CN102859735B - 强电介质器件 - Google Patents

强电介质器件 Download PDF

Info

Publication number
CN102859735B
CN102859735B CN201180019864.2A CN201180019864A CN102859735B CN 102859735 B CN102859735 B CN 102859735B CN 201180019864 A CN201180019864 A CN 201180019864A CN 102859735 B CN102859735 B CN 102859735B
Authority
CN
China
Prior art keywords
resilient coating
dielectric film
strong dielectric
silicon substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180019864.2A
Other languages
English (en)
Other versions
CN102859735A (zh
Inventor
小川纯矢
山内规裕
松岛朝明
相泽浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN102859735A publication Critical patent/CN102859735A/zh
Application granted granted Critical
Publication of CN102859735B publication Critical patent/CN102859735B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • B81C1/00658Treatments for improving the stiffness of a vibrating element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/032Bimorph and unimorph actuators, e.g. piezo and thermo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

一种强电介质器件,具备:下部电极(第1电极)(14a),形成在硅基板(第1基板)(10)的一表面侧;强电介质膜(14b),形成在下部电极(14a)的与第1基板(10)侧相反的一侧;以及上部电极(第2电极)(14c),形成在强电介质膜(14b)的与下部电极(14a)侧相反的一侧,强电介质膜(14b)由与硅之间存在晶格常数差的强电介质材料形成。在下部电极(14a)的正下方设置有缓冲层(14d),缓冲层(14d)由与强电介质膜(14b)之间的晶格匹配性比硅好的材料形成,在第1基板(10)上形成有空洞(10a),该空洞(10a)使缓冲层(14d)的与下部电极(14a)侧相反的一侧的表面露出。

Description

强电介质器件
技术领域
本发明涉及利用强电介质膜的压电效应及焦热电(pyroelectric)效应的强电介质器件。
背景技术
一直以来,利用强电介质膜的压电效应及焦热电效应的强电介质器件备受关注。
作为这种强电介质器件,从低成本化、机械强度等观点出发,提出了在硅基板的一表面侧具备包含强电介质膜的功能部的MEMS(micro electromechanical systems,微机电系统)器件。作为这种MEMS器件,例如在各地正在研究开发利用强电介质膜的压电效应的发电器件(例如参见R.vanSchaijk,et al,“Piezoelectric AlN energy harvesters for wirelessautonomoustransducer solutions”,IEEE SENSORS 2008Conference,2008,p.45-48)或利用致动器、强电介质膜的焦热电效应的焦热电型红外线传感器等焦热电器件(例如参见日本国专利公开8-321640号公报)。另外,作为表现出压电效应及焦热电效应的强电介质材料,众所周知的有,例如作为铅类的氧化物强电介质的一种的PZT(:Pb(Zr,Ti)O3)等。
在上述的R.van Schaijk的文献中公开的发电器件,如图6所示,具备使用硅基板50形成的器件主体41。该器件主体41具备:框架部51;悬臂(beam)52,配置在框架部51的内侧,摇动自如地支承在框架部51上;配重部53,设于悬臂52的顶端部。另外,在器件主体41的悬臂52上形成有功能部54,功能部54构成根据悬臂52的振动而产生交流电压的发电部。
功能部54具备:下部电极54A,由Pt膜构成;强电介质膜(压电膜)54B,由形成在下部电极54A的悬臂52侧的相反侧的AlN薄膜或PZT薄膜构成;以及上部电极54C,由形成在强电介质膜54B的下部电极54A侧的相反侧的Al膜构成。
另外,在上述的R.van Schaijk的文献中,为了提高发电器件的输出,作为强电介质膜54B的压电膜的材料,采用相对介电常数较小、且压电常数e31较大的压电材料。
另外,上述发电器件具备:第1盖基板42,使用第1玻璃基板60A形成,框架部51被固装在器件主体41的一表面侧(图6的上表面侧);和第2盖基板43,使用第2玻璃基板70A形成,框架部51被固装在器件主体41的另一表面侧(图6的下表面侧)。
另外,在各盖基板42、43与由器件主体41的悬臂52和配重部53构成的可动部之间形成有该可动部的位移空间61、71。
在此,图6所示的构成的发电器件的器件主体41,通过反应性溅射法等,在硅基板50的上述一表面侧形成有由下部电极54A、强电介质膜54B和上部电极54C构成的功能部54。
但是,一般来说,通过溅射法等各种薄膜形成技术成膜在硅基板的一表面侧的PZT薄膜是多晶体,与形成在价格远高于硅基板的单结晶MgO基板的一表面侧或单结晶SrTiO3基板的一表面侧的单结晶的PZT薄膜相比,结晶性较差,压电常数e31也较低。另外,各地正在研究开发在单结晶的硅基板的一表面侧上形成结晶性优异的PZT薄膜的方法,但是目前还没有得到具有充分的结晶性的PZT薄膜。
于是,在硅基板的一表面侧具备包含强电介质膜的功能部的发电器件或焦热电型红外线传感器等强电介质器件中,正在研究在下部电极和强电介质膜之间设置缓冲层来提高特性。
但是,一般来说,在硅基板的一表面侧形成具备下部电极、强电介质膜和上部电极的功能部,从硅基板的另一表面侧将与功能部对应的部位蚀刻到规定深度,从而在硅基板上形成空洞,在由此制造的发电器件或焦热电型红外线传感器等强电介质器件中,在硅基板上残留在功能部正下方的薄壁部(图6的例中为悬臂52)的厚度的再现性较低,作为硅基板的基础的硅晶片中的薄壁部的面内偏差较大,所以制造成品率较低,而成本变高。另外,在强电介质器件为焦热电型红外线传感器的情况下,器件特性(响应速度等)因薄壁部的热容量而下降。
在此,可以想到替代硅基板而使用SOI(silicon on insulator)基板,即,在制造时替代硅晶片而使用SOI晶片,但是SOI晶片相比于硅晶片价格非常高,成本变高。
发明内容
本发明的目的在于,提供一种强电介质器件,实现强电介质膜的结晶性及性能的提高,且以低成本实现器件特性的提高。
本发明的强电介质器件的特征在于,具备:硅基板;第1电极,形成在所述硅基板的一表面侧;强电介质膜,形成在所述第1电极的与所述硅基板侧相反的一侧;以及第2电极,形成在所述强电介质膜的与所述第1电极侧相反的一侧;所述强电介质膜由与硅之间存在晶格常数差的强电介质材料形成,在所述硅基板和所述第1电极之间设置有缓冲层,该缓冲层由与所述强电介质膜之间的晶格匹配性比硅好的材料形成,所述硅基板形成有空洞,该空洞使所述缓冲层的与所述第1电极侧相反的表面露出。
根据该发明,能够实现强电介质膜的结晶性及性能的提高,并且能够以低成本实现器件特性的提高。
在该强电介质器件中,优选为,所述第1电极作为下部电极被配置在所述强电介质膜的下表面侧,所述第2电极作为上部电极被配置在所述强电介质膜的上表面侧,所述缓冲层被设置在所述下部电极的正下方,所述缓冲层的下表面的至少一部分通过所述硅基板的所述空洞而露出。
在该强电介质器件中,优选为,在所述硅基板的所述一表面侧具备加强层,该加强层被层积在具备所述缓冲层、所述下部电极、所述强电介质膜和所述上部电极的层积结构的至少一部分上而对所述层积结构进行加强。
在该强电介质器件中,优选为,除了由所述缓冲层构成的第1缓冲层之外,在所述强电介质膜和所述下部电极之间还设置有第2缓冲层,该第2缓冲层由与所述强电介质膜之间的晶格匹配性比所述下部电极好的材料形成。
在该强电介质器件中,优选为,所述缓冲层的所述材料是导电性材料。
在该强电介质器件中,优选为,所述第1缓冲层的材料和所述第2缓冲层的材料中的至少一方是导电性材料。
在该强电介质器件中,优选为,所述强电介质膜是焦热电膜,所述缓冲层的所述材料的热传导率小于硅的热传导率。
在该强电介质器件中,优选为,所述强电介质膜是焦热电膜,所述第1缓冲层的材料及所述第2缓冲层的材料的热传导率小于硅的热传导率。
附图说明
下面详细描述本发明的优选实施方式。本发明的其他特征及优点可通过下面详细的表述及附图来进一步理解。
图1A是实施方式1的强电介质器件的要部概略俯视图。
图1B是图1A的A-A’概略剖视图。
图2是实施方式1的强电介质器件的概略剖视图。
图3是实施方式1的强电介质器件的概略分解立体图。
图4是实施方式2的强电介质器件的概略剖视图。
图5是实施方式3的强电介质器件的概略剖视图。
图6是表示现有例的强电介质器件的概略剖视图。
具体实施方式
(实施方式1)
首先,参照图1A、图1B、图2及图3说明本实施方式的强电介质器件。
强电介质器件的器件主体1具备:硅基板(下面称为第1硅基板)10;第1电极14a,形成在第1硅基板10的一表面侧;强电介质膜14b,形成在第1电极14a的与第1硅基板10侧相反的一侧;以及第2电极14c,形成在强电介质膜14b的与第1电极14a侧相反的一侧。也就是说,在图1B中,第1电极14a作为下部电极被配置在强电介质膜14b的下表面侧。并且,第2电极14c作为上部电极被配置在强电介质膜14b的上表面侧。下面,将第1及第2电极14a、14c分别称为下部电极14a、上部电极14c。作为第1硅基板10,使用上述一表面为(100)面的单结晶的硅基板,强电介质膜14b由与硅之间存在晶格常数差的强电介质材料形成。
本实施方式的强电介质器件是将由汽车的振动或人的运动而产生的振动等任意振动引起的振动能转换成电能的发电器件,上述强电介质膜14b构成压电膜。
而且,器件主体1具备缓冲层14d。如图1B及图2所示,缓冲层14d被配设在硅基板10和下部电极14a之间(更具体地说,配设在下部电极14a的正下方),缓冲层14d由与强电介质膜14b之间的晶格匹配性比硅好的材料形成。另外,在第1硅基板10上形成有空洞10a,该空洞10a使缓冲层14d的与下部电极14a侧相反的一侧的表面的一部分(即缓冲层14d的下表面的一部分)露出。
在此,如图1B及图2所示,在第1硅基板10的上述一表面侧及另一表面侧分别形成有由硅氧化膜构成的绝缘膜19a、19b(下面称为第1绝缘膜19a、第2绝缘膜19b)。缓冲层14d形成在第1硅基板10的上述一表面侧的第1绝缘膜19a的表面侧。而且,器件主体1利用MEMS技术等形成,如图1A所示,具备框状的框架部11和配置在框架部11内侧的配重部13,配重部13经由第1硅基板10的上述一表面侧的悬臂12被摇动自如地支承在框架部11上。另外,在悬臂12上形成有具备上述下部电极14a、强电介质膜14b和上部电极14c的功能部14。在此,在本实施方式的强电介质器件中,功能部14构成随着悬臂12的振动而产生交流电压的发电部(压电变换部)。
上述框架部11和配重部13由第2绝缘膜19b、第1硅基板10、第1绝缘膜19a及缓冲层14d各自的一部分构成,悬臂12由缓冲层14d构成。
器件主体1具备焊盘17a、17c。焊盘17a、17c形成在第1硅基板10的上述一表面侧的与框架部11对应的部位,分别与下部电极14a及上部电极14c经由金属布线16a、16c电连接。
另外,器件主体1在第1硅基板10的上述一表面侧具备金属布线16c及绝缘层18。金属布线16c规定上部电极14c与强电介质膜14b相接的区域,且与上部电极14c电连接。而且,绝缘层18形成为将下部电极14a及强电介质膜14b各自的周围部覆盖,防止金属布线16c与下部电极14a之间的短路。另外,绝缘层18遍及框架部11的较宽的范围形成,上述的两焊盘17a、17c形成在绝缘层18上。绝缘层18由硅氧化膜构成,但不限于硅氧化膜,例如也可以由硅氮化膜构成。另外,第1硅基板10和功能部14被第1绝缘膜19a电绝缘。
另外,如图1B及图2所示,本实施方式的金属布线16c和上部电极14c由一个部件形成。但是,不限于此,上部电极14c和金属布线16c也可以由各自独立的部件形成。
另外,器件主体1在第1硅基板10的上述一表面侧具备加强层15,加强层15被层积在具备缓冲层14d、下部电极14a、强电介质膜14b及上部电极14c的层积结构上而对该层积结构进行加强(另外,在图1A及图3中省略加强层15的图示)。该加强层15跨过功能部14的周围部、框架部11和配重部13而形成。加强层15优选使用与所谓的半导体工艺的匹配性良好的材料形成,例如使用由聚酰亚胺、氟类树脂等构成的绝缘材料形成。
另外,如图2及图3所示,强电介质器件具备在器件主体1的一表面侧被固装在框架部11上的第1盖基板2。另外,强电介质器件具备在器件主体1的另一表面侧被固装在框架部11上的第2盖基板3。
第1盖基板2使用第2硅基板20形成。而且,在第2硅基板20中的器件主体1侧的一表面上形成有凹部20b,该凹部20b用于在与器件主体1之间形成由悬臂12和配重部13构成的可动部123的位移空间。
另外,在第2硅基板20的另一表面侧形成有与功能部14电连接的外部连接电极25、25。在此,外部连接电极25、25作为输出用电极发挥作用,输出用电极用于将在功能部14、即发电部中产生的交流电压供给到外部。
外部连接电极25、25分别经由沿第2硅基板20的厚度方向贯穿设置的贯穿孔布线23、23与形成于第2硅基板20的上述一表面侧的连接用电极24、24电连接。在此,连接用电极24、24与器件主体1的焊盘17a、17c分别接合而电连接。另外,在本实施方式中,各外部连接电极25、25及各连接用电极24、24由Ti膜和Au膜的层积膜构成,但是并不限于这些材料。另外,作为各贯穿孔布线23、23的材料而采用Cu,但不限于此,例如也可以采用Ni、Al等。
第1盖基板2为了防止2个外部连接电极25、25彼此的短路而具备绝缘膜22。绝缘膜22由硅氧化膜构成,跨过第2硅基板20的上述一表面侧和上述另一表面侧、以及在内侧形成有贯穿孔布线23、23的贯穿孔21的内周面而形成。另外,第1盖基板2也可以替代第2硅基板20而使用玻璃基板等绝缘性基板,在该情况下无需设置绝缘膜22。
另外,第2盖基板3使用第3硅基板30形成。在第3硅基板30的器件主体1侧的一表面上形成有凹部30b,该凹部30b用于在与器件主体1之间形成可动部123的位移空间。另外,第2盖基板3也可以替代第3硅基板30而使用玻璃基板等绝缘性基板来形成。
另外,在第1硅基板10的上述一表面侧形成有用于与第1盖基板2接合的第1接合用金属层118,在第2硅基板20的上述一表面侧形成有与第1接合用金属层118接合的第2接合用金属层128(参见图2)。在此,作为第1接合用金属层118的材料,采用与焊盘17c相同的材料,第1接合用金属层118在第1硅基板10的上述一表面侧形成为与焊盘17c相同的厚度。另外,第1接合用金属层118形成在绝缘层18上。
器件主体1与各盖基板2、3通过常温接合法接合,但不限于常温接合法,例如也可以通过进行适当加热的直接接合法、使用环氧树脂等的树脂接合法、或阳极接合法等进行接合。在树脂接合法中,与使用热固化型的树脂粘合剂(例如热固化型的环氧树脂类粘合剂等)的情况相比,使用常温固化型的树脂粘合剂(例如二液常温固化型的环氧树脂类粘合剂、二液常温固化型的环氧树脂类粘合剂)能够实现接合温度的低温化。
在以上说明的发电器件中,功能部14由下部电极14a、作为压电膜的强电介质膜14b、及上部电极14c构成,所以功能部14的强电介质膜14b由于悬臂12的振动而受到应力,在上部电极14c和下部电极14a上发生电荷偏置,在功能部14中产生交流电压。
在此,本实施方式的强电介质器件,作为强电介质膜14b的强电介质材料,采用作为铅类的氧化物强电介质的一种的PZT,作为第1硅基板10,采用上述一表面为(100)面的单结晶的硅基板。在此,铅类的氧化物强电介质不限于PZT,例如也可以采用PZT-PMN(:Pb(Mn,Nb)O3)或其他添加了杂质的PZT等。无论采用哪种材料,强电介质膜14b的强电介质材料是与硅之间存在晶格常数差的强电介质材料(PZT、PZT-PMN、添加了杂质的PZT等铅类的氧化物强电介质)。
另外,在本实施方式中,作为下部电极14a的材料采用Pt,作为上部电极14c的材料采用Au,但不限于这些材料,作为下部电极14a的材料,例如也可以采用Au、Al、Ir,作为上部电极14c的材料,例如也可以采用Mo、Al、Pt等。
另外,作为缓冲层14d的材料而采用SrRuO3,但不限于此,例如也可以采用(Pb,La)TiO3、PbTiO3、MgO、LaNiO3等。另外,缓冲层14d例如也可以由Pt膜和SrRuO3膜的层积膜构成。
另外,在本实施方式的强电介质器件(发电器件)中,将缓冲层14d的厚度设为2μm,将下部电极14a的厚度设为500nm,将强电介质膜14b的厚度设为600nm,将上部电极14c的厚度设为100nm,但是这些数值只是一个例子,并不限于此。另外,将强电介质膜14b的相对介电常数设为ε,将发电指数设为P时,P∝e31 2/ε的关系成立,发电指数P越大,发电效率越大。在此,e31是强电介质膜14b的压电常数e31
以下,简单说明作为本实施方式的强电介质器件的发电器件的制造方法。
首先,在第1硅基板10的上述一表面侧及上述另一表面侧各自的整个表面上,通过热氧化法形成由硅氧化膜构成的绝缘膜19a、19b。然后,在第1硅基板10的上述一表面侧(在此为第1绝缘膜19a上)的整个表面上,通过溅射法、CVD法、蒸镀法等来形成缓冲层14d。接着,在缓冲层14d的第1硅基板10侧相反侧的整个表面上,通过溅射法、CVD法、蒸镀法等来形成下部电极14a,在下部电极14a的与缓冲层14d侧相反一侧的整个表面上,通过溅射法、CVD法、溶胶-凝胶法等来形成强电介质膜14b。
在形成了强电介质膜14b之后,利用光刻技术及蚀刻技术,将强电介质膜14b图案(patterning)化,接着,利用光刻技术及蚀刻技术,将下部电极14a图案化,从而形成由规定形状的下部电极14a和图案化之前的下部电极14a的一部分构成的金属布线16a。另外,图案化后的下部电极14a和金属布线16a可以看作是一个下部电极14a。
在形成了金属布线16a之后,在第1硅基板10的上述一表面侧形成规定形状的绝缘层18,接着,利用溅射法或CVD法等薄膜形成技术、光刻技术、蚀刻技术,形成上部电极14c、金属布线16c、各焊盘17a、17c及第1接合用金属层118。然后,形成由聚酰亚胺层构成的加强层15。在形成规定形状的绝缘层18时,通过CVD法等在第1硅基板10的上述一表面侧的整个表面上形成绝缘层18之后,利用光刻技术及蚀刻技术进行图案化,然而也可以利用剥离法来形成绝缘层1。另外,在形成加强层15时,作为加强层15的材料而采用例如感光性的聚酰亚胺的情况下,只要依次进行聚酰亚胺的涂布、曝光、显影、固化等即可。另外,加强层15的材料及形成方法只是一个例子,并不限于此。
在形成了加强层15之后,利用光刻技术及蚀刻技术等,对第1硅基板10及各绝缘膜19a、19b进行加工,形成框架部11、悬臂12及配重部13,从而形成器件主体1。在进行该加工时,通过作为蚀刻气体而使用SF6气体等的反应性离子蚀刻,从上述另一表面侧对第1硅基板10进行蚀刻,进行将第1绝缘膜19a作为蚀刻终止层来利用的选择蚀刻。接着,通过作为蚀刻气体而使用氟类气体或氯类气体等的反应性各向异性蚀刻,从第1硅基板10的上述另一表面侧对第1绝缘膜19a进行蚀刻,进行将缓冲层14d作为蚀刻终止层来利用的选择蚀刻。另外,在对缓冲层14d的无用部分进行蚀刻时,通过作为蚀刻气体而仅使用氩气体的物理性蚀刻(溅射蚀刻),对缓冲层14d进行蚀刻。
在形成了器件主体1之后,在器件主体1上接合各盖基板2、3,从而得到图2所示的结构的强电介质器件。在此,直到在器件主体1上接合各盖基板2、3的工序结束为止,以晶片级别进行(也就是说,对于各硅基板10、20、30分别使用硅晶片),然后进行分割工序,从而分割成各个强电介质器件。与器件主体1接合的各盖基板2、3可以使用光刻工序、蚀刻工序、薄膜形成工序、电镀工序等公知的工序来形成。另外,强电介质器件并不是必须具备各盖基板2、3,也可以只具备两个盖基板2、3中的一个盖基板,也可以两盖基板2、3都不具备。
在上述的强电介质器件的制造方法中,作为形成空洞10a时的蚀刻终止层,能够利用缓冲层14d。而且,通过缓冲层14d中的空洞10a而露出的部位直接成为悬臂12(薄壁部)。因此,无需使用价格远高于第1硅基板10的SOI基板,能够提高在具备下部电极14a、强电介质膜14b和上部电极14c的功能部14的正下方形成的部位(在此为缓冲层14d)的厚度的再现性,还能够降低形成了多个器件主体1的1张硅晶片的面内的、功能部14的正下方的部位(在此仅为缓冲层14d)的厚度的偏差。也就是说,形成空洞10a时,最后进行将缓冲层14d作为蚀刻终止层的选择蚀刻,所以功能部14的正下方的部位的厚度的面内偏差基本上由缓冲层14d的成膜时的厚度的面内偏差决定。
以上说明的本实施方式的强电介质器件具备:下部电极14a,形成在第1硅基板10的上述一表面侧;强电介质膜14b,形成在下部电极14a的与第1硅基板10侧相反的一侧;以及上部电极14c,形成在强电介质膜14b的与下部电极14a侧相反的一侧,强电介质膜14b由与硅之间存在晶格常数差的强电介质材料形成,在下部电极14a的正下方设置有缓冲层14d,该缓冲层14d由与强电介质膜14b之间的晶格匹配性比硅好的材料构成,在第1硅基板10上形成有空洞10a,该空洞10a使缓冲层14d的与下部电极14a侧相反的一侧的表面露出。因此,形成空洞10a时,能够将缓冲层14d作为蚀刻终止层利用。而且,通过缓冲层14d中的空洞10a而露出的部位直接成为悬臂12(薄壁部)。因此,能够实现强电介质膜14b的结晶性及性能(在此为压电常数e31)的提高,并且以低成本实现作为器件特性的发电特性(发电效率等)的提高。
另外,本实施方式的强电介质器件,在第1硅基板10的上述一表面侧具备加强层15,该加强层15被层积在具备缓冲层14d、下部电极14a、强电介质膜14b和上部电极14c的层积结构的至少一部分上而对该层积结构进行加强,因此能够防止因振动而导致缓冲层14d、下部电极14a、强电介质膜14b、上部电极14c的各薄膜破损或在各薄膜上产生裂纹。尤其,在本实施方式的作为强电介质器件的发电器件中,能够防止由缓冲层14d的一部分构成的悬臂12破损,能够提高可靠性。
另外,在本实施方式的强电介质器件中,作为缓冲层14d的材料而例如采用SrRuO3等导电性材料,所以能够效率良好地得到由悬臂12的振动时的变形而产生的电场,作为器件特性的发电特性有所提高。
另外,在作为缓冲层14d的材料而采用绝缘材料的情况下,上述的第1绝缘膜19a不是一定要设置的,在该情况下,从上述另一表面侧对第1硅基板10进行蚀刻时,将缓冲层14d作为蚀刻终止层,对第1硅基板10进行选择蚀刻即可。另外,在作为缓冲层14d的材料而采用导电性材料的情况下,在下部电极14a和第1硅基板10可以是相同电位时,无需设置第1绝缘膜19a。另外,在将多个功能部14设置在1个第1硅基板10的上述一表面侧,并且将这些多个功能部14的下部电极14a彼此设为共同电位的情况下,也可以不设置第1绝缘膜19a。
(实施方式2)
本实施方式的强电介质器件的基本构成与实施方式1大致相同,不同之处在于,如图4所示,除了下部电极14a正下方的缓冲层(以下称为第1缓冲层)14d之外,在强电介质膜14b和下部电极14a之间还设置了第2缓冲层14e,该第2缓冲层14e采用与强电介质膜14b之间的晶格匹配性比下部电极14a良好的材料构成。另外,对与实施方式1相同的构成要素赋予相同的符号并省略说明。
本实施方式的强电介质器件的制造方法与实施方式1中说明的制造方法大致相同,不同之处在于,在硅基板10的上述一表面侧的整个表面上形成下部电极14a之后,在硅基板10的上述一表面侧的整个表面上形成第2缓冲层14e,然后,在硅基板10的上述一表面侧的整个表面上形成强电介质膜14b。第2缓冲层14e的材料可以是与第1缓冲层14d相同的材料,也可以是不同的材料。但是,优选至少第2缓冲层14e为导电性材料。
在本实施方式的强电介质器件中,由于在强电介质膜14b的正下方具备第2缓冲层14e,所以与实施方式1相比,能够进一步提高强电介质膜14b的结晶性。
(实施方式3)
下面参照图5来说明本实施方式的强电介质器件。
本实施方式的强电介质器件具备:硅基板10;下部电极14a,形成在该硅基板10的一表面侧;强电介质膜14b,形成在下部电极14a的与硅基板10侧相反的一侧;以及上部电极14c,形成在强电介质膜14b的与下部电极14a侧相反的一侧。在此,作为硅基板10,使用上述一表面为(100)面的单结晶的硅基板,强电介质膜14b采用与Si之间存在晶格常数差的强电介质材料形成。另外,作为强电介质器件,对与实施方式1相同的构成要素赋予相同的符号。
本实施方式中的强电介质器件是焦热电型红外线传感器,强电介质膜14b构成焦热电膜。
另外,在下部电极14a的正下方设置有缓冲层14d,该缓冲层14d由与强电介质膜14b之间的晶格匹配性比硅良好的材料构成。另外,在硅基板10上形成有空洞10a,该空洞10a使缓冲层14d的与下部电极14a侧相反的一侧的表面露出。
在此,在硅基板10的上述一表面侧和另一表面侧分别形成有由硅氧化膜构成的绝缘膜19a、19b(以下称为第1绝缘膜19a、第2绝缘膜19b),在硅基板10的上述一表面侧的第1绝缘膜19a的表面侧形成有缓冲层14d。
本实施方式的强电介质器件,作为强电介质膜14b的强电介质材料(焦热电材料)而采用作为铅类的氧化物强电介质的一的种PZT,但是铅系的氧化物强电介质不限于PZT,例如也可以采用PZT-PLT、PLT、PZT-PMN等,或其他添加了杂质的PZT类强电介质等。无论采用哪种材料,强电介质膜14b的焦热电材料是与硅基板10的材料、即硅之间存在晶格常数差的强电介质材料(PZT、PZT-PMN、添加了杂质的PZT等的铅类的氧化物强电介质)。相对于此,作为缓冲层14d的材料而采用了SrRuO3,然而不限于此,例如也可以采用(Pb,La)TiO3、PbTiO3、MgO、LaNiO3等。另外,缓冲层14d例如也可以采用Pt膜和SrRuO3膜的层积膜来构成。
另外,在本实施方式中,作为下部电极14a的材料而采用了Pt,作为上部电极14c的材料而采用了Ni-Cr、Ni、金黑等具有导电性的红外线吸收材料,通过下部电极14a、焦热电薄膜14b和上部电极14c构成由感应元件构成的功能部14,然而不限于这些材料,作为下部电极14a的材料,例如也可以采用、Au、Al、Cu等。在此,作为上部电极14c的材料而采用了上述的具有导电性的红外线吸收材料的情况下,上部电极14c兼用作红外线吸收膜。另外,在本实施方式中,空洞10a构成用于将功能部14和硅基板10之间热绝缘的空洞。
另外,强电介质器件在硅基板10的上述一表面侧具备加强层15,该加强层15被层积在具有缓冲层14d、下部电极14a、强电介质膜14b和上部电极14c的层积结构上而对该层积结构进行加强。该加强层15跨过功能部14的周围部和硅基板10的空洞10a的周围部而形成。加强层15优选采用与所谓的半导体工艺之间的匹配性良好的材料形成,例如可以通过由由聚酰亚胺、氟类树脂等构成的绝缘材料形成。
但是,在本实施方式的强电介质器件这样的焦热电型红外线传感器中,为了实现传感器特性的提高,需要提高功能部14和硅基板10之间的绝热性,所以作为缓冲层14d的材料,优选热传导率比硅小的材料。在此,已知硅的热传导率为145~156W/m·K左右,相对于此,SrRuO3的热传导率为5.97W/m·K左右。
另外,在本实施方式的焦热电器件中,将缓冲层14d的厚度设定为1~2μm,将下部电极24a的厚度设定为100nm,将强电介质膜24b的厚度设定为1μm~3μm,将上部电极24c的厚度设定为50nm,但是这些数值只是一个例子,并不限于此。
本实施方式的强电介质器件如上所述是焦热电型红外线传感器,将强电介质膜14b的焦热电系数设为γ〔C/(cm2·K)〕,将介电常数设为ε,将焦热电型红外线传感器(焦热电器件)的性能指数设为F γ〔C/(cm2·J)〕时,F γ∝γ/ε的关系成立,强电介质膜14b的焦热电系数γ越大,性能指数F γ越大。
下面说明作为本实施方式的强电介质器件的焦热电型红外线传感器的制造方法,对于与在实施方式1中说明的强电介质器件的制造方法相同的工序,适当省略说明。
首先,在硅基板10的上述一表面侧及上述另一表面侧各自的整个表面上,通过热氧化法形成由硅氧化膜构成的绝缘膜19a、19b。然后,在硅基板10的上述一表面侧(在此为第1绝缘膜19a上)的整个表面上,通过溅射法、CVD法、蒸镀法等形成缓冲层14d。接着,在缓冲层14d的与硅基板10侧相反的一侧的整个表面上,通过溅射法、CVD法、蒸镀法等形成下部电极14a,在下部电极14a的与缓冲层14d侧相反的一侧的整个表面上,通过溅射法、CVD法、溶胶-凝胶法等形成强电介质膜14b。
在形成了强电介质膜14b之后,使用光刻技术及蚀刻技术,将强电介质膜14b图案化,接着,利用光刻技术及蚀刻技术,将下部电极14a图案化。
然后,利用溅射法、CVD法等薄膜形成技术、光刻技术、蚀刻技术在硅基板10的上述一表面侧形成规定形状的上部电极14c。然后,形成由聚酰亚胺层构成的加强层15。在形成加强层15时,在作为加强层15的材料而采用例如感光性的聚酰亚胺的情况下,只要依次进行聚酰亚胺的涂布、露光、显影、固化等即可。另外,加强层15的材料及形成方法是一个例子,并不限于此。
在形成了加强层15之后,利用光刻技术及蚀刻技术等,对硅基板10及各绝缘膜19a、19b进行加工,形成空洞10a。在进行该加工时,通过作为蚀刻气体而使用SF6气体等的反应性离子蚀刻,从上述另一表面侧对硅基板10进行蚀刻,进行将第1绝缘膜19a作为蚀刻终止层来利用的选择蚀刻。接着,进行作为蚀刻气体而使用氟类气体或氯类气体等的反应性各向异性蚀刻,从硅基板10的上述另一表面侧对第1绝缘膜19a进行蚀刻,进行将缓冲层14d作为蚀刻终止层来利用的选择蚀刻。
在此,直至形成空洞10a的工序结束为止,以晶片级别进行(也就是说,在硅晶片上形成多个强电介质器件之后),然后进行分割工序,从而分割成各个强电介质器件。
在上述的强电介质器件的制造方法中,作为形成空洞10a时的蚀刻终止层,能够利用缓冲层14d。因此,无需使用价格远高于硅基板10的SOI基板,能够提高在具备下部电极14a、强电介质膜14b和上部电极14c的功能部14的正下方形成的部位(在此为缓冲层14d)的厚度的再现性,并且能够降低形成了多个焦热电型红外线传感器的1张硅晶片的面内的、功能部14的正下方的部位(在此仅为缓冲层14d)的厚度的偏差。也就是说,在形成空洞10a时,最终进行将缓冲层14d作为蚀刻终止层的选择蚀刻,所以功能部14的正下方的部位的厚度的面内偏差基本上由缓冲层14d的成膜时的厚度的面内偏差决定。
以上说明的本实施方式的强电介质器件具备:下部电极14a,形成在硅基板10的上述一表面侧;强电介质膜14b,形成在下部电极14a的与硅基板10侧相反的一侧;以及上部电极14c,形成在强电介质膜14b的与下部电极14a侧相反的一侧,强电介质膜14b由与硅之间存在晶格常数差的强电介质材料形成,在下部电极14a的正下方设置有缓冲层14d,缓冲层14d由与强电介质膜14b之间的晶格匹配性比硅好的材料形成,在硅基板10上形成有空洞10a,该空洞10a使缓冲层14d的与下部电极14a侧相反的一侧的表面露出。因此,在形成空洞10a时,能够将缓冲层14d用作蚀刻终止层。因此,能够实现强电介质膜14b的结晶性及性能(在此为焦热电系数γ)的提高,并且能够以低成本实现器件特性(在此为性能指数、响应速度等)的提高。
另外,本实施方式的强电介质器件在硅基板10的上述一表面侧具备加强层15,该加强层15被层积在具备缓冲层14d、下部电极14a、强电介质膜14b和上部电极14c的层积结构的至少一部分上而对该层积结构进行加强,所以能够防止因振动等而导致缓冲层14d、下部电极14a、强电介质膜14b、上部电极14c的各薄膜破损或在各薄膜上产生裂纹。
另外,在本实施方式的强电介质器件中,作为缓冲层14d的材料采用例如SrRuO3等导电性材料,所以器件特性提高。
另外,在作为缓冲层14d的材料采用绝缘材料的情况下,并不是必须设置上述的第1绝缘膜19a,在这种情况下,从上述另一表面侧对硅基板10进行蚀刻时,将缓冲层14d作为蚀刻终止层,对硅基板10进行选择蚀刻即可。另外,作为缓冲层14d的材料采用导电性材料的情况下,在下部电极14a和硅基板10可以是相同电位的情况下,无需设置第1绝缘膜19a。另外,在将多个功能部14设置到1个硅基板10的上述一表面侧,将多个功能部14的下部电极14a彼此设为共同电位的情况下,也可以不设置第1绝缘膜19a。
上述的图5所示结构的强电介质器件是只具备1个作为感应元件的功能部14的焦热电型红外线传感器,但不限于此,例如,也可以是多个功能部14排列成二维阵列状的焦热电型红外线阵列传感器。
另外,在本实施方式的强电介质器件中,与实施方式2相同,除了下部电极14a正下方的缓冲层(第1缓冲层)14d之外,还可以在强电介质膜14b和下部电极14a之间设置第2缓冲层14e,该第2缓冲层14e由与强电介质膜14b之间的晶格匹配性比下部电极14a良好的材料构成。
以上说明了本发明的几个优选实施方式,但是在不脱离本发明的宗旨及范围、即权利要求书的范围的情况下,本领域技术人员可以进行各种修正及变形。

Claims (7)

1.一种强电介质器件,具有器件主体,该器件主体具备:
硅基板;
第1电极,形成在所述硅基板的一表面侧;
强电介质膜,形成在所述第1电极的与所述硅基板侧相反的一侧;以及
第2电极,形成在所述强电介质膜的与所述第1电极侧相反的一侧;
所述强电介质膜由与硅之间存在晶格常数差的强电介质材料形成,
其特征在于,
在所述硅基板和所述第1电极之间设置有缓冲层,该缓冲层由与所述强电介质膜之间的晶格匹配性比硅好的材料形成,
所述硅基板形成有空洞,该空洞使所述缓冲层的与所述第1电极侧相反的表面露出,
所述第1电极作为下部电极被配置在所述强电介质膜的下表面侧,
所述第2电极作为上部电极被配置在所述强电介质膜的上表面侧,
所述缓冲层被设置在所述下部电极的正下方,
所述缓冲层的下表面的至少一部分通过所述硅基板的所述空洞而露出,
在所述硅基板的所述一表面侧具备加强层,该加强层被层积在具备所述缓冲层、所述下部电极、所述强电介质膜和所述上部电极的层积结构的至少一部分上而对所述层积结构进行加强,
所述器件主体具备框状的框架部、和配置在所述框架部的内侧的配重部,所述配重部经由所述硅基板的所述一表面侧的悬臂部被摇动自如地支承在所述框架部上,
在所述悬臂部上,形成有具备所述下部电极、所述强电介质膜和所述上部电极的功能部,所述功能部构成随着所述悬臂部的振动而产生交流电压的发电部,所述悬臂部由所述缓冲层构成,
所述硅基板是所述一表面为(100)晶面的单结晶硅基板,
所述缓冲层由从SrRuO3、(Pb,La)TiO3、PbTiO3、MgO、LaNiO3的组中选择的一种材料形成,或者由Pt膜与SrRuO3膜的层叠膜构成。
2.根据权利要求1所述的强电介质器件,其特征在于,
除了由所述缓冲层构成的第1缓冲层之外,在所述强电介质膜和所述下部电极之间还设置有第2缓冲层,该第2缓冲层由与所述强电介质膜之间的晶格匹配性比所述下部电极好的材料形成。
3.根据权利要求1所述的强电介质器件,其特征在于,
所述缓冲层的所述材料是导电性材料。
4.根据权利要求2所述的强电介质器件,其特征在于,
所述第1缓冲层的材料和所述第2缓冲层的材料中的至少一方是导电性材料。
5.根据权利要求1所述的强电介质器件,其特征在于,
所述强电介质膜是焦热电膜,所述缓冲层的所述材料的热传导率小于硅的热传导率。
6.根据权利要求3所述的强电介质器件,其特征在于,
所述强电介质膜是焦热电膜,所述缓冲层的所述材料的热传导率小于硅的热传导率。
7.根据权利要求2或4所述的强电介质器件,其特征在于,
所述强电介质膜是焦热电膜,所述第1缓冲层的材料及所述第2缓冲层的材料的热传导率小于硅的热传导率。
CN201180019864.2A 2010-04-21 2011-04-18 强电介质器件 Expired - Fee Related CN102859735B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010098204A JP5632643B2 (ja) 2010-04-21 2010-04-21 強誘電体デバイス
JP2010-098204 2010-04-21
PCT/JP2011/059521 WO2011132636A1 (ja) 2010-04-21 2011-04-18 強誘電体デバイス

Publications (2)

Publication Number Publication Date
CN102859735A CN102859735A (zh) 2013-01-02
CN102859735B true CN102859735B (zh) 2015-04-15

Family

ID=44834155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180019864.2A Expired - Fee Related CN102859735B (zh) 2010-04-21 2011-04-18 强电介质器件

Country Status (7)

Country Link
US (1) US20130032906A1 (zh)
EP (1) EP2562837A4 (zh)
JP (1) JP5632643B2 (zh)
KR (1) KR101382516B1 (zh)
CN (1) CN102859735B (zh)
TW (1) TWI437741B (zh)
WO (1) WO2011132636A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110920A (ja) * 2011-11-24 2013-06-06 Panasonic Corp 発電装置
JP5943506B2 (ja) * 2011-12-09 2016-07-05 浩平 速水 振動力発電装置
JP5023244B1 (ja) * 2012-01-13 2012-09-12 浩平 速水 振動力発電装置
JP2013195212A (ja) * 2012-03-19 2013-09-30 Ngk Insulators Ltd 薄板振動素子およびその製造方法
WO2013145260A1 (ja) * 2012-03-30 2013-10-03 富士通株式会社 電子装置及びその製造方法
US10726231B2 (en) 2012-11-28 2020-07-28 Invensense, Inc. Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing
US9511994B2 (en) 2012-11-28 2016-12-06 Invensense, Inc. Aluminum nitride (AlN) devices with infrared absorption structural layer
US9114977B2 (en) * 2012-11-28 2015-08-25 Invensense, Inc. MEMS device and process for RF and low resistance applications
US10497747B2 (en) * 2012-11-28 2019-12-03 Invensense, Inc. Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing
US9618405B2 (en) 2014-08-06 2017-04-11 Invensense, Inc. Piezoelectric acoustic resonator based sensor
TWI621242B (zh) * 2013-09-19 2018-04-11 伊凡聖斯股份有限公司 具有紅外線吸收結構層的氮化鋁(ain)裝置
US9574959B2 (en) * 2014-09-02 2017-02-21 Apple Inc. Various stress free sensor packages using wafer level supporting die and air gap technique
US9862592B2 (en) 2015-03-13 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS transducer and method for manufacturing the same
JP6861558B2 (ja) * 2017-03-31 2021-04-21 ローム株式会社 超音波装置
WO2018231210A1 (en) * 2017-06-14 2018-12-20 Intel Corporation Thin film ferroelectric materials and methods of fabrication thereof
JP7090249B2 (ja) * 2019-06-06 2022-06-24 国立大学法人 東京大学 静電型デバイスを製造する製造方法
CN113156230B (zh) * 2021-01-13 2022-10-14 西安理工大学 一种摩擦电能量采集器测试装置及测试方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866216B2 (ja) * 1991-02-15 1999-03-08 キヤノン株式会社 カンチレバーの製造方法
JPH08167740A (ja) * 1994-12-10 1996-06-25 Horiba Ltd 焦電型赤外線薄膜素子
KR0141160B1 (ko) * 1995-03-22 1998-06-01 김광호 강유전체 메모리 장치 및 그 제조방법
JP3409944B2 (ja) 1995-05-26 2003-05-26 松下電器産業株式会社 強誘電体素子及びその製造方法
JP2002214038A (ja) * 2001-01-17 2002-07-31 Matsushita Electric Ind Co Ltd 焦電型赤外線検出素子の製造方法
JP2004006722A (ja) * 2002-03-27 2004-01-08 Seiko Epson Corp 圧電アクチュエータ、インクジェット式ヘッド及び吐出装置
US7268472B2 (en) * 2002-11-11 2007-09-11 Seiko Epson Corporation Piezoelectric device, liquid jetting head, ferroelectric device, electronic device and methods for manufacturing these devices
JP4058018B2 (ja) * 2003-12-16 2008-03-05 松下電器産業株式会社 圧電素子及びその製造方法、並びにその圧電素子を備えたインクジェットヘッド、インクジェット式記録装置及び角速度センサ
JP4192794B2 (ja) * 2004-01-26 2008-12-10 セイコーエプソン株式会社 圧電素子、圧電アクチュエーター、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振器、及び電子機器
JP2005294452A (ja) * 2004-03-31 2005-10-20 Fujitsu Ltd 薄膜積層体、その薄膜積層体を用いたアクチュエータ素子、フィルター素子、強誘電体メモリ、および光偏向素子
JP2008028030A (ja) * 2006-07-19 2008-02-07 Seiko Epson Corp 圧電素子および液体噴射ヘッド
JP2008232896A (ja) * 2007-03-22 2008-10-02 Toyohashi Univ Of Technology 薄膜赤外線検出素子およびその製造方法
JP5391395B2 (ja) * 2007-10-15 2014-01-15 日立金属株式会社 圧電薄膜付き基板及び圧電素子
JP2009201101A (ja) * 2008-01-21 2009-09-03 Panasonic Electric Works Co Ltd Baw共振装置およびその製造方法
CA2664969C (en) * 2008-05-02 2011-09-20 Francis V. Smith High tonnage trailer combination, trailer components, and method of use
JP5115330B2 (ja) * 2008-05-22 2013-01-09 セイコーエプソン株式会社 液体噴射ヘッドおよびそれを備えた液体噴射装置
JP2010161330A (ja) * 2008-12-08 2010-07-22 Hitachi Cable Ltd 圧電薄膜素子
JP5452115B2 (ja) * 2009-07-22 2014-03-26 パナソニック株式会社 発電デバイス
JP2011071467A (ja) * 2009-08-28 2011-04-07 Panasonic Electric Works Co Ltd 強誘電体デバイスの製造方法
KR101561662B1 (ko) * 2009-09-29 2015-10-21 삼성전자주식회사 곡선형 리드선들을 가진 압전형 마이크로 스피커 및 그 제조 방법
JP2011091319A (ja) * 2009-10-26 2011-05-06 Panasonic Electric Works Co Ltd 発電デバイス
JP2011091318A (ja) * 2009-10-26 2011-05-06 Panasonic Electric Works Co Ltd 発電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Piezoelectric AlN energy harvesters for wireless autonomous transducer solutions";R.van Schaijk等;《IEEE SENSORS 2008 Conference》;20081231;45-48 *

Also Published As

Publication number Publication date
TW201203638A (en) 2012-01-16
EP2562837A4 (en) 2014-03-19
CN102859735A (zh) 2013-01-02
KR101382516B1 (ko) 2014-04-07
US20130032906A1 (en) 2013-02-07
JP2011228548A (ja) 2011-11-10
WO2011132636A1 (ja) 2011-10-27
TWI437741B (zh) 2014-05-11
EP2562837A1 (en) 2013-02-27
JP5632643B2 (ja) 2014-11-26
KR20120139825A (ko) 2012-12-27

Similar Documents

Publication Publication Date Title
CN102859735B (zh) 强电介质器件
JP6519652B2 (ja) 圧電デバイス、圧電デバイスアレイおよび圧電トランス
CN102859862B (zh) 振动发电器件
KR101366735B1 (ko) 발전 디바이스 및 그것을 사용한 발전 모듈
JP4767369B1 (ja) 圧電発電素子および圧電発電素子を用いた発電方法
JP5658757B2 (ja) 振動発電素子およびそれを用いた振動発電装置
CN103081339A (zh) 振动发电元件以及具备该元件的振动发电装置
JP2011152010A (ja) 発電デバイス
CN102906987B (zh) 振动发电装置及其制造方法
JP5452115B2 (ja) 発電デバイス
JP2015019434A (ja) 発電デバイス
JP2011091319A (ja) 発電デバイス
KR100828846B1 (ko) 압전 트랜스 및 그 제조 방법
JP2012182187A (ja) 発電デバイス
JP2011091318A (ja) 発電デバイス
WO2014020786A1 (ja) 発電デバイス
JP2011125071A (ja) 発電デバイス
JP2011091977A (ja) 発電デバイス
JP2015018830A (ja) 発電デバイス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151015

Address after: Osaka Japan

Patentee after: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT Co.,Ltd.

Address before: Osaka Japan

Patentee before: Matsushita Electric Industrial Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150415

Termination date: 20170418

CF01 Termination of patent right due to non-payment of annual fee