似于碱或碱土金属的化学性能的过渡金属组成的导电材料。可以构成晶粒的主要成分为III-V化合物半导体材料,并且形成边界的次要成分可以为绝缘、半绝缘或半导体材料,其由包含第一(I)族的碱金属元素或具有类似于碱金属的化学性能的过渡金属,以及选自周期表的第七(VII)族的卤族元素的金属卤化物组成。晶粒的主要成分可以为II-VI化合物半导体,并且形成边界的次要成分为硅、碳化硅、锗、锡或它们的混合物。多晶材料可以具有在每个方向上大于50nm的三维尺寸。多晶材料可以单片集成至有源器件中。有源器件可以为场效应晶体管、光电子器件或光子器件。构成晶粒的主要成分可以为III-V化合物半导体材料,并且形成边界的次要成分可以为由第一(I)族的碱金属元素或具有类似于碱金属的化学性能的过渡金属组成的导电材料。
本发明的另一实施例提供了一种半导体载体,其包含有源器件,该有源器件包括单片集成至半导体载体中并且包含纳米级多晶组件的半导体层,所述纳米级多晶组件包括具有20nm至50nm范围的最大实际尺寸的半导体晶粒,其由厚度为2nm至10nm的晶界材料包封,以使多晶晶粒内的量子尺寸效应引起量子阱的自由电子气特性。
有源器件可以是场效应晶体管、光电子器件或光子器件。有源器件可以包含单片集成在其表面上的功率管理模块。有源器件可以包含半导体芯片。半导体载体可以具有嵌入载体基板内的有源电路。
本发明的又一实施例提供了一种制造半导体层的方法,所述半导体层包含纳米级多晶组件,该纳米级多晶组件包括具有20nm至50nm范围的最大实际尺寸的半导体晶粒,其由厚度为2nm至10nm的晶界材料包封,以使多晶晶粒内的量子尺寸效应引起量子阱的自由电子气特性,该方法包含以下步骤:形成具有适合产生由元素半导体或所需的化合物半导体的化学计量组成的主要相多晶晶粒的化学计量比的低挥发性液相有机金属前驱体的溶液;向所述溶液中加入浓度在0.0001mol%至0.5mol%范围内的掺杂质,该掺杂质具有适合在主要相多晶晶粒的晶界中产生绝缘、半绝缘或半导体二次相材料的化学计量比;向所述溶液加入多晶晶粒内所需浓度的主要相多晶晶粒的掺杂质前驱体,将基板加热至250°C至500°C范围内的温度,半导体层将在该基板上形成;在惰性或还原气体气氛中将基板上的非挥发性有机金属前驱体同时分解,以形成具有原子级化学上均匀的化学计量精度的非晶沉积物;烘烤所述非晶沉积物以从沉积物上移除有机残留物;使用50W至300W的外加功率并在40°C和400°C的基板温度以及范围为1,500毫托(mTorr)至5,000毫托的压力下在电离的氩等离子中退火所述烘烤的沉积物最少5秒钟;以及可选择地向电离的氩等离子加入氮和/或还原分压比(reducing partial pressure ratios)的二氧化碳和一氧化碳。
晶粒的半导体材料可以为硅、锗、锡或任何它们的混合物。晶界材料可以为绝缘、半绝缘或半导体材料,其由包含周期表的第一(I)族的碱金属元素或第二(II)族的碱土金属元素,或具有类似于碱或碱土金属的化学性能的过渡金属,以及选自周期表的第七(VII)族的卤族元素的金属卤化物组成。绝缘或半绝缘材料可以具有大于构成多晶晶粒的半导体材料的带隙的能带隙。晶粒的半导体材料可以为III-V化合物半导体材料,并且晶界材料为绝缘、半绝缘或半导体材料,其由包含第一(I)族的碱金属元素或具有类似于碱金属的化学性能的过渡金属,以及选自周期表的第七(VII)族的卤族元素的金属卤化物组成。半导体晶粒可以为II-VI化合物半导体,并且晶界材料可以为硅、碳化硅、锗、锡或它们的混合物。
附图说明
参考附图说明性地示出和描述本发明,其中:
图1示出了现有技术量子阱场效应晶体管的物理结构。
图2示出了图1的量子阱器件的能带图。
图3示出了完全集成的硅芯片载体。
图4为列出多种元素和化合物半导体中的电荷载流子迁移率的表。
图5A示出了含有具有嵌入晶界内的金属元素的纳米级晶粒的多晶半导体。
图5B示出了含有具有嵌入晶界内的绝缘化合物的纳米级晶粒的多晶半导体。
图6A示出了在包含具有嵌入晶界内的金属元素的纳米级晶粒的多晶半导体基质内形成的三维(3-D)量子点半导体层的能带结构的二维(2-D)图像。
图6B示出了在包含具有嵌入晶界内的绝缘化合物的纳米级晶粒的多晶半导体基质内形成的三维(3-D)量子点半导体层的能带结构的二维(2-D)图像。
图7提供了量子点场效应晶体管的横截面视图。
图8A、8B、8C为用于表示使用卤化的有机金属前驱体化合物来制作量子阱场效应晶体管的半导体层的方法的横截面基板视图。
图8D为可以结合图8A-8C使用的有机金属前驱体化合物的化学式。
图9示出了含有纳米级多晶3D电子气层的IGBT功率FET。
图10示出了包含单片集成在其表面上的量子点光电子或光子器件的半导体载体。
图11为给出用于某些材料的绝缘/半绝缘/半导体晶界的典型晶粒——晶界组合的表I。
图12为给出用于某些材料的绝缘/半绝缘/半导体晶界的典型晶粒——晶界组合的表II。
具体实施方式
本申请与序列号为13/168,922,名称为“具有垂直FET功率模块的半导体载体”,于2011年6月24日递交的德·罗奇蒙特(de Rochemont)美国申请(德·罗奇蒙特‘922)以及序列号为13/163,654,名称为“频率选择偶极天线”,于2011年6月17日递交的德·罗奇蒙特美国申请(德·罗奇蒙特‘654)共同审理,上述两个申请以参考引用的方式结合于此。本申请教导了将块体半导体层插入集成在半导体载体上的有源组件中的方法,其中块体半导体层具有大于50nm的厚度并显示了电子气的一般介电性能。一个相似申请(德·罗奇蒙特‘922)教导了将高效率、作为单片结构的功率管理系统完全集成在半导体载体上以使用由蛇形线圈实现的谐振三维栅极结构来调制高电流水平的方法。另一个相似申请(德·罗奇蒙特‘654)教导了通过以引入电容或电感负载的局部区域的方式折叠导电元件来将导电元件制成蛇形线圈的方法,以使沿着折叠导体的长度的局部电抗负载的组合形成分布式网络滤波器。其接着说明了如此形成的两个镜像蛇形元件如何用作以选择的频率谐振的偶极天线。相似申请德·罗奇蒙特‘654还教导了将紧密度公差电瓷材料插入局部电抗负载的区域中以增加或更精确地调谐局部电抗负载的耦合强度。本申请还与序列号为13/216,692,名称为“具有谐振晶体管栅极的功率FET”,于2011年8月23日递交的德·罗奇蒙特美国申请(德·罗奇蒙特‘692)共同递交,其以参考引用的方式结合于此。共同审理申请德·罗奇蒙特‘692教导了在预定的频率下的低电流密度下调制大电流的功率管理模块以及在半导体载体上形成功率管理模块的方法。
本申请通过参考引用序列号为11/479,159,于2006年6月30日递交,名称为“电组件及其制造方法”的德·罗奇蒙特美国申请(‘159申请);序列号为11/620,042,于2007年1月6日递交,名称为“功率管理模块”的德·罗奇蒙特美国申请(‘042申请);序列号为12/843,112,于2010年7月26日递交,名称为“液相化学沉积工艺装置和实施例”的德·罗奇蒙特和科瓦奇(Kovacs)美国申请(‘112申请);序列号为13/152,222,名称为“具有表面FET的单片直流/直流功率管理模块”,于2011年6月2日递交的德·罗奇蒙特美国申请(‘222申请)以及序列号为13/182,405,名称为“切削工具及其制造方法”,于2011年7月13日递交的德·罗奇蒙特美国申请(‘405申请)中包含的所有内容结合于此。‘159申请公开了LCD方法如何制造包含紧密度公差无源网络的单片集成电路。‘042申请公开了液相化学沉积(“LCD”)方法如何制造包括可调谐的电感器线圈的单片集成功率管理模块。‘112申请公开了用于应用LCD方法的优选装置。‘222申请教导了含有表面FET的低损耗功率管理电路的单片集成。‘405申请公开了制造碳化物、氮化物和马克斯相(MAX-phase)材料—如碳化硅或包含硅和碳元素的合成化学成分—的LCD方法。
现在参考图3-10以更好地说明本发明的意义。图3示出了半导体芯片载体100。本发明可以应用于高速计算模块、射频无线电模块、完全集成雷达模块、光子模块以及光电子模块。其还可以应用于含有需要高功率密度和高转换速度电路的这样的模块或上述模块的组合的任何电路。如这里所示,半导体芯片载体100含有多个以分散或层叠结构贴装在载体基板103上的集成电路(半导体芯片)102A、102B、102C、102D。该载体基板103为在其表面上具有用于互连各种贴装或集成在其上的组件的导电线路的较大的半导体芯片。附加的低电平有源电路,(为清楚起见未示出),可以嵌入载体基板103内。这种低电平有源电路可以包括,但不需要限于,在总线管理系统中有用的闭锁、感应、转换和信号漂移电路。LCD工艺可以用于将附加的电路集成在载体基板103的表面上,其可以包括,但不需要限于,用于形成稳定或主动调谐电路时钟速度的紧密度公差LC电路的临界公差电感器线圈104A、104B和/或在载体基板103的表面上单片形成的无源网络106。
可以预料,当半导体制造公差发展超过22nm线特征节点,集成电路半导体芯片102将具有超过750W-inch2的功率需求的要求。高效、高速完全集成功率管理模块108为单片形成在芯片载体100上,其使用了通过参考结合于此的’042、’122、‘159、’222、’654、’692、’922申请中详细说明的方法和实施例。这些方法和实施例可以用于优化存储器件与处理器芯片或其他协同定位在半导体载体100上的半导体芯片之间的数据传送。
现在参考图4-8A、8B、8C、8D来说明LCD制造方法的独特属性如何应用于集成具有大于20-50nm厚度的半导体层,其中该半导体层具有在半导体层内产生三维(3D)电子气所必需的纳米级微结构。如上文所引用的申请中所公开的,LCD制造方法允许具有原子级化学均匀性和化学计量精度的不同和“失配的”材料用强于沉积材料的抗拉强度的表面粘附集成在半导体基板表面上的选定区域中。与传统材料沉积技术不同,LCD不限制可以以高成分精度合并入沉积材料中的元素(化学)成分的数量,其允许具有高化学复杂性的材料集成在单片结构中。LCD所使用的低处理温度(≤400°C)不改变埋在半导体基板内的有源组件的掺杂分布。这些低沉积温度允许LCD沉积最初形成均匀的固溶体。这转而提供了在被快速热退火工艺的后续申请限制为纳米级尺寸的LCD沉积物中形成微结构的方法。均匀的化学分布和纳米级微结构(晶粒尺寸)是集成具有在不同温度下保持稳定的功能特性的电瓷无源组件的必要条件,其满足了使无源电路单片集成在系统级封装(SiP)或系统芯片(SoC)内经济上可行所需的临界性能公差。这些独特属性还允许多晶半导体材料的纳米级改性,其包含形成3D电子量子气所需的粒状量子阱的均匀装配。
图4显示了列出多种可以由本发明使用的半导体的电荷载流子(电子-空穴)迁移率的表。具有较高的电荷载流子迁移率的半导体系统中允许较高的转换速度。如由现有技术(参见图1&2)所教导的,超高速场效应晶体管(FET)是使用高电荷载流子迁移率半导体材料来构造的。这些半导体材料典型地具有低电子有效质量、大弹道(ballistic)平均自由程和高饱和速度。优选的高载流子迁移率半导体材料,如锑化铟(InSb),典型地具有低带隙能,这使它们易于发生由碰撞电离产生的雪崩击穿。由于碰撞电离阈值实质上对应于材料带隙,因此由相对较低的源极-漏极电压(VDS)产生的电场将引起雪崩击穿和逃逸电流,其遭受线性响应和热逃逸的风险。雪崩击穿阻止了高速FET用于需要相对较高的工作电压的应用,如调制器、放大器或基于FET的逻辑器件中,其还限制了高频率增益值。这些约束限制了在需要高功率频率信号放大或管理的系统,如高速计算或移动通信平台中的应用。量子阱内形成的电子气可以在低带隙半导体中进一步减小电子有效质量并最小化雪崩击穿。
图1&2的现有技术教导了可以通过将高载流子迁移率/低带隙能半导体作为超薄层6(20-50nm厚)夹入较宽的带隙半导体材料的层5、7之间来形成平面量子阱28而缩减低带隙半导体中的逃逸电流,较宽的带隙半导体材料的层5、7转而被夹入更宽带隙的半导体层3、4。超薄层6的较窄厚度在由能带边26、27限制的量子阱28内引起了量子化效应。这些量子化效应在由量子阱28定义的主要导电通道内产生具有高电子迁移率的2D-电子气。包含较宽的带隙半导体的相邻层5、7被选为具有接近主要导电通道6中含有的半导体材料的碰撞电离阈值的导带21、22。这实现了辅助通道。由于辅助导电通道2的宽度大于引起量子化效应所需的尺寸,因此2D-电子气仅在主要导电通道的量子阱28中产生。这通过允许一些会另外达到主要导电通道28中的碰撞电离阈值的载流子转移到具有较高的电离阈值的辅助通道2中,来产生减小转换速度但是减轻雪崩电流的折衷。现有技术教导了用于超高速FET中的主要和辅助导电通道中的半导体材料是使用外延方法形成的,以生成最大化载流子迁移率、速度和平均自由程的晶体半导体。
虽然现有技术教导了在超高速FET的超薄平面内引起2D-电子气的多层结构的使用,但是将主要导电通道的厚度限制在20-50nm的局限限制了可以通过高电子迁移率层输送的总电流。即便在低功率水平下,超薄层也将引起快速增加碰撞电离和雪崩电流的可能性的高电流密度。因此,需要开发在具有厚度大于20-50nm的半导体材料中引起高电子迁移率以减小高速层中的功率密度的方法和实施例。通过创建包含主要和辅助导电通道的多种多层结构,可以在现有技术下实现较高的电流。由于当与在厚度大于20-50nm的单独的半导体层中实现电子气性能的类似器件相比时,使用多种多层结构的方法实质上具有较高的成本和有限的经济价值,因此生成具有相当大厚度的量子化导电通道是可取的。还需要开发在较宽的带隙半导体材料中实现电子气以更好地控制碰撞电离阈值的方法和实施例。
现在参考图5A、5B、6A、6B来说明由LCD制造方法实现的纳米级微结构控制如何用于生成具有三维(3D)电子气的半导体层。图5A、5B示出了由具有半径小于50nm的最大实际尺寸123的半导体晶粒122的基质组成的多晶半导体材料120的三维微观量的横截面,优选地,最大实际尺寸123的范围为20-50nm。多晶材料可以包含元素半导体,如硅或锗、含有多种周期表的IV族元素的IV-IV半导体,或者由III-V半导体化合物组成,更优选地,由组分上复杂的III-V半导体化合物组成。取决于器件应用,本发明的某些方面将青睐使用II-VI或IV-VI化合物半导体,优选地为组分上复杂的II-VI或IV-VI化合物半导体。
一般地,多晶半导体具有由于减小的平均自由程所导致的大大减小的电荷载流子迁移率,其中减小的平均自由程由电荷载流子企图通过晶界时所遭遇的晶格位错引起。然而,处于范围20-50nm中的最大实际尺寸123足够小以形成引起量子化效应的量子阱,这是由于当化学上不同的材料在晶界124、126上包封晶粒122时,多晶半导体材料120的每个晶粒122都变成了块体材料内的量子点。该量子点从而在每个晶粒122内生成了三维(3D)电子气。量子隧穿机制表示穿过势垒的最快电荷转移机制,发生在飞秒时间周期内,本发明的另外优选的方面通过用金属晶界材料124(图5A)或绝缘晶界材料126(图5B)的薄层(厚度为2-10nm,优选厚度为2-5nm)可选择地包封半导体晶粒122而加强了势垒。由扩散至晶界中的相分离的材料引起的量子化效应在图6A、6B中示出。
图6A示出了沿着横截面A—A'、B—B'、C—C'(图5A)中的任何一个观察的3D-电子气的能带图130,该横截面由20-50nm多晶半导体晶粒122被金属晶界材料124包封时所产生的结确定,金属晶界材料124具有范围从1nm至10nm的厚度,但是优选范围为2-4nm。金属-半导体界面131A、131B、131C、131D通过金属晶界134A、134B与半导体晶粒135A、135B、135C中的费米能级133的平衡形成结势垒132A、132B、132C、132D。该平衡过程将引起金属晶界中的电子以及半导体晶粒中的空穴聚集在界面上。半导体区中的强耗尽场将引起导带136A、136B、136C弯曲,从而在导带中生成将电子能级138量子化以形成3D-电子气的势阱137A、137B、137C。在金属-半导体结处,量子势阱137A、137B、137C之间的结势垒132A、132B、132C、132D的高度139在总体上表示为:
B,q(φm-χ)      (1)
其中q为电子电荷,
Figure BDA00003456827100141
为金属功函数并且Χ为半导体电子亲和势。注入并包含在量子化的能级138内的导电电子将以飞秒转移速度隧穿通过结势垒132A、132B、132C、132D,从而当这些材料配置在场效应晶体管结构中时,使非常快的半导体转换速度成为可能。薄金属晶界材料124为FET-转换器件中的限制,这是由于它将运送大多数应用中不想要的泄漏电流。因此,形成如图5B中所示的具有包封半导体晶粒122的电绝缘或半绝缘/半导体晶界材料126的多晶半导体121是可取的。绝缘晶界材料126与半导体晶粒122之间的突变结将生成特性上不同的量子阱结构。图6B示出了沿着横截面D—D'、E—E'或F—F'(参见图5B)中的任何一个观察的3D-电子气的能带图140,该横截面由20-50nm多晶半导体晶粒122被绝缘晶界材料126包封时所产生的结确定,绝缘晶界材料126具有范围从1nm至10nm的厚度,但是优选范围为2-5nm。可选地,绝缘体可以可选地为更宽的带隙半导体以在晶粒122与晶界126材料之间生成异质结。绝缘体-半导体界面141A、141B、141C、141D通过绝缘晶界144A、144B与半导体晶粒145A、145B、145C中的费米能级143的平衡形成结势垒142A、142B。半导体与绝缘体区之间的导带边146A和价带边146B中的偏移将在半导体晶粒145A、145B、145C中产生势阱147A、147B、147C,其量子化导带149中的电子能级148以形成3D-电子气。类似的量子化出现在半导体晶粒147A、147B、147C的价带151中的空穴能级150中。由于半导体材料为多晶的,因此电荷载流子具有非常短的平均自由程(20-50nm),并且弹道导电电流不会获得产生碰撞电离所需的高速度。此外,具有飞秒转移时间的隧穿电流在这种多晶半导体材料中控制量子阱之间的导电机制。这些传输过程实现较快的转换速度并降低雪崩击穿的风险,这是由于弹道电子从不形成,并且遍及固体分布的量子势阱有效屏蔽晶格中的原子远离导电电子。3D电子(空穴)气由于晶粒为大致球形的,并且在三维量子势阱中捕集电子而形成,其中电子可以在所有方向上隧穿通过三维量子势阱。
如下文更详细的说明,在处理多晶晶粒时,需要热力学和/或化学不相容性来将晶粒材料由晶界材料相分离出来。如表I&II(图11和12)中所示,绝缘、半绝缘或半导体晶界材料126实现这种热力学和/或化学不相容性,其中该材料主要含有与构成纳米级多晶晶粒的元素分隔开至少2或3个族的周期表的族中的元素。表I列出了组IV和III-V的化合物半导体(左侧)的典型组合,其可以用于由位于晶界126中的绝缘、半绝缘或宽带隙II-VI和/或I-VII半导体材料包封的晶粒122内。表II列出了低带隙II-VI化合物半导体(左侧)的典型组合,其可以用于由位于晶界126中的绝缘、半绝缘或宽带隙组VI半导体材料包封的晶粒122内。当用导电晶界材料124包封半导体晶粒122时,适用关于族排序的类似关系。由于LCD制造方法实现高化学复杂性材料的化学结合,因此应当清楚地理解,III-V和II-VI半导体化合物无需限于二元构成,而是可以容易地包含3种或更多种元素成分。
由这些多晶半导体提供的主要优势为,相对于如图1中所示主要导电通道6限制在20-50nm的层厚度的现有技术来说,可以容易地构建具有任意厚度的导电通道的器件。图7示出了本发明一重要方面,其提供了构建可以运送比现有技术更大量电流的电有源场、场效应晶体管(FET)器件160的方法。由于多晶半导体减小了导电电子的平均自由程以及由高弹道速度引起的雪崩击穿的相关风险,因此其中生成的3-D电子(和空穴)气无需限制在由一个或多个较宽的带隙半导体层7、8以及3、4包围的较薄的主要导电通道6中。根据本发明,主要导电通道161可以具有范围从20nm至10微米(μm)的多晶半导体层厚度,该厚度优选地为大于50nm,并且最有可能为1-2μm,从而允许在显著较低的电流密度下调制更高的电流。由于本发明由半导体层本身的纳米级微结构而不是由半导体之间的势垒所引起的量子-尺寸效应形成了电子气,因此其实现了在导电通道中使用宽带隙材料,如硅(Egap=1.11eV)或砷化镓(Egap=1.43eV),其比如锑化铟(Egap=0.17eV)的低带隙对应物更不易受碰撞电离的影响。在将低带隙材料插入厚度大于50nm的导电通道中的可能是有益的情况下,该导电通道可以可选择地具有包含插入其与基板164和/或栅极165之间的较宽的带隙半导体材料的附加层162、163。施加在栅极165上的电压用于通过栅氧化层166改变电场以调制源极167与漏极168区之间的主要导电通道161中的电流流量。分别使用欧姆源极169和漏极170与源极167和漏极168区实现电接触。
由于由现有技术教导的调制电流多层2D-电子气结构限制将高速电流传输至厚度为20-50nm的主要导电通道6,因此需要四十(40)至一百(100)个这种层来传输本发明所述单独的两个(2)微米厚度的3D-电子气主要导电通道161中的等效电流。高速量子点场效应晶体管可以使用LCD方法、设备和过程集成在任何电路中,包括但不限于,用于高速计算过程或无线电应用中的功率管理装置或硅载体。
现在参考图8A、8B、8C、8D来说明液相化学沉积(LCD)方法如何用于形成多晶3D-电子气半导体层161。通过参考引用的方式结合于此的德·罗奇蒙特等人的‘112申请说明了由LCD过程用以在基板172上形成非晶层171的设备、过程。基板172可以包含适当掺杂的半导体晶片或半导体层。非晶层171通过在惰性或还原气体气氛中分解低挥发性液相有机金属前驱体的气雾喷射形成在基板172上,其中低挥发性液相有机金属前驱体由所需的半导体化合物、其电子掺杂物(如果需要的话)及其晶界材料的化学计量混合物组成。基板172需要被加热至热解具有最高分解温度的液相前驱体化合物的温度,典型地为200°C至500°C,优选为300°C至400°C。惰性或还原气体气氛可以包含氮或惰性气体、氢和/或还原分压比的一氧化碳与二氧化碳(通过将液相有机金属前驱体的气雾喷射应用在充当基板172的适当掺杂的半导体层或晶片上(图8A))。非晶层可以包含具有电或其他掺杂物的元素半导体,或者其可以为具有电或其他掺杂物的化合物半导体。LCD过程实现非晶层具有在原子量级下组分均匀的化学成分的精确比例。喷射沉积之后为烘烤步骤,其将基板和沉积物加热至400°C与600°C之间的温度2–20分钟,以移除任何在气雾喷射沉积步骤过程中未热解的残余的有机材料。沉积物中任何液体形式物质的存在都将在随后的退火步骤过程中加速原子量级化学均匀性的劣化。
接着使用等离子退火步骤来将非晶层171转化为具有晶粒尺寸174范围在20-50nm之间的均匀微结构的多晶层173。其他热处理方法可以用于将非晶沉积物转化为多晶状态,但是快速热退火过程以及特别的等离子退火过程是优选的。基板172和沉积物171可以在离子化的等离子退火步骤过程中被预加热至范围为40°C至400°C的温度。氩气为等离子退火步骤中所使用的主要稳定剂,具有由氮和/或不超过20%分压的的一氧化碳与二氧化碳组成附加的气体添加物。范围为1500至5000毫托(mTorr)的总大气压强、功率设置范围为50W至300W、周期为5至60秒对于产生用不同相晶界材料包封的纳米级多晶半导体晶粒是优选的。
需要选择将通过退火步骤过程中的热力学过程被推向晶界的金属形式物质来形成金属晶界。在晶体成核的早期,合作力将产生将非晶沉积物171中的主要元素在原子上调整为其热力学最有益的晶相的晶体场。该合作力将由主要化学物浓度驱动,其导致在将化学上不相容的元素驱逐至晶界的同时,化学上相容的元素被引入晶化成核过程。例如,如果硅为主要化学元素,其在沉积物中呈现为超过99.99mol%的水平,则在成核过程中建立的晶体场将青睐具有类似电荷和分子轨道定向的元素的结合,如锗。因此需要从具有与晶粒内形成的半导体化合物不相容的电荷和轨道特性的金属元素中选择晶界材料,如表I&II中所示。位于周期表距离半导体元素所在的族最远的族中的元素满足该要求。因此,当需要在多晶沉积物173中形成金属晶界175时,将浓度为0.0001to0.5mol%的碱金属或碱土金属的有机金属前驱体加入用于形成非晶沉积物的液相前驱体溶液。碱金属优于碱土金属。当需要在多晶沉积物173中形成包含表I和II中所示的任何I-VII晶界材料的绝缘晶界176时,将碱金属、碱土金属或过渡金属的卤化的有机金属前驱体加入液相前驱体溶液。前驱体分子177实质上“运送”与在金属元素178最终沉积的表面上分解的有机分子连接的金属元素178。卤化的前驱体将用来自组:氟、氯、碘或溴的卤元素180取代一个或多个有机分子中的氢元素179。卤化的碱或碱土金属前驱体允许了包含一种碱或碱土金属卤化物或多种碱或碱土金属卤化物的绝缘化合物的元素成分在随后的等离子退火步骤中被传输沉积表面并融入非晶沉积物中并推进至晶界区176中。如申请‘405中所做出的详细说明,碳化硅或氮化铝材料的相可以通过形成液相有机金属前驱体和碳化硅或氮化铝纳米粒子的胶态悬浮液而引至非晶沉积171。当其摩尔浓度保持在0.0001mol%与0.75mol%之间时,这些纳米粒子碳化物和氮化物的相将在等离子退火的过程中迁移至晶界。
本发明的具体优势在于其使用由纳米级多晶半导体产生的3D电子气在特定层或多个层中增加载流子迁移率的能力,这在现有技术中是不可能的。在Phillips‘292所述的现有技术中,2D电子气通过将如锑化铟(InSb,Egap=0.17eV)的低带隙半导体的层夹入较高的带隙半导体的外延层之间来形成量子阱而产生。(参见图1和2)。如InSb的低带隙半导体可以具有非常高的电荷载流子迁移率,如图4中所示,但是它们还易受雪崩电流的影响,这是由于被电漂移加速的导带电子将价带电子从其所束缚的原子上撞击出去而引起的碰撞电离过程造成的。该过程产生了过多的导带电子,该导带电子产生损害性能的逃逸转换电流。2D量子阱在平面低带隙半导体内产生了量子化的能带结构,其使价带电子有效地免受以弹道速度穿过层的导电电子的影响。可以增加较宽的带隙半导体24、25的附加层3、4以进一步减轻碰撞电离过程。2D量子阱屏蔽价带电子并最小化自由电子与被形成半导体材料的原子束缚的价带电子之间的电磁交互作用。该屏蔽降低了导电电子的有效质量,(“惯性”),该有效质量使其在所施加的电场的影响下更易于对漂移传输机制起反应。
如上文所提及的,隧穿过程表示最快的电子传输机制。隧穿过程在相邻量子阱之间(未示出)是可能的,而在低带隙半导体层内是不可能的,这是由于在形成阱的底部的层内没有势垒。(相邻的量子阱可以通过想象图1的垂直方向上的多个多层结构而被形象化。)平面2D电子气的主要益处在于降低的电子(和空穴)有效质量以及对于低-带隙半导体层的非常薄(20-50nm)的层内的碰撞电离而言减小的敏感性。
如上文所提及的,本发明的3D量子阱在每个晶粒的边界插入势垒。因此,任何导电电子的平均自由程都限制在晶粒的纳米级尺寸(20nm至50nm)上。漂移电子将接着遭遇其将隧穿的薄(2nm至10nm)势垒。减小的平均自由程(减小的碰撞电离)与该方向上的隧穿电流或主要漂移电流的组合允许所有类型的半导体材料在任何方向上支持快速传输过程,而没有将调制的电流限制在20-50nm的层的限制。
该优势在功率FET器件、光电子或光子器件中特别重要,这是由于层161、162、163、164(参见图7)中的任何一个可以形成为任意厚度的半导体3D电子气。另外,每个单独层161、162、163、164都可以由具有与相邻的多晶半导体层的带隙不同的能带隙的半导体晶粒构成。本发明的这个方面对于器件结构特别有益,其中转换速度被块体半导体层中借助层的电子掺杂的降低的载流子迁移率限制,p+-掺杂层限制转换速度的绝缘栅双极晶体管(IGBT)就是这种情况。图9示出了集成在硅芯片载体上的IGBT器件200的横截面视图,其可以可选择地包括充当接地和散热片的半导体载体基板202和电极204。LCD实现了允许包含半导体3D电子气层的单晶p+-型半导体漏极层208沉积在漏极204上的非常薄的非晶层206的插入,其还可以包含3D电子气层。p-n结210在p+-型半导体漏极层208与可以可选择地由3D电子气多晶材料组成的n--型半导体层212之间形成。n--型半导体层电构图为具有与源极218电通信的p-型子通道214A、214B、214C以及n+-型掺杂分布216A、216B、216C、216D。绝缘栅极220调制允许电流从漏极208流至源极218的通道222中的反转载流子总体。栅极220被封装在低损耗高-介电击穿绝缘材料224A、224B内,其优选为非晶硅绝缘材料。任何或所有半导体层都可以由改良为产生3D电子气的纳米级设计的多晶半导体组成。由于LCD沉积方法还允许三维单片材料集成,由3D电子气半导体区226A、226B、228A、228B组成的垂直导电通道可以可选择地加入器件结构,其中每个3D电子气半导体区226A、226B、228A、228B可以包含具有与IGBT器件200中任何相邻半导体材料的能带隙不同能带隙的多晶晶粒,从而在三维图案化的单片结构内形成多个异质结构。
图10中示出了最终实施例,其示出了由单片集成在载体基板254上的功率管理模块252、贴装在其上的一个或多个半导体芯片256以及含有嵌入其中的3D电子气半导体层260的光电子或光子器件258组成的半导体载体250。
应当容易理解,这里所述的量子阱技术和制造方法可以容易地应用在任何其他形式的量子阱器件上,包括但不限于,复用器、信号编码器以及传感器。还应当容易理解,上文所述的器件包含制造的方法和操作的方法,这对于现有技术来说同样是新颖且并非显而易见的。
本发明参考所公开的实施例在上文进行了示例性地说明。在不背离如权利要求书中所定义的本发明的保护范围的情况下,本领域技术人员可以对所公开的实施例做出各种改进和变化。

Claims (20)

1.一种三维多晶半导体材料,其特征在于,包含:
形成具有小于或等于50nm的标称最大晶粒直径的单个晶粒的主要成分;以及
在单个晶粒之间形成边界的次要成分。
2.根据权利要求1所述的材料,其特征在于,次要成分包围主要成分的晶粒。
3.根据权利要求1所述的材料,其特征在于,多晶材料内的量子尺寸效应引起量子阱的自由电子气特性。
4.根据权利要求3所述的材料,其特征在于,多晶材料形成三维量子阱结构。
5.根据权利要求1所述的材料,其特征在于,次要成分的摩尔浓度为多晶材料的0.0001mol%与0.75mol%之间。
6.根据权利要求1所述的材料,其特征在于,构成晶粒的主要成分为硅、锗、锡或任何它们的混合物。
7.根据权利要求6所述的材料,其特征在于,形成晶界的次要成分为绝缘、半绝缘或半导体材料,其由包含周期表的第一(I)族的碱金属元素或第二(II)族的碱土金属元素,或具有类似于碱或碱土金属的化学性能的过渡金属,以及选自周期表的第七(VII)族的卤族元素的金属卤化物组成。
8.根据权利要求7所述的材料,其特征在于,绝缘或半绝缘材料具有大于包含多晶晶粒的半导体材料的带隙的能带隙。
9.根据权利要求1所述的材料,其特征在于,构成晶粒的主要成分为III-V化合物半导体材料,并且形成边界的次要成分为绝缘、半绝缘或半导体材料,其由包含第一(I)族的碱金属元素或具有类似于碱金属的化学性能的过渡金属,以及选自周期表的第七(VII)族的卤族元素的金属卤化物组成。
10.根据权利要求1所述的材料,其特征在于,晶粒的主要成分为II-VI化合物半导体,并且形成边界的次要成分为硅、碳化硅、锗、锡或它们的混合物。
11.根据权利要求1所述的材料,其特征在于,多晶材料具有每个方向上大于50nm的三维尺寸。
12.根据权利要求1所述的材料,其特征在于,多晶材料单片集成至有源器件中。
13.根据权利要求12所述的材料,其特征在于,有源器件为场效应晶体管、光电子器件或光子器件。
14.一种半导体载体,其特征在于,包含包括单片集成至半导体载体中并且包含纳米级多晶组件的半导体层的有源器件,所述纳米级多晶组件包括具有20nm至50nm范围的最大实际尺寸的半导体晶粒,其由2nm至10nm厚度的晶界材料包封,以使多晶晶粒内的量子尺寸效应引起量子阱的自由电子气特性。
15.根据权利要求14所述的半导体载体,其特征在于,有源器件为场效应晶体管、光电子器件或光子器件。
16.根据权利要求14所述的半导体载体,其特征在于,有源器件包含单片集成在其表面上的功率管理模块。
17.根据权利要求14所述的半导体载体,其特征在于,有源器件包含半导体芯片。
18.根据权利要求14所述的半导体载体,其特征在于,半导体载体具有嵌入载体基板内的有源电路。
19.一种制造半导体层的方法,所述半导体层包含纳米级多晶组件,该纳米级多晶组件包括具有20nm至50nm范围的最大实际尺寸的半导体晶粒,其由2nm至10nm厚度的晶界材料包封,以使多晶晶粒内的量子尺寸效应引起量子阱的自由电子气特性,其特征在于,该方法包含以下步骤:
形成具有适合产生由元素半导体或所需的化合物半导体的化学计量组成的主要相多晶晶粒的化学计量比的低挥发性液相有机金属前驱体的溶液;
向所述溶液中加入浓度在0.0001mol%至0.5mol%范围内的掺杂质,该掺杂质具有适合在主要相多晶晶粒的晶界中产生绝缘、半绝缘或半导体二次相材料的化学计量比;
向所述溶液加入多晶晶粒内所需浓度的主要相多晶晶粒的掺杂质前驱体;
将基板加热至250°C至500°C范围内的温度,半导体层将在该基板上形成;
在惰性或还原气体气氛中将基板上的非挥发性有机金属前驱体同时分解,以形成具有原子级化学上均匀的化学计量精度的非晶沉积物;
烘烤所述非晶沉积物以从沉积物上移除有机残留物;
使用50W至300W的输入功率并在40°C和400°C的基板温度以及范围为1,500毫托(mTorr)至5,000毫托的压力下在电离的氩等离子中退火所述烘烤的沉积物最少5秒钟;以及
可选择地向电离的氩等离子中加入氮和/或还原分压比的二氧化碳和一氧化碳。
20.根据权利要求19所述的方法,其特征在于,构成晶粒的半导体材料为硅、锗、锡或任何它们的混合物。
CN2011800640375A 2010-11-03 2011-11-03 具有单片集成的量子点器件的半导体芯片载体及其制造方法 Pending CN103415925A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40984610P 2010-11-03 2010-11-03
US61/409,846 2010-11-03
PCT/US2011/059236 WO2012061656A2 (en) 2010-11-03 2011-11-03 Semiconductor chip carriers with monolithically integrated quantum dot devices and method of manufacture thereof

Publications (1)

Publication Number Publication Date
CN103415925A true CN103415925A (zh) 2013-11-27

Family

ID=45995653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800640375A Pending CN103415925A (zh) 2010-11-03 2011-11-03 具有单片集成的量子点器件的半导体芯片载体及其制造方法

Country Status (5)

Country Link
US (3) US9123768B2 (zh)
EP (1) EP2636069B1 (zh)
JP (2) JP6223828B2 (zh)
CN (1) CN103415925A (zh)
WO (1) WO2012061656A2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8779489B2 (en) * 2010-08-23 2014-07-15 L. Pierre de Rochemont Power FET with a resonant transistor gate
US9348385B2 (en) 2012-07-09 2016-05-24 L. Pierre deRochement Hybrid computing module
US20140116491A1 (en) * 2012-10-29 2014-05-01 Alphabet Energy, Inc. Bulk-size nanostructured materials and methods for making the same by sintering nanowires
US9614112B2 (en) 2013-09-11 2017-04-04 The University Of Connecticut Imaging cell array integrated circuit
US20180254363A1 (en) * 2015-08-31 2018-09-06 The Board Of Regents Of The University Of Oklahoma Semiconductor devices having matrix-embedded nano-structured materials
US11313040B2 (en) * 2017-03-24 2022-04-26 Embraco Indústria De Compressores E Soluçôes Em Refrigeraçâo Ltda. Plasma-assisted process of ceramization of polymer precursor on surface, surface comprising ceramic polymer
US10978561B2 (en) 2017-10-18 2021-04-13 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Layer, multilevel element, method for fabricating multilevel element, and method for driving multilevel element
KR102250003B1 (ko) * 2017-10-18 2021-05-11 한양대학교 산학협력단 막, 멀티레벨 소자, 멀티레벨 소자의 제조방법, 멀티레벨 소자의 구동방법
MX2020013123A (es) 2018-06-05 2021-02-18 Rochemont L Pierre De Modulo con canales de entrada/salida (e/s) de alto ancho de banda maximo.
US20220254909A1 (en) * 2019-06-27 2022-08-11 Nippon Telegraph And Telephone Corporation Tunnel Field-Effect Transistor and Method for Manufacturing the Same
US20220077221A1 (en) * 2020-05-21 2022-03-10 Faquir Chand Jain Quantum dot channel (qdc) quantum dot gate transistors, memories and other devices

Family Cites Families (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2283925A (en) 1937-04-30 1942-05-26 Rca Corp High frequency core and shield and method of making the same
GB730703A (en) 1952-07-31 1955-05-25 Centre Nat Rech Scient Magnetic materials and methods of manufacturing such materials
US3413573A (en) 1965-06-18 1968-11-26 Westinghouse Electric Corp Microelectronic frequency selective apparatus with vibratory member and means responsive thereto
US3574114A (en) 1968-08-05 1971-04-06 Bell Telephone Labor Inc Fine grain ceramic ferrites
US3614554A (en) 1968-10-24 1971-10-19 Texas Instruments Inc Miniaturized thin film inductors for use in integrated circuits
US3983077A (en) 1975-05-02 1976-09-28 Texas Instruments Incorporated Process for making ceramic resistor materials
US4295176A (en) 1979-09-04 1981-10-13 Bell Telephone Laboratories, Incorporated Semiconductor integrated circuit protection arrangement
US4400683A (en) 1981-09-18 1983-08-23 Matsushita Electric Industrial Co., Ltd. Voltage-dependent resistor
US4523170A (en) 1982-11-05 1985-06-11 Spang & Company Adjustable air gap ferrite structures and methods of manufacture
US4455545A (en) 1982-11-05 1984-06-19 Sperry Corporation High frequency output inductor for inverter power supply
GB2261117B (en) 1983-05-09 1993-10-06 Secr Defence Mixer circuit
WO1987005055A1 (en) 1986-02-24 1987-08-27 Hughes Aircraft Company Process for forming an environmentally stable optical coating and structures formed thereby
US4646038A (en) 1986-04-07 1987-02-24 Motorola, Inc. Ceramic resonator filter with electromagnetic shielding
US4759120A (en) 1986-05-30 1988-07-26 Bel Fuse Inc. Method for surface mounting a coil
US4880770A (en) 1987-05-04 1989-11-14 Eastman Kodak Company Metalorganic deposition process for preparing superconducting oxide films
US5217754A (en) 1987-07-27 1993-06-08 Trustees Of The University Of Pennsylvania Organometallic precursors in conjunction with rapid thermal annealing for synthesis of thin film ceramics
US4967201A (en) 1987-10-22 1990-10-30 Westinghouse Electric Corp. Multi-layer single substrate microwave transmit/receive module
US5084749A (en) 1988-08-25 1992-01-28 Eastman Kodak Company Image sensing device with reduced smear
US5614252A (en) 1988-12-27 1997-03-25 Symetrix Corporation Method of fabricating barium strontium titanate
US5456945A (en) 1988-12-27 1995-10-10 Symetrix Corporation Method and apparatus for material deposition
US5023139A (en) * 1989-04-04 1991-06-11 Research Corporation Technologies, Inc. Nonlinear optical materials
JPH03179805A (ja) 1989-12-07 1991-08-05 Murata Mfg Co Ltd 誘電体レンズアンテナ用複合材料
US5139999A (en) 1990-03-08 1992-08-18 President And Fellows Of Harvard College Chemical vapor deposition process where an alkaline earth metal organic precursor material is volatilized in the presence of an amine or ammonia and deposited onto a substrate
GB9019571D0 (en) 1990-09-07 1990-10-24 Electrotech Instr Ltd Power transformers and coupled inductors with optimally interleaved windings
JP2847573B2 (ja) 1990-09-10 1999-01-20 富士通株式会社 電圧制御発振器
US5759923A (en) 1991-02-25 1998-06-02 Symetrix Corporation Method and apparatus for fabricating silicon dioxide and silicon glass layers in integrated circuits
US5263198A (en) 1991-11-05 1993-11-16 Honeywell Inc. Resonant loop resistive FET mixer
DE69218458T2 (de) 1991-12-03 1997-10-09 Advanced Composite Materials Corp., Greer, S.C. Drucklose sinterung von mit whiskern verstärktem aluminiumoxydverbundwerkstoff
US5198824A (en) 1992-01-17 1993-03-30 Texas Instruments Incorporated High temperature co-fired ceramic integrated phased array packaging
US5219377A (en) 1992-01-17 1993-06-15 Texas Instruments Incorporated High temperature co-fired ceramic integrated phased array package
US5272485A (en) 1992-02-04 1993-12-21 Trimble Navigation Limited Microstrip antenna with integral low-noise amplifier for use in global positioning system (GPS) receivers
EP0592986B1 (en) 1992-10-12 1998-07-08 Sumitomo Electric Industries, Limited Ultra-thin film laminate
JP2764513B2 (ja) 1993-01-21 1998-06-11 ティーディーケイ株式会社 耐還元性誘電体磁器組成物
RU2127946C1 (ru) 1993-03-31 1999-03-20 Моторола Инк. Коммутационная цепь приемопередатчика и способ ее функционирования
US5312790A (en) 1993-06-09 1994-05-17 The United States Of America As Represented By The Secretary Of The Army Ceramic ferroelectric material
DE69410536T2 (de) 1993-06-24 1998-11-26 Canon K.K., Tokio/Tokyo Solarmodul mit warm-verschweisstem Teil zur Verbesserung der Feuchtigkeitsbeständigkeit
DE4336694A1 (de) 1993-10-27 1995-05-04 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von Metall- und Keramiksinterkörpern und -schichten
US6027826A (en) 1994-06-16 2000-02-22 The United States Of America As Represented By The Secretary Of The Air Force Method for making ceramic-metal composites and the resulting composites
GB2290913B (en) 1994-06-30 1998-03-11 Plessey Semiconductors Ltd Multi-chip module inductor structure
GB9417450D0 (en) 1994-08-25 1994-10-19 Symmetricom Inc An antenna
US5478610A (en) 1994-09-02 1995-12-26 Ceram Incorporated Metalorganic chemical vapor deposition of layered structure oxides
US6208535B1 (en) 1994-10-31 2001-03-27 Texas Instruments Incorporated Resonant gate driver
US5625365A (en) 1995-03-10 1997-04-29 Trimble Navigation Limited Dual-frequency microwave radio antenna system
KR100246977B1 (ko) 1995-03-28 2000-03-15 모리시타 요이찌 금속 산화물 피막 저항기
US5584053A (en) 1995-08-04 1996-12-10 Motorola, Inc. Commonly coupled high frequency transmitting/receiving switching module
US6222489B1 (en) 1995-08-07 2001-04-24 Murata Manufacturing Co., Ltd. Antenna device
US5635433A (en) 1995-09-11 1997-06-03 The United States Of America As Represented By The Secretary Of The Army Ceramic ferroelectric composite material-BSTO-ZnO
DE19535962C1 (de) 1995-09-27 1997-02-13 Siemens Ag Dopplerradarmodul
GB9601250D0 (en) 1996-01-23 1996-03-27 Symmetricom Inc An antenna
GB9603914D0 (en) 1996-02-23 1996-04-24 Symmetricom Inc An antenna
US6413883B1 (en) 1996-03-04 2002-07-02 Symetrix Corporation Method of liquid deposition by selection of liquid viscosity and other precursor properties
JPH09275316A (ja) 1996-04-05 1997-10-21 Murata Mfg Co Ltd チップアンテナ
US6323549B1 (en) 1996-08-29 2001-11-27 L. Pierre deRochemont Ceramic composite wiring structures for semiconductor devices and method of manufacture
US5771567A (en) 1996-08-29 1998-06-30 Raytheon Company Methods of fabricating continuous transverse stub radiating structures and antennas
US5707715A (en) 1996-08-29 1998-01-13 L. Pierre deRochemont Metal ceramic composites with improved interfacial properties and methods to make such composites
US6143432A (en) 1998-01-09 2000-11-07 L. Pierre deRochemont Ceramic composites with improved interfacial properties and methods to make such composites
JPH10126307A (ja) 1996-10-21 1998-05-15 Murata Mfg Co Ltd 高周波複合部品
US6052040A (en) 1997-03-03 2000-04-18 Ngk Spark Plug Co., Ltd. Dielectric duplexer with different capacitive coupling between antenna pad and transmitting and receiving sections
US6344272B1 (en) * 1997-03-12 2002-02-05 Wm. Marsh Rice University Metal nanoshells
US20010046603A1 (en) 1997-05-05 2001-11-29 Constantino Stephen A. Dispersible, metal oxide-coated, barium titanate materials
JP3408401B2 (ja) * 1997-05-30 2003-05-19 シャープ株式会社 半導体記憶素子およびその製造方法
US5865571A (en) 1997-06-17 1999-02-02 Norton Company Non-metallic body cutting tools
US6046707A (en) 1997-07-02 2000-04-04 Kyocera America, Inc. Ceramic multilayer helical antenna for portable radio or microwave communication apparatus
US6130471A (en) * 1997-08-29 2000-10-10 The Whitaker Corporation Ballasting of high power silicon-germanium heterojunction biploar transistors
FR2771843B1 (fr) 1997-11-28 2000-02-11 Sgs Thomson Microelectronics Transformateur en circuit integre
JP3296276B2 (ja) 1997-12-11 2002-06-24 株式会社村田製作所 チップアンテナ
JP3738577B2 (ja) 1998-02-13 2006-01-25 株式会社村田製作所 アンテナ装置及び移動体通信機器
JPH11251829A (ja) 1998-02-27 1999-09-17 Kyocera Corp スロットアンテナ及びそれを具備する配線基板
US5933121A (en) 1998-04-07 1999-08-03 Harris Corporation Antenna array for sensing signals on conductors
US6040805A (en) 1998-05-08 2000-03-21 Antcom Corp. Low profile ceramic choke
US6023251A (en) 1998-06-12 2000-02-08 Korea Electronics Technology Institute Ceramic chip antenna
GB9813002D0 (en) 1998-06-16 1998-08-12 Symmetricom Inc An antenna
JP2000022421A (ja) 1998-07-03 2000-01-21 Murata Mfg Co Ltd チップアンテナ及びそれを搭載した無線機器
US6154176A (en) 1998-08-07 2000-11-28 Sarnoff Corporation Antennas formed using multilayer ceramic substrates
US6294401B1 (en) * 1998-08-19 2001-09-25 Massachusetts Institute Of Technology Nanoparticle-based electrical, chemical, and mechanical structures and methods of making same
US20030148024A1 (en) 2001-10-05 2003-08-07 Kodas Toivo T. Low viscosity precursor compositons and methods for the depositon of conductive electronic features
KR100467569B1 (ko) 1998-09-11 2005-03-16 삼성전자주식회사 송수신일체형마이크로스트립패치안테나
US6241036B1 (en) 1998-09-16 2001-06-05 Baker Hughes Incorporated Reinforced abrasive-impregnated cutting elements, drill bits including same
US6204203B1 (en) 1998-10-14 2001-03-20 Applied Materials, Inc. Post deposition treatment of dielectric films for interface control
GB9828768D0 (en) 1998-12-29 1999-02-17 Symmetricom Inc An antenna
US6208843B1 (en) 1999-06-03 2001-03-27 Cirocomm Technology Corp. Radio frequency and microwave module for simultaneously transmitting data and audio signal
JP3389886B2 (ja) 1999-06-09 2003-03-24 株式会社村田製作所 高周波回路装置及び通信機装置
US6300894B1 (en) 1999-07-09 2001-10-09 Harris Corporation Antenna having electrically controllable radar cross-section
US6605151B1 (en) 1999-11-29 2003-08-12 Northwestern University Oxide thin films and composites and related methods of deposition
US6871396B2 (en) 2000-02-09 2005-03-29 Matsushita Electric Industrial Co., Ltd. Transfer material for wiring substrate
US6531945B1 (en) 2000-03-10 2003-03-11 Micron Technology, Inc. Integrated circuit inductor with a magnetic core
JP3371887B2 (ja) 2000-03-23 2003-01-27 株式会社村田製作所 移動体通信装置及びそれに用いる高周波複合部品
US6541820B1 (en) 2000-03-28 2003-04-01 International Rectifier Corporation Low voltage planar power MOSFET with serpentine gate pattern
US6596343B1 (en) 2000-04-21 2003-07-22 Applied Materials, Inc. Method and apparatus for processing semiconductor substrates with hydroxyl radicals
DE60135285D1 (de) 2000-04-24 2008-09-25 Toho Titanium Co Ltd Diester-derivate der phthalsäure und elektronendonatoren
EP1205944A4 (en) 2000-04-26 2007-03-07 Furukawa Electric Co Ltd DIELECTRIC CERAMICS, RESIN CERAMIC COMPOSITE AND ELECTRICAL PARTS AND ANTENNA AND METHOD FOR THE PRODUCTION THEREOF
KR100533097B1 (ko) 2000-04-27 2005-12-02 티디케이가부시기가이샤 복합자성재료와 이것을 이용한 자성성형재료, 압분 자성분말성형재료, 자성도료, 복합 유전체재료와 이것을이용한 성형재료, 압분성형 분말재료, 도료, 프리프레그및 기판, 전자부품
KR100365295B1 (ko) 2000-05-03 2002-12-18 한국과학기술연구원 저온소결 저손실 고주파 유전체 세라믹스 조성물 및 그 제조방법
US6919119B2 (en) 2000-05-30 2005-07-19 The Penn State Research Foundation Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
US6905989B2 (en) 2001-06-01 2005-06-14 Paratek Microwave, Inc. Tunable dielectric compositions including low loss glass
US6266020B1 (en) 2000-07-24 2001-07-24 Auden Technology Mfg. Co. Ltd. Hidden antenna device of a mobile phone
US6611419B1 (en) 2000-07-31 2003-08-26 Intel Corporation Electronic assembly comprising substrate with embedded capacitors
EP1310018B1 (en) 2000-08-16 2018-07-25 Valeo Radar Systems, Inc. Switched beam antenna architecture
US6501415B1 (en) 2000-08-16 2002-12-31 Raytheon Company Highly integrated single substrate MMW multi-beam sensor
JP2002100902A (ja) 2000-09-25 2002-04-05 Tdk Corp 高周波帯域通過フィルタ
DE10049844A1 (de) 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Miniaturisierte Mikrowellenantenne
TW511419B (en) 2000-10-10 2002-11-21 Primarion Inc Microelectronic magnetic structure, device including the structure, and methods of forming the structure and device
JP2002118417A (ja) 2000-10-10 2002-04-19 Alps Electric Co Ltd 平面パッチアンテナ
US6559735B1 (en) 2000-10-31 2003-05-06 Cts Corporation Duplexer filter with an alternative signal path
JP3726017B2 (ja) 2000-10-31 2005-12-14 Tdk株式会社 磁性材料およびインダクタ
US20020070983A1 (en) 2000-12-07 2002-06-13 Kozub Thomas A. Automated wafer handling with graphic user interface
US6496149B1 (en) 2001-02-01 2002-12-17 Apple Computer, Inc. Recessed aperture-coupled patch antenna with multiple dielectrics for wireless applications
GB0104961D0 (en) * 2001-02-28 2001-04-18 Microemissive Displays Ltd An encapsulated electrode
KR100426219B1 (ko) 2001-05-18 2004-04-06 홍국선 유전체 세라믹 조성물 및 이를 이용한 적층부품의 제조방법
WO2002102584A1 (en) 2001-05-23 2002-12-27 The Regents Of The University Of California Composite material having low electromagnetic reflection and refraction
US6762237B2 (en) 2001-06-08 2004-07-13 Eikos, Inc. Nanocomposite dielectrics
KR100414765B1 (ko) 2001-06-15 2004-01-13 한국과학기술연구원 세라믹 칩 안테나
WO2002103846A1 (en) 2001-06-15 2002-12-27 E-Tenna Corporation Aperture antenna having a high-impedance backing
US20030034124A1 (en) 2001-06-19 2003-02-20 Yasuhiro Sugaya Dielectric resonator, dielectric filter and method of producing the same, filter device combined to a transmit-receive antenna and communication apparatus using the same
EA003852B1 (ru) * 2001-06-29 2003-10-30 Александр Михайлович Ильянок Квантовый суперконденсатор
US20030066998A1 (en) * 2001-08-02 2003-04-10 Lee Howard Wing Hoon Quantum dots of Group IV semiconductor materials
DE10143168A1 (de) 2001-09-04 2003-03-20 Philips Corp Intellectual Pty Schaltungsplatine und SMD-Antenne hierfür
JP3734731B2 (ja) 2001-09-06 2006-01-11 株式会社ノリタケカンパニーリミテド セラミック電子部品及びその製造方法
US6808954B2 (en) 2001-09-07 2004-10-26 Intel Corporation Vacuum-cavity MEMS resonator
US6733890B2 (en) 2001-10-23 2004-05-11 Fujitsu Limited Integrated ceramic module and microwave dielectric composition
US6787181B2 (en) 2001-10-26 2004-09-07 Symetrix Corporation Chemical vapor deposition method of making layered superlattice materials using trimethylbismuth
US7553512B2 (en) 2001-11-02 2009-06-30 Cabot Corporation Method for fabricating an inorganic resistor
US6635958B2 (en) 2001-12-03 2003-10-21 Dover Capital Formation Group Surface mount ceramic package
DE10161743B4 (de) 2001-12-15 2004-08-05 Hüttinger Elektronik GmbH & Co. KG Hochfrequenzanregungsanordnung
EP1323682A3 (en) 2001-12-25 2004-01-21 Ngk Spark Plug Co., Ltd Dielectric material and dielectric sintered body, and wiring board
US6864848B2 (en) 2001-12-27 2005-03-08 Hrl Laboratories, Llc RF MEMs-tuned slot antenna and a method of making same
TW535176B (en) 2001-12-28 2003-06-01 Winbond Electronics Corp Inductor structure applied on a silicon substrate and the manufacturing method thereof
TW588389B (en) * 2002-03-08 2004-05-21 Matsushita Electric Works Ltd Quantum device
US20030186636A1 (en) 2002-03-27 2003-10-02 Devrim Akyuz Tool for cutting solid materials
US7291782B2 (en) 2002-06-22 2007-11-06 Nanosolar, Inc. Optoelectronic device and fabrication method
US6727785B2 (en) 2002-06-27 2004-04-27 Harris Corporation High efficiency single port resonant line
US6741148B2 (en) 2002-06-27 2004-05-25 Harris Corporation High efficiency coupled line filters
US6750820B2 (en) 2002-06-27 2004-06-15 Harris Corporation High efficiency antennas of reduced size on dielectric substrate
US6753814B2 (en) 2002-06-27 2004-06-22 Harris Corporation Dipole arrangements using dielectric substrates of meta-materials
US6753745B2 (en) 2002-06-27 2004-06-22 Harris Corporation High efficiency four port circuit
US6720926B2 (en) 2002-06-27 2004-04-13 Harris Corporation System for improved matching and broadband performance of microwave antennas
US6731244B2 (en) 2002-06-27 2004-05-04 Harris Corporation High efficiency directional coupler
US6750740B2 (en) 2002-06-27 2004-06-15 Harris Corporation High efficiency interdigital filters
US6731248B2 (en) 2002-06-27 2004-05-04 Harris Corporation High efficiency printed circuit array of log-periodic dipole arrays
US6963259B2 (en) 2002-06-27 2005-11-08 Harris Corporation High efficiency resonant line
KR100442699B1 (ko) 2002-07-19 2004-08-02 삼성전자주식회사 인접 수동소자 칩이 전기적으로 연결된 웨이퍼, 수동소자및 이를 이용한 반도체 패키지
JP2004079701A (ja) 2002-08-14 2004-03-11 Sony Corp 半導体装置及びその製造方法
EP1587670B1 (en) 2002-08-29 2015-03-25 The Regents of The University of California Indefinite materials
JP2005538573A (ja) 2002-09-05 2005-12-15 ナノシス・インク. ナノ構造及びナノ複合材をベースとする組成物
JP2004159221A (ja) 2002-11-08 2004-06-03 Renesas Technology Corp 通信用半導体集積回路および無線通信システム
US7230316B2 (en) 2002-12-27 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transferred integrated circuit
US20040145874A1 (en) * 2003-01-23 2004-07-29 Stephane Pinel Method, system, and apparatus for embedding circuits
US6943731B2 (en) 2003-03-31 2005-09-13 Harris Corporation Arangements of microstrip antennas having dielectric substrates including meta-materials
US6791496B1 (en) 2003-03-31 2004-09-14 Harris Corporation High efficiency slot fed microstrip antenna having an improved stub
CN1263063C (zh) * 2003-04-10 2006-07-05 复旦大学 一种可用于平面显示的场致发射纳米材料
EP1473347B1 (en) * 2003-04-30 2006-11-29 Nanosolutions GmbH Core/shell nanoparticles suitable for (F) RET-assays
RU2236068C1 (ru) 2003-06-10 2004-09-10 Мятиев Ата Атаевич Электрод-электролитная пара на основе двуокиси циркония (варианты), способ ее изготовления (варианты) и органогель
JP4378460B2 (ja) * 2003-08-11 2009-12-09 独立行政法人科学技術振興機構 光蓄積器
JP2005167062A (ja) * 2003-12-04 2005-06-23 Oki Data Corp 半導体装置、ledヘッド、及びプリンタ
US20070166453A1 (en) 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of chalcogen layer
GB0404442D0 (en) * 2004-02-27 2004-03-31 Trackdale Ltd Composite quantum dot structures
US20060086994A1 (en) 2004-05-14 2006-04-27 Susanne Viefers Nanoelectromechanical components
US7572313B2 (en) 2004-05-26 2009-08-11 Drexel University Ternary carbide and nitride composites having tribological applications and methods of making same
US7968273B2 (en) * 2004-06-08 2011-06-28 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers
JP5000510B2 (ja) * 2004-06-08 2012-08-15 ナノシス・インク. ナノ構造単層の形成方法および形成デバイスならびにかかる単層を含むデバイス
US7564887B2 (en) 2004-06-30 2009-07-21 Finisar Corporation Long wavelength vertical cavity surface emitting lasers
US20060071205A1 (en) * 2004-09-24 2006-04-06 Hewlett-Packard Development Company, L.P. Nanocrystal switch
US7405698B2 (en) 2004-10-01 2008-07-29 De Rochemont L Pierre Ceramic antenna module and methods of manufacture thereof
SE0402865L (sv) 2004-11-04 2006-05-05 Sandvik Intellectual Property Belagd produkt och framställningsmetod för denna
CN100483613C (zh) * 2005-02-24 2009-04-29 鸿富锦精密工业(深圳)有限公司 量子点制作方法
JP2006310386A (ja) * 2005-04-26 2006-11-09 National Institute Of Advanced Industrial & Technology 集積電子装置用ナノクラスター基板
CN101213638B (zh) 2005-06-30 2011-07-06 L·皮尔·德罗什蒙 电子元件及制造方法
US8350657B2 (en) 2005-06-30 2013-01-08 Derochemont L Pierre Power management module and method of manufacture
US8069690B2 (en) 2005-12-16 2011-12-06 Ofs Fitel, Llc Apparatus and method for fabricating glass bodies using an aerosol delivery system
US7679102B2 (en) * 2005-12-28 2010-03-16 Group Iv Semiconductor, Inc. Carbon passivation in solid-state light emitters
US7763917B2 (en) 2006-01-24 2010-07-27 De Rochemont L Pierre Photovoltaic devices with silicon dioxide encapsulation layer and method to make same
US8354294B2 (en) 2006-01-24 2013-01-15 De Rochemont L Pierre Liquid chemical deposition apparatus and process and products therefrom
WO2007143197A2 (en) * 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
US20070259768A1 (en) 2006-05-03 2007-11-08 Kear Bernard H Nanocomposite ceramic and method for producing the same
JP4176785B2 (ja) * 2006-06-02 2008-11-05 株式会社東芝 スイッチング素子、半導体装置及びそれらの製造方法
JP5168824B2 (ja) * 2006-06-23 2013-03-27 ソニー株式会社 負性抵抗素子の製造方法、単電子トンネル素子の製造方法、光センサの製造方法および機能素子の製造方法
US7595623B2 (en) 2006-11-20 2009-09-29 Freescale Semiconductor, Inc. Methods and apparatus for a spread spectrum switching regulator
US7753143B1 (en) 2006-12-13 2010-07-13 Us Synthetic Corporation Superabrasive element, structures utilizing same, and method of fabricating same
DE102006060366B8 (de) 2006-12-16 2013-08-01 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Verfahren zur Herstellung von von einer Matrix abgedeckten Quantenpunkten
WO2008151094A1 (en) 2007-05-30 2008-12-11 Kovio, Inc. Metal inks, methods of making the same, and methods for printing and/or forming metal films
US7917311B2 (en) 2007-06-04 2011-03-29 Drexel University Method for structural health monitoring using a smart sensor system
WO2009076322A2 (en) 2007-12-06 2009-06-18 Craig Leidholm Methods and devices for processing a precursor layer in a group via environment
JP5682880B2 (ja) * 2008-04-28 2015-03-11 独立行政法人物質・材料研究機構 ナノ結晶粒子分散液と電子デバイス並びにその製造方法
US20100055492A1 (en) 2008-06-03 2010-03-04 Drexel University Max-based metal matrix composites
US7892659B2 (en) 2008-07-30 2011-02-22 Honeywell International Inc. Coating precursor materials, turbomachinery components, and methods of forming the turbomachinery components
JP2010067803A (ja) * 2008-09-11 2010-03-25 Seiko Epson Corp 光電変換装置、電子機器、光電変換装置の製造方法および電子機器の製造方法
AU2009308162B2 (en) * 2008-10-24 2015-07-09 Life Technologies Corporation Stable nanoparticles and methods of making and using such particles
JP5423952B2 (ja) * 2009-03-04 2014-02-19 セイコーエプソン株式会社 光電変換装置および電子機器
US8952858B2 (en) 2009-06-17 2015-02-10 L. Pierre de Rochemont Frequency-selective dipole antennas
US20110049394A1 (en) 2009-09-01 2011-03-03 De Rochemont L Pierre Ionizing disinfectant surface
KR101711085B1 (ko) * 2009-10-09 2017-03-14 삼성전자 주식회사 나노 복합 입자, 그 제조방법 및 상기 나노 복합 입자를 포함하는 소자

Also Published As

Publication number Publication date
JP6223828B2 (ja) 2017-11-01
EP2636069A2 (en) 2013-09-11
EP2636069A4 (en) 2017-06-14
EP2636069B1 (en) 2021-07-07
WO2012061656A3 (en) 2013-08-15
JP6567626B2 (ja) 2019-08-28
WO2012061656A2 (en) 2012-05-10
JP2014502417A (ja) 2014-01-30
US20120104358A1 (en) 2012-05-03
US9123768B2 (en) 2015-09-01
US20150372091A1 (en) 2015-12-24
US20170229302A1 (en) 2017-08-10
JP2018041970A (ja) 2018-03-15
US10777409B2 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
CN103415925A (zh) 具有单片集成的量子点器件的半导体芯片载体及其制造方法
US11575006B2 (en) Van der Waals integration approach for material integration and device fabrication
Higashiwaki β‐Gallium Oxide Devices: Progress and Outlook
US8933461B2 (en) III-nitride enhancement mode transistors with tunable and high gate-source voltage rating
KR101194465B1 (ko) 실리콘 상에 버퍼층 아키텍쳐를 형성하는 방법 및 그에 의해 형성된 구조물
US7691353B2 (en) Low dielectric constant group II-VI insulator
JP2010135761A (ja) ショットキーバリア量子井戸共振型トンネルトランジスタ
CN103326242B (zh) 激光器有源区、半导体激光器及其制作方法
TWI553743B (zh) 半導體元件與其形成方法及電晶體的形成方法
TWI502744B (zh) 半導體裝置及其形成方法
US8659055B2 (en) Semiconductor device, field-effect transistor, and electronic device
JPH0444362A (ja) 有機量子半導体及び量子半導体素子
US20220375925A1 (en) Semiconductor device and manufacturing method thereof
DE112017008133T5 (de) Epitaxiale III-N-Nanobandstrukturen für die Bauelementherstellung
JP2000223691A (ja) 量子細線の製造方法および半導体素子
WO2019245990A1 (en) General solution-processable approach to high-quality two-dimensional ink materials for printable high-performance large-area and low-cost devices
CN111969046A (zh) 高线性度增强型氮化镓高电子迁移率晶体管及制备方法
WO2020009020A1 (ja) トンネル電界効果トランジスタ
US20220230910A1 (en) Shallow Trench Isolation Forming Method and Structures Resulting Therefrom
CN117337494A (zh) 具有背势垒结构和掩埋p型层的III族氮化物晶体管及其方法
JPH0719888B2 (ja) 電界効果型トランジスタ及びその製造方法
CN111653473A (zh) 一种散热增强的硅基氮化镓微波器件材料结构
Kasper SiGe alloys and heterojunctions-extending the performance of Si devices
Lather Study of Semiconductor Devices
Zhang et al. VdW Heterostructure Electronics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131127