CN1263063C - 一种可用于平面显示的场致发射纳米材料 - Google Patents

一种可用于平面显示的场致发射纳米材料 Download PDF

Info

Publication number
CN1263063C
CN1263063C CN 03116285 CN03116285A CN1263063C CN 1263063 C CN1263063 C CN 1263063C CN 03116285 CN03116285 CN 03116285 CN 03116285 A CN03116285 A CN 03116285A CN 1263063 C CN1263063 C CN 1263063C
Authority
CN
China
Prior art keywords
tcnq
field emission
film
nano wire
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 03116285
Other languages
English (en)
Other versions
CN1450580A (zh
Inventor
陈国荣
莫晓亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN 03116285 priority Critical patent/CN1263063C/zh
Publication of CN1450580A publication Critical patent/CN1450580A/zh
Application granted granted Critical
Publication of CN1263063C publication Critical patent/CN1263063C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/007Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/02Manufacture of cathodes
    • H01J2209/022Cold cathodes
    • H01J2209/0223Field emission cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种可用于平面显示的场致发射纳米材料,具体为Ag和TCNQ按1∶1化学计量比生成的Ag(TCNQ)纳米线。该材料可采用真空条件下的饱和蒸气反应法制备获得,生成的Ag(TCNQ)纳米线(晶须)基本上垂直于基板。为了降低场发射阈值,可在晶须上用常规真空镀膜法,再覆盖一层纳米厚度的金属或氟化锂薄层。

Description

一种可用于平面显示的场致发射纳米材料
技术领域
本发明属纳米材料技术领域,具体涉及一种可用于平面显示的场致发射材料。
背景技术
自从Ijima S发现纳米碳管以来,它的场发射特性受到广泛的关注,在平面显示方面的应用已趋成熟。但它在工艺上还存在一些难点,如生长温度高因而很难直接在玻璃等材料上生长等。
发明内容
本发明的目的在于提出一种具有场致发射特性的纳米材料,而其生长温度比较低,以克服目前一些纳米管线制备温度过高的缺点,并容易与其它工艺兼容。
Ag(TCNQ)是一种电荷转移型金属有机配合物,是一种广受关注的有机功能材料,它本身就有许多独特的光学、电学性质。用其制成的薄膜有些具有光致变色特性,可用于光存储;在其晶体的一个特定方向施加一定电场会呈现负阻特性,且高、低两种电阻状态的电阻率相差105~107数量级,即具有明显的开关效应。Ag(TCNQ)晶体具有准一维的导电特性,用它制成的纳米线可能成为一种“天然”的横向绝缘的纳米“导线”。
本发明经研究证明,Ag与TCNQ在特定的化学计量配比条件下生成的Ag(TCNQ)配合物纳米线具有场致发射特性。因而,可将其用于制备平面显示器件。
本发明提出的具有场致发射特性的纳米材料,是Ag和有机物TCNQ在1∶1化学计量配比的条件下生成的Ag(TCNQ)配合物纳米线。其显示场致发射特性的I-E曲线见图1所示。
上述Ag(TCNQ)金属有机配合物纳米线可采用真空条件下饱和蒸气反应法制备,具体过程如下:
①用常规方法(如真空蒸发或溅射法等),在基板(如硅片、玻璃等)上制备一层5-30纳米厚的Ag薄膜;
②将上述Ag薄膜样品和有机材料TCNQ同时置于一容器中(如玻璃管等);
③对上述容器抽真空,抽真空至10-3Pa量级后将容器密封,与真空系统分离;
④将上述的真空容器置于烘箱中加热,至55-150℃,维持20-30分钟,使基板上的金属Ag薄膜与TCNQ的饱和蒸气发生反应,最终在基板上生成化学计量比为1∶1的Ag(TCNQ)配合物纳米线。
为了降低场致发射的阈值,可用常规真空镀膜法在配合物纳米线Ag(TCNQ)上镀一层5-50纳米厚的金属或氟化锂(LiF)薄膜。
通过一系列的实验,本发明发现对于Ag(TCNQ)纳米线的生长来说,反应温度必须高于55℃。一般来说比较合适的温度在90-110℃左右,时间一般保持20-30分钟。图2为硅基板上20纳米厚的银膜在100℃条件下,制备成的Ag(TCNQ)纳米线在电子显微镜下的照片。可以看到Ag(TCNQ)纳米线以晶须形式基本上沿着垂直于基板平面的方向排列形成“森林”状。Ag(TCNQ)纳米线晶须的横截面近似呈方形,边长小于100纳米,长度(高度)为微米量级。
上述Ag(TCNQ)纳米线生长过程是在一个平衡的状态下进行,最后形成的Ag(TCNQ)纳米线(晶须)中银与TCNQ的配比严格为1∶1。生长温度低,条件相对容易控制,容易与其它工艺兼容。由于Ag(TCNQ)具有的优良的分子电子学性质,被认为是一种很有希望的制备分子电子器件的材料,尤其是其场发射特性的发现,可使其能用平面显示器件。
附图说明
图1为Ag(TCNQ)纳米线场致发射的I-E曲线图。
图2为Ag(TCNQ)纳米线(晶须)的扫描电子显微镜照片。
具体实施方式
采用真空条件下饱和蒸气反应法制备Ag(TCNQ)纳米线。
(1)先用真空蒸发方法,在硅基片上制备20纳米厚的Ag薄膜;
(2)把Ag薄膜样品和有机材料TCNQ同时置于玻璃管中;
(3)对玻璃管抽真空至2×10-3Pa,然后将玻璃管密封;
(4)将密封的玻璃管置于烘箱中,加热至100℃,保持20-30分钟,使基板上的Ag薄膜与TCNQ的饱和蒸气发生反应,按1∶1的化学计量比生成Ag(TCNQ)配合物纳米线,其扫描电子显微镜照片见如图2所示。
(5)再用真空蒸发法在上述薄膜上蒸镀一层20纳米厚的LiF,即得到可用于平面显示器的场致发射纳米材料。其场致发射的I-E曲线如图1所示。

Claims (3)

1、一种用于平面显示的场致发射纳米材料,其特征在于该场致发射纳米材料是由Ag和有机材料TCNQ在1∶1化学计量配比条件下生成的Ag(TCNQ)配合物纳米线。
2、一种用于平面显示的场致发射纳米材料的制备方法,其特征在于包括以下步骤:
①用常规的真空蒸发或溅射方法在基板上制备一层5-30纳米厚的Ag薄膜;
②将上述Ag薄膜样品和有机材料TCNQ同时置于一容器中;
③对上述容器抽真空,抽真空至10-3Pa量级后将容器密封,与真空系统分离;
④将上述的真空容器置于烘箱中加热,至55-150℃,维持20-30分钟,使基板上的金属Ag薄膜与TCNQ的饱和蒸气发生反应,最终在基板上生成化学计量比为1∶1的Ag(TCNQ)配合物纳米线。
3、根据权利要求2所述纳米材料的制备方法,其特征在于用真空镀膜法在Ag(TCNQ)配合物纳米线上镀一层5-50纳米的金属或LiF薄膜。
CN 03116285 2003-04-10 2003-04-10 一种可用于平面显示的场致发射纳米材料 Expired - Fee Related CN1263063C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03116285 CN1263063C (zh) 2003-04-10 2003-04-10 一种可用于平面显示的场致发射纳米材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03116285 CN1263063C (zh) 2003-04-10 2003-04-10 一种可用于平面显示的场致发射纳米材料

Publications (2)

Publication Number Publication Date
CN1450580A CN1450580A (zh) 2003-10-22
CN1263063C true CN1263063C (zh) 2006-07-05

Family

ID=28684159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03116285 Expired - Fee Related CN1263063C (zh) 2003-04-10 2003-04-10 一种可用于平面显示的场致发射纳米材料

Country Status (1)

Country Link
CN (1) CN1263063C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427381C (zh) * 2005-01-27 2008-10-22 复旦大学 金属有机配合物一维微纳米结构材料的直径细化方法
CN101213638B (zh) 2005-06-30 2011-07-06 L·皮尔·德罗什蒙 电子元件及制造方法
US9123768B2 (en) 2010-11-03 2015-09-01 L. Pierre de Rochemont Semiconductor chip carriers with monolithically integrated quantum dot devices and method of manufacture thereof
US9490414B2 (en) 2011-08-31 2016-11-08 L. Pierre de Rochemont Fully integrated thermoelectric devices and their application to aerospace de-icing systems

Also Published As

Publication number Publication date
CN1450580A (zh) 2003-10-22

Similar Documents

Publication Publication Date Title
Ke et al. Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices
Xue et al. Facile synthesis of silver nanowires with different aspect ratios and used as high-performance flexible transparent electrodes
Qiu et al. Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices
Zhang et al. Highly stable and stretchable graphene–polymer processed silver nanowires hybrid electrodes for flexible displays
CN1843932A (zh) 一种氧化铜纳米线阵列定域生长方法
Chen et al. Highly flexible, transparent, conductive and antibacterial films made of spin-coated silver nanowires and a protective ZnO layer
WO2010110153A1 (ja) グラフェン膜の製造方法、電子素子の製造方法および基板へのグラフェン膜の転写方法
Wang et al. Facile synthesis of ultralong and thin copper nanowires and its application to high-performance flexible transparent conductive electrodes
Wang et al. One-pot synthesis of superfine core–shell Cu@ metal nanowires for highly tenacious transparent LED dimmer
CN107316708A (zh) 银纳米线‑可剥离树脂复合透明导电薄膜的制备方法
Ma et al. Recent progress in post treatment of silver nanowire electrodes for optoelectronic device applications
CN1263063C (zh) 一种可用于平面显示的场致发射纳米材料
Singh et al. Hybrid transparent conducting glasses made of metal nanomesh coated with metal oxide overlayer
Li et al. Poly (vinyl alcohol)-Assisted Exfoliation of van der Waals Materials
Zhai et al. One-step synthesis of ultra-high aspect ratio silver nanowires for high-performance flexible transparent conductive films
Yamamoto et al. Formation of ITO nanowires using conventional magnetron sputtering
Rani et al. Synthesis, Properties, and Application of Ultrathin and Flexible Tellurium Nanorope Films: Beyond Conventional 2D Materials
Li et al. Fabrication and application of indium-tin-oxide nanowire networks by polystyrene-assisted growth
Wu et al. A novel strategy of fabricated flexible ITO electrode by liquid metal ultra-thin oxide film
Yoon et al. Facile synthesis of graphene on Cu nanowires via low-temperature thermal CVD for the transparent conductive electrode
Jung et al. A transparent embedded Cu/Au-nanomesh electrode on flexible polymer film substrates
CN112174121A (zh) 一种大尺寸清洁石墨烯材料的制备方法
Amiri Zarandi et al. All-spray multilayer transparent electrode based on Ag nanowires: improved adhesion and thermal/chemical stability
CN106205876A (zh) 一种柔性纤维素基透明导电材料的制备方法
Zhao et al. Copper nanowire/polydopamine-modified sodium alginate composite films with enhanced long-term stability and adhesion for flexible organic light-emitting diodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060705

Termination date: 20110410