WO2022116237A1 - 压力传感器单元以及多维压力传感器及其制造方法 - Google Patents

压力传感器单元以及多维压力传感器及其制造方法 Download PDF

Info

Publication number
WO2022116237A1
WO2022116237A1 PCT/CN2020/134820 CN2020134820W WO2022116237A1 WO 2022116237 A1 WO2022116237 A1 WO 2022116237A1 CN 2020134820 W CN2020134820 W CN 2020134820W WO 2022116237 A1 WO2022116237 A1 WO 2022116237A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
layer
top electrode
sensor unit
bottom electrode
Prior art date
Application number
PCT/CN2020/134820
Other languages
English (en)
French (fr)
Inventor
杨睿峰
曾怀望
焦文龙
王淼
李嗣晗
Original Assignee
联合微电子中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联合微电子中心有限责任公司 filed Critical 联合微电子中心有限责任公司
Publication of WO2022116237A1 publication Critical patent/WO2022116237A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00

Definitions

  • the present disclosure relates to semiconductor technology, and in particular, to a pressure sensor unit and a multi-dimensional pressure sensor and a manufacturing method thereof.
  • Pressure sensors are widely used in electronic technology, instrumentation, Internet of Things and other fields to convert the pressure mechanics in the environment into electrical quantities that can be processed by electronic systems. With some breakthroughs in the research of piezoelectric materials, it is possible to introduce piezoelectric materials into planar technology, and the design and research of pressure sensors based on piezoelectric effect are also increasing.
  • piezoelectric sensors are generally based on d31 or d33 single-polarized sensors. For example, after a d33-based piezoelectric pressure sensor is subjected to force, it can detect the pressure generated in the direction of the sensitive axis, but cannot measure the pressure perpendicular to the sensitive axis. The pressure in the direction, which is dispersed to the pressure signal in the direction perpendicular to the sensitive axis will become the disturbance in the direction of the sensitive axis.
  • a pressure sensor unit comprising: a bottom electrode; a bottom electrode lead electrically connected to the bottom electrode; a piezoelectric material layer; a top electrode; a top electrode lead electrically connected to the top electrode, wherein , the bottom electrode, the piezoelectric material layer and the top electrode are sequentially stacked along the sensitive axis direction of the piezoelectric material layer for sensing pressure in the sensitive axis direction, and wherein one of the bottom electrode lead and the top electrode lead includes a resistor
  • the segment and lead segment, the resistive segment acts as a resistive sensor for sensing pressure along the length of the resistive segment.
  • a multi-dimensional pressure sensor comprising: a substrate; and a plurality of pressure sensor units, each pressure sensor unit is the pressure sensor unit described in any one of the above, wherein the plurality of pressure sensor units are The pressure sensor cells are arranged in an array on the substrate, and the bottom electrode is closer to the substrate than the top electrode.
  • a sensor circuit comprising a multi-dimensional pressure sensor according to any of the various embodiments of the present disclosure.
  • a method of manufacturing a multi-dimensional pressure sensor comprising: providing a substrate; forming sequentially stacked first metal layers, piezoelectric material layers, and second metal layers on the substrate; Two metal layers are patterned to form the top electrodes of the plurality of pressure sensor cells; the piezoelectric material layer is patterned to form the piezoelectric material layers of the plurality of pressure sensor cells; the first metal layer is patterned to form a plurality of a bottom electrode and a bottom electrode lead of a pressure sensor unit, wherein the bottom electrode lead is electrically connected to the corresponding bottom electrode; and the top electrode lead forming a plurality of pressure sensor units, wherein the top electrode lead is electrically connected to the corresponding top electrode, wherein, For each piezoelectric sensor cell: the sensitive axis direction of the piezoelectric material layer is substantially perpendicular to the substrate to enable the piezoelectric sensor cell to sense pressure in the sensitive axis direction, and one of the bottom electrode lead and the top electrode
  • FIG. 1A and 1B are schematic structural diagrams of a pressure sensor unit according to an exemplary embodiment of the present disclosure
  • Fig. 2 is a schematic diagram showing an equivalent circuit of the structure shown in Figs. 1A and 1B;
  • FIG. 3 is a schematic structural diagram of a multi-dimensional pressure sensor according to an exemplary embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method of fabricating a multi-dimensional pressure sensor according to an exemplary embodiment of the present disclosure.
  • 5A to 5M are schematic structural diagrams of example structures of device structures formed in various steps of a method of fabricating a multi-dimensional pressure sensor according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections It should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present disclosure.
  • Terms such as “before” or “before” and “after” or “followed by” may similarly be used, for example, to indicate the order in which light travels through elements.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
  • Embodiments of the disclosure are described herein with reference to schematic illustrations (and intermediate structures) of idealized embodiments of the disclosure. As such, variations to the shapes of the illustrations are to be expected, eg, as a result of manufacturing techniques and/or tolerances. Accordingly, embodiments of the present disclosure should not be construed as limited to the particular shapes of the regions illustrated herein, but are to include deviations in shapes due, for example, to manufacturing. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the present disclosure.
  • the pressure sensors based on piezoelectric materials are all based on d31 or d33 single-polarized sensors. Generally, only plane contact or point contact can act on the piezoelectric material to detect the pressure in the direction of the sensitive axis of the piezoelectric material, but cannot Multidimensional pressure measurement.
  • Exemplary embodiments of the present disclosure provide an improved pressure sensor unit and a pressure sensor including an array of the improved pressure sensor unit.
  • the pressure sensor according to the embodiment of the present disclosure can detect the pressure in multi-dimensional directions, and does not require complicated processes and is less difficult to manufacture.
  • the term “substrate” may refer to the substrate of a diced wafer, or may refer to the substrate of an un-diced wafer.
  • the terms chip and die are used interchangeably, unless such interchange would create a conflict.
  • the term “layer” includes films and should not be construed to indicate vertical or horizontal thickness unless otherwise specified.
  • the pressure sensor unit 100 includes a bottom electrode 110 , a bottom electrode lead 112 electrically connected to the bottom electrode 110 , a piezoelectric material layer 114 , a top electrode 116 , and an electrical connection to the top electrode 116 the top electrode lead 118.
  • the bottom electrode 110, the piezoelectric material layer 114 and the top electrode 116 are sequentially stacked along the sensitive axis direction of the piezoelectric material layer 114 for sensing pressure in the sensitive axis direction, and the bottom electrode lead 112 and the top electrode lead 118 are connected in sequence.
  • One includes a resistive segment 120 and a lead segment 122 .
  • the resistive segment 120 acts as a resistive sensor for sensing pressure along the length of the resistive segment 120 .
  • the pressure sensor unit can detect not only the pressure in the direction of the sensitive axis of the piezoelectric material layer, but also the force in the direction of the length of the resistance segment, without complicated processes, and with low manufacturing cost.
  • the piezoelectric constant of the piezoelectric material layer 114 is d33.
  • the piezoelectric constant characterizes the constant of the polarization (voltage) of the piezoelectric body under pressure.
  • the first number in the subscript of the piezoelectric constant d33 refers to the direction of the electric field, the second number refers to the direction of stress or strain, and "33" indicates that the polarization direction is the same as the direction of force applied during measurement.
  • the direction of the sensitive axis of the piezoelectric material layer 114 is perpendicular to the plane of the piezoelectric material layer 114 , and the bottom electrode 110 , the piezoelectric material layer 114 and the top electrode 116 are sequentially stacked.
  • 1A and 1B respectively illustrate the structure of the bottom electrode lead 112 in two different directions for sensing pressure in different directions.
  • the direction of the sensitive axis of the piezoelectric material layer 114 (ie, the direction perpendicular to the plane where the piezoelectric material layer 114 is located) is represented as the z direction, and the substantially extending direction of the top electrode lead 118 is represented as the y direction, then the pressure sensor shown in FIG. 1A
  • the structure of the unit can sense both the force in the sensitive axis direction (ie, the z direction) of the piezoelectric material layer, and the pressure in the x direction.
  • the structure of the pressure sensor unit shown in FIG. 1B can sense both the force in the sensitive axis direction (ie, the z direction) of the piezoelectric material layer, and the pressure in the y direction. Thus, each achieves the ability to sense forces in different directions at the same time.
  • the lengths and widths of the bottom electrode leads 112 and the top electrode leads 118 are not limited to the dimensions and scales shown in the drawings, which are merely exemplary representations.
  • the length direction of the resistive segment 120 is substantially perpendicular to the direction of the sensitive axis of the piezoelectric material layer 114 .
  • the term “substantially perpendicular” encompasses “perpendicular” and deviations from “perpendicular” due to manufacturing process-induced errors. It should be understood that, considering the influence of its manufacturing process and wiring, the lead segment 122 can also run up and down in a short distance, and can also be bent left and right in a short distance in the plane where it is located, but the length direction of the resistance segment 120 is basically is perpendicular to the direction of the sensitive axis of the piezoelectric material layer 114 .
  • the resistive segment 120 may have a substantially rectangular shape, the long side of the rectangle is the length direction of the resistive segment 120 , and the short side of the rectangle is the width direction of the resistive segment 120 .
  • the pressure sensor unit generates charges when subjected to an external force in the direction of its sensitive axis, and thus, it acts as a charge generator.
  • the top electrode and the bottom electrode of the pressure sensor unit collect charges, it is equivalent to a capacitive sensor with a piezoelectric material layer as a medium. Therefore, the pressure sensor unit can be equivalent to a charge equivalent circuit in which a charge source is connected in parallel with a capacitor.
  • the resistance value of the resistance segment and the lead segment of the pressure sensor unit according to the present disclosure are different, wherein the resistance value of the resistance segment is not negligible, and the resistance value of the lead segment is negligible.
  • the presence of a resistive segment is equivalent to placing a resistive sensor, ie, a resistor, in series on one of the bottom and top electrode leads.
  • R T represents the equivalent series resistance sensor corresponding to the resistance segment whose length direction is substantially perpendicular to the sensitive axis direction of the piezoelectric material layer
  • C represents the capacitive sensor with the piezoelectric material layer as the medium
  • Rout represents the The load resistance of the pressure sensor unit; when the pressure sensor unit is subjected to pressure acting on it, the measured voltage value on the load circuit is expressed as Vout; when the pressure sensor unit is subjected to pressure acting on it, capacitive sensor C charges, and a current I 0 follows.
  • the output impedance Z of the circuit structure shown in FIG. 2 can be expressed as formulas (1) and (2).
  • the output voltage of the circuit configuration shown in FIGS. 2A and 2B can be expressed as shown in Equation (3) and Equation (4).
  • V i represents the voltage value on the resistive sensor RT ;
  • VR represents the voltage value brought by the pressure in the direction of the sensitive axis of the piezoelectric material layer.
  • the RT value can be obtained .
  • R T is the resistance value of the resistive segment after it is deformed by the pressure in its length direction, and the resistance value of the resistive segment before it is deformed by force is known.
  • the change of the voltage value caused by the change of the resistance value of the resistance segment can be obtained, and thus the length direction of the resistance segment (which is substantially perpendicular to the sensitive axis direction of the piezoelectric material layer) can be determined.
  • pressure in the direction of the sensitive axis of the piezoelectric material layer can be determined according to VR .
  • the width of the resistive segment 120 is smaller than the width of the lead segment 122 .
  • L the lead length
  • the resistivity
  • A the lead cross-sectional area.
  • the length and width of the resistive segment 120 may be appropriately set so that the resistive segment 120 is equivalent to a resistive sensor.
  • the width of the resistive segment is smaller than the width of the lead segment, and the setting of the equivalent resistive sensor can be realized without occupying additional wiring space.
  • the bottom electrode 110 and the top electrode 116 are made of the same metal material, ie, the metal material of the first metal layer and the second metal layer are the same.
  • the metal material from which bottom electrode 110 and top electrode 116 are made includes molybdenum.
  • the metal materials of the bottom electrode 110 and the top electrode 116 may also be different, which is not limited herein.
  • the material from which the piezoelectric material layer 114 is made includes aluminum nitride.
  • Aluminum nitride (AlN) material has high structural stability and low piezoelectric response; AlN material can adapt to high temperature environment, has high chemical stability, and the device can still work normally under corrosive working environment without being affected; Moreover, the AlN material also has good thermal conductivity, and will not reduce the service life of the device due to excessive heat generation.
  • piezoelectric materials such as zinc oxide (ZnO) and ceramic (PZT) series may also be used, without limitation.
  • the multi-dimensional pressure sensor 300 includes: a substrate; and a plurality of pressure sensor units, each pressure sensor unit is the pressure described above sensor unit.
  • a plurality of pressure sensor cells are arranged in an array on the substrate, and the bottom electrode is closer to the substrate than the top electrode.
  • the multi-dimensional pressure sensor according to the present disclosure can realize the measurement of pressure in multiple directions by deploying a plurality of pressure sensor units as described above.
  • the multi-dimensional pressure sensor may further include a dielectric layer on the bottom electrode, the piezoelectric material layer, and the top electrode of the plurality of pressure sensor cells.
  • the dielectric layer can insulate and protect the bottom electrode, the piezoelectric material layer and the top electrode, such as isolating air, preventing oxidation, and the like.
  • the dielectric layer material may be silicon oxide (SiO 2 ), silicon nitride (SiN 4 ), or silicon oxynitride (SiOxNy), among others. It should be understood that other suitable dielectric layer materials are also possible.
  • the dielectric layer may not be limited to dielectric materials, for example, flexible materials (such as polyimide) can also be selected to play an insulating role, and at the same time, the strength of the sensor can be increased on the premise of ensuring flexibility .
  • flexible materials such as polyimide
  • the top electrode leads of the plurality of pressure sensor cells are located in a wiring layer on the dielectric layer and are electrically connected to the tops of corresponding piezoelectric sensor cells of the plurality of pressure sensor cells via vias in the dielectric layer. electrode.
  • the material of the wiring layer may be, for example, aluminum (Al) or the like.
  • the wiring layer may also include titanium (Ti) and aluminum (Al), and titanium may be located on the top and bottom surfaces of the metal aluminum to act as an adhesion/barrier layer for the metal aluminum to prevent the metal aluminum from subsequently Possibly, for example, diffusion occurs in high temperature processes. It should be understood that wiring layers of other materials are also possible, such as conductive polymers, etc., which are not limited herein.
  • a layer of flexible material is also included, the layer of flexible material being on the wiring layer and including through holes for exposing the pad regions of the bottom and top electrode leads of the plurality of pressure sensor cells.
  • the flexible material layer can not only further protect the device structure to prevent device oxidation, chemical corrosion resistance and electrical insulation, etc., but also enable the multi-dimensional pressure sensor to further form a flexible sensor without debris, bending deformation, etc. .
  • the material of the flexible material layer may be, for example, polyimide, which is not limited herein.
  • the plurality of pressure sensor units include at least one first piezoelectric sensor unit 310 and at least one second piezoelectric sensor unit 320, and the length direction of the resistive segment of the first piezoelectric sensor unit 310 is substantially perpendicular to the first piezoelectric sensor unit 310.
  • the length directions of the resistive segments of the two piezoelectric sensor units 320 are substantially perpendicular to the first piezoelectric sensor unit 310.
  • the multi-dimensional pressure sensor includes a 3 ⁇ 3 array and the length direction of the resistance segment of the second pressure sensor unit 320 in the middle position is substantially perpendicular to the length direction of the resistance segment of the surrounding first pressure sensor unit 310 .
  • the multi-dimensional pressure sensor can also measure the pressure in the length direction (x direction) of the resistance segment of the second pressure sensor unit 320 and the first pressure sensor Pressure in the length direction (y-direction) of the resistive segment of cell 310 .
  • it focuses more on measuring the length direction (y direction) of the resistance segment of the first pressure sensor unit 310 pressure.
  • FIG. 3 is only an exemplary structure of a multi-dimensional pressure sensor, and the number and layout of the first pressure sensor unit and the second pressure sensor unit are not limited to this, and can be specified according to different use environments. Set whether to focus on measuring pressure in the x-direction or the y-direction.
  • the multi-dimensional pressure sensor according to the present disclosure may also include only the first pressure sensor unit or only the second pressure sensor unit, which is not limited herein.
  • the flexible material layer of the multi-dimensional pressure sensor 300 may act as a flexible substrate.
  • Multidimensional pressure sensors with flexible substrates can exhibit flexible characteristics such as bendability and extensibility.
  • FIGS. 5A-5M are schematic diagrams of example structures of a multidimensional pressure sensor formed through the various steps of the method 400 .
  • the method 400 is described below with reference to Figures 4 and 5A-5M.
  • the method 400 of manufacturing a multi-dimensional pressure sensor includes: providing a substrate 510; forming a first metal layer 514, a piezoelectric material layer 516 and a second metal layer 518 that are sequentially stacked on the substrate 510; Two metal layers 518 are patterned to form the top electrodes of the plurality of pressure sensor cells; the piezoelectric material layer 516 is patterned to form the piezoelectric material layers of the plurality of pressure sensor cells; the first metal layer 514 is patterned to forming the bottom electrodes and bottom electrode leads of the plurality of pressure sensor cells, the bottom electrode leads being electrically connected to the corresponding bottom electrodes; and forming the top electrode leads of the plurality of pressure sensor cells.
  • the top electrode leads are electrically connected to the corresponding top electrodes.
  • the sensitive axis direction of the piezoelectric material layer is substantially perpendicular to the substrate to enable the piezoelectric sensor cell to sense pressure in the sensitive axis direction
  • one of the bottom electrode lead and the top electrode lead Comprising a resistive segment and a lead segment, the resistive segment acts as a resistive sensor to enable the piezoelectric sensor unit to sense pressure along the length of the resistive segment.
  • the substrate 510 may be any type of semiconductor substrate, for example, may be made of at least one of the following materials: silicon, silicon-on-insulator (SOI), stacked silicon-on-insulator (SSOI), silicon-on-insulator Stacked silicon germanium (S-SiGeOI) and silicon germanium on insulator (SiGeOI), etc. Further, the substrate may also be an N-type substrate or a P-type substrate. In some embodiments, the substrate 310 includes a device structure 312 (not shown) therein, which may be any semiconductor device structure formed by a semiconductor process.
  • the device structure 312 may be a passive device, an active device, a MEMS (Micro Electro Mechanical Systems, Micro Electro Mechanical Systems) device, an interconnect structure, or the like.
  • device structure 312 may be a CMOS device.
  • sequentially stacked first metal layer 514 , piezoelectric material layer 516 and second metal layer 518 are formed on substrate 510 .
  • a seed layer 512 may be formed first before the sequentially stacked first metal layer 514, piezoelectric material layer 516 and second metal layer 518 are formed on the substrate, So that the first metal layer can be grown according to a specific crystal orientation.
  • the material of the seed layer may be, for example, AlN.
  • the first metal layer 514 and the second metal layer 518 may be sequentially formed on the substrate by any suitable process.
  • deposition sputtering or electroplating, etc.
  • the piezoelectric material layer 516 may also be formed on the first metal layer by any suitable process, such as deposition or sputtering, or the like.
  • the second metal layer 518 is patterned to form the top electrodes 518a of the plurality of pressure sensor cells; the piezoelectric material layer 516 is patterned to form the piezoelectric material of the plurality of pressure sensor cells layer 516a; and patterning the first metal layer 514 to form bottom electrodes 514a and bottom electrode leads 514b of the plurality of pressure sensor cells, as shown in FIGS. 5C-5E, respectively.
  • the first metal layer 514, the piezoelectric material layer 516 and the second metal layer 518 may be patterned through photolithography and etching processes, but the present disclosure is not limited thereto. Any suitable process capable of patterning the first metal layer 514, the piezoelectric material layer 516, and the second metal layer 518 may be selected depending on the specific application and/or requirements.
  • the top electrode leads of the plurality of pressure sensor cells are formed.
  • the method 400 may further include: before forming the top electrode leads of the plurality of pressure sensor cells, forming a dielectric layer 520 on the bottom electrode, the piezoelectric material layer, and the top electrode of the plurality of pressure sensor cells, as shown in FIG. 5F is shown.
  • the dielectric layer may be formed on the bottom electrode, piezoelectric material layer, and top electrode of the plurality of pressure sensor cells by any suitable process, without limitation.
  • forming the top electrode leads of the plurality of pressure sensor cells includes patterning the dielectric layer 520 to expose connection regions and top electrode leads of the bottom electrode leads of the plurality of pressure sensor cells.
  • the connection area of the electrode (as shown in FIG. 5G ); the wiring layer 522 is formed on the patterned dielectric layer (as shown in FIG. 5H ); the wiring layer 522 is patterned to form the connection area through the top electrode
  • the bottom electrode may be very thin, and its pad area is easily damaged during use. Therefore, in the process of forming the top electrode lead, a wiring layer is also formed on the connection area of the bottom electrode at the same time, so as to The connection area of the bottom electrode is further thickened and protected to form the pad area of the bottom electrode lead.
  • method 400 further includes forming a layer 524 of flexible material on a side of the plurality of pressure sensor units facing away from the substrate 510 after forming the top electrode leads of the plurality of pressure sensor units (as shown in FIG. 5J ); and forming vias in the flexible material layer 524 for exposing the pad areas of the bottom electrode leads and the pad areas of the top electrode leads of the plurality of pressure sensor cells (as shown in FIG. 5L ) .
  • method 400 further includes thinning substrate 510 to make the substrate flexible.
  • the thinned substrate can exhibit flexible characteristics such as bendability and extensibility to form a flexible multi-dimensional pressure sensor.
  • Flexible multi-dimensional pressure sensors can withstand bending, stretching and other deformations to meet various interface shapes.
  • deep trenches 526 may also be formed through flexible material layer 524 and extending into substrate 510 prior to thinning of substrate 510 .
  • the deep groove 526 can play a role in releasing stress outside the patterned wiring layer area; and its depth in the substrate 510 is greater than the thickness of the substrate to be retained after thinning, so that after thinning is completed,
  • the monolithic circuit structure is separated from other circuit structures (not shown), eliminating the need for subsequent dicing operations.
  • a protective layer may be further formed on the thinned side of the substrate after thinning.
  • forming the protective layer on the thinned side of the substrate may include forming a protective material layer on the thinned side of the substrate, and curing the protective material layer to form the protective layer.
  • the protective material layer may include polyimide (PI).
  • the protective layer can also be formed directly on the un-thinned substrate without thinning the substrate.
  • Exemplary embodiments of the present disclosure also provide a sensor circuit, which may include the multi-dimensional pressure sensor described in any of the above embodiments.
  • the multi-dimensional pressure sensor may embody any of the multi-dimensional pressure sensors and their variants described above, and the pressure sensor unit in the multi-dimensional pressure sensor may also embody any of the above-described pressure sensor units and their variants.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种压力传感器单元(100)以及多维压力传感器(300)及其制造方法。该压力传感器单元(100)包括:底电极(110);底电极引线(112),与底电极(110)电连接;压电材料层(114);顶电极(116);顶电极引线(118),与顶电极(116)电连接,其中,底电极(110)、压电材料层(114)和顶电极(116)沿着压电材料层(114)的敏感轴方向顺序堆叠,以用于感测敏感轴方向上的压力,并且其中,底电极引线(112)和顶电极引线(118)之一包括电阻分段(120)和引线分段(122),电阻分段(120)充当电阻式传感器,用于感测电阻分段(120)的长度方向上的压力。

Description

压力传感器单元以及多维压力传感器及其制造方法 技术领域
本公开涉及半导体技术,特别是涉及一种压力传感器单元以及多维压力传感器及其制造方法。
背景技术
压力传感器被广泛应用于电子技术、仪器仪表、物联网等领域,用于将环境中的压力力学量转换为能被电子系统处理的电学量。随着压电材料的研究取得一定的突破,将压电材料引入平面工艺成为可能,基于压电效应的压力传感器的设计与研究也日益增多。
但是基于压电材料的特性,无法进行多维度的压力测量,一般只有平面或者点接触可以作用在压电材料上。现有的压电传感器一般都是基于d31或d33单极化的传感器,例如基于d33的压电压力传感器受力作用后,可以检测到在敏感轴方向产生的压力,但是无法测量垂直于敏感轴方向上的压力,其分散到垂直于敏感轴方向上的压力信号会成为敏感轴方向上的干扰。
发明内容
提供一种缓解、减轻或者甚至消除上述问题中的一个或多个的机制将是有利的。
根据本公开的一些实施例,提供了一种压力传感器单元,包括:底电极;底电极引线,与底电极电连接;压电材料层;顶电极;顶电极引线,与顶电极电连接,其中,底电极、压电材料层和顶电极沿着压电材料层的敏感轴方向顺序堆叠,以用于感测敏感轴方向上的压力,并且其中,底电极引线和顶电极引线之一包括电阻分段和引线分段,电阻分段充当电阻式传感器,用于感测电阻分段的长度方向上的压力。
根据本公开的一些实施例,提供了一种多维压力传感器,包括:衬底;以及多个压力传感器单元,每个压力传感器单元为上述中任一项所述的压力传感器单元,其中,多个压力传感器单元在衬底上呈阵列布置,并且底电极比顶电极更靠近衬底。
根据本公开的一些实施例,提供了一种传感器电路,包括根据本公开各实施例中的任一个的多维压力传感器。
根据本公开的一些实施例,提供了一种制造多维压力传感器的方法,包括:提供衬底;在衬底上形成顺序堆叠的第一金属层、压电材料层和第二金属层;对第二金属层进行图案化以形成多个压力传感器单元的顶电极;对压电材料层进行图案化以形成多个压 力传感器单元的压电材料层;对第一金属层进行图案化以形成多个压力传感器单元的底电极和底电极引线,其中底电极引线电连接到对应的底电极;以及形成多个压力传感器单元的顶电极引线,其中,顶电极引线电连接到对应的顶电极,其中,对于每个压电传感器单元:压电材料层的敏感轴方向基本上垂直于衬底,以使得该压电传感器单元能够感测敏感轴方向上的压力,并且底电极引线和顶电极引线之一包括电阻分段和引线分段,电阻分段充当电阻式传感器,以使得该压电传感器单元能够感测电阻分段的长度方向上的压力。
根据在下文中所描述的实施例,本公开的这些和其它方面将是清楚明白的,并且将参考在下文中所描述的实施例而被阐明。
附图说明
在下面结合附图对于示例性实施例的描述中,本公开的更多细节、特征和优点被公开,在附图中:
图1A和1B是根据本公开示例性实施例的压力传感器单元的结构示意图;
图2是示出图1A和1B中所示结构的等效电路示意图;
图3是根据本公开示例性实施例的多维压力传感器的结构示意图;
图4是根据本公开示例性实施例的制造多维压力传感器的方法的流程图;以及
图5A至图5M是根据本公开示例性实施例的在制造多维压力传感器的方法的各个步骤中所形成的器件结构的示例结构示意图。
具体实施方式
将理解的是,尽管术语第一、第二、第三等在本文中可以用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应当由这些术语限制。这些术语仅用来将一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分相区分。因此,下面讨论的第一元件、部件、区、层或部分可以被称为第二元件、部件、区、层或部分而不偏离本公开的教导。
诸如“在…下面”、“在…之下”、“较下”、“在…下方”、“在…之上”、“较上”、“顶”、“底”等等之类的空间相对术语在本文中可以为了便于描述而用来描述如图中所图示的一个元件或特征与另一个(些)元件或特征的关系。将理解的是,这些空间相对术语意图涵盖除了图中描绘的取向之外在使用或操作中的器件的不同取向。例如,如果翻转图中的器件,那么被描述为“在其他元件或特征之下”或“在其他元件或 特征下面”或“在其他元件或特征下方”的元件将取向为“在其他元件或特征之上”。因此,示例性术语“在…之下”和“在…下方”可以涵盖在…之上和在…之下的取向两者。诸如“在…之前”或“在…前”和“在…之后”或“接着是”之类的术语可以类似地例如用来指示光穿过元件所依的次序。器件可以取向为其他方式(旋转90度或以其他取向)并且相应地解释本文中使用的空间相对描述符。另外,还将理解的是,当层被称为“在两个层之间”时,其可以是在该两个层之间的唯一的层,或者也可以存在一个或多个中间层。
本文中使用的术语仅出于描述特定实施例的目的并且不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”意图也包括复数形式,除非上下文清楚地另有指示。将进一步理解的是,术语“包括”和/或“包含”当在本说明书中使用时指定所述及特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组的存在或添加一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组。如本文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合,并且短语“A和B中的至少一个”是指仅A、仅B、或A和B两者。
将理解的是,当元件或层被称为“在另一个元件或层上”、“连接到另一个元件或层”、“耦合到另一个元件或层”或“邻近另一个元件或层”时,其可以直接在另一个元件或层上、直接连接到另一个元件或层、直接耦合到另一个元件或层或者直接邻近另一个元件或层,或者可以存在中间元件或层。相反,当元件被称为“直接在另一个元件或层上”、“直接连接到另一个元件或层”、“直接耦合到另一个元件或层”、“直接邻近另一个元件或层”时,没有中间元件或层存在。然而,在任何情况下“在…上”或“直接在…上”都不应当被解释为要求一个层完全覆盖下面的层。
本文中参考本公开的理想化实施例的示意性图示(以及中间结构)描述本公开的实施例。正因为如此,应预期例如作为制造技术和/或公差的结果而对于图示形状的变化。因此,本公开的实施例不应当被解释为限于本文中图示的区的特定形状,而应包括例如由于制造导致的形状偏差。因此,图中图示的区本质上是示意性的,并且其形状不意图图示器件的区的实际形状并且不意图限制本公开的范围。
除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。将进一步理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下 文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。
目前基于压电材料的压力传感器都是基于d31或d33单极化的传感器,一般只有平面接触或者点接触可以作用在压电材料上以检测该压电材料敏感轴方向上的压力,而无法进行多维度的压力测量。
本公开的示例性实施例提供了一种改进的压力传感器单元和包括该改进的压力传感器单元组成的阵列的压力传感器。根据本公开实施例的压力传感器能够检测到多维方向上的压力,而且无需复杂工艺,制造难度较低。
如本文使用的,术语“衬底”可以表示经切割的晶圆的衬底,或者可以指示未经切割的晶圆的衬底。类似地,术语芯片和裸片可以互换使用,除非这种互换会引起冲突。应当理解,术语“层”包括薄膜,除非另有说明,否则不应当解释为指示垂直或水平厚度。
图1A和1B是根据本公开示例性实施例的压力传感器单元的结构示意图。如图1A和1B所示,该压力传感器单元100包括:底电极110、与该底电极110电连接的底电极引线112、压电材料层114、顶电极116、以及与该顶电极116电连接的顶电极引线118。底电极110、压电材料层114和顶电极116沿着压电材料层114的敏感轴方向顺序堆叠,以用于感测敏感轴方向上的压力,并且底电极引线112和顶电极引线118之一包括电阻分段120和引线分段122,电阻分段120充当电阻式传感器,用于感测电阻分段120的长度方向上的压力。
根据本公开实施例的压力传感器单元既能检测压电材料层的敏感轴方向上的压力,又能检测电阻分段长度方向上的力,而且无需复杂的工艺,制造成本较低。
根据一些实施例,压电材料层114的压电常数为d33。压电常数表征压电体在压力下产生极化强弱(电压大小)的常数。压电常数d33的下标中的第一个数字指的是电场方向,第二个数字指的是应力或应变的方向,“33”表示极化方向与测量时的施力方向相同。
在图1A和1B所示的实施例中,压电材料层114的敏感轴方向垂直于压电材料层114所在平面,底电极110、压电材料层114和顶电极116依次顺序堆叠。图1A和1B分别示出了两个不同方向上的底电极引线112的结构,以用于感测不同方向上的压力。例如,压电材料层114的敏感轴方向(即垂直于压电材料层114所在平面的方向)表示为z方向,顶电极引线118基本上延伸方向表示为y方向,则图1A所示压力传感器单元的结构 既可以感测压电材料层敏感轴方向(即z方向)上的力,又可以感测x方向上的压力。图1B所示压力传感器单元的结构既可以感测压电材料层敏感轴方向(即z方向)上的力,又可以感测y方向上的压力。从而各自实现了能够同时感测不同方向上的力。
应当理解,底电极引线112和顶电极引线118的长度和宽度并不限制于附图中所示出的尺寸和比例,附图仅仅为示例性表示。
根据一些实施例,电阻分段120的长度方向基本上垂直于压电材料层114的敏感轴方向。在本公开中,术语“基本上垂直于”涵盖“垂直”和由于制造工艺引起的误差而所致的相对于“垂直”的偏离。应当理解,考虑到受其制造工艺和布线影响,引线分段122也可以在短距离内上下走向、以及也可以在其所在平面内短距离内左右弯折,但电阻分段120的长度方向基本上垂直于压电材料层114的敏感轴方向。
在本公开的实施例中,电阻分段120可以为基本上矩形的形状,该矩形的长边为该电阻分段120的长度方向,该矩形的短边为该电阻分段120的宽度方向。
在根据本公开的实施例中,压力传感器单元在承受其敏感轴方向的外力作用时产生电荷,因此,其相当于一个电荷发生器。当压力传感器单元的顶电极和底电极聚集电荷时,它又相当于一个以压电材料层为介质的电容式传感器。因此,可以把压力传感器单元等效为一个电荷源与一个电容相并联的电荷等效电路。而根据本公开的压力传感器单元的电阻分段和引线分段的电阻值不同,其中电阻分段的电阻值不可忽略,而引线分段的电阻值可忽略。因此,电阻分段的存在等效于在底电极引线和顶电极引线之一上串联电阻式传感器,即电阻器。
与图1A和1B所示结构相对应的等效电路图可如图2所示。R T表示其长度方向基本上垂直于压电材料层的敏感轴方向的电阻分段所对应的等效串联的电阻式传感器;C表示以压电材料层为介质的电容式传感器;Rout表示该压力传感器单元的负载电阻;当该压力传感器单元受到作用在其上的压力时,所测量到的负载电路上的电压值表示为Vout;当压力传感器单元受到作用在其上的压力时电容式传感器C充电,随之产生电流I 0。如图2所示的电路结构的输出阻抗Z可以表示为公式(1)和(2)所示。
Figure PCTCN2020134820-appb-000001
Figure PCTCN2020134820-appb-000002
如图2A和2B所示的电路结构的输出电压可表示为公式(3)和公式(4)所示。
Figure PCTCN2020134820-appb-000003
Figure PCTCN2020134820-appb-000004
其中,V i表示电阻式传感器R T上的电压值;V R表示压电材料层的敏感轴方向上的压力所带来的电压值。
通过公式(2)、(3)和(4),得到公式(5)、(6)和(7)如下所示。
Figure PCTCN2020134820-appb-000005
Figure PCTCN2020134820-appb-000006
Figure PCTCN2020134820-appb-000007
通过整理公式(5)、(6)和(7)可得到公式(8)、(9)和(10)如下所示。
Figure PCTCN2020134820-appb-000008
Figure PCTCN2020134820-appb-000009
Figure PCTCN2020134820-appb-000010
由此,根据公式(9)或(10)以及公式(3)并且Rout已知,可以得到R T值。这里,R T是电阻分段在其长度方向上的压力的作用下产生形变之后的电阻值,并且电阻分段在未受力形变之前的电阻值是已知的。于是,借助公式(8)可以得到电阻分段的电阻值变化所引起的电压值的变化,并由此确定电阻分段的长度方向(其基本上垂直于压电材料层的敏感轴方向)上的压力。另外,根据V R可以确定压电材料层的敏感轴方向上的压力。
根据一些实施例,电阻分段120的宽度小于引线分段122的宽度。根据电阻公式:R=ρL/A,其中,L为引线长度,ρ为电阻率,A为引线横截面积。当电阻分段120的宽度小于引线分段122的宽度时,电阻分段120在其长度范围内的引线横截面积小于其他引线分段122的引线横截面积,因此,电阻分段120的电阻值大于引线分段122的电阻值,因此,可以将电阻分段120等效为电阻式传感器。继续参考图1A和1B所示,可以适当地设置电阻分段120的长度和宽度,以使得电阻分段120等效为电阻式传感器。另外,电阻分段的宽度小于引线分段的宽度,不需占用额外的走线空间即可实现等效电阻式传感器的设置。
根据一些实施例,底电极110和顶电极116由相同的金属材料制成,即第一金属层和第二金属层的金属材料相同。根据一些实施例,制成底电极110和顶电极116的金属材料包括钼。
在一些示例中,底电极110和顶电极116的金属材料也可以不同,在此不作限制。
根据一些实施例,制成压电材料层114的材料包括氮化铝。氮化铝(AlN)材料的结构稳定性高、压电响应较低;AlN材料能够适应高温环境,具有很高的化学稳定性,在腐蚀性工作环境下器件依旧能够正常工作而不受影响;而且,AlN材料还具有良好的热传导性能,不会因为产热过多而减少器件的使用寿命。
在一些示例中,也可以使用例如氧化锌(ZnO)和陶瓷(PZT)系列的压电材料,在此不作限制。
本公开的示例性实施例还提供了一种多维压力传感器,如图3所示,该多维压力传感器300包括:衬底;以及多个压力传感器单元,每个压力传感器单元为上面所述的压力传感器单元。多个压力传感器单元在衬底上呈阵列布置,并且底电极比顶电极更靠近衬底。
根据本公开的多维压力传感器可通过部署多个如上面所述的压力传感器单元而实现测量多个方向上的压力。
根据一些实施例,多维压力传感器还可以包括位于多个压力传感器单元的底电极、压电材料层和顶电极上的介电层。介电层可以起到绝缘以及保护底电极、压电材料层和顶电极的作用,例如隔绝空气,防止氧化等。在一些示例中,该介电层材料可以为氧化硅(SiO 2)、氮化硅(SiN 4)或氮氧化硅(SiOxNy)等。应当理解,其他适宜的介电层材料也是可能的。在一些示例中,介电层也可以不局限于介电材料,例如还可以选用柔性材料(例如聚酰亚胺)等,起到绝缘作用,同时,在保证柔性的前提下增加了传感器的强度。
根据一些实施例,多个压力传感器单元的顶电极引线位于介电层上的布线层中,并且经由介电层中的通孔电连接到多个压力传感器单元中的对应压电传感器单元的顶电极。在一些示例中,该布线层的材料例如可以为铝(Al)等。在一些示例中,该布线层还可以包括钛(Ti)和铝(Al),钛可以位于金属铝的顶表面和底表面以作为金属铝的粘附层/阻挡层,以防止金属铝在后续可能的例如高温工艺中发生扩散等。应当理解,其他材料的布线层也是可能的,例如导电聚合物等,在此不作限制。
根据一些实施例,还包括柔性材料层,该柔性材料层位于布线层上,并且包括通孔以用于暴露多个压力传感器单元的底电极引线和顶电极引线的焊盘区域。该柔性材料层不仅可以进一步对器件结构进行保护,以起到防止器件氧化、抗化学腐蚀和电绝缘性等作用,还使得该多维压力传感器能够进一步形成柔性传感器,不会发生碎片、弯曲变形等。在一些示例中,该柔性材料层的材料例如可以为聚酰亚胺,在此不作限制。
根据一些实施例,多个压力传感器单元包括至少一个第一压电传感器单元310和至少一个第二压电传感器单元320,第一压电传感器单元310的电阻分段的长度方向基本上垂直于第二压电传感器单元320的电阻分段的长度方向。
如图3所示,多维压力传感器包括3x3阵列并且中间位置的第二压力传感器单元320的电阻分段的长度方向基本垂直于周围的第一压力传感器单元310的电阻分段的长度方向。这样,多维压力传感器除了能够感测敏感轴方向(垂直于所在平面)上的压力,还能够测量第二压力传感器单元320的电阻分段的长度方向(x方向)上的压力以及第一压力传感器单元310的电阻分段的长度方向(y方向)上的压力。并且,相较于测量第二压力传感器单元320的电阻分段的长度方向(x方向)上的压力,其更侧重于测量第一压力传感器单元310的电阻分段的长度方向(y方向)上的压力。
应当理解,图3示出的仅仅是多维压力传感器的示例性结构,其第一压力传感器单元和第二压力传感器单元的个数和布局均不限制于此,可根据其使用环境的不同而具体设置侧重于测量x方向还是y方向上的压力。另外,根据本公开的多维压力传感器也可以只包括第一压力传感器单元或只包括第二压力传感器单元,在此不作限制。
根据一些实施例,多维压力传感器300的柔性材料层可以充当柔性衬底。具有柔性衬底的多维压力传感器可以呈现出可弯曲、可延展等柔性化的特点。
图4是根据本公开示例性实施例的制作上面所述的多维压力传感器300的方法400的流程图,并且图5A至5M是通过方法400的各个步骤形成的多维压力传感器的示例结构的示意图。下面参照图4和图5A至5M描述方法400。
如图4所示,该制造多维压力传感器的方法400包括:提供衬底510;在衬底510上形成顺序堆叠的第一金属层514、压电材料层516和第二金属层518;对第二金属层518进行图案化以形成多个压力传感器单元的顶电极;对压电材料层516进行图案化以形成多个压力传感器单元的压电材料层;对第一金属层514进行图案化以形成多个压力传感器单元的底电极和底电极引线,底电极引线电连接到对应的底电极;以及形成多个压力传感器单元的顶电极引线。顶电极引线电连接到对应的顶电极。对于每个压电传感器单元:压电材料层的敏感轴方向基本上垂直于衬底,以使得该压电传感器单元能够感测敏感轴方向上的压力,并且底电极引线和顶电极引线之一包括电阻分段和引线分段,电阻分段充当电阻式传感器,以使得该压电传感器单元能够感测电阻分段的长度方向上的压力。
在步骤410,提供衬底510。如图5A所示,衬底510可以是任何类型的半导体衬底,例如可以为以下材料中的至少一种制成:硅、绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)以及绝缘体上锗化硅(SiGeOI)等。进一步地,衬底还可以为N型衬底或P型衬底。在一些实施例中,衬底310中包括器件结构312(未示出),器件结构312可以是通过半导体工艺所形成的任何半导体器件结构。例如,器件结构312可以为无源器件、有源器件、MEMS(Micro Electro Mechanical Systems,微机电系统)器件或者互联结构等。在一些实施例中,器件结构312可以是CMOS器件。
在步骤420,在衬底510上形成顺序堆叠的第一金属层514、压电材料层516和第二金属层518。如图5B所示,在一些实施例中,在衬底上形成顺序堆叠的第一金属层514、压电材料层516和第二金属层518之前,可以先形成种子层(seed layer)512,以使得第一金属层能够按照特定的晶向进行生长。在一些示例中,种子层的材料例如可以为AlN。
在一些示例中,第一金属层514和第二金属层518可以通过任何适当的工艺依次形成在衬底上。例如,沉积、溅射或电镀等。压电材料层516也可以通过任何适当的工艺形成在第一金属层上,例如沉积或溅射等。
在步骤430-步骤450,对第二金属层518进行图案化以形成多个压力传感器单元的顶电极518a;对压电材料层516进行图案化以形成所述多个压力传感器单元的压电材料层516a;以及对第一金属层514进行图案化以形成所述多个压力传感器单元的底电极514a和底电极引线514b,其分别如图5C-5E所示。
例如,可以通过光刻和刻蚀工艺,对第一金属层514、压电材料层516和第二金属层518进行图案化,但本公开不限于此。根据具体的应用和/或需求,可以选择能够使第一金属层514、压电材料层516和第二金属层518图案化的任何适当的工艺。
在步骤460,形成多个压力传感器单元的顶电极引线。
根据一些实施例,方法400还可以包括:在形成多个压力传感器单元的顶电极引线之前,在多个压力传感器单元的底电极、压电材料层和顶电极上形成介电层520,如图5F所示。
在一些示例中,可以通过任何适当的工艺在多个压力传感器单元的底电极、压电材料层和顶电极上形成介电层,在此不作限制。
根据一些实施例,如图5G-5I所示,形成多个压力传感器单元的顶电极引线包括:对介电层520进行图案化,以露出多个压力传感器单元的底电极引线的连接区域和顶电极的连接区域(如图5G所示);在图案化后的介电层上形成布线层522(如图5H所示); 对布线层522进行图案化,以形成经由顶电极的连接区域电连接到对应的顶电极的顶电极引线522a和覆盖所述底电极引线的连接区域的底电极引线的焊盘区域522b(如图5I所示)。在一些实施例中,底电极可能很薄,其焊盘区域在使用过程中容易受到损坏,因此在形成顶电极引线的过程中,在底电极的连接区域上也同时形成一层布线层,以进一步加厚并保护该底电极的连接区域以形成底电极引线的焊盘区域。
根据一些实施例,如图5J-5L所示,方法400还包括:在形成多个压力传感器单元的顶电极引线之后,在多个压力传感器单元的背离衬底510的一侧形成柔性材料层524(如图5J所示);以及在柔性材料层524中形成通孔以用于暴露多个压力传感器单元的底电极引线的焊盘区域和顶电极引线的焊盘区域(如图5L所示)。
根据一些实施例,如图5M所示,方法400还包括:对衬底510进行减薄以使得所述衬底具有柔性。减薄后的衬底可以呈现出可弯曲、可延展等柔性化的特点,以形成柔性多维压力传感器。柔性多维压力传感器能够承受弯曲、拉伸等变形以满足各种不同形状的界面。
在一些实施例中,如图5K-5M所示,还可以在对衬底510进行减薄之前,形成贯穿柔性材料层524并延伸至衬底510中的深槽526。该深槽526在经图案化的布线层区域以外,能够起到释放应力的作用;并且其在衬底510中的深度大于减薄后要保留的衬底厚度,以使得在减薄完成后,该单块电路结构与其他电路结构(未示出)分离,免去后续划片的操作。
在一些实施例中,还可以在减薄后、在该衬底的减薄的一侧进一步形成保护层。根据一些实施例,在该衬底的减薄的一侧形成保护层可以包括:在该衬底的减薄的一侧形成保护材料层,以及对保护材料层进行固化,以形成保护层。通过形成保护层,可以对减薄后的衬底形成保护作用,并进一步有助于实现可弯曲或可折叠的柔性多维压力传感器。根据一些实施例,保护材料层可以包括聚酰亚胺(PI)。
但是应当理解,在不需要对衬底进行减薄的情况下,也可以在未减薄的衬底上直接形成保护层。
本公开的示例性实施例,还提供了一种传感器电路,该传感器电路可以包括上面任意实施例中所描述的多维压力传感器。多维压力传感器可以体现上面描述的多维压力传感器及其变型中的任一个,多维压力传感器中的压力传感器单元也可以体现上面描述的压力传感器单元及其变型中的任一个。
虽然在附图和和前面的描述中已经详细地说明和描述了本公开,但是这样的说明和描述应当被认为是说明性的和示意性的,而非限制性的;本公开不限于所公开的实施例。通过研究附图、公开内容和所附的权利要求书,本领域技术人员在实践所要求保护的主题时,能够理解和实现对于所公开的实施例的变型。在权利要求书中,词语“包括”不排除未列出的其他元件或步骤,不定冠词“一”或“一个”不排除多个,并且术语“多个”是指两个或两个以上。在相互不同的从属权利要求中记载了某些措施的仅有事实并不表明这些措施的组合不能用来获益。

Claims (20)

  1. 一种压力传感器单元,包括:
    底电极;
    底电极引线,与所述底电极电连接;
    压电材料层;
    顶电极;
    顶电极引线,与所述顶电极电连接,
    其中,所述底电极、所述压电材料层和所述顶电极沿着所述压电材料层的敏感轴方向顺序堆叠,以用于感测所述敏感轴方向上的压力,并且
    其中,所述底电极引线和所述顶电极引线之一包括电阻分段和引线分段,所述电阻分段充当电阻式传感器,用于感测所述电阻分段的长度方向上的压力。
  2. 如权利要求1所述的压力传感器单元,其中,所述电阻分段的宽度小于所述引线分段的宽度。
  3. 如权利要求1或2所述的压力传感器单元,其中,所述底电极和所述顶电极由相同的金属材料制成。
  4. 如权利要求3所述的压力传感器单元,其中,所述金属材料包括钼。
  5. 如权利要求1或2所述的压力传感器单元,其中,所述压电材料层的压电常数为d33。
  6. 如权利要求1或2所述的压力传感器单元,其中,所述压电材料层包括氮化铝。
  7. 如权利要求1或2所述的压力传感器单元,其中,所述电阻分段的长度方向基本上垂直于所述压电材料层的敏感轴方向。
  8. 一种多维压力传感器,包括:
    衬底;以及
    多个压力传感器单元,每个压力传感器单元为根据权利要求1至7中任一项所述的压力传感器单元,
    其中,所述多个压力传感器单元在所述衬底上呈阵列布置,并且所述底电极比所述顶电极更靠近所述衬底。
  9. 如权利要求8所述的多维压力传感器,还包括位于所述多个压力传感器单元的底电极、压电材料层和顶电极上的介电层。
  10. 如权利要求9所述的多维压力传感器,其中,所述多个压力传感器单元的顶电极引线位于所述介电层上的布线层中,并且经由所述介电层中的通孔电连接到所述多个压力传感器单元中的对应压电传感器单元的顶电极。
  11. 如权利要求10所述的多维压力传感器,还包括柔性材料层,所述柔性材料层位于所述布线层上,并且包括通孔以用于暴露所述多个压力传感器单元的底电极引线和顶电极引线的焊盘区域。
  12. 如权利要求8所述的多维压力传感器,其中,所述多个压力传感器单元包括至少一个第一压电传感器单元和至少一个第二压电传感器单元,所述第一压电传感器单元的电阻分段的长度方向基本上垂直于所述第二压电传感器单元的电阻分段的长度方向。
  13. 一种传感器电路,包括如权利要求8至12中任一项所述的多维压力传感器。
  14. 一种制造多维压力传感器的方法,包括:
    提供衬底;
    在所述衬底上形成顺序堆叠的第一金属层、压电材料层和第二金属层;
    对所述第二金属层进行图案化以形成多个压力传感器单元的顶电极;
    对所述压电材料层进行图案化以形成所述多个压力传感器单元的压电材料层;
    对所述第一金属层进行图案化以形成所述多个压力传感器单元的底电极和底电极引线,其中所述底电极引线电连接到对应的底电极;以及
    形成所述多个压力传感器单元的顶电极引线,其中,所述顶电极引线电连接到对应的顶电极,
    其中,对于每个压电传感器单元:
    所述压电材料层的敏感轴方向基本上垂直于所述衬底,以使得该压电传感器单元能够感测所述敏感轴方向上的压力,并且
    所述底电极引线和所述顶电极引线之一包括电阻分段和引线分段,所述电阻分段充当电阻式传感器,以使得该压电传感器单元能够感测所述电阻分段的长度方向上的压力。
  15. 如权利要求14所述的方法,还包括:在所述形成所述多个压力传感器单元的顶电极引线之前,在所述多个压力传感器单元的底电极、压电材料层和顶电极上形成介电层。
  16. 如权利要求15所述的方法,其中,所述形成所述多个压力传感器单元的顶电极引线,包括:
    对所述介电层进行图案化,以露出所述多个压力传感器单元的底电极引线的连接区域和顶电极的连接区域;
    在图案化后的所述介电层上形成布线层;以及
    对所述布线层进行图案化,以形成经由所述顶电极的连接区域电连接到对应的顶电极的顶电极引线和覆盖所述底电极引线的连接区域的所述底电极引线的焊盘区域。
  17. 如权利要求14所述的方法,还包括,在所述形成所述多个压力传感器单元的顶电极引线之后:
    在所述多个压力传感器单元的背离所述衬底的一侧形成柔性材料层;以及
    在所述柔性材料层中形成通孔以用于暴露所述多个压力传感器单元的底电极引线的焊盘区域和顶电极引线的焊盘区域。
  18. 如权利要求17所述的方法,还包括:对所述衬底进行减薄以使得经减薄的所述衬底具有柔性。
  19. 如权利要求18所述的方法,还包括,在对所述衬底进行减薄之前:
    形成贯穿所述柔性材料层并延伸至所述衬底中的深槽。
  20. 如权利要求18或19所述的方法,还包括,在对所述衬底进行减薄之后:
    在所述衬底的被减薄的一侧形成保护层。
PCT/CN2020/134820 2020-12-02 2020-12-09 压力传感器单元以及多维压力传感器及其制造方法 WO2022116237A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011406316.2 2020-12-02
CN202011406316.2A CN112563405B (zh) 2020-12-02 2020-12-02 压力传感器单元以及多维压力传感器及其制造方法

Publications (1)

Publication Number Publication Date
WO2022116237A1 true WO2022116237A1 (zh) 2022-06-09

Family

ID=75048239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134820 WO2022116237A1 (zh) 2020-12-02 2020-12-09 压力传感器单元以及多维压力传感器及其制造方法

Country Status (2)

Country Link
CN (1) CN112563405B (zh)
WO (1) WO2022116237A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945232B (zh) * 2021-10-15 2022-04-22 广东绿展科技有限公司 电阻式传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126922A (ja) * 1995-10-31 1997-05-16 Matsushita Electric Works Ltd 圧力センサ
JP2008192672A (ja) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd ケーブル状圧電素子
CN101256100A (zh) * 2007-02-28 2008-09-03 株式会社山武 压力传感器
CN101834268A (zh) * 2009-03-10 2010-09-15 上海硅酸盐研究所中试基地 压电晶体元件
CN102692294A (zh) * 2012-05-29 2012-09-26 上海丽恒光微电子科技有限公司 复合式压力传感器及其形成方法
CN108871629A (zh) * 2018-07-20 2018-11-23 浙江大学 一种柔性电阻式压力传感器阵列及其制备方法
CN111006801A (zh) * 2019-12-17 2020-04-14 华中科技大学 用于生理信息监测的柔性变模态传感器、应用及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261141A (ja) * 2005-03-14 2006-09-28 Ricoh Co Ltd 圧電アクチュエータおよび画像入力装置
CN1885584A (zh) * 2005-06-22 2006-12-27 昆明凯旋利科技有限公司 压力感知型无触点开关
WO2018222727A1 (en) * 2017-05-31 2018-12-06 Cornell University Multidimensional piezoelectric actuator having enhanced actuation range
CN109238526B (zh) * 2018-09-18 2019-10-01 西南交通大学 一种电阻应变式管状压力传感器及压力场测试方法
CN110162174B (zh) * 2019-05-16 2022-05-13 业成科技(成都)有限公司 触觉反馈与感知装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126922A (ja) * 1995-10-31 1997-05-16 Matsushita Electric Works Ltd 圧力センサ
JP2008192672A (ja) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd ケーブル状圧電素子
CN101256100A (zh) * 2007-02-28 2008-09-03 株式会社山武 压力传感器
CN101834268A (zh) * 2009-03-10 2010-09-15 上海硅酸盐研究所中试基地 压电晶体元件
CN102692294A (zh) * 2012-05-29 2012-09-26 上海丽恒光微电子科技有限公司 复合式压力传感器及其形成方法
CN108871629A (zh) * 2018-07-20 2018-11-23 浙江大学 一种柔性电阻式压力传感器阵列及其制备方法
CN111006801A (zh) * 2019-12-17 2020-04-14 华中科技大学 用于生理信息监测的柔性变模态传感器、应用及制备方法

Also Published As

Publication number Publication date
CN112563405A (zh) 2021-03-26
CN112563405B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
JP5632643B2 (ja) 強誘電体デバイス
JP5819631B2 (ja) 経時温度変化の変換を行うトランスデューサ、このトランスデューサを組み込んである電子チップ、およびこの電子チップの製造方法
WO2017028466A1 (zh) 一种mems应变计芯片及其制造工艺
US20120235261A1 (en) Device-mounted substrate, infrared light sensor and through electrode forming method
US7633131B1 (en) MEMS semiconductor sensor device
US7999446B1 (en) Piezoelectronic device and method of fabricating the same
CN107068635B (zh) 半导体热电偶和传感器
WO2022116237A1 (zh) 压力传感器单元以及多维压力传感器及其制造方法
KR100580440B1 (ko) 도핑된 반도체층을 배선으로 사용한 반도체 가속도 센서
WO2022237301A1 (zh) 水听器及其制造方法
JP4431475B2 (ja) 半導体型3軸加速度センサ
KR20080023398A (ko) 실리콘 나노와이어를 이용한 힘 센서 및 그의 제조방법
JP2001264188A (ja) 半導体歪ゲージおよび半導体歪ゲージの製造方法
US8736003B2 (en) Integrated hybrid hall effect transducer
US20110049369A1 (en) Device to detect thermal radiation with high resolution method to manufacture and use the device
EP3651208B1 (en) A stress sensor suitable for measuring mechanical stress in a layered metallization structure of a microelectronic component
WO2019111463A1 (ja) 湿度センサおよびその製造方法
JP2012181050A (ja) センサ用構造体、容量式センサ、圧電式センサ、容量式アクチュエータ、及び、圧電式アクチュエータ
JP2011091318A (ja) 発電デバイス
KR101047363B1 (ko) 자가 발전이 가능한 다중 기능 센서 및 이의 제조 방법
JP2013051233A (ja) 熱電変換デバイス
CN216351171U (zh) 磁传感器
US11849640B2 (en) Thermoelectric conversion element and manufacturing method for thermoelectric conversion element
CN215338609U (zh) 一种红外热电堆传感装置
JPH0964404A (ja) 薄膜半導体素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964082

Country of ref document: EP

Kind code of ref document: A1