WO2011132636A1 - 強誘電体デバイス - Google Patents

強誘電体デバイス Download PDF

Info

Publication number
WO2011132636A1
WO2011132636A1 PCT/JP2011/059521 JP2011059521W WO2011132636A1 WO 2011132636 A1 WO2011132636 A1 WO 2011132636A1 JP 2011059521 W JP2011059521 W JP 2011059521W WO 2011132636 A1 WO2011132636 A1 WO 2011132636A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferroelectric
buffer layer
film
silicon substrate
electrode
Prior art date
Application number
PCT/JP2011/059521
Other languages
English (en)
French (fr)
Inventor
純矢 小川
規裕 山内
松嶋 朝明
相澤 浩一
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to EP11771971.6A priority Critical patent/EP2562837A4/en
Priority to KR1020127027356A priority patent/KR101382516B1/ko
Priority to US13/642,208 priority patent/US20130032906A1/en
Priority to CN201180019864.2A priority patent/CN102859735B/zh
Publication of WO2011132636A1 publication Critical patent/WO2011132636A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • B81C1/00658Treatments for improving the stiffness of a vibrating element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/032Bimorph and unimorph actuators, e.g. piezo and thermo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Definitions

  • the present invention relates to a ferroelectric device utilizing the piezoelectric effect or pyroelectric effect of a ferroelectric film.
  • ferroelectric devices utilizing the piezoelectric effect and pyroelectric effect of a ferroelectric film have attracted attention.
  • MEMS micro electro mechanical systems
  • a power generation device using the piezoelectric effect of a ferroelectric film for example, R. van Schaijk, et al, “Piezoelectric AlN energy harvesters for wireless autonomous transducer solutions”, IEEE SENSORS 2008 Conference, 2008 , P.45-48
  • pyroelectric devices such as actuators, pyroelectric infrared sensors that use the pyroelectric effect of a ferroelectric film
  • PZT Pb (Zr, Ti) O 3
  • PZT Pb (Zr, Ti) O 3
  • the power generation device disclosed in the above R. ⁇ van Schaijk document includes a device body 41 formed using a silicon substrate 50, as shown in FIG.
  • the device main body 41 includes a frame portion 51, a cantilever portion (beam) 52 that is disposed inside the frame portion 51 and is swingably supported by the frame portion 51, and a weight portion provided at the tip of the cantilever portion 52. 53.
  • a function unit 54 that forms a power generation unit that generates an AC voltage according to the vibration of the cantilever unit 52 is formed in the cantilever unit 52.
  • the functional portion 54 includes a lower electrode 54A made of a Pt film, a ferroelectric film (piezoelectric film) 54B made of an AlN thin film or a PZT thin film formed on the opposite side of the lower electrode 54A to the cantilever portion 52 side, and a ferroelectric film.
  • the body film 54B includes an upper electrode 54C made of an Al film formed on the opposite side of the lower electrode 54A.
  • the power generation device described above includes a first cover substrate 42 formed using the first glass substrate 60A and having a frame portion 51 fixed on one surface side (the upper surface side in FIG. 6) of the device body 41, And a second cover substrate 43 to which the frame portion 51 is fixed on the other surface side of the device body 41 (the lower surface side in FIG. 6).
  • displacement spaces 61 and 71 of the movable parts are formed between the cover substrates 42 and 43 and the movable part composed of the cantilever part 52 and the weight part 53 of the device body 41.
  • the functional portion 54 including the lower electrode 54A, the ferroelectric film 54B, and the upper electrode 54C is formed on the one surface side of the silicon substrate 50 by the reactive sputtering method. And so on.
  • a PZT thin film formed on one surface side of a silicon substrate by various thin film forming techniques such as sputtering is polycrystalline, and is a single crystal MgO substrate that is very expensive compared to a silicon substrate.
  • the crystallinity is inferior and the piezoelectric constant e 31 is also low.
  • research and development have been conducted on various methods for forming a PZT thin film having excellent crystallinity on one surface side of a single crystal silicon substrate, but a PZT thin film having sufficient crystallinity has not been obtained. Is the current situation.
  • a buffer layer is provided between the lower electrode and the ferroelectric film.
  • a functional unit including a lower electrode, a ferroelectric film, and an upper electrode is formed on one surface side of a silicon substrate, and a portion corresponding to the functional unit is formed at a predetermined depth from the other surface side of the silicon substrate.
  • a ferroelectric device such as a power generation device or a pyroelectric infrared sensor manufactured by forming a cavity in a silicon substrate by etching to a thin thickness
  • a thin portion in the example of FIG.
  • the reproducibility of the thickness of the cantilever portion 52 is low, and the in-plane variation of the thin portion of the silicon wafer that is the base of the silicon substrate is large, so that the manufacturing yield is low and the cost is high.
  • the ferroelectric device is a pyroelectric infrared sensor, device characteristics (such as response speed) are deteriorated due to the heat capacity of the thin portion.
  • an SOI (silicon on insulator) substrate may be used instead of a silicon substrate, that is, an SOI wafer may be used instead of a silicon wafer at the time of manufacturing.
  • an SOI wafer is very expensive compared to a silicon wafer. The cost will be high.
  • an object of the present invention is to provide a ferroelectric device capable of improving the crystallinity and performance of a ferroelectric film and improving the device characteristics at low cost.
  • the ferroelectric device of the present invention includes a silicon substrate, a first electrode formed on one surface side of the silicon substrate, and a ferroelectric formed on the opposite side of the first electrode to the silicon substrate side.
  • a ferroelectric film comprising a body film and a second electrode formed opposite to the first electrode side of the ferroelectric film, wherein the ferroelectric film has a lattice constant difference from silicon
  • a ferroelectric device formed of a material, wherein the buffer layer is formed between the silicon substrate and the first electrode by a material having a better lattice matching with the ferroelectric film than silicon.
  • the silicon substrate is formed with a cavity that exposes a surface of the buffer layer opposite to the first electrode side.
  • the crystallinity and performance of the ferroelectric film can be improved, and the device characteristics can be improved at low cost.
  • the first electrode is disposed on the lower surface side of the ferroelectric film as a lower electrode
  • the second electrode is disposed on the upper surface side of the ferroelectric film as an upper electrode.
  • the buffer layer is provided immediately below the lower electrode, and at least a part of the lower surface of the buffer layer is exposed through the cavity of the silicon substrate.
  • the one side of the silicon substrate is laminated on at least a part of a laminated structure including the buffer layer, the lower electrode, the ferroelectric film, and the upper electrode. It is preferable to provide a reinforcing layer that reinforces the structure.
  • the lattice matching between the ferroelectric film and the lower electrode is greater than that of the lower electrode compared to the ferroelectric film. It is preferable that a second buffer layer formed of a material having good properties is provided.
  • the material of the buffer layer is a conductive material.
  • At least one of the material of the first buffer layer and the material of the second buffer layer is a conductive material.
  • the ferroelectric film is a pyroelectric film, and the thermal conductivity of the material of the buffer layer is smaller than the thermal conductivity of silicon.
  • the ferroelectric film is a pyroelectric film, and the thermal conductivity of the material of the first buffer layer and the material of the second buffer layer is smaller than the thermal conductivity of silicon. It is preferable.
  • FIG. 1 is a schematic plan view of a main part of a ferroelectric device according to a first embodiment. It is AA 'schematic sectional drawing in FIG. 1A.
  • 1 is a schematic cross-sectional view of a ferroelectric device according to a first embodiment.
  • 1 is a schematic exploded perspective view of a ferroelectric device according to a first embodiment.
  • 6 is a schematic cross-sectional view of a ferroelectric device of Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view of a ferroelectric device of Embodiment 3.
  • FIG. It is a schematic sectional drawing of the ferroelectric device which shows a prior art example.
  • the device body 1 of the ferroelectric device includes a silicon substrate (hereinafter referred to as a first silicon substrate) 10, a first electrode 14 a formed on one surface side of the first silicon substrate 10, A ferroelectric film 14b formed on the opposite side of the electrode 14a from the first silicon substrate 10 side, and a second electrode 14c formed on the opposite side of the ferroelectric film 14b from the first electrode 14a side.
  • a silicon substrate hereinafter referred to as a first silicon substrate
  • a ferroelectric film 14b formed on the opposite side of the electrode 14a from the first silicon substrate 10 side
  • a second electrode 14c formed on the opposite side of the ferroelectric film 14b from the first electrode 14a side.
  • the first and second electrodes 14a and 14c are referred to as a lower electrode 14a and an upper electrode 14c, respectively.
  • the first silicon substrate 10 a single crystal silicon substrate having the above (100) surface is used, and the ferroelectric film 14b is formed of a ferroelectric material having a lattice constant difference from silicon. ing.
  • the ferroelectric device of this embodiment is a power generation device that converts vibration energy caused by arbitrary vibration such as vibration of a car or vibration of a person into electric energy, and the ferroelectric film 14b described above is a piezoelectric film. Is configured.
  • the device body 1 includes a buffer layer 14d.
  • the buffer layer 14d is disposed between the silicon substrate 10 and the lower electrode 14a (more specifically, directly below the lower electrode 14a), and is a ferroelectric film compared to silicon. It is formed of a material having good lattice matching with 14b.
  • the first silicon substrate 10 is formed with a cavity 10a that exposes a part of the surface of the buffer layer 14d opposite to the lower electrode 14a side (that is, a part of the lower surface of the buffer layer 14d). .
  • insulating films 19 a and 19 b (hereinafter referred to as a first insulating film) made of a silicon oxide film, respectively. 19a, referred to as second insulating film 19b).
  • the buffer layer 14 d is formed on the surface side of the first insulating film 19 a on the one surface side of the first silicon substrate 10.
  • the device body 1 is formed using a micromachining technique or the like, and includes a frame-shaped frame portion 11 and a weight portion 13 disposed inside the frame portion 11 as shown in FIG. 1A. The weight portion 13 is swingably supported by the frame portion 11 via the cantilever portion 12 on the one surface side of the first silicon substrate 10.
  • the cantilever portion 12 is formed with a functional portion 14 including the above-described lower electrode 14a, ferroelectric film 14b, and upper electrode 14c.
  • the functional unit 14 constitutes a power generation unit (piezoelectric conversion unit) that generates an AC voltage according to the vibration of the cantilever unit 12.
  • the frame portion 11 and the weight portion 13 described above are constituted by a part of each of the second insulating film 19b, the first silicon substrate 10, the first insulating film 19a, and the buffer layer 14d.
  • the layer 14d is configured.
  • the device body 1 includes pads 17a and 17c.
  • the pads 17a and 17c are formed at portions corresponding to the frame portion 11 on the one surface side of the first silicon substrate 10, and are electrically connected to the lower electrode 14a and the upper electrode 14c via metal wirings 16a and 16c, respectively. Has been.
  • the device main body 1 includes a metal wiring 16 c and an insulating layer 18 on the one surface side of the first silicon substrate 10.
  • the metal wiring 16c defines an area where the upper electrode 14c and the ferroelectric film 14b are in contact and is electrically connected to the upper electrode 14c.
  • the insulating layer 18 is formed so as to cover the peripheral portions of the lower electrode 14a and the ferroelectric film 14b, and prevents a short circuit between the metal wiring 16c and the lower electrode 14a. Further, the insulating layer 18 is formed over a wide range of the frame portion 11, and both the pads 17 a and 17 c described above are formed on the insulating layer 18.
  • the insulating layer 18 is composed of a silicon oxide film, but is not limited to a silicon oxide film, and may be composed of, for example, a silicon nitride film. Further, the first silicon substrate 10 and the functional unit 14 are electrically insulated by the first insulating film 19a.
  • the metal wiring 16c and the upper electrode 14c of this embodiment are formed from one member as shown in FIG. 1B and FIG.
  • the present invention is not limited to this, and the upper electrode 14c and the metal wiring 16c may be formed from different members.
  • the device body 1 is laminated on the one surface side of the first silicon substrate 10 in a laminated structure including a buffer layer 14d, a lower electrode 14a, a ferroelectric film 14b, and an upper electrode 14c.
  • the reinforcing layer 15 is provided (in FIG. 1A and FIG. 3, illustration of the reinforcing layer 15 is omitted).
  • the reinforcing layer 15 is formed across the peripheral portion of the functional portion 14, the frame portion 11, and the weight portion 13.
  • the reinforcing layer 15 is preferably made of a material having good consistency with a so-called semiconductor process, and may be formed of an insulating material made of polyimide, fluorine resin, or the like.
  • the ferroelectric device includes a first cover substrate 2 fixed to the frame portion 11 on one surface side of the device body 1. Further, the ferroelectric device includes a second cover substrate 3 fixed to the frame portion 11 on the other surface side of the device body 1.
  • the first cover substrate 2 is formed using the second silicon substrate 20. Then, a recess 20 b for forming a displacement space of the movable portion 123 composed of the cantilever portion 12 and the weight portion 13 between the device body 1 and one surface of the second silicon substrate 20 on the device body 1 side. Is formed.
  • external connection electrodes 25 and 25 that are electrically connected to the functional unit 14 are formed on the other surface side of the second silicon substrate 20.
  • the external connection electrodes 25 and 25 function as output electrodes for supplying an AC voltage generated by the power generation unit which is the function unit 14 to the outside.
  • the external connection electrodes 25, 25 are the connection electrodes 24, 24 formed on the one surface side of the second silicon substrate 20, and the through-hole wiring 23, which penetrates in the thickness direction of the second silicon substrate 20, Each is electrically connected through 23.
  • the contact electrodes 24 and 24 are joined and electrically connected to the pads 17a and 17c of the device body 1, respectively.
  • the external connection electrodes 25 and 25 and the connection electrodes 24 and 24 are formed of a laminated film of a Ti film and an Au film, but these materials are not particularly limited.
  • Cu is adopted as the material of each through-hole wiring 23, 23, it is not limited thereto, and for example, Ni, Al, etc. may be adopted.
  • the first cover substrate 2 includes an insulating film 22 in order to prevent a short circuit between the two external connection electrodes 25 and 25.
  • the insulating film 22 is made of a silicon oxide film, and is formed on the one surface side and the other surface side of the second silicon substrate 20 and the inner peripheral surface of the through hole 21 in which the through hole wirings 23 and 23 are formed. It is formed straddling.
  • the first cover substrate 2 may be formed using an insulating substrate such as a glass substrate instead of the second silicon substrate 20, and in this case, it is not necessary to provide the insulating film 22.
  • the second cover substrate 3 is formed using a third silicon substrate 30. On one surface of the third silicon substrate 30 on the device main body 1 side, a recess 30 b for forming a displacement space of the movable portion 123 between the device main body 1 is formed. Note that the second cover substrate 3 may be formed using an insulating substrate such as a glass substrate instead of the third silicon substrate 30.
  • a first bonding metal layer 118 for bonding to the first cover substrate 2 is formed on the one surface side of the first silicon substrate 10.
  • a second bonding metal layer 128 (see FIG. 2) bonded to the first bonding metal layer 118 is formed.
  • the material of the first bonding metal layer 118 the same material as that of the pad 17c is adopted, and the first bonding metal layer 118 is a pad on the one surface side of the first silicon substrate 10. It is formed to the same thickness as 17c.
  • the first bonding metal layer 118 is formed on the insulating layer 18.
  • the device body 1 and the cover substrates 2 and 3 are bonded by the room temperature bonding method, but not limited to the room temperature bonding method, for example, a direct bonding method in which appropriate heating is performed, or an epoxy resin or the like is used. Bonding may be performed by a resin bonding method, an anodic bonding method, or the like.
  • a resin bonding method if a room temperature curable resin adhesive (for example, a two-part room temperature curable epoxy resin adhesive, a one part room temperature curable epoxy resin adhesive) is used, a thermosetting resin adhesive is used. Compared to the case of using a thermosetting epoxy resin adhesive (for example), the bonding temperature can be lowered.
  • the functional part 14 is composed of the lower electrode 14a, the ferroelectric film 14b that is a piezoelectric film, and the upper electrode 14c. Therefore, the ferroelectric film of the functional part 14 is caused by the vibration of the cantilever part 12. 14b receives stress, and a bias of electric charge is generated between the upper electrode 14c and the lower electrode 14a, and an AC voltage is generated in the functional unit 14.
  • the ferroelectric device of this embodiment employs PZT, which is a kind of lead-based oxide ferroelectric, as the ferroelectric material of the ferroelectric film 14b.
  • PZT is a kind of lead-based oxide ferroelectric
  • a single crystal silicon substrate whose one surface is a (100) plane is used.
  • the lead-based oxide ferroelectric is not limited to PZT, and may be, for example, PZT-PMN (: Pb (Mn, Nb) O 3 ) or PZT added with other impurities.
  • the ferroelectric material of the ferroelectric film 14b is a ferroelectric material having a lattice constant difference from silicon (PZT, PZT-PMN, lead-based oxide ferroelectric such as PZT doped with impurities). Body).
  • Pt is used as the material of the lower electrode 14a
  • Au is used as the material of the upper electrode 14c.
  • these materials are not particularly limited, and examples of the material of the lower electrode 14a include: Au, Al, or Ir may be employed, and as the material of the upper electrode 14c, for example, Mo, Al, Pt, or the like may be employed.
  • the material of the buffer layer 14d is SrRuO 3 , but is not limited to this.
  • (Pb, La) TiO 3 , PbTiO 3 , MgO, LaNiO 3, or the like may be used.
  • the buffer layer 14d may be constituted by a laminated film of a Pt film and a SrRuO 3 film, for example.
  • the thickness of the buffer layer 14d is 2 ⁇ m
  • the thickness of the lower electrode 14a is 500 nm
  • the thickness of the ferroelectric film 14b is 600 nm
  • the thickness of the upper electrode 14c is 100 nm.
  • these numerical values are merely examples and are not particularly limited. If the relative dielectric constant of the ferroelectric film 14b is ⁇ and the power generation index is P, the relationship P ⁇ e 31 2 / ⁇ is established, and the power generation efficiency increases as the power generation index P increases.
  • e 31 is the piezoelectric constant e 31 of the ferroelectric film 14b.
  • insulating films 19a and 19b made of a silicon oxide film are formed on the entire surface of the first silicon substrate 10 on the one surface side and the other surface side by a thermal oxidation method.
  • a buffer layer 14d is formed on the entire surface of the first silicon substrate 10 on the one surface side (here, on the first insulating film 19a) by a sputtering method, a CVD method, an evaporation method, or the like.
  • a lower electrode 14a is formed on the entire surface of the buffer layer 14d opposite to the first silicon substrate 10 side by sputtering, CVD, vapor deposition, or the like, and the lower electrode 14a is opposite to the buffer layer 14d side.
  • a ferroelectric film 14b is formed on the entire surface by sputtering, CVD, sol-gel, or the like.
  • the ferroelectric film 14b is patterned using a photolithography technique and an etching technique, and then the lower electrode 14a is patterned using a photolithography technique and an etching technique.
  • a lower electrode 14a having a predetermined shape and a metal wiring 16a made of a part of the lower electrode 14a before patterning are formed.
  • the patterned lower electrode 14a and metal wiring 16a can be regarded as one lower electrode 14a.
  • an insulating layer 18 having a predetermined shape is formed on the one surface side of the first silicon substrate 10, and subsequently, the upper electrode 14c, the metal wiring 16c, the pads 17a and 17c, and the first
  • the bonding metal layer 118 is formed using a thin film formation technique such as a sputtering method or a CVD method, a photolithography technique, or an etching technique. Thereafter, a reinforcing layer 15 made of a polyimide layer is formed.
  • the insulating layer 18 is formed on the entire surface of the first surface of the first silicon substrate 10 by a CVD method or the like, and then patterned using a photolithography technique and an etching technique.
  • the insulating layer 18 may be formed using a lift-off method.
  • the reinforcing layer 15 when, for example, photosensitive polyimide is used as the material of the reinforcing layer 15, polyimide coating, exposure, development, curing, and the like may be sequentially performed.
  • the material and formation method of the reinforcement layer 15 are examples, and are not specifically limited.
  • the frame portion 11, the cantilever portion 12, and the weight portion 13 are formed by processing the first silicon substrate 10 and the insulating films 19a and 19b using a photolithography technique and an etching technique.
  • the device body 1 is formed.
  • the first silicon substrate 10 is etched from the other surface side by reactive ion etching using SF 6 gas as an etching gas, and the first insulating film 19a is used as an etching stopper layer. The selective etching is performed.
  • the first insulating film 19a is etched from the other surface side of the first silicon substrate 10 by reactive anisotropic etching using a fluorine-based gas or a chlorine-based gas as an etching gas.
  • etching is performed using the layer 14d as an etching stopper layer. Further, when etching unnecessary portions of the buffer layer 14d, the buffer layer 14d is etched by physical etching (sputter etching) using only argon gas as an etching gas.
  • the cover substrates 2 and 3 are joined to the device body 1 to obtain the ferroelectric device having the structure shown in FIG. 2.
  • a dicing process is performed. By doing so, it is divided into individual ferroelectric devices.
  • the cover substrates 2 and 3 bonded to the device body 1 may be formed by appropriately applying known processes such as a photolithography process, an etching process, a thin film forming process, and a plating process.
  • the ferroelectric device does not necessarily include the cover substrates 2 and 3, and may include only one of the cover substrates 2 and 3, or does not include the cover substrates 2 and 3. It may be a thing.
  • the buffer layer 14d can be used as an etching stopper layer when the cavity 10a is formed. And the site
  • the reproducibility of the thickness of the buffer layer 14d) can be improved, and a portion immediately below the functional portion 14 (here, the buffer layer) in the plane of one silicon wafer on which a large number of device bodies 1 are formed.
  • the in-plane variation in the thickness of the portion immediately below the functional unit 14 is almost equal to the buffer layer 14d. It is determined by the in-plane variation in thickness during film formation.
  • the ferroelectric device of the present embodiment described above is formed on the lower electrode 14a formed on the one surface side of the first silicon substrate 10 and on the opposite side of the lower electrode 14a from the first silicon substrate 10 side. And the upper electrode 14c formed on the opposite side of the ferroelectric film 14b from the lower electrode 14a side, and the ferroelectric film 14b has a lattice constant difference from that of silicon.
  • a buffer layer 14d made of a material having better lattice matching with the ferroelectric film 14b than silicon is provided immediately below the lower electrode 14a.
  • a cavity 10a is formed in the silicon substrate 10 to expose the surface of the buffer layer 14d opposite to the lower electrode 14a side.
  • the buffer layer 14d can be used as an etching stopper layer when forming the cavity 10a. And the site
  • the ferroelectric device of the present embodiment has at least a laminated structure including the buffer layer 14d, the lower electrode 14a, the ferroelectric film 14b, and the upper electrode 14c on the one surface side of the first silicon substrate 10. Since the reinforcing layer 15 that is partially laminated to reinforce the laminated structure is provided, the thin films of the buffer layer 14d, the lower electrode 14a, the ferroelectric film 14b, and the upper electrode 14c are damaged due to vibration. It is possible to prevent the thin films from being cracked. In particular, in the power generation device that is the ferroelectric device of the present embodiment, it is possible to prevent the cantilever portion 12 constituted by a part of the buffer layer 14d from being damaged, and it is possible to improve the reliability. .
  • a conductive material such as SrRuO 3 is employed as the material of the buffer layer 14d, so that an electric field generated by strain during vibration of the cantilever portion 12 can be efficiently extracted. This improves the power generation characteristics that are device characteristics.
  • the above-described first insulating film 19a is not necessarily provided.
  • the first silicon substrate 10 is disposed from the other surface side.
  • the first silicon substrate 10 may be selectively etched using the buffer layer 14d as an etching stopper layer.
  • the first insulating film 19a need not be provided if the lower electrode 14a and the first silicon substrate 10 may have the same potential.
  • the plurality of functional units 14 are provided on the one surface side of the first silicon substrate 10 and the lower electrodes 14a of the plurality of functional units 14 have a common potential, the first insulation is also provided.
  • the film 19a may not be provided.
  • the basic configuration of the ferroelectric device of the present embodiment is substantially the same as that of the first embodiment.
  • the buffer layer hereinafter referred to as the first buffer layer 14d immediately below the lower electrode 14a.
  • the second buffer layer 14e made of a material having better lattice matching with the ferroelectric film 14b than the lower electrode 14a is provided between the ferroelectric film 14b and the lower electrode 14a.
  • symbol is attached
  • the manufacturing method of the ferroelectric device of the present embodiment is substantially the same as the manufacturing method described in the first embodiment. After forming the lower electrode 14a on the entire surface of the one surface side of the silicon substrate 10, the above-described manufacturing method of the silicon substrate 10 is performed. The difference is that the ferroelectric film 14b is formed on the entire surface of the one surface side of the silicon substrate 10 after the second buffer layer 14e is formed on the entire surface of the one surface side.
  • the material of the second buffer layer 14e may be the same material as the first buffer layer 14d or a different material. However, at least the second buffer layer 14e is preferably a conductive material.
  • the crystallinity of the ferroelectric film 14b can be further improved as compared with the first embodiment.
  • the ferroelectric device of the present embodiment includes a silicon substrate 10, a lower electrode 14a formed on one surface side of the silicon substrate 10, and a ferroelectric formed on the opposite side of the lower electrode 14a to the silicon substrate 10 side.
  • a body film 14b and an upper electrode 14c formed on the opposite side of the ferroelectric film 14b from the lower electrode 14a side are provided.
  • the silicon substrate 10 a single crystal silicon substrate having one surface of (100) is used, and the ferroelectric film 14b is formed of a ferroelectric material having a lattice constant difference from Si. ing.
  • symbol is attached
  • the ferroelectric device in this embodiment is a pyroelectric infrared sensor, and the ferroelectric film 14b constitutes a pyroelectric film.
  • a buffer layer 14d made of a material having better lattice matching with the ferroelectric film 14b than silicon is provided. Further, the silicon substrate 10 is formed with a cavity 10a that exposes the surface of the buffer layer 14d opposite to the lower electrode 14a side.
  • insulating films 19a and 19b (hereinafter referred to as the first insulating film 19a and the second insulating film 19b) made of a silicon oxide film are formed.
  • a buffer layer 14d is formed on the surface side of the first insulating film 19a on the one surface side of the silicon substrate 10.
  • the ferroelectric device of the present embodiment employs PZT, which is a kind of lead-based oxide ferroelectric, as the ferroelectric material (pyroelectric material) of the ferroelectric film 14b.
  • the oxide ferroelectric is not limited to PZT, and for example, a PZT-based ferroelectric added with PZT-PLT, PLT, PZT-PMN, or other impurities may be employed.
  • the pyroelectric material of the ferroelectric film 14b is a ferroelectric material (PZT, PZT-PMN, lead such as PZT doped with impurities) having a lattice constant difference from that of silicon, which is the material of the silicon substrate 10. Oxide oxide ferroelectrics).
  • SrRuO 3 is used as the material of the buffer layer 14d, but is not limited thereto, and for example, (Pb, La) TiO 3 , PbTiO 3 , MgO, LaNiO 3 or the like may be used. Good. Further, the buffer layer 14d may be constituted by a laminated film of a Pt film and a SrRuO 3 film, for example.
  • the material of the lower electrode 14a is adopted as the material of the lower electrode 14a, and an infrared absorbing material having conductivity such as Ni—Cr, Ni, gold black, etc. is adopted as the material of the upper electrode 14c.
  • the electrode 14a, the pyroelectric thin film 14b, and the upper electrode 14c constitute the functional unit 14 including a sensing element.
  • these materials are not particularly limited, and examples of the material of the lower electrode 14a include Au Al, Cu, etc. may be used.
  • the upper electrode 14c also serves as an infrared absorbing film.
  • the cavity 10 a constitutes a cavity for thermal insulation between the functional unit 14 and the silicon substrate 10.
  • the ferroelectric device is laminated on the one surface side of the silicon substrate 10 in a laminated structure including the buffer layer 14d, the lower electrode 14a, the ferroelectric film 14b, and the upper electrode 14c to reinforce the laminated structure.
  • the reinforcing layer 15 is provided.
  • the reinforcing layer 15 is formed across the peripheral part of the functional part 14 and the peripheral part of the cavity 10 a in the silicon substrate 10.
  • the reinforcing layer 15 is preferably made of a material having good consistency with a so-called semiconductor process, and may be formed of an insulating material made of polyimide, fluorine resin, or the like.
  • the material of the buffer layer 14d is preferably a material having a lower thermal conductivity than silicon.
  • the thermal conductivity of silicon is about 145 to 156 W / m ⁇ K
  • the thermal conductivity of SrRuO 3 is about 5.97 W / m ⁇ K.
  • the thickness of the buffer layer 14d is set to 1 to 2 ⁇ m
  • the thickness of the lower electrode 24a is set to 100 nm
  • the thickness of the ferroelectric film 24b is set to 1 ⁇ m to 3 ⁇ m
  • the thickness of the upper electrode 24c is set to 50 nm.
  • these numerical values are examples and are not particularly limited.
  • the ferroelectric device of this embodiment is a pyroelectric infrared sensor as described above.
  • the ferroelectric film 14b has a pyroelectric coefficient ⁇ [C / (cm 2 ⁇ K)], a dielectric constant ⁇ ,
  • the performance index of the electric infrared sensor (pyroelectric device) is F ⁇ [C / (cm 2 ⁇ J)]
  • the relationship of F ⁇ / ⁇ holds, and the pyroelectric coefficient ⁇ of the ferroelectric film 14b increases.
  • the figure of merit F ⁇ increases.
  • insulating films 19a and 19b made of a silicon oxide film are formed on the entire surface of the one surface side and the other surface side of the silicon substrate 10 by a thermal oxidation method.
  • the buffer layer 14d is formed on the entire surface of the silicon substrate 10 on the one surface side (here, on the first insulating film 19a) by a sputtering method, a CVD method, an evaporation method, or the like.
  • the lower electrode 14a is formed on the entire surface of the buffer layer 14d opposite to the silicon substrate 10 by sputtering, CVD, vapor deposition, or the like, and the entire surface of the lower electrode 14a opposite to the buffer layer 14d is formed.
  • the ferroelectric film 14b is formed by sputtering, CVD, sol-gel method or the like.
  • the ferroelectric film 14b is patterned using a photolithography technique and an etching technique, and then the lower electrode 14a is patterned using a photolithography technique and an etching technique.
  • the upper electrode 14c having a predetermined shape is formed on the one surface side of the silicon substrate 10 by using a thin film forming technique such as a sputtering method or a CVD method, a photolithography technique, and an etching technique.
  • a reinforcing layer 15 made of a polyimide layer is formed.
  • the reinforcing layer 15 for example, when photosensitive polyimide is used as the material of the reinforcing layer 15, polyimide coating, exposure, development, curing, and the like may be sequentially performed.
  • the material and formation method of the reinforcement layer 15 are examples, and are not specifically limited.
  • the cavity 10a is formed by processing the silicon substrate 10 and the insulating films 19a and 19b using a photolithography technique and an etching technique.
  • the selective etching using the first insulating film 19a as an etching stopper layer is performed by etching the silicon substrate 10 from the other surface side by reactive ion etching using SF 6 gas as an etching gas. I do.
  • the first insulating film 19a is etched from the other surface side of the silicon substrate 10 by reactive anisotropic etching using fluorine gas or chlorine gas as an etching gas, and the buffer layer 14d is formed. Selective etching is performed using the etching stopper layer.
  • the dicing process is performed to perform individual ferroelectrics. It is divided into devices.
  • the buffer layer 14d can be used as an etching stopper layer when the cavity 10a is formed. Therefore, without using a very expensive SOI substrate as compared with the silicon substrate 10, a portion (here, a portion) formed immediately below the functional unit 14 including the lower electrode 14a, the ferroelectric film 14b, and the upper electrode 14c.
  • the reproducibility of the thickness of the buffer layer 14d) can be enhanced, and a portion (here, the buffer layer 14d) immediately below the functional portion 14 in the plane of one silicon wafer on which a large number of pyroelectric infrared sensors are formed. Only) can be reduced.
  • the in-plane variation in the thickness of the portion immediately below the functional unit 14 is almost equal to the buffer layer 14d. It is determined by the in-plane variation in thickness during film formation.
  • the ferroelectric device of the present embodiment described above includes a lower electrode 14a formed on the one surface side of the silicon substrate 10 and a ferroelectric film formed on the opposite side of the lower electrode 14a to the silicon substrate 10 side. 14b and an upper electrode 14c formed on the opposite side of the ferroelectric film 14b to the lower electrode 14a side, and the ferroelectric film 14b is formed of a ferroelectric material having a lattice constant difference from silicon.
  • a buffer layer 14d made of a material having better lattice matching with the ferroelectric film 14b than silicon is provided immediately below the lower electrode 14a, and the buffer layer 14d is formed on the silicon substrate 10.
  • a cavity 10a that exposes the surface opposite to the lower electrode 14a side is formed.
  • the buffer layer 14d can be used as an etching stopper layer when forming the cavity 10a. Therefore, the crystallinity and performance (here, pyroelectric coefficient ⁇ ) of the ferroelectric film 14b can be improved, and device characteristics (here, performance index, response speed, etc.) can be improved at low cost.
  • the ferroelectric device of the present embodiment is formed on at least a part of the laminated structure including the buffer layer 14d, the lower electrode 14a, the ferroelectric film 14b, and the upper electrode 14c on the one surface side of the silicon substrate 10. Since the reinforcing layer 15 that is laminated and reinforces the laminated structure is provided, each thin film of the buffer layer 14d, the lower electrode 14a, the ferroelectric film 14b, and the upper electrode 14c is damaged due to vibration or the like. It is possible to prevent the thin film from cracking.
  • the first insulating film 19a is not necessarily provided.
  • the silicon substrate 10 is etched from the other surface side. Further, the silicon substrate 10 may be selectively etched using the buffer layer 14d as an etching stopper layer. Even when a conductive material is used as the material of the buffer layer 14d, the first insulating film 19a need not be provided if the lower electrode 14a and the silicon substrate 10 may be at the same potential. Also, when the plurality of functional units 14 are provided on the one surface side of one silicon substrate 10 and the lower electrodes 14a of the plurality of functional units 14 have a common potential, the first insulating film 19a is provided. It does not have to be provided.
  • the ferroelectric device having the configuration shown in FIG. 5 described above is a pyroelectric infrared sensor including only one functional unit 14 that is a sensing element.
  • a pyroelectric infrared array sensor arranged in a two-dimensional array may be used.
  • a second buffer layer 14e made of a material having better lattice matching with the ferroelectric film 14b than the lower electrode 14a may be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 強誘電体デバイスは、シリコン基板(第1の基板)10の上記一表面側に形成された下部電極(第1の電極)14aと、下部電極14aにおける第1の基板10側とは反対側に形成された強誘電体膜14bと、強誘電体膜14bにおける下部電極14a側とは反対側に形成された上部電極(第2の電極)14cとを備え、強誘電体膜14bが、シリコンとは格子定数差のある強誘電体材料により形成されている。下部電極14aの直下に、シリコンに比べて強誘電体膜14bとの格子整合性の良い材料からなる緩衝層14dが設けられ、第1の基板10に、緩衝層14dにおける下部電極14a側とは反対の表面を露出させる空洞10aが形成されている。

Description

強誘電体デバイス
 本発明は、強誘電体膜の圧電効果や焦電効果を利用する強誘電体デバイスに関するものである。
 従来から、強誘電体膜の圧電効果や焦電効果を利用する強誘電体デバイスが注目されている。
 この種の強誘電体デバイスとしては、低コスト化、機械的強度などの観点から、シリコン基板の一表面側に強誘電体膜を含む機能部を備えたMEMS(micro  electro mechanical systems)デバイスが提案されている。この種のMEMSデバイスとしては、例えば、強誘電体膜の圧電効果を利用する発電デバイス(例えば、R. van Schaijk,et al,「Piezoelectric AlN energy harvesters for wireless autonomoustransducer solutions」,IEEE SENSORS 2008 Conference,2008,p.45-48を参照)やアクチュエータ、強誘電体膜の焦電効果を利用する焦電型赤外線センサなどの焦電デバイス(例えば、日本国特許公開8-321640号公報を参照)が各所で研究開発されている。なお、圧電効果および焦電効果を示す強誘電体材料としては、例えば、鉛系の酸化物強誘電体の一種であるPZT(:Pb(Zr,Ti)O3)などが広く知られている。
 上記のR. van Schaijkの文献に開示された発電デバイスは、図6に示すように、シリコン基板50を用いて形成されたデバイス本体41を備えている。このデバイス本体41は、フレーム部51と、フレーム部51の内側に配置されフレーム部51に揺動自在に支持されたカンチレバー部(ビーム)52と、カンチレバー部52の先端部に設けられた錘部53とを備えている。また、デバイス本体41は、カンチレバー部52に、カンチレバー部52の振動に応じて交流電圧を発生する発電部を構成する機能部54が形成されている。
 機能部54は、Pt膜からなる下部電極54Aと、下部電極54Aにおけるカンチレバー部52側とは反対側に形成されたAlN薄膜もしくはPZT薄膜からなる強誘電体膜(圧電膜)54Bと、強誘電体膜54Bにおける下部電極54A側とは反対側に形成されたAl膜からなる上部電極54Cとで構成されている。
 なお、上記のR. van Schaijkの文献では、発電デバイスの出力を高めるために、強誘電体膜54Bである圧電膜の材料として、比誘電率が小さく、かつ圧電定数e31が大きな圧電材料を採用することが提案されている。
 また、上述の発電デバイスは、第1のガラス基板60Aを用いて形成されデバイス本体41の一表面側(図6の上面側)においてフレーム部51が固着された第1のカバー基板42と、第2のガラス基板70Aを用いて形成されデバイス本体41の他表面側(図6の下面側)においてフレーム部51が固着された第2のカバー基板43とを備えている。
 なお、各カバー基板42,43と、デバイス本体41のカンチレバー部52と錘部53とからなる可動部との間には、当該可動部の変位空間61,71が形成されている。
 ところで、図6に示した構成の発電デバイスのデバイス本体41は、シリコン基板50の上記一表面側に下部電極54Aと強誘電体膜54Bと上部電極54Cとからなる機能部54を反応性スパッタ法などにより形成している。
 しかしながら、一般的に、シリコン基板の一表面側にスパッタ法などの各種の薄膜形成技術により成膜されるPZT薄膜は多結晶であり、シリコン基板に比べて非常に高価な単結晶MgO基板の一表面側や単結晶SrTiO3基板の一表面側に成膜される単結晶のPZT薄膜に比べて、結晶性が劣り、圧電定数e31も低い。なお、単結晶のシリコン基板の一表面側に結晶性の優れたPZT薄膜を形成する方法については各所で研究開発が行われているが、充分な結晶性を有するPZT薄膜は得られていないのが現状である。
 そこで、シリコン基板の一表面側に強誘電体膜を含む機能部を備えた発電デバイスや焦電型赤外線センサなどの強誘電体デバイスにおいては、下部電極と強誘電体膜との間に緩衝層を設けることで特性の向上を図る研究が行われている。
 しかしながら、一般的に、シリコン基板の一表面側に下部電極と強誘電体膜と上部電極とを具備する機能部を形成して、シリコン基板の他表面側から機能部に対応する部位を所定深さまでエッチングすることによってシリコン基板に空洞を形成することで製造される発電デバイスや焦電型赤外線センサなどの強誘電体デバイスでは、シリコン基板において機能部の直下の残す薄肉部(図6の例では、カンチレバー部52)の厚みの再現性が低く、シリコン基板のもととなるシリコンウェハでの薄肉部の面内ばらつきが大きいため、製造歩留まりが低くコストが高くなってしまう。また、強誘電体デバイスが焦電型赤外線センサである場合には、薄肉部の熱容量に起因してデバイス特性(応答速度など)が低下してしまう。
 そこで、シリコン基板に代えてSOI(silicon on insulator)基板を用いる、つまり、製造時に、シリコンウェハに代えてSOIウェハを用いることも考えられるが、SOIウェハはシリコンウェハに比べて非常に高価であり、コストが高くなってしまう。
 そこで、本発明の目的は、強誘電体膜の結晶性および性能の向上を図れ、且つ、低コストでデバイス特性の向上を図れる強誘電体デバイスを提供することにある。
 本発明の強誘電体デバイスは、シリコン基板と、前記シリコン基板の一表面側に形成された第1の電極と、前記第1の電極における前記シリコン基板側とは反対側に形成された強誘電体膜と、前記強誘電体膜における前記第1の電極側とは反対側に形成された第2の電極とを備え、前記強誘電体膜が、シリコンとは格子定数差のある強誘電体材料により形成された強誘電体デバイスであって、前記シリコン基板と前記第1の電極との間に、シリコンに比べて前記強誘電体膜との格子整合性の良い材料により形成された緩衝層が設けられ、前記シリコン基板は、前記緩衝層における前記第1の電極側とは反対の表面を露出させる空洞が形成されてなることを特徴とする。
 この発明によれば、強誘電体膜の結晶性および性能の向上を図れ、且つ、低コストでデバイス特性の向上を図れる。
 この強誘電体デバイスにおいて、前記第1の電極は、下部電極として前記強誘電体膜の下表面側に配置され、前記第2の電極は、上部電極として前記強誘電体膜の上表面側に配置され、前記緩衝層は、前記下部電極の直下に設けられ、前記緩衝層の下表面の少なくとも一部が前記シリコン基板の前記空洞を通じて露出されることが好ましい。
 この強誘電体デバイスにおいて、前記シリコン基板の前記一表面側に、前記緩衝層と前記下部電極と前記強誘電体膜と前記上部電極とを具備する積層構造の少なくとも一部に積層されて前記積層構造を補強する補強層を備えることが好ましい。
 この強誘電体デバイスにおいて、前記緩衝層からなる第1の緩衝層とは別に、前記強誘電体膜と前記下部電極との間に、前記下部電極に比べて前記強誘電体膜との格子整合性の良い材料により形成された第2の緩衝層が設けられていることが好ましい。
 この強誘電体デバイスにおいて、前記緩衝層の前記材料が導電性材料であることが好ましい。
 この強誘電体デバイスにおいて、前記第1の緩衝層の材料及び前記第2の緩衝層の材料のうち少なくとも一方が導電性材料であることが好ましい。
 この強誘電体デバイスにおいて、前記強誘電体膜が焦電体膜であり、前記緩衝層の前記材料の熱伝導率がシリコンの熱伝導率よりも小さいことが好ましい。
 この強誘電体デバイスにおいて、前記強誘電体膜が焦電体膜であり、前記第1の緩衝層の材料及び前記第2の緩衝層の材料の熱伝導率がシリコンの熱伝導率よりも小さいことが好ましい。
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
実施形態1の強誘電体デバイスの要部概略平面図である。 図1AにおけるA-A’概略断面図である。 実施形態1の強誘電体デバイスの概略断面図である。 実施形態1の強誘電体デバイスの概略分解斜視図である。 実施形態2の強誘電体デバイスの概略断面図である。 実施形態3の強誘電体デバイスの概略断面図である。 従来例を示す強誘電体デバイスの概略断面図である。
 (実施形態1)
 まず、本実施形態の強誘電体デバイスについて図1A,図1B,図2及び図3を参照しながら説明する。
 強誘電体デバイスのデバイス本体1は、シリコン基板(以下、第1のシリコン基板と称する)10と、第1のシリコン基板10の一表面側に形成された第1の電極14aと、第1の電極14aにおける第1のシリコン基板10側とは反対側に形成された強誘電体膜14bと、強誘電体膜14bにおける第1の電極14a側とは反対側に形成された第2の電極14cとを備える。すなわち、図1Bにおいて、第1の電極14aは、下部電極として強誘電体膜14bの下表面側に配置される。また、第2の電極14cは、上部電極として強誘電体膜14bの上表面側に配置される。以下、第1及び第2電極14a,14cは、それぞれ下部電極14a、上部電極14cと称する。第1のシリコン基板10としては、上記一表面が(100)面の単結晶のシリコン基板を用いており、強誘電体膜14bは、シリコンとは格子定数差のある強誘電体材料により形成されている。
 本実施形態の強誘電体デバイスは、車の振動や人の動きによる振動などの任意の振動に起因した振動エネルギを電気エネルギに変換する発電デバイスであり、上述の強誘電体膜14bが圧電膜を構成している。
 また、デバイス本体1は、緩衝層14dを備える。緩衝層14dは、図1B及び図2に示すようにシリコン基板10と下部電極14aとの間に(より具体的には下部電極14aの直下に)配設され、シリコンに比べて強誘電体膜14bとの格子整合性の良い材料により形成される。また、第1のシリコン基板10には、緩衝層14dにおける下部電極14a側とは反対の表面の一部(つまり、緩衝層14dの下表面の一部)を露出させる空洞10aが形成されている。
 ここで、図1B及び図2に示すように、第1のシリコン基板10の上記一表面側および他表面側には、それぞれシリコン酸化膜からなる絶縁膜19a,19b(以下、第1の絶縁膜19a、第2の絶縁膜19bと称する)が形成される。緩衝層14dは、第1のシリコン基板10の上記一表面側の第1の絶縁膜19aの表面側に形成されている。そして、デバイス本体1は、マイクロマシンニング技術などを利用して形成されており、図1Aに示すように、枠状のフレーム部11と、フレーム部11の内側に配置された錘部13とを備え、錘部13が第1のシリコン基板10の上記一表面側のカンチレバー部12を介してフレーム部11に揺動自在に支持されている。また、カンチレバー部12には、上述の下部電極14aと強誘電体膜14bと上部電極14cとを具備する機能部14が形成されている。ここにおいて、本実施形態の強誘電体デバイスでは、機能部14が、カンチレバー部12の振動に応じて交流電圧を発生する発電部(圧電変換部)を構成している。
 上述のフレーム部11と錘部13とは、第2の絶縁膜19b、第1のシリコン基板10、第1の絶縁膜19aおよび緩衝層14dそれぞれの一部により構成され、カンチレバー部12は、緩衝層14dにより構成されている。
 デバイス本体1は、パッド17a,17cを備える。パッド17a,17cは、第1のシリコン基板10の上記一表面側のフレーム部11に対応する部位に形成され、下部電極14aおよび上部電極14cそれぞれに金属配線16a,16cを介して電気的に接続されている。
 また、デバイス本体1は、第1のシリコン基板10の上記一表面側に、金属配線16c及び絶縁層18を備える。金属配線16cは、上部電極14cと強誘電体膜14bとの接するエリアを規定し且つ上部電極14cに電気的に接続される。そして、絶縁層18は、下部電極14aおよび強誘電体膜14bそれぞれの周部を覆うように形成され、金属配線16cと下部電極14aとの短絡を防止する。また、絶縁層18は、フレーム部11の広い範囲に亘って形成されており、上述の両パッド17a,17cが絶縁層18上に形成されている。絶縁層18は、シリコン酸化膜により構成してあるが、シリコン酸化膜に限らず、例えば、シリコン窒化膜により構成してもよい。また、第1のシリコン基板10と機能部14とは、第1の絶縁膜19aにより電気的に絶縁されている。
 なお、本実施形態の金属配線16cと上部電極14cは、図1B及び図2に示すように一つの部材から形成されている。しかし、これに限定されるものではなく、上部電極14cと金属配線16cとが別々の部材から形成されてもよい。
 また、デバイス本体1は、第1のシリコン基板10の上記一表面側に、緩衝層14dと下部電極14aと強誘電体膜14bと上部電極14cとを具備する積層構造に積層されて当該積層構造を補強する補強層15を備えている(なお、図1Aおよび図3では、補強層15の図示を省略してある)。この補強層15は、機能部14の周部とフレーム部11と錘部13とに跨って形成されている。補強層15は、いわゆる半導体プロセスとの整合性の良い材料を用いることが好ましく、例えば、ポリイミドやフッ素系樹脂などからなる絶縁材料により形成すればよい。
 また、強誘電体デバイスは、図2及び図3に示すように、デバイス本体1の一表面側においてフレーム部11に固着された第1のカバー基板2を備えている。また、強誘電体デバイスは、デバイス本体1の他表面側においてフレーム部11に固着された第2のカバー基板3を備えている。
 第1のカバー基板2は、第2のシリコン基板20を用いて形成されている。そして、第2のシリコン基板20におけるデバイス本体1側の一表面には、カンチレバー部12と錘部13とからなる可動部123の変位空間をデバイス本体1との間に形成するための凹所20bが形成されている。
 また、第2のシリコン基板20の他表面側には、機能部14に電気的に接続される外部接続電極25,25が形成されている。ここで、外部接続電極25,25は、機能部14である発電部で発生した交流電圧を外部へ供給するための出力用電極として機能する。
 外部接続電極25,25は、第2のシリコン基板20の上記一表面側に形成された連絡用電極24,24と、第2のシリコン基板20の厚み方向に貫設された貫通孔配線23,23を介してそれぞれ電気的に接続されている。ここで、連絡用電極24,24は、デバイス本体1のパッド17a,17cとそれぞれ接合されて電気的に接続されている。なお、本実施形態では、各外部接続電極25,25および各連絡用電極24,24をTi膜とAu膜との積層膜により構成してあるが、これらの材料は特に限定するものではない。また、各貫通孔配線23,23の材料としてはCuを採用しているが、これに限らず、例えば、Ni、Alなどを採用してもよい。
 第1のカバー基板2は、2つの外部接続電極25,25同士の短絡を防止するために絶縁膜22を備える。絶縁膜22は、シリコン酸化膜からなり、第2のシリコン基板20の上記一表面側および上記他表面側と、貫通孔配線23,23が内側に形成された貫通孔21の内周面とに跨って形成されている。なお、第1のカバー基板2は、第2のシリコン基板20に代えてガラス基板のような絶縁性基板を用いて形成してもよく、この場合は絶縁膜22を設ける必要はない。
 また、第2のカバー基板3は、第3のシリコン基板30を用いて形成されている。第3のシリコン基板30におけるデバイス本体1側の一表面には、可動部123の変位空間をデバイス本体1との間に形成するための凹所30bが形成されている。なお、第2のカバー基板3は、第3のシリコン基板30に代えてガラス基板のような絶縁性基板を用いて形成してもよい。
 また、第1のシリコン基板10の上記一表面側には、第1のカバー基板2と接合するための第1の接合用金属層118が形成されており、第2のシリコン基板20の上記一表面側には、第1の接合用金属層118に接合される第2の接合用金属層128(図2参照)が形成されている。ここで、第1の接合用金属層118の材料としては、パッド17cと同じ材料を採用しており、第1の接合用金属層118は、第1のシリコン基板10の上記一表面側においてパッド17cと同じ厚さに形成されている。また、第1の接合用金属層118は、絶縁層18上に形成されている。
 デバイス本体1と各カバー基板2,3とは、常温接合法により接合してあるが、常温接合法に限らず、例えば、適宜の加熱を行う直接接合法でもよいし、エポキシ樹脂などを用いた樹脂接合法や、陽極接合法などにより接合してもよい。樹脂接合法では、常温硬化型の樹脂接着剤(例えば、2液常温硬化型のエポキシ樹脂系接着剤、1液常温硬化型のエポキシ樹脂系接着剤)を用いれば、熱硬化型の樹脂接着剤(例えば、熱硬化型のエポキシ樹脂系接着剤など)を用いる場合に比べて、接合温度の低温化を図れる。
 以上説明した発電デバイスでは、機能部14が下部電極14aと圧電膜である強誘電体膜14bと上部電極14cとで構成されているから、カンチレバー部12の振動によって機能部14の強誘電体膜14bが応力を受け上部電極14cと下部電極14aとに電荷の偏りが発生し、機能部14において交流電圧が発生する。
 ところで、本実施形態の強誘電体デバイスは、強誘電体膜14bの強誘電体材料として、鉛系の酸化物強誘電体の一種であるPZTを採用しており、第1のシリコン基板10として、上記一表面が(100)面の単結晶のシリコン基板を用いている。ここにおいて、鉛系の酸化物強誘電体は、PZTに限らず、例えば、PZT-PMN(:Pb(Mn,Nb)O3)やその他の不純物を添加したPZTなどを採用してもよい。いずれにしても、強誘電体膜14bの強誘電体材料は、シリコンとは格子定数差のある強誘電体材料(PZT、PZT-PMN、不純物を添加したPZTなどの鉛系の酸化物強誘電体)である。
 また、本実施形態では、下部電極14aの材料としてPt、上部電極14cの材料としてAuを採用しているが、これらの材料は特に限定するものではなく、下部電極14aの材料としては、例えば、Au、Al、Irを採用してもよく、上部電極14cの材料としては、例えば、Mo、Al、Ptなどを採用してもよい。
 また、緩衝層14dの材料としては、SrRuO3を採用しているが、これに限らず、例えば、(Pb,La)TiO3やPbTiO3、MgO、LaNiO3などを採用してもよい。また、緩衝層14dは、例えば、Pt膜とSrRuO3膜との積層膜により構成してもよい。
 なお、本実施形態の強誘電体デバイス(発電デバイス)では、緩衝層14dの厚みを2μm、下部電極14aの厚みを500nm、強誘電体膜14bの厚みを600nm、上部電極14cの厚みを100nmに設定してあるが、これらの数値は一例であって特に限定するものではない。また、強誘電体膜14bの比誘電率をε、発電指数をPとすると、P∝e31 2/εの関係が成り立ち、発電指数Pが大きいほど発電効率が大きくなる。ここで、e31は、強誘電体膜14bの圧電定数e31である。
 以下、本実施形態の強誘電体デバイスである発電デバイスの製造方法について簡単に説明する。
 まず、第1のシリコン基板10の上記一表面側および上記他表面側それぞれの全面にシリコン酸化膜からなる絶縁膜19a,19bを熱酸化法により形成する。その後、第1のシリコン基板10の上記一表面側(ここでは、第1の絶縁膜19a上)の全面に、緩衝層14dをスパッタ法、CVD法、蒸着法などにより成膜する。続いて、緩衝層14dにおける第1のシリコン基板10側とは反対側の全面に下部電極14aをスパッタ法、CVD法、蒸着法などにより成膜し、下部電極14aにおける緩衝層14d側とは反対側の全面に強誘電体膜14bをスパッタ法、CVD法、ゾルゲル法などにより成膜する。
 強誘電体膜14bを成膜した後、フォトリソグラフィ技術およびエッチング技術を利用して強誘電体膜14bをパターニングし、続いて、フォトリソグラフィ技術およびエッチング技術を利用して下部電極14aをパターニングすることで所定形状の下部電極14aとパターニング前の下部電極14aの一部からなる金属配線16aとを形成する。なお、パターニング後の下部電極14aと金属配線16aとで1つの下部電極14aとみなすこともできる。
 金属配線16aを形成した後、第1のシリコン基板10の上記一表面側に所定形状の絶縁層18を形成し、続いて、上部電極14c、金属配線16c、各パッド17a,17cおよび第1の接合用金属層118をスパッタ法やCVD法などの薄膜形成技術、フォトリソグラフィ技術、エッチング技術を利用して形成する。その後、ポリイミド層からなる補強層15を形成する。所定形状の絶縁層18の形成にあたっては、第1のシリコン基板10の上記一表面側の全面に絶縁層18をCVD法などにより成膜してからフォトリソグラフィ技術およびエッチング技術を利用してパターニングしているが、リフトオフ法を利用して絶縁層18を形成するようにしてもよい。また、補強層15の形成にあたっては、補強層15の材料として例えば感光性のポリイミドを採用する場合、ポリイミドの塗布、露光、現像、キュアなどを順次行えばよい。なお、補強層15の材料および形成方法は、一例であり、特に限定するものではない。
 補強層15を形成した後、フォトリソグラフィ技術およびエッチング技術などを利用して第1のシリコン基板10および各絶縁膜19a,19bを加工してフレーム部11、カンチレバー部12および錘部13を形成することによりデバイス本体1を形成する。この加工にあたっては、エッチングガスとしてSF6ガスなどを用いた反応性イオンエッチングにより、第1のシリコン基板10を上記他表面側からエッチングするようにし、第1の絶縁膜19aをエッチングストッパ層として利用した選択エッチングを行う。続いて、エッチングガスとしてフッ素系ガスもしくは塩素系ガスなどを用いた反応性異方性エッチングにより、第1の絶縁膜19aを第1のシリコン基板10の上記他表面側からエッチングするようにし、緩衝層14dをエッチングストッパ層として利用した選択エッチングを行う。また、緩衝層14dの不要部分のエッチングに際しては、エッチングガスとしてアルゴンガスのみを用いた物理的なエッチング(スパッタエッチング)により、緩衝層14dをエッチングする。
 デバイス本体1を形成した後、デバイス本体1に各カバー基板2,3を接合することによって、図2に示す構造の強誘電体デバイスを得る。ここにおいて、デバイス本体1に各カバー基板2,3を接合する工程が終了するまでをウェハレベルで行ってから(つまり、各シリコン基板10,20,30それぞれについてシリコンウェハを用いる)、ダイシング工程を行うことで個々の強誘電体デバイスに分割するようにしている。デバイス本体1に接合する各カバー基板2,3は、フォトリソグラフィ工程、エッチング工程、薄膜形成工程、めっき工程などの周知の工程を適宜適用して形成すればよい。なお、強誘電体デバイスは、必ずしも各カバー基板2,3を備えている必要はなく、両カバー基板2,3の一方のみを備えていてもよいし、両カバー基板2,3を備えていないものでもよい。
 上述の強誘電体デバイスの製造方法では、空洞10aを形成する際のエッチングストッパ層として緩衝層14dを利用することができる。そして、緩衝層14dのうちの空洞10aにより露出された部位がそのままカンチレバー部12(肉薄部)となる。従って、第1のシリコン基板10に比べて非常に高価なSOI基板を用いることなく、下部電極14aと強誘電体膜14bと上部電極14cとを具備する機能部14の直下に形成される部位(ここでは、緩衝層14d)の厚みの再現性を高めることができるとともに、多数のデバイス本体1を形成した1枚のシリコンウェハの面内での機能部14の直下の部位(ここでは、緩衝層14dのみ)の厚みのばらつきを低減することができる。すなわち、空洞10aを形成する際に、最終的に緩衝層14dをエッチングストッパ層とした選択エッチングを行っているので、機能部14の直下の部位の厚みの面内ばらつきは、ほぼ、緩衝層14dの成膜時の厚みの面内ばらつきにより決まる。
 以上説明した本実施形態の強誘電体デバイスは、第1のシリコン基板10の上記一表面側に形成された下部電極14aと、下部電極14aにおける第1のシリコン基板10側とは反対側に形成された強誘電体膜14bと、強誘電体膜14bにおける下部電極14a側とは反対側に形成された上部電極14cとを備え、強誘電体膜14bが、シリコンとは格子定数差のある強誘電体材料により形成された強誘電体デバイスであって、下部電極14aの直下に、シリコンに比べて強誘電体膜14bとの格子整合性の良い材料からなる緩衝層14dが設けられ、第1のシリコン基板10に、緩衝層14dにおける下部電極14a側とは反対の表面を露出させる空洞10aが形成されている。そのため、空洞10aを形成する際に緩衝層14dをエッチングストッパ層として利用することができる。そして、緩衝層14dのうちの空洞10aにより露出された部位がそのままカンチレバー部12(肉薄部)となる。従って、強誘電体膜14bの結晶性および性能(ここでは、圧電定数e31)の向上を図れ、且つ、低コストでデバイス特性である発電特性(発電効率など)の向上を図れる。
 また、本実施形態の強誘電体デバイスは、第1のシリコン基板10の上記一表面側に、緩衝層14dと下部電極14aと強誘電体膜14bと上部電極14cとを具備する積層構造の少なくとも一部に積層されて当該積層構造を補強する補強層15を備えているので、振動に起因して緩衝層14d、下部電極14a、強誘電体膜14b、上部電極14cの各薄膜が破損したり当該各薄膜に亀裂が入るのを防止することが可能となる。特に、本実施形態の強誘電体デバイスである発電デバイスにおいては、緩衝層14dの一部により構成されるカンチレバー部12が破損するのを防止することができ、信頼性を高めることが可能となる。
 また、本実施形態の強誘電体デバイスでは、緩衝層14dの材料として例えばSrRuO3などの導電性材料を採用しているので、カンチレバー部12の振動時のひずみによって生じる電界を効率良く取り出すことができ、デバイス特性である発電特性が向上する。
 また、緩衝層14dの材料として絶縁材料を採用するような場合には、上述の第1の絶縁膜19aは必ずしも設ける必要はなく、この場合は、第1のシリコン基板10を上記他表面側からエッチングする際に緩衝層14dをエッチングストッパ層として、第1のシリコン基板10を選択エッチングすればよい。また、緩衝層14dの材料として導電性材料を採用した場合でも、下部電極14aと第1のシリコン基板10とが同電位でもよい場合には、第1の絶縁膜19aは設ける必要はない。また、複数の機能部14を1つの第1のシリコン基板10の上記一表面側に設けて、これら複数の機能部14の下部電極14a同士を共通電位とするような場合も、第1の絶縁膜19aを設けなくてもよい。
 (実施形態2)
 本実施形態の強誘電体デバイスの基本構成は実施形態1と略同じであり、図4に示すように、下部電極14a直下の緩衝層(以下、第1の緩衝層と称する)14dとは別に、強誘電体膜14bと下部電極14aとの間に、下部電極14aに比べて強誘電体膜14bとの格子整合性の良い材料からなる第2の緩衝層14eを設けてある点が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
 本実施形態の強誘電体デバイスの製造方法は実施形態1において説明した製造方法と略同じであり、シリコン基板10の上記一表面側の全面に下部電極14aを形成した後、シリコン基板10の上記一表面側の全面に第2の緩衝層14eを形成してから、シリコン基板10の上記一表面側の全面に強誘電体膜14bを形成するようにしている点などが相違する。第2の緩衝層14eの材料は、第1の緩衝層14dと同じ材料でもよいし、異なる材料でもよい。ただし、少なくとも第2の緩衝層14eは、導電性材料であることが好ましい。
 本実施形態の強誘電体デバイスでは、強誘電体膜14bの直下に第2の緩衝層14eを備えているので、実施形態1に比べて、強誘電体膜14bの結晶性をより向上できる。
 (実施形態3)
 以下、本実施形態の強誘電体デバイスについて図5を参照しながら説明する。
 本実施形態の強誘電体デバイスは、シリコン基板10と、このシリコン基板10の一表面側に形成された下部電極14aと、下部電極14aにおけるシリコン基板10側とは反対側に形成された強誘電体膜14bと、強誘電体膜14bにおける下部電極14a側とは反対側に形成された上部電極14cとを備える。ここで、シリコン基板10としては、上記一表面が(100)面の単結晶のシリコン基板を用いており、強誘電体膜14bは、Siとは格子定数差のある強誘電体材料により形成されている。なお、強誘電体デバイスとして実施形態1と同様の構成要素には、同一の符号を付してある。
 本実施形態における強誘電体デバイスは、焦電型赤外線センサであり、強誘電体膜14bが焦電体膜を構成している。
 また、下部電極14aの直下には、シリコンに比べて強誘電体膜14bとの格子整合性の良い材料からなる緩衝層14dが設けられている。また、シリコン基板10には、緩衝層14dにおける下部電極14a側とは反対の表面を露出させる空洞10aが形成されている。
 ここで、シリコン基板10の上記一表面側および他表面側それぞれには、シリコン酸化膜からなる絶縁膜19a,19b(以下、第1の絶縁膜19a、第2の絶縁膜19bと称する)が形成され、シリコン基板10の上記一表面側の第1の絶縁膜19aの表面側には緩衝層14dが形成されている。
 本実施形態の強誘電体デバイスは、強誘電体膜14bの強誘電体材料(焦電材料)として、鉛系の酸化物強誘電体の一種であるPZTを採用しているが、鉛系の酸化物強誘電体は、PZTに限らず、例えば、PZT-PLT、PLTやPZT-PMNなどやその他の不純物を添加したPZT系強誘電体などを採用してもよい。いずれにしても、強誘電体膜14bの焦電材料は、シリコン基板10の材料であるシリコンとは格子定数差のある強誘電体材料(PZT、PZT-PMN、不純物を添加したPZTなどの鉛系の酸化物強誘電体)である。これに対して、緩衝層14dの材料としては、SrRuO3を採用しているが、これに限らず、例えば、(Pb,La)TiO3やPbTiO3、MgO、LaNiO3などを採用してもよい。また、緩衝層14dは、例えば、Pt膜とSrRuO3膜との積層膜により構成してもよい。
 また、本実施形態では、下部電極14aの材料として、Ptを採用し、上部電極14cの材料として、Ni-Cr、Ni、金黒などの導電性を有する赤外線吸収材料を採用しており、下部電極14aと焦電体薄膜14bと上部電極14cとでセンシングエレメントからなる機能部14を構成しているが、これらの材料は特に限定するものではなく、下部電極14aの材料としては、例えば、Au、Al、Cuなどを採用してもよい。ここで、上部電極14cの材料として、上述の導電性を有する赤外線吸収材料を採用した場合、上部電極14cが赤外線吸収膜を兼ねることとなる。また、本実施形態では、空洞10aが、機能部14とシリコン基板10との熱絶縁用の空洞を構成する。
 また、強誘電体デバイスは、シリコン基板10の上記一表面側に、緩衝層14dと下部電極14aと強誘電体膜14bと上部電極14cとを具備する積層構造に積層されて当該積層構造を補強する補強層15を備えている。この補強層15は、機能部14の周部とシリコン基板10における空洞10aの周部とに跨って形成されている。補強層15は、いわゆる半導体プロセスとの整合性の良い材料を用いることが好ましく、例えば、ポリイミドやフッ素系樹脂などからなる絶縁材料により形成すればよい。
 ところで、本実施形態の強誘電体デバイスのような焦電型赤外線センサでは、センサ特性の向上を図るためには、機能部14とシリコン基板10との間の断熱性を高める必要があるので、緩衝層14dの材料としては、シリコンよりも熱伝導率の小さな材料が好ましい。ここにおいて、シリコンの熱伝導率は、145~156W/m・K程度であるのに対して、SrRuO3の熱伝導率は、5.97W/m・K程度であることが知られている。
 なお、本実施形態の焦電デバイスでは、緩衝層14dの厚みを1~2μm、下部電極24aの厚みを100nm、強誘電体膜24bの厚みを1μm~3μm、上部電極24cの厚みを50nmに設定してあるが、これらの数値は一例であって特に限定するものではない。
 本実施形態の強誘電体デバイスは、上述のように焦電型赤外線センサであり、強誘電体膜14bの焦電係数をγ〔C/(cm2・K)〕、誘電率をε、焦電型赤外線センサ(焦電デバイス)の性能指数をFγ〔C/(cm2・J)〕とすると、Fγ∝γ/εの関係が成り立ち、強誘電体膜14bの焦電係数γが大きいほど、性能指数Fγが大きくなる。
 以下、本実施形態の強誘電体デバイスである焦電型赤外線センサの製造方法について説明するが、実施形態1で説明した強誘電体デバイスの製造方法と同様の工程については説明を適宜省略する。
 まず、シリコン基板10の上記一表面側および上記他表面側それぞれの全面にシリコン酸化膜からなる絶縁膜19a,19bを熱酸化法により形成する。その後、シリコン基板10の上記一表面側(ここでは、第1の絶縁膜19a上)の全面に、緩衝層14dをスパッタ法、CVD法、蒸着法などにより成膜する。続いて、緩衝層14dにおけるシリコン基板10側とは反対側の全面に下部電極14aをスパッタ法、CVD法、蒸着法などにより成膜し、下部電極14aにおける緩衝層14d側とは反対側の全面に強誘電体膜14bをスパッタ法、CVD法、ゾルゲル法などにより成膜する。
 強誘電体膜14bを成膜した後、フォトリソグラフィ技術およびエッチング技術を利用して強誘電体膜14bをパターニングし、続いて、フォトリソグラフィ技術およびエッチング技術を利用して下部電極14aをパターニングする。
 その後、シリコン基板10の上記一表面側に所定形状の上部電極14cをスパッタ法やCVD法などの薄膜形成技術、フォトリソグラフィ技術、エッチング技術を利用して形成する。その後、ポリイミド層からなる補強層15を形成する。補強層15の形成にあたっては、補強層15の材料として例えば感光性のポリイミドを採用する場合、ポリイミドの塗布、露光、現像、キュアなどを順次行えばよい。なお、補強層15の材料および形成方法は、一例であり、特に限定するものではない。
 補強層15を形成した後、フォトリソグラフィ技術およびエッチング技術などを利用してシリコン基板10および各絶縁膜19a,19bを加工して空洞10aを形成する。この加工にあたっては、エッチングガスとしてSF6ガスなどを用いた反応性イオンエッチングにより、シリコン基板10を上記他表面側からエッチングするようにし、第1の絶縁膜19aをエッチングストッパ層として利用した選択エッチングを行う。続いて、エッチングガスとしてフッ素系ガスもしくは塩素系ガスなどを用いた反応性異方性エッチングにより、第1の絶縁膜19aをシリコン基板10の上記他表面側からエッチングするようにし、緩衝層14dをエッチングストッパ層として利用した選択エッチングを行う。
 ここにおいて、空洞10aを形成する工程が終了するまでをウェハレベルで行ってから(つまり、シリコンウェハに多数の強誘電体デバイスを形成してから)、ダイシング工程を行うことで個々の強誘電体デバイスに分割するようにしている。
 上述の強誘電体デバイスの製造方法では、空洞10aを形成する際のエッチングストッパ層として緩衝層14dを利用することができる。従って、シリコン基板10に比べて非常に高価なSOI基板を用いることなく、下部電極14aと強誘電体膜14bと上部電極14cとを具備する機能部14の直下に形成される部位(ここでは、緩衝層14d)の厚みの再現性を高めることができるとともに、多数の焦電型赤外線センサを形成した1枚のシリコンウェハの面内での機能部14の直下の部位(ここでは、緩衝層14dのみ)の厚みのばらつきを低減することができる。すなわち、空洞10aを形成する際に、最終的に緩衝層14dをエッチングストッパ層とした選択エッチングを行っているので、機能部14の直下の部位の厚みの面内ばらつきは、ほぼ、緩衝層14dの成膜時の厚みの面内ばらつきにより決まる。
 以上説明した本実施形態の強誘電体デバイスは、シリコン基板10の上記一表面側に形成された下部電極14aと、下部電極14aにおけるシリコン基板10側とは反対側に形成された強誘電体膜14bと、強誘電体膜14bにおける下部電極14a側とは反対側に形成された上部電極14cとを備え、強誘電体膜14bが、シリコンとは格子定数差のある強誘電体材料により形成された強誘電体デバイスであって、下部電極14aの直下に、シリコンに比べて強誘電体膜14bとの格子整合性の良い材料からなる緩衝層14dが設けられ、シリコン基板10に、緩衝層14dにおける下部電極14a側とは反対の表面を露出させる空洞10aが形成されている。そのため、空洞10aを形成する際に緩衝層14dをエッチングストッパ層として利用することができる。従って、強誘電体膜14bの結晶性および性能(ここでは、焦電係数γ)の向上を図れ、且つ、低コストでデバイス特性(ここでは、性能指数や、応答速度など)の向上を図れる。
 また、本実施形態の強誘電体デバイスは、シリコン基板10の上記一表面側に、緩衝層14dと下部電極14aと強誘電体膜14bと上部電極14cとを具備する積層構造の少なくとも一部に積層されて当該積層構造を補強する補強層15を備えているので、振動などに起因して緩衝層14d、下部電極14a、強誘電体膜14b、上部電極14cの各薄膜が破損したり当該各薄膜に亀裂が入るのを防止することが可能となる。
 また、本実施形態の強誘電体デバイスでは、緩衝層14dの材料として例えばSrRuO3などの導電性材料を採用しているので、デバイス特性が向上する。
 また、緩衝層14dの材料として絶縁材料を採用するような場合には、上述の第1の絶縁膜19aは必ずしも設ける必要はなく、この場合は、シリコン基板10を上記他表面側からエッチングする際に緩衝層14dをエッチングストッパ層として、シリコン基板10を選択エッチングすればよい。また、緩衝層14dの材料として導電性材料を採用した場合でも、下部電極14aとシリコン基板10とが同電位でもよい場合には、第1の絶縁膜19aは設ける必要はない。また、複数の機能部14を1つのシリコン基板10の上記一表面側に設けて、これら複数の機能部14の下部電極14a同士を共通電位とするような場合も、第1の絶縁膜19aを設けなくてもよい。
 上述の図5に示した構成の強誘電体デバイスは、センシングエレメントである機能部14を1つだけ備えた焦電型赤外線センサであるが、これに限らず、例えば、複数の機能部14が2次元アレイ状に配列された焦電型赤外線アレイセンサでもよい。
 また、本実施形態の強誘電体デバイスにおいても、実施形態2と同様、下部電極14a直下の緩衝層(第1の緩衝層)14dとは別に、強誘電体膜14bと下部電極14aとの間に、下部電極14aに比べて強誘電体膜14bとの格子整合性の良い材料からなる第2の緩衝層14eを設けてもよい。
 本発明を幾つかの好ましい実施形態について記述したが、この発明の本来の精神および範囲、即ち請求の範囲を逸脱することなく、当業者によって様々な修正および変形が可能である。

Claims (9)

  1.  シリコン基板と、前記シリコン基板の一表面側に形成された第1の電極と、前記第1の電極における前記シリコン基板側とは反対側に形成された強誘電体膜と、前記強誘電体膜における前記第1の電極側とは反対側に形成された第2の電極とを備え、前記強誘電体膜が、シリコンとは格子定数差のある強誘電体材料により形成された強誘電体デバイスであって、
     前記シリコン基板と前記第1の電極との間に、シリコンに比べて前記強誘電体膜との格子整合性の良い材料により形成された緩衝層が設けられ、
     前記シリコン基板は、前記緩衝層における前記第1の電極側とは反対の表面を露出させる空洞が形成されてなることを特徴とする強誘電体デバイス。
  2.  前記第1の電極は、下部電極として前記強誘電体膜の下表面側に配置され、
     前記第2の電極は、上部電極として前記強誘電体膜の上表面側に配置され、
     前記緩衝層は、前記下部電極の直下に設けられ、
     前記緩衝層の下表面の少なくとも一部が前記シリコン基板の前記空洞を通じて露出されることを特徴とする請求項1記載の強誘電体デバイス。
  3.  前記シリコン基板の前記一表面側に、前記緩衝層と前記下部電極と前記強誘電体膜と前記上部電極とを具備する積層構造の少なくとも一部に積層されて前記積層構造を補強する補強層を備えることを特徴とする請求項2記載の強誘電体デバイス。
  4.  前記緩衝層からなる第1の緩衝層とは別に、前記強誘電体膜と前記下部電極との間に、前記下部電極に比べて前記強誘電体膜との格子整合性の良い材料により形成された第2の緩衝層が設けられていることを特徴とする請求項2記載の強誘電体デバイス。
  5.  前記緩衝層の前記材料が導電性材料であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の強誘電体デバイス。
  6.  前記第1の緩衝層の材料及び前記第2の緩衝層の材料のうちの少なくとも一方が導電性材料であることを特徴とする請求項4記載の強誘電体デバイス。
  7.  前記強誘電体膜が焦電体膜であり、前記緩衝層の前記材料の熱伝導率がシリコンの熱伝導率よりも小さいことを特徴とする請求項1ないし請求項3のいずれか1項に記載の強誘電体デバイス。
  8.  前記強誘電体膜が焦電体膜であり、前記緩衝層の前記材料の熱伝導率がシリコンの熱伝導率よりも小さいことを特徴とする請求項5記載の強誘電体デバイス。
  9.  前記強誘電体膜が焦電体膜であり、前記第1の緩衝層の材料及び前記第2の緩衝層の材料の熱伝導率がシリコンの熱伝導率よりも小さいことを特徴とする請求項4または請求項6に記載の強誘電体デバイス。
PCT/JP2011/059521 2010-04-21 2011-04-18 強誘電体デバイス WO2011132636A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11771971.6A EP2562837A4 (en) 2010-04-21 2011-04-18 FERROELECTRIC DEVICE
KR1020127027356A KR101382516B1 (ko) 2010-04-21 2011-04-18 강유전체 디바이스
US13/642,208 US20130032906A1 (en) 2010-04-21 2011-04-18 Ferroelectric device
CN201180019864.2A CN102859735B (zh) 2010-04-21 2011-04-18 强电介质器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010098204A JP5632643B2 (ja) 2010-04-21 2010-04-21 強誘電体デバイス
JP2010-098204 2010-04-21

Publications (1)

Publication Number Publication Date
WO2011132636A1 true WO2011132636A1 (ja) 2011-10-27

Family

ID=44834155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059521 WO2011132636A1 (ja) 2010-04-21 2011-04-18 強誘電体デバイス

Country Status (7)

Country Link
US (1) US20130032906A1 (ja)
EP (1) EP2562837A4 (ja)
JP (1) JP5632643B2 (ja)
KR (1) KR101382516B1 (ja)
CN (1) CN102859735B (ja)
TW (1) TWI437741B (ja)
WO (1) WO2011132636A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023244B1 (ja) * 2012-01-13 2012-09-12 浩平 速水 振動力発電装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110920A (ja) * 2011-11-24 2013-06-06 Panasonic Corp 発電装置
JP5943506B2 (ja) * 2011-12-09 2016-07-05 浩平 速水 振動力発電装置
JP2013195212A (ja) * 2012-03-19 2013-09-30 Ngk Insulators Ltd 薄板振動素子およびその製造方法
WO2013145260A1 (ja) * 2012-03-30 2013-10-03 富士通株式会社 電子装置及びその製造方法
US10726231B2 (en) 2012-11-28 2020-07-28 Invensense, Inc. Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing
US9618405B2 (en) 2014-08-06 2017-04-11 Invensense, Inc. Piezoelectric acoustic resonator based sensor
US9114977B2 (en) * 2012-11-28 2015-08-25 Invensense, Inc. MEMS device and process for RF and low resistance applications
US9511994B2 (en) 2012-11-28 2016-12-06 Invensense, Inc. Aluminum nitride (AlN) devices with infrared absorption structural layer
US10497747B2 (en) * 2012-11-28 2019-12-03 Invensense, Inc. Integrated piezoelectric microelectromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing
TWI621242B (zh) * 2013-09-19 2018-04-11 伊凡聖斯股份有限公司 具有紅外線吸收結構層的氮化鋁(ain)裝置
US9574959B2 (en) * 2014-09-02 2017-02-21 Apple Inc. Various stress free sensor packages using wafer level supporting die and air gap technique
US9862592B2 (en) 2015-03-13 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS transducer and method for manufacturing the same
JP6861558B2 (ja) * 2017-03-31 2021-04-21 ローム株式会社 超音波装置
WO2018231210A1 (en) * 2017-06-14 2018-12-20 Intel Corporation Thin film ferroelectric materials and methods of fabrication thereof
JP7090249B2 (ja) * 2019-06-06 2022-06-24 国立大学法人 東京大学 静電型デバイスを製造する製造方法
CN113156230B (zh) * 2021-01-13 2022-10-14 西安理工大学 一种摩擦电能量采集器测试装置及测试方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167740A (ja) * 1994-12-10 1996-06-25 Horiba Ltd 焦電型赤外線薄膜素子
JPH08321640A (ja) 1995-05-26 1996-12-03 Matsushita Electric Ind Co Ltd 強誘電体素子及びその製造方法
JP2002214038A (ja) * 2001-01-17 2002-07-31 Matsushita Electric Ind Co Ltd 焦電型赤外線検出素子の製造方法
JP2004006722A (ja) * 2002-03-27 2004-01-08 Seiko Epson Corp 圧電アクチュエータ、インクジェット式ヘッド及び吐出装置
JP2008232896A (ja) * 2007-03-22 2008-10-02 Toyohashi Univ Of Technology 薄膜赤外線検出素子およびその製造方法
JP2009201101A (ja) * 2008-01-21 2009-09-03 Panasonic Electric Works Co Ltd Baw共振装置およびその製造方法
JP2011029274A (ja) * 2009-07-22 2011-02-10 Panasonic Electric Works Co Ltd 発電デバイスおよびその製造方法
JP2011071467A (ja) * 2009-08-28 2011-04-07 Panasonic Electric Works Co Ltd 強誘電体デバイスの製造方法
JP2011091319A (ja) * 2009-10-26 2011-05-06 Panasonic Electric Works Co Ltd 発電デバイス
JP2011091318A (ja) * 2009-10-26 2011-05-06 Panasonic Electric Works Co Ltd 発電デバイス

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866216B2 (ja) * 1991-02-15 1999-03-08 キヤノン株式会社 カンチレバーの製造方法
KR0141160B1 (ko) * 1995-03-22 1998-06-01 김광호 강유전체 메모리 장치 및 그 제조방법
US7268472B2 (en) * 2002-11-11 2007-09-11 Seiko Epson Corporation Piezoelectric device, liquid jetting head, ferroelectric device, electronic device and methods for manufacturing these devices
JP4058018B2 (ja) * 2003-12-16 2008-03-05 松下電器産業株式会社 圧電素子及びその製造方法、並びにその圧電素子を備えたインクジェットヘッド、インクジェット式記録装置及び角速度センサ
JP4192794B2 (ja) * 2004-01-26 2008-12-10 セイコーエプソン株式会社 圧電素子、圧電アクチュエーター、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振器、及び電子機器
JP2005294452A (ja) * 2004-03-31 2005-10-20 Fujitsu Ltd 薄膜積層体、その薄膜積層体を用いたアクチュエータ素子、フィルター素子、強誘電体メモリ、および光偏向素子
JP2008028030A (ja) * 2006-07-19 2008-02-07 Seiko Epson Corp 圧電素子および液体噴射ヘッド
JP5391395B2 (ja) * 2007-10-15 2014-01-15 日立金属株式会社 圧電薄膜付き基板及び圧電素子
CA2664969C (en) * 2008-05-02 2011-09-20 Francis V. Smith High tonnage trailer combination, trailer components, and method of use
JP5115330B2 (ja) * 2008-05-22 2013-01-09 セイコーエプソン株式会社 液体噴射ヘッドおよびそれを備えた液体噴射装置
JP2010161330A (ja) * 2008-12-08 2010-07-22 Hitachi Cable Ltd 圧電薄膜素子
KR101561662B1 (ko) * 2009-09-29 2015-10-21 삼성전자주식회사 곡선형 리드선들을 가진 압전형 마이크로 스피커 및 그 제조 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167740A (ja) * 1994-12-10 1996-06-25 Horiba Ltd 焦電型赤外線薄膜素子
JPH08321640A (ja) 1995-05-26 1996-12-03 Matsushita Electric Ind Co Ltd 強誘電体素子及びその製造方法
JP2002214038A (ja) * 2001-01-17 2002-07-31 Matsushita Electric Ind Co Ltd 焦電型赤外線検出素子の製造方法
JP2004006722A (ja) * 2002-03-27 2004-01-08 Seiko Epson Corp 圧電アクチュエータ、インクジェット式ヘッド及び吐出装置
JP2008232896A (ja) * 2007-03-22 2008-10-02 Toyohashi Univ Of Technology 薄膜赤外線検出素子およびその製造方法
JP2009201101A (ja) * 2008-01-21 2009-09-03 Panasonic Electric Works Co Ltd Baw共振装置およびその製造方法
JP2011029274A (ja) * 2009-07-22 2011-02-10 Panasonic Electric Works Co Ltd 発電デバイスおよびその製造方法
JP2011071467A (ja) * 2009-08-28 2011-04-07 Panasonic Electric Works Co Ltd 強誘電体デバイスの製造方法
JP2011091319A (ja) * 2009-10-26 2011-05-06 Panasonic Electric Works Co Ltd 発電デバイス
JP2011091318A (ja) * 2009-10-26 2011-05-06 Panasonic Electric Works Co Ltd 発電デバイス

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B.S.LEE ET AL.: "Power Harvesting Using Piezoelectric MEMS Generator with Interdigital Electrodes", 2007 IEEE ULTRASONICS SYMPOSIUM, 28 October 2007 (2007-10-28), pages 1598 - 1601 *
KAZUMASA SHIBATA ET AL.: "Micro electric power generation using a piezoelectric thin film", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS IIP2008 CONFERENCE ON INFORMATION, INTELLIGENCE AND PRECISION EQUIPMENT, 17 March 2008 (2008-03-17), pages 232 - 233 *
R. VAN SCHAIJK ET AL.: "Piezoelectric AIN energy harvesters for wireless autonomoustransducer solutions", IEEE SENSORS 2008 CONFERENCE, 2008, pages 45 - 48
See also references of EP2562837A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023244B1 (ja) * 2012-01-13 2012-09-12 浩平 速水 振動力発電装置

Also Published As

Publication number Publication date
CN102859735B (zh) 2015-04-15
KR20120139825A (ko) 2012-12-27
EP2562837A1 (en) 2013-02-27
JP5632643B2 (ja) 2014-11-26
JP2011228548A (ja) 2011-11-10
CN102859735A (zh) 2013-01-02
US20130032906A1 (en) 2013-02-07
EP2562837A4 (en) 2014-03-19
KR101382516B1 (ko) 2014-04-07
TWI437741B (zh) 2014-05-11
TW201203638A (en) 2012-01-16

Similar Documents

Publication Publication Date Title
JP5632643B2 (ja) 強誘電体デバイス
JP5658757B2 (ja) 振動発電素子およびそれを用いた振動発電装置
JP5399970B2 (ja) 強誘電体デバイスの製造方法
JP6365690B2 (ja) 圧電デバイスの製造方法
TWI455472B (zh) 振動發電裝置
JP5685719B2 (ja) 振動発電素子およびそれを用いた振動発電装置
JP2011071467A (ja) 強誘電体デバイスの製造方法
JP2011152010A (ja) 発電デバイス
JP5627279B2 (ja) 振動発電デバイスおよびその製造方法
JP2011091319A (ja) 発電デバイス
US20210343929A1 (en) Piezoelectric device
JP2011091318A (ja) 発電デバイス
WO2022116237A1 (zh) 压力传感器单元以及多维压力传感器及其制造方法
US11262246B2 (en) Pyroelectric detection device with rigid membrane
JP6421828B2 (ja) 圧電デバイスの製造方法
JP2012182187A (ja) 発電デバイス
WO2014020786A1 (ja) 発電デバイス
JP2011259186A (ja) 静電容量型電気機械変換装置及びその製造方法
JP2011091977A (ja) 発電デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019864.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011771971

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127027356

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13642208

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE