CN103098225B - 镓和镓合金膜的电沉积方法以及相关的光伏结构 - Google Patents

镓和镓合金膜的电沉积方法以及相关的光伏结构 Download PDF

Info

Publication number
CN103098225B
CN103098225B CN201180042274.1A CN201180042274A CN103098225B CN 103098225 B CN103098225 B CN 103098225B CN 201180042274 A CN201180042274 A CN 201180042274A CN 103098225 B CN103098225 B CN 103098225B
Authority
CN
China
Prior art keywords
gallium
layer
indium
copper
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180042274.1A
Other languages
English (en)
Other versions
CN103098225A (zh
Inventor
S·艾哈迈德
H·德利吉安尼
L·罗曼基夫
K·罗伊特
黄强
R·瓦伊迪耶纳森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN103098225A publication Critical patent/CN103098225A/zh
Application granted granted Critical
Publication of CN103098225B publication Critical patent/CN103098225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • C25D7/126Semiconductors first coated with a seed layer or a conductive layer for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Photovoltaic Devices (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

光伏器件以及为光伏器件制备p型半导体层的方法一般包括:通过使导电层与不包含络合剂的镀液接触,将镓或镓合金的层电镀到所述导电层上,所述镀液包含镓盐、甲磺酸或硫酸钠、溶剂、以及有机添加剂,所述有机添加剂包含至少一个氮原子和/或至少一个硫原子;将所述溶液的pH调整为小于2.6或大于12.6。所述光伏器件包括:在p型半导体层中的杂质,其选自砷、锑、铋或其混合物。通过以这种方式电镀镓或镓合金,可以形成用于形成CIS、CGS和CIGS?p型半导体结构的各种光伏前体层。还公开了利用电镀方法形成镓或镓合金的热界面的方法。

Description

镓和镓合金膜的电沉积方法以及相关的光伏结构
技术领域
本发明一般地涉及用于薄膜光伏器件制造以及作为热界面材料的镓和镓合金膜(例如包含铜、铟、镓和/或硒的那些)的电沉积方法。
背景技术
对于光伏应用,一般使用具有不同特性的两个半导体材料层,以建立电场和所产生的电流。第一层典型地是n型半导体材料并且一般很薄,以便让光线穿过到达下面的p型半导体层材料层,该p型半导体层材料层通常被称为吸收层。吸收层和n型半导体材料层相结合提供了合适的带隙,以吸收来自光源的光子并产生大电流和改善的电压。对于p型层,二硒化铜铟镓半导体材料(即,CuInGaSe2及其变体,也被称为CIGS)或二硒化铜铟(即,CuInSe2,也被称为CIS)或二硒化铜镓(即,CuGaSe2,也被称为CGS)的薄膜最近几年已在光伏器件应用中产生了显著的兴趣。
举例来说,p型CIGS层典型地与n型CdS层结合,以形成p-n异质结CdS/CIGS器件。可以添加氧化锌和掺杂的氧化锌,来提高透明度。CIGS的直接能隙产生了大的光吸收系数,这转而允许使用1-2μm量级的薄层。举例来说,有报告称,通过用镓部分地取代铟,吸收层带隙从CuInSe2(CIS)半导体材料的1.02电子伏特(eV)提高到1.1-1.2eV,带来了明显的效率提升。
典型地通过真空沉积、化学沉积或电沉积来形成CIGS结构。最常用的基于真空的方法共蒸发(co-evaporate)或共溅射(co-sputter)铜、镓和铟,然后用包含硒或硫的蒸汽对所产生的膜进行退火,以形成最终的CIGS结构。备选方案是将铜、镓、铟和硒直接共蒸发到经加热的基板上。基于非真空的备选方法使前体(precursor)材料的纳米颗粒沉积在基板上,然后对其进行原位烧结。电沉积是施加CIGS层的另一低成本备选者。尽管电沉积是形成镓薄膜的吸引人的选择,特别是对于光伏应用(例如CIGS),但目前的方法一般不是商业上实用的。一般认为,如果在阴极上不产生过量的氢,则镓是难以沉积的金属,这是因为镓的平衡电势相对高。在阴极上的氢产生导致沉积效率低于100%,这是因为部分沉积电流被用于形成氢气而不是在基板或阴极上形成镓膜。由于产生过量氢而带来的低阴极沉积效率导致了差的工艺可重复性,部分地是因为差的阴极效率,且最重要地是因为具有高表面粗糙度和差沉积形貌的差沉积膜质量。
因此,本领域中需要改进的用于沉积镓和镓合金的电沉积方法以及包含具有增加的带隙的该镓和镓合金层以提供增加的光伏电流的新颖光伏器件。
发明内容
本发明一般涉及形成用于光伏器件的p型半导体层的方法。在一方面,该方法包括:将第一层电镀到基板的导电表面上,其中,所述第一层选自铜层和铜镓层;将第二层电镀到所述第一层上,其中,所述第二层选自铟层、镓层、铟镓层、二硒化铜铟层以及二硒化铜镓层;以及可选地,将第三层电镀到所述第二层上,其中,所述第三层选自镓层和铟层;并且可选地,将第四层电镀到所述第三层上,其中,所述第四层选自硒和硫;其中,所述电镀是通过这样的方法来实施的,该方法包括:使(i)基板和(ii)溶液接触,所述溶液包括:前体,其包含选自铜、镓、铟、硒、硫及其组合的元素;可选地,准金属(metalloid)化合物添加剂;进一步可选地,有机添加剂,其至少具有硫原子;以及溶剂,其溶解所述前体;其中,所述溶液不包含络合剂;将所述溶液的pH调整为选自从约0到小于约2.6的pH以及从约12.6到约14的pH的范围,并施加电流以电镀所述基板,以产生所述第一、第二、第三或第四层;以及在存在硒源和/或硫源的条件下,对所述第一层、所述第二层和所述第三层进行退火,以形成所述p型半导体层。
在用于形成热界面(thermalinterface)的方法中,该方法包括:将镓或镓合金的层电镀到发热表面上,所述发热表面被耦合到微处理器,其中,电镀所述镓或镓合金包括使所述发热表面与不包含络合剂的镀液(platingbath)接触,所述镀液包含镓盐、溶剂和可选的有机添加剂,所述有机添加剂包含至少一个硫原子;将所述镀液的pH调整为选自大于约0到小于2.6的pH以及大于约12.6到约14的pH的范围,并施加电流来电镀所述发热表面,以产生所述镓或镓合金的层;以及将散热件(heatsink)或散热器(heatspreader)耦合到所述镓或镓合金的层,以形成所述热界面。
一种光伏器件包括:包含镓或铟或者含镓和铟的合金的至少一个层,其中,所述至少一个层是通过电沉积形成的;以及所述至少一个层中的杂质,其选自砷、锑、铋、硒、硫及其混合物。
通过本发明的技术来实现另外的特征和优点。本发明的其他实施例和方面在这里被详细描述并被视为所要求的发明的一部分。为了更好地理解本发明的优点和特征,参考描述和附图。
附图说明
在说明书结尾处的权利要求书中特别指出并清晰地要求被视为本发明的主题。通过结合附图给出的以下详细描述,本发明的上述和其他目的、特征和优点将显而易见,在附图中:
图1示出了根据本发明的CIGS前体结构的截面图;
图2示出了根据本发明的CIGS前体结构的截面图;
图3示出了根据本发明的CIGS前体结构的截面图;
图4示出了根据本发明的CIGS前体结构的截面图;
图5示出了镓热界面的截面图;
图6示意性地示例出将镓层沉积到基板上的示例性电沉积设备;
图7示出了膜叠层(stack)的截面图的扫描电子显微照片,其中,镓被电沉积到铟层上并随后被退火,以形成富铟的镓低共熔层(eutecticlayer);
图8和9示出了分别在20和30mAcm-2下从添加有硫脲的酸性甲磺酸溶液恒电流地沉积的镓的自顶向下视图的扫描电子显微照片;以及
图10图示出没有添加剂、具有三氧化砷添加剂、以及具有三氧化砷和硫脲作为添加剂的酸性镓镀液的循环伏安图。
参考附图并通过实例,详细的描述解释了本发明的优选实施例以及优点和特征。
具体实施方式
本发明提供了用于形成例如在形成各种光伏器件时所需以及作为热界面的镓和/或镓合金(例如CIGS、CIS、CGS等)的薄层的低成本的电沉积方法。
电沉积方法使用电镀溶液(electroplatingsolution)来以高电镀效率和可重复性沉积在组成上纯净、均匀、基本无缺陷、且光滑的薄膜。该电镀溶液没有络合剂,并且在高pH范围和低pH范围下都可以实施。也可以电镀合金薄膜。所需的镓合金的实例一般依赖于所预期的应用,并可以包括但不限于银、铜、铟、锌、锡、铅、银、铋、金、硒、硫等的二元、三元或更高元合金。可选地,可以通过对膜叠层退火来形成合金,该膜叠层包括电沉积的镓层以及一种或多种合金元素金属层。通过这种方式,实现镓或镓合金薄膜的低成本制造,其中,镓层或镓合金层有均匀的厚度、优良的形貌并且基本无缺陷。
在一个实施例中,电沉积镓以形成CIGS前体结构,该前体结构被配置为控制膜叠层中的镓互扩散。在图1示出的示例性实施例中,导电层14首先被沉积到用作金属背面接触(backcontact)的基板12上。导电层可以包括但不限于钼、钽、钨、钛、其相应的氮化物等。一般通过任何手段以约300nm到约600纳米(nm)的厚度沉积导电层。然后以约10nm到约500nm的厚度将铜层16沉积到导电层14上;在另外的实施例中,铜层的厚度为220nm到260nm;在进一步另外的实施例中,铜层的厚度为约240nm。然后以50nm到500nm的厚度将铟层18沉积到铜层16上;在另外的实施例中,铟层的厚度为375nm到425nm;且在进一步另外的实施例中,铟层的厚度为约420nm。然后以20nm到200nm的厚度将镓层20沉积到铟层18上;在另外的实施例中,镓层的厚度为100nm到150nm;且在进一步另外的实施例中,镓层的厚度为约140nm。镓层是使用根据本公开的电沉积方法来沉积的。其他层可以通过任意沉积技术(例如,真空沉积)来沉积,但一般优选这些层是通过电沉积来沉积的。
图2示例出根据本公开的另一实施例的适于用作前体结构的示例性膜叠层30。在该示例性实施例中,首先以约300nm到约600nm的厚度将导电层34沉积到基板32上。然后以275到330nm(例如310nm)的厚度将铜镓合金层36电沉积到导电层34上。然后以420到500nm(例如490nm)的厚度将铟镓层38电沉积到铜镓层36上。Cu/(In+Ga)的比率可以维持在0.8到0.9,例如0.88;且Ga/(Ga+In)的比率可以维持在0.3到0.33,例如0.31。考虑到本公开很明显,导电层可以通过任意沉积技术来沉积,但一般优选地这些层是通过电沉积来沉积的。镓是熔点非常低的元素。它在约35℃时是液体,因此很容易移动并易于互扩散。具有诸如铜和铟的较高熔点的金属的合金镓不仅减少了电沉积方法的步骤数目,还稳定了微结构并允许前体CIGS材料的更好互混合。这最终导致对CIGSp-吸收材料的更好组成控制。
图3示例出根据本公开的另一实施例的适于用作CIGS前体结构的示例性膜叠层50。在该示例性实施例中,首先将导电层54沉积到基板54上。然后将铜层56沉积到钼层56上。铜层和钼层的厚度如前所述。然后以400nm到500nm且最精确地为490nm的厚度,将铟镓层58电沉积到铜层56上。Cu/(In+Ga)的比率可以维持在0.8到0.9,例如0.88;且Ga/(Ga+In)的比率可以维持在0.3到0.33,例如0.31。导电层和铜层可以通过任意沉积技术来沉积,但一般优选地这些层是通过电沉积来沉积的。InGa合金的沉积提供了对CIGS前体互混合的更好控制以及对CIGS组成的最终控制。
图4示例出根据本公开的另一实施例的适于用作CIGS前体结构的示例性膜叠层60。在该示例性实施例中,首先将导电层64沉积到基板62上。然后以约1微米到2.5微米的厚度将铜铟硒层66电沉积到钼层64上。然后将镓合金层68电沉积到铜硒铟层66上。钼层和镓层的厚度如上所述。考虑到本公开很明显,导电层可以通过任意沉积技术来沉积,但一般优选地这些层是通过电沉积来沉积的。通过该方法,CuInSe2材料中的部分铟被镓取代,在退火后形成CuInGaSe2
然后使如上关于图1-4所述的包括铜层、镓层和铟层的膜叠层与硒和/或硫反应,以形成CuInGaSe2或CuInGaSe2S或CuInGaS结构。例如,硒层可以被沉积到膜叠层上且随后被退火以形成硒化物。或者,膜叠层例如可以被暴露到硒化氢和/或硫化氢且随后被退火。在硫和/或硒气氛中的退火可以在约400℃到约700℃且优选地550℃的温度下发生。对于本领域技术人员来说很明显,继CIGS形成之后,然后将n型结层(未示出)的沉积物沉积到CIGS层上。如上所述,该层将与CIGS层接触以形成p-n结。要沉积的下一层典型地是ZnO和掺杂的ZnO透明氧化物层(未示出)。此外,很明显,电镀工艺可以被用于形成其他类型的光伏器件的前体层,例如,铜铟硒(CIS)、铜镓硒(CGS)、铜铟硫(CISu)、铜镓硫(CGSu)等。
在上述各个实施例中,所产生的CIGS结构一般具有0.8到约0.9的Cu/(In+Ga)比率和0.3到约0.33的Ga/(Ga+In)比率。
在另一实施例中,镓层或镓合金层被电沉积以形成热界面。镓层或镓合金层可以被电镀为在Zn、Sn、In、Au、Cu、其混合物等的下垫层(underlayer)上的叠层。镓提供了低的抗拉强度以及高的堆积导热率(bulkthermalconductivity)。作为合金,自扩散提供了适于其作为热界面材料的应用的低熔点合金。这样,镓可以与其他元素进行合金化以降低熔点。图5示出了示例性装置,其包括被耦合到散热件的微处理器芯片,以通过吸热并将热耗散到空气中来防止过热。装置100包括基板102,微处理器104形成并安装在该基板102上。将镓或镓合金层106电沉积到微处理器的表面上。然后将散热件108耦合到镓层。表1提供了适于用作热界面的示例性镓合金以及相应的液相线(liquidus)温度和固相线(solidus)温度。
表1
用于形成镓层或镓合金层的电沉积方法一般包括对设置在含水镀液中的基板表面(例如工作电极)进行电镀,该镀液包含镓盐、甲磺酸(MSA)电解质以及溶剂。可以用酸或碱来控制镀液的pH。电解质中的镓离子浓度的范围可以为从约0.000005摩尔(M)M到接近于所使用的电解质和pH的饱和极限的摩尔浓度。可用于镀液的镓源包括可在镀液中溶解的镓盐,所述镓盐包括但不限于氯化镓(GaCl3)、溴化镓(GaBr3)、碘化镓(GaI3)、硝酸镓Ga(NO3)3、硫酸镓Ga(SO4)3、其混合物等。其他合适的镓盐包括硫酸盐、氨基磺酸盐、链烷磺酸盐、芳族磺酸盐、氟硼酸盐、以及强碱,例如氢氧化钠、氢氧化钾、氢氧化锂、氢氧化钙、氢氧化镁等。
作为电解质的诸如MSA的酸的浓度的范围可以为从约0.1M到约2M;在另外的实施例中,酸的范围为约0.1M到1M;且在进一步另外的实施例中,酸的范围为0.5M到1M。如上所述,电解浴液(electrolytebath)没有任何类型的有机或无机络合剂。即,镓盐可溶于电解浴液中。
电解浴液的pH一般小于2.6或大于12.6。申请人已发现,当溶液pH在2.6≤pH≤12.6的范围内时,镀液的外观变为浑浊的,即乳状。尽管不想被理论约束,相信镓的氧化物和/或氢氧化物是在该pH范围内形成的,例如,在水溶液中的氧化镓或氢氧化镓。提供并维持电解浴液的pH的合适的酸或碱不包含络合剂,并可以包括但不限于诸如硫酸的无机酸、有机酸,例如甲磺酸、乙磺酸、丙磺酸、丁磺酸或其他链烷磺酸、以及诸如苯磺酸和甲苯磺酸的芳族磺酸。有利地,发现处于这些pH范围的电沉积方法提供了均匀、薄的保形(conformal)镓层,从而防止独立岛的形成。
合金元素可以被直接添加到镀液。例如,可以通过铜源,例如溶解的铜金属或诸如硫酸铜、氯化铜、醋酸铜、硝酸铜的铜盐等,来提供电解质中的铜。同样地,可以通过铟源,例如氯化铟、硫酸铟、氨基磺酸铟、醋酸铟、碳酸铟、硫酸铟、磷酸铟、氧化铟、高氯酸铟、氢氧化铟等,在电解质中提供铟。
镓电镀液(electroplatingbath)可以进一步包括可选的有机添加剂,该有机添加剂包含至少一个氮原子或至少一个硫原子。该有机添加剂被添加到镀液以有效地增加析氢过电位(hydrogenevolutionoverpotential),并在镓的电镀期间防止或有效地限制氢的共沉积/析出,并通过控制成核和生长来控制沉积的微结构。有利地,在伴随地帮助镓成核的同时,该添加剂还用作光亮剂(brightener)和晶粒细化剂。通过其中同时在表面上形成相同尺寸的岛状物的瞬时成核来形成最薄的层。并且,可以通过其中岛状物的形成为时间的函数的渐进成核来形成薄层。通过这样做,所产生的镓层是均匀的和保形的,从而在沉积期间防止大的三维岛状物的形成。示例性有机添加剂包括但不限于脂族和/或杂环化合物,例如硫脲、噻嗪、磺酸、磺酸、烯丙基苯基砜(allylphenylsulfone)、磺酰胺(sulfamides)、咪唑、胺、异腈、二硫氧-双羟基氨基钼(dithioxo-bishydroxylaminomolybdenum)络合物及其衍生物。
已发现包含至少一个氮原子和/或至少一个硫原子添加剂的有机添加剂出乎意料地在抑制氢析出的同时加速镓电镀。通过这种方式,已发现在与作为电解质的MSA组合使用时,该有机添加剂提供了协同(synergistic)效果。包含至少一个氮原子和/或至少一个硫原子的有机添加剂的浓度范围可以为从约百万分之1(ppm)到约10000ppm,在另外的实施例中,有机添加剂的范围为约10ppm到5000ppm,且在进一步另外的实施例中,有机添加剂的范围为100ppm到1000ppm。
在另外的实施例中,与有机添加剂组合地添加金属氧化物,以抑制(poison)阴极,由此增加氢析出的起始过电位(即,抑制氢生成)并加速镓沉积。无机金属氧化物包括但不限于准金属氧化物,例如砷氧化物(例如As2O3;As2O5、KH2AsO4、K2HAsO4、K3AsO4、K3AsO3、KAsO2、NaH2AsO4、Na2HAsO4、Na3AsO4、Na3AsO3、NaAsO2、Na4As2O7等);锑氧化物(例如Sb2O3、Sb2O5、KH2SbO4、K2HSbO4、K3SbO4、K3SbO3、KSbO2、NaH2SbO4、Na2HSbO4、Na3SbO4、Na3SbO3、NaSbO2、Na4Sb2O7等);以及铋氧化物(例如Bi2O3、K3BiO3、KBiO2、Na3BiO3、NaBiO2等)。
已知镓沉积和氢析出同时发生,由此,现有技术的电镀方法一般呈现出较低的电镀效率以避免氢析出,该氢析出导致了所沉积的膜结构中的多孔性。上述金属氧化物是有效的阴极抑制剂,并有利地增加氢析出的起始过电位,并出乎意料地加速了镓沉积。利用包括金属氧化物以及包含至少一个氮原子和/或至少一个硫原子的有机添加剂的组合的镀镓溶液,已观察到大于90-95%的电镀效率。电解质中的金属氧化物的浓度范围可以为从约百万分之1(ppm)到约10,000ppm,在另外的实施例中,金属氧化物的范围为约100ppm到5,000ppm,且在进一步另外的实施例中,金属氧化物的范围为1,000ppm到3,000ppm。通过在镀液中引入金属氧化物和/或硫,所产生的层将包括相应的金属(例如砷、锑、铋或其混合物)和/或硫作为杂质,该杂质为沉积物中的百万分之几到原子百分之几的量级,这可以用Auger或SIMS分析方法来检测。
在另一实施例中,镀液包含镓盐、硫酸钠(Na2SO4)电解质、包含至少一个氮原子和/或至少一个硫原子的有机添加剂、以及溶剂。镓盐和有机添加剂的浓度如上所述。作为电解质的硫酸钠的浓度的范围可以为从约0.01M到约2M;在另外的实施例中,硫酸钠的范围为约0.1M到1M;且在进一步另外的实施例中,硫酸钠的范围为0.2M到60M。可选地,如上所述的金属氧化物可以被包含在镀液中。如上所述,pH小于2.6或大于12.6。在如上所述的各个实施例中,可在导电或不导电基板上使用电镀化学。合适的导电基板包括但不限于金、钼、铟铜、硒、锌等。合适的不导电基板一般为其上具有金属籽晶层的不导电基板,并包括且不限于玻璃、石英、塑料、聚合物等。例如,不导电基板可以包括籽晶层,例如铜籽晶层。沉积籽晶层的具体方法不受限制,并且被本领域技术人员所公知。例如,可以通过化学气相沉积、等离子体气相沉积或无电沉积来形成籽晶层。
电镀液还可以包含另外的成分。这些成分包括但不限于晶粒细化剂、表面活性剂、掺杂剂、其他金属或非金属元素等。例如,在配方中可以包括其他类型的有机添加剂,例如表面活性剂、抑制剂、匀平剂(leveler)、加速剂等,以细化其晶粒结构和表面粗糙度。有机添加剂包括但不限于聚亚烷基二醇型聚合物、聚链烷磺酸、香豆素、糖精、糠醛、丙烯腈、品红染料、胶、淀粉、葡萄糖等。
尽管在镀液配方中水是优选的溶剂,但应理解,在配方中还可以添加有机溶剂,部分地或全部地替代水。这样的有机溶剂包括但不限于酒精、乙腈、碳酸异丙烯酯、甲酰胺、二甲亚砜、甘油等。
尽管在电沉积方法中可以利用DC电压/电流,但应注意,脉冲或其他可变电压/电流源也可被用于获得高电镀效率和高质量沉积物。电镀液的温度范围可以是5到90℃,这取决于溶剂的性质。基于水的配方的优选镀液温度范围为10到30℃。
现在参考图6,在实施中,背部电接触5被制作到导电基板4,该导电基板4用作工作电极,镓或镓合金层将被沉积在其上。或者,如果基板是不导电的,首先可以沉积导电层和/或籽晶层(未示出),并通过欧姆接触来直接制作到籽晶层或到下面的导电层的电接触。根据本公开的电解质溶液1被放置为与基板表面4接触。导电对电极6,即,阳极或导体被设置在电解质溶液中,并与基板(工作电极)分隔开。尽管基板4被示为具有平面表面,但应理解,基板4上也可以具有某些形貌和/或保形导电层。对于电化学处理,通过电源7和电引线8将电流或电压施加到基板(电极)4和对电极6。如果需要,可以通过引入第三电极(即参考电极)(未示出)来更精确地控制结构/电解质的电化学势,该参考电极具有恒定的电化学势。参考电极的实例包括饱和甘汞电极(SCE)和银-氯化银(Ag/AgCl)参考电极或诸如Cu或Pt的其他金属参考电极。在电沉积期间可以搅拌电解质溶液。
以下实例仅为了示例的目的而给出,且不旨在限制本发明的范围。
实例1
在该实例中,镓被电镀到膜叠层上,且随后被自退火,以形成富铟的铟镓合金。电镀化学在0.5MMSA中包含0.2MGa3+,用0.5MNaOH来急冷(quench),然后使用额外量的MSA来调整到1.21的pH。镓被电镀到360nm的铟层和250nm的铜层上。具有150nm厚度的镓层随后在18-22℃的室温下被自退火持续3天的时间。一旦将镓镀在铟上,互扩散立即开始并逐渐形成In-Ga低共熔合金。
图7示出了膜叠层的截面图的扫描电子显微照片,其中,镓被电沉积到铟层上,且随后被退火,以形成富铟的镓低共熔层。有趣的是,Ga互扩散不会在铟层上停止,并会继续进入铜中,形成CuInGa的合金。
实例2
在该实例中,具有和不具有有机添加剂的各种镓镀液被用于将镓电沉积到玻璃基板上,在该基板上具有钼层,该钼层之前已用铜引晶(seed)。电镀溶液在具有0和500ppm硫脲的0.5MMSA中包含0.25M硫酸镓。电解浴液处于18-20℃,并以0和550rpm被搅拌。使用H2SO4,将pH保持在1.14。
结果表明,与不包含有机添加剂的镀液相比,有机添加剂的存在明显加速了镓电镀。此外,与没有搅拌相比,对电解质的连续搅拌提供了明显更高的电流密度。图8和9分别图形示出了以20mA/cm2和30mA/cm2来恒电流地沉积的镓膜的表面形貌视图。随着电流密度增加,观察到晶粒尺寸的增加。没有观察到多孔,且膜是均匀的并具有优良的形貌。
实例3
在该实例中,镀液在0.5MMSA中包含0.2MGa3+,用0.5MNaOH来急冷,然后通过添加更多的MSA来调整,以获得1.18的pH。在镀液中包含指出的不同量的As2O3。对于不包含As2O3或硫脲的镀液,镀液在0.5MMSA中包含Ga3+,用0.5MNaOH来急冷,使用额外的MSA将pH调整为1.18。包含As2O3和硫脲的组合的镀液所含的As2O3为500-6000ppm且硫脲为100-1000ppm。
图10提供了各种伏安图的叠加并包括As2O3和硫脲的组合的数据。如图所示,As2O3的逐渐增加的量为氢析出过电位的起始提供了负电位漂移,从而有效地抑制了氢生成。此外,硫脲和As2O3的组合加速了镓沉积。
实例4
在该实例中,镀液在0.5MMSA中包含0.25MGa3+,用0.5MNaOH来急冷,并用额外量的MSA来调整为1.18的pH。在没有任何额外的添加剂、具有6000ppm的As2O3、以及具有6000ppm的As2O3和500ppm的硫脲的条件下,进行电镀。图10中提供了这些电镀化学的循环伏安图。在添加了As2O3时,观察到氢析出的抑制和镓沉积的加速,且在As2O3和硫脲的组合的条件下,观察到加速(acceleration)的进一步提高。还示出了As2O3和As2O5的组合对于抑制氢析出也是有效的(其结果在这里未示出)。当这些氧化物二者组合在一起时,效果更为有效,即使是在较低的浓度下也是如此。
这里公开的所有范围包括端点,且端点可以互相组合。
所有被引用的专利、专利申请以及其他参考文献通过引用而将其全部内容并入本文中。
在描述本发明的上下文(特别是在以下权利要求的上下文)中术语“一”、“一个”和“该”以及类似的指示物的使用应被解释为既覆盖单数也覆盖复数,除非本文中另外指明或在上下文中明显抵触。此外,还应注意,术语“第一”、“第二”等在本文中不表示任何顺序、数量或重要性,而是被用于区分一个要素与另一要素。
尽管描述了本发明的优选实施例,但应理解,现在以及在将来,本领域技术人员可以进行落在以下权利要求的范围内的各种改进和提高。这些权利要求将被解释为保持对首次描述的本发明的恰当保护。

Claims (13)

1.一种形成用于光伏器件的p型半导体层的方法,包括:
将第一层电镀到基板的导电表面上,其中,所述第一层选自铜层和铜镓层;
将第二层电镀到所述第一层上,其中,所述第二层选自铟层、镓层、铟镓层、二硒化铜铟层、以及二硒化铜镓层;以及可选地,
将第三层电镀到所述第二层上,其中,所述第三层选自镓层和铟层;以及
可选地,将第四层电镀到所述第三层上,其中,所述第四层选自硒和硫;其中,所述电镀是通过这样的方法来实施的,该方法包括:使(i)基板和(ii)溶液接触,所述溶液包括:前体,其包含选自铜、镓、铟、硒、硫及其组合的元素;准金属的氧化物;在电镀镓层或镓合金层时使用的有机添加剂,其至少具有硫原子和/或氮原子;以及溶剂,用于溶解所述前体;将所述溶液的pH调整为选自从0到小于2.6的pH以及从12.6到14的pH的范围,并施加电流以电镀所述基板,以产生所述第一、第二、第三或第四层;以及
在存在硒源和/或硫源的条件下,对所述第一层、所述第二层和所述第三层进行退火,以形成所述p型半导体层。
2.如权利要求1所述的方法,其中,所述导电表面选自钼、钽、钨、钛、及其相应的氮化物。
3.如权利要求1所述的方法,其中,所述溶液包含浓度为0.01M到2M的硫酸钠。
4.如权利要求1所述的方法,其中,所述准金属的氧化物的量为百万分之1到百万分之10,000。
5.如权利要求1所述的方法,其中,所述有机添加剂选自硫脲、噻嗪、磺酸、烯丙基苯基砜、磺酰胺、二硫氧-双羟基氨基钼络合物及其衍生物。
6.如权利要求1所述的方法,其中,所述溶液包含选自甲磺酸、乙磺酸、丙磺酸和丁磺酸的链烷磺酸,并且其中,所述链烷磺酸的浓度为0.1M到2M。
7.如权利要求1所述的方法,其中,所述p型半导体具有0.8到0.9的Cu/(In+Ga)比率以及0.3到0.33的Ga/(Ga+In)比率。
8.如权利要求1到4、6到7中任一项所述的方法,其中,所述溶液不包含络合剂。
9.一种用于形成热界面的方法,所述方法包括:
将镓或镓合金的层电镀到发热表面上,所述发热表面被耦合到微处理器,其中,电镀所述镓或镓合金包括使所述发热表面与镀液接触,所述镀液包含镓盐、准金属的氧化物、溶剂和有机添加剂,所述有机添加剂至少包含一个硫原子和/或一个氮原子;将所述镀液的pH调整为选自大于0到小于2.6的pH以及大于12.6到14的pH的范围,并施加电流来电镀所述发热表面,以产生所述镓或镓合金的层;以及
将散热件或散热器耦合到所述镓或镓合金的层,以形成所述热界面。
10.如权利要求9所述的方法,其中,所述镀液包含选自甲磺酸、乙磺酸、丙磺酸和丁磺酸的链烷磺酸,并且其中,所述链烷磺酸的浓度为0.1M到2M。
11.如权利要求9所述的方法,其中,所述镀液包含浓度为0.01M到2M的硫酸钠。
12.如权利要求9所述的方法,其中,所述有机添加剂选自硫脲、噻嗪、磺酸、烯丙基苯基砜、磺酰胺、二硫氧-双羟基氨基钼络合物及其衍生物。
13.如权利要求9到11中任一项所述的方法,其中,所述镀液不包含络合剂。
CN201180042274.1A 2010-09-02 2011-08-05 镓和镓合金膜的电沉积方法以及相关的光伏结构 Active CN103098225B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/874,496 2010-09-02
US12/874,496 US20120055612A1 (en) 2010-09-02 2010-09-02 Electrodeposition methods of gallium and gallium alloy films and related photovoltaic structures
PCT/EP2011/063558 WO2012028415A1 (en) 2010-09-02 2011-08-05 Electrodeposition methods of gallium and gallium alloy films and related photovoltaic structures

Publications (2)

Publication Number Publication Date
CN103098225A CN103098225A (zh) 2013-05-08
CN103098225B true CN103098225B (zh) 2016-01-20

Family

ID=44534372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180042274.1A Active CN103098225B (zh) 2010-09-02 2011-08-05 镓和镓合金膜的电沉积方法以及相关的光伏结构

Country Status (6)

Country Link
US (2) US20120055612A1 (zh)
JP (1) JP5827689B2 (zh)
CN (1) CN103098225B (zh)
DE (1) DE112011102300B4 (zh)
GB (1) GB2498879B (zh)
WO (1) WO2012028415A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545689B2 (en) 2010-09-02 2013-10-01 International Business Machines Corporation Gallium electrodeposition processes and chemistries
KR101265197B1 (ko) * 2010-11-25 2013-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2013033729A1 (en) 2011-09-02 2013-03-07 Alliance For Sustainable Energy, Llc Electrodepostion of gallium for photovoltaics
WO2013062951A1 (en) 2011-10-27 2013-05-02 Garmor, Inc. Composite graphene structures
WO2013164248A1 (en) * 2012-05-02 2013-11-07 Umicore Selenite precursor and ink for the manufacture of cigs photovoltaic cells
US20130327652A1 (en) * 2012-06-07 2013-12-12 International Business Machines Corporation Plating baths and methods for electroplating selenium and selenium alloys
CN103779439B (zh) * 2012-10-22 2016-09-21 中物院成都科学技术发展中心 一种铜铟镓硒薄膜预制层及其制备方法
US9059130B2 (en) 2012-12-31 2015-06-16 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9758379B2 (en) 2013-03-08 2017-09-12 University Of Central Florida Research Foundation, Inc. Large scale oxidized graphene production for industrial applications
KR101939968B1 (ko) 2013-03-08 2019-01-18 갈모어 인코포레이티드 호스트 내에서의 그래핀 비말동반
FR3017243B1 (fr) * 2014-02-05 2016-02-12 Nexcis Procede de fabrication d’un empilement de couches minces decollable de son substrat
CA2958208C (en) 2014-08-18 2020-02-18 Garmor Inc. Graphite oxide entrainment in cement and asphalt composite
CN105590987B (zh) * 2014-10-20 2022-06-14 苏州易益新能源科技有限公司 一种水平电化学沉积金属的方法
CA2980168C (en) 2015-03-23 2020-09-22 Garmor Inc. Engineered composite structure using graphene oxide
KR101979575B1 (ko) 2015-04-13 2019-05-17 갈모어 인코포레이티드 콘크리트 또는 아스팔트와 같은 호스트 중의 그래파이트 옥사이드 강화된 섬유
US11482348B2 (en) 2015-06-09 2022-10-25 Asbury Graphite Of North Carolina, Inc. Graphite oxide and polyacrylonitrile based composite
WO2017043596A1 (ja) * 2015-09-11 2017-03-16 ソーラーフロンティア株式会社 光電変換素子
EP3353838B1 (en) 2015-09-21 2023-06-07 Asbury Graphite of North Carolina, Inc. Low-cost, high-performance composite bipolar plate
MX2018007193A (es) * 2016-02-16 2018-08-23 Lumishield Tech Incorporated Deposicion electroquimica de elementos en medios acuosos.
CN106067489A (zh) * 2016-06-15 2016-11-02 山东建筑大学 一种由氯化铜和硝酸镓制备铜镓硒光电薄膜的方法
CN106057969A (zh) * 2016-06-15 2016-10-26 山东建筑大学 一种由升华硫粉制备铜铟硫光电薄膜的方法
CN106057930A (zh) * 2016-06-15 2016-10-26 山东建筑大学 一种由氯化铜和氯化镓制备铜镓硒光电薄膜的方法
CN106098813A (zh) * 2016-06-15 2016-11-09 山东建筑大学 一种由硝酸铜和氯化镓制备铜镓硒光电薄膜的方法
US20180016689A1 (en) * 2016-07-18 2018-01-18 Rohm And Haas Electronic Materials Llc Indium electroplating compositions and methods for electroplating indium
US9837341B1 (en) * 2016-09-15 2017-12-05 Intel Corporation Tin-zinc microbump structures
EP3532543B1 (en) 2016-10-26 2022-07-13 Asbury Graphite of North Carolina, Inc. Additive coated particles for low high performance materials
EP3574508A1 (en) 2017-01-24 2019-12-04 Curium US LLC Gallium-69 enriched target bodies
MX2019014278A (es) * 2017-06-01 2021-02-09 Lumishield Tech Incorporated Métodos y composiciones para deposición electroquímica de capas ricas en metal en soluciones acuosas.
US10607857B2 (en) 2017-12-06 2020-03-31 Indium Corporation Semiconductor device assembly including a thermal interface bond between a semiconductor die and a passive heat exchanger
US11791061B2 (en) 2019-09-12 2023-10-17 Asbury Graphite North Carolina, Inc. Conductive high strength extrudable ultra high molecular weight polymer graphene oxide composite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000501232A (ja) * 1995-12-12 2000-02-02 デイヴィス,ジョセフ アンド ネグレイ 高効率太陽電池製造のための電着によるCu▲下x▼In▲下y▼Ga▲下z▼Se▲下n▼(x=0〜2,y=0〜2,z=0〜2,n=0〜3)先駆薄膜の製造
CN1742370A (zh) * 2003-02-24 2006-03-01 富士通株式会社 电子部件和散热构件以及制造使用该部件和构件的半导体器件的方法
CN101228639A (zh) * 2005-09-06 2008-07-23 Lg化学株式会社 太阳能电池吸收层的制备方法

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2582377A (en) 1947-04-11 1952-01-15 Aluminum Co Of America Recovery of gallium from alkali metal aluminate solutions
US2793179A (en) 1955-06-13 1957-05-21 Ind De L Aluminium Sa Method of recovering gallium from an alkali aluminate lye
US3677918A (en) 1968-10-21 1972-07-18 Chuo Tatemono Co Ltd Method for directly electrochemically extracting gallium from a circulating aluminate solution in the bayer process by eliminating impurities
US3904497A (en) 1974-10-16 1975-09-09 Aluminum Co Of America Process for electrolytic recovery of metallic gallium
EP0460287A1 (de) * 1990-05-31 1991-12-11 Siemens Aktiengesellschaft Neuartige Chalkopyrit-Solarzelle
DE69222664T2 (de) 1991-01-11 1998-03-12 Canon Kk Photoelektrische Umwandlungsvorrichtung und Verwendung derselben in einem Bildverarbeitungsgerät
JP3048040B2 (ja) * 1995-06-05 2000-06-05 矢崎総業株式会社 薄膜太陽電池の製造方法
JP3089994B2 (ja) * 1995-07-26 2000-09-18 矢崎総業株式会社 銅−インジウム−硫黄−セレン薄膜の作製方法、及び銅−インジウム−硫黄−セレン系カルコパイライト結晶の製造方法
JPH09148602A (ja) * 1995-11-17 1997-06-06 Yazaki Corp Cis型太陽電池及びその製造方法
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
JP4059463B2 (ja) 1998-12-10 2008-03-12 株式会社島津製作所 放射線検出装置
WO2001034237A1 (en) 1999-11-11 2001-05-17 Edwards Lifesciences Corporation Venous return cannula with enhanced drainage
US20020189665A1 (en) 2000-04-10 2002-12-19 Davis, Joseph & Negley Preparation of CIGS-based solar cells using a buffered electrodeposition bath
JP4698904B2 (ja) 2001-09-20 2011-06-08 株式会社大和化成研究所 錫又は錫系合金めっき浴、該めっき浴の建浴用又は維持・補給用の錫塩及び酸又は錯化剤溶液並びに該めっき浴を用いて製作した電気・電子部品
FR2849532B1 (fr) 2002-12-26 2005-08-19 Electricite De France Procede de fabrication d'un compose i-iii-vi2 en couches minces, favorisant l'incorporation d'elements iii
KR20060033721A (ko) 2003-05-29 2006-04-19 어플라이드 머티어리얼스, 인코포레이티드 내장형 도파관 검출기
US20060057766A1 (en) * 2003-07-08 2006-03-16 Quanxi Jia Method for preparation of semiconductive films
US20050173255A1 (en) 2004-02-05 2005-08-11 George Bokisa Electroplated quaternary alloys
US7442286B2 (en) 2004-02-26 2008-10-28 Atotech Deutschland Gmbh Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys
US7736940B2 (en) 2004-03-15 2010-06-15 Solopower, Inc. Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication
JP5259178B2 (ja) * 2004-03-15 2013-08-07 ソロパワー、インコーポレイテッド 太陽電池製造のための半導体の薄層を堆積する方法および装置
US7498243B2 (en) 2004-03-17 2009-03-03 The Board Of Trustees Of The Leland Stanford Junior University Crystalline-type device and approach therefor
US7276392B2 (en) 2005-07-01 2007-10-02 Sharp Laboratories Of America, Inc. Floating body germanium phototransistor with photo absorption threshold bias region
US7405098B2 (en) 2005-02-28 2008-07-29 Sharp Laboratories Of America, Inc. Smooth surface liquid phase epitaxial germanium
US7582506B2 (en) 2005-03-15 2009-09-01 Solopower, Inc. Precursor containing copper indium and gallium for selenide (sulfide) compound formation
US20070093006A1 (en) * 2005-10-24 2007-04-26 Basol Bulent M Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto
US7507321B2 (en) 2006-01-06 2009-03-24 Solopower, Inc. Efficient gallium thin film electroplating methods and chemistries
US7515793B2 (en) 2006-02-15 2009-04-07 International Business Machines Corporation Waveguide photodetector
US20070262296A1 (en) 2006-05-11 2007-11-15 Matthias Bauer Photodetectors employing germanium layers
WO2007132016A1 (en) 2006-05-16 2007-11-22 Interuniversitair Microelektronica Centrum (Imec) Digital receiver for software-defined radio implementation
EP2047515A1 (en) * 2006-07-26 2009-04-15 SoloPower, Inc. Technique for doping compound layers used in solar cell fabrication
US7892413B2 (en) 2006-09-27 2011-02-22 Solopower, Inc. Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films
US20080093221A1 (en) 2006-10-19 2008-04-24 Basol Bulent M Roll-To-Roll Electroplating for Photovoltaic Film Manufacturing
JP2008174832A (ja) 2006-12-20 2008-07-31 Nippon Paint Co Ltd カチオン電着塗装用金属表面処理液
KR20080068334A (ko) 2007-01-19 2008-07-23 오태성 주석 비아 또는 솔더 비아와 이의 접속부를 구비한 칩 스택패키지 및 그 제조방법
US7875522B2 (en) 2007-03-30 2011-01-25 The Board Of Trustees Of The Leland Stanford Junior University Silicon compatible integrated light communicator
TWI391456B (zh) 2007-04-03 2013-04-01 羅門哈斯電子材料有限公司 金屬電鍍組成物及其方法
JP2009031683A (ja) 2007-07-30 2009-02-12 T & Ts:Kk 立体表示装置
US8585885B2 (en) 2007-08-28 2013-11-19 Rohm And Haas Electronic Materials Llc Electrochemically deposited indium composites
WO2009052479A2 (en) 2007-10-19 2009-04-23 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing vertical germanium detectors
US7790495B2 (en) 2007-10-26 2010-09-07 International Business Machines Corporation Optoelectronic device with germanium photodetector
US8613973B2 (en) * 2007-12-06 2013-12-24 International Business Machines Corporation Photovoltaic device with solution-processed chalcogenide absorber layer
US8409418B2 (en) * 2009-02-06 2013-04-02 Solopower, Inc. Enhanced plating chemistries and methods for preparation of group IBIIIAVIA thin film solar cell absorbers
US20100140098A1 (en) * 2008-05-15 2010-06-10 Solopower, Inc. Selenium containing electrodeposition solution and methods
US20090188808A1 (en) * 2008-01-29 2009-07-30 Jiaxiong Wang Indium electroplating baths for thin layer deposition
ES2624637T3 (es) * 2008-05-30 2017-07-17 Atotech Deutschland Gmbh Aditivo de electrogalvanoplastia para la deposición de una aleación de un metal del grupo IB/binaria o ternaria del grupo IB-grupo IIIA/ternaria, cuaternaria o quinaria del grupo IB, el grupo IIIA-grupo VIA
US20100059385A1 (en) * 2008-09-06 2010-03-11 Delin Li Methods for fabricating thin film solar cells
EP2180770A1 (en) 2008-10-21 2010-04-28 Atotech Deutschland Gmbh Method to form solder deposits on substrates
TWI377685B (en) * 2008-12-08 2012-11-21 Pvnext Corp Photovoltaic cell structure and manufacturing method thereof
US20100213073A1 (en) 2009-02-23 2010-08-26 International Business Machines Corporation Bath for electroplating a i-iii-vi compound, use thereof and structures containing same
US20110108115A1 (en) 2009-11-11 2011-05-12 International Business Machines Corporation Forming a Photovoltaic Device
CN101805915A (zh) * 2010-04-20 2010-08-18 南开大学 一种电镀金属Ga和Ga合金的溶液体系及其制备方法
US8304272B2 (en) 2010-07-02 2012-11-06 International Business Machines Corporation Germanium photodetector
US8545689B2 (en) 2010-09-02 2013-10-01 International Business Machines Corporation Gallium electrodeposition processes and chemistries
US9234291B2 (en) 2010-09-09 2016-01-12 Globalfoundries Inc. Zinc thin films plating chemistry and methods
US8840770B2 (en) 2010-09-09 2014-09-23 International Business Machines Corporation Method and chemistry for selenium electrodeposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000501232A (ja) * 1995-12-12 2000-02-02 デイヴィス,ジョセフ アンド ネグレイ 高効率太陽電池製造のための電着によるCu▲下x▼In▲下y▼Ga▲下z▼Se▲下n▼(x=0〜2,y=0〜2,z=0〜2,n=0〜3)先駆薄膜の製造
CN1742370A (zh) * 2003-02-24 2006-03-01 富士通株式会社 电子部件和散热构件以及制造使用该部件和构件的半导体器件的方法
CN101228639A (zh) * 2005-09-06 2008-07-23 Lg化学株式会社 太阳能电池吸收层的制备方法

Also Published As

Publication number Publication date
JP2013536986A (ja) 2013-09-26
DE112011102300B4 (de) 2022-11-17
GB2498879A (en) 2013-07-31
GB2498879B (en) 2014-09-24
GB201305111D0 (en) 2013-05-01
JP5827689B2 (ja) 2015-12-02
US9401443B2 (en) 2016-07-26
US20120055612A1 (en) 2012-03-08
WO2012028415A1 (en) 2012-03-08
US20130008798A1 (en) 2013-01-10
DE112011102300T5 (de) 2013-05-16
CN103098225A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
CN103098225B (zh) 镓和镓合金膜的电沉积方法以及相关的光伏结构
US10655237B2 (en) Method and chemistry for selenium electrodeposition
US9041141B2 (en) Structure and method of fabricating a CZTS photovoltaic device by electrodeposition
JP5552026B2 (ja) 光起電力デバイスを形成する方法
US9234291B2 (en) Zinc thin films plating chemistry and methods
US20120214293A1 (en) Electrodepositing doped cigs thin films for photovoltaic devices
US7892413B2 (en) Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films
US20100140098A1 (en) Selenium containing electrodeposition solution and methods
US7951280B2 (en) Gallium electroplating methods and electrolytes employing mixed solvents
US20130112564A1 (en) Electroplating Solutions and Methods For Deposition of Group IIIA-VIA Films
US8066865B2 (en) Electroplating methods and chemistries for deposition of group IIIA-group via thin films
US20100213073A1 (en) Bath for electroplating a i-iii-vi compound, use thereof and structures containing same
US8409418B2 (en) Enhanced plating chemistries and methods for preparation of group IBIIIAVIA thin film solar cell absorbers
US9243340B2 (en) Non-vacuum method of manufacturing light-absorbing materials for solar cell application
WO2011075561A1 (en) Plating chemistries of group ib /iiia / via thin film solar absorbers
Ray Electrodeposition of thin films for low-cost solar cells
US20110005586A1 (en) Electrochemical Deposition Methods for Fabricating Group IBIIIAVIA Compound Absorber Based Solar Cells
Chung et al. Electrochemically fabricated alloys and semiconductors containing indium
Janardhana et al. Ionic Liquid Electrochemical Synthesis of Earth Abundant Monophase Chalcostibite p-CuSbS2 Photo-absorber Thin films for Heterojunction Solar Cells With n-ZnO

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant