CN102803495A - 组合使用Cry1Ca 和Cry1Ab 蛋白用于昆虫抗性管理 - Google Patents

组合使用Cry1Ca 和Cry1Ab 蛋白用于昆虫抗性管理 Download PDF

Info

Publication number
CN102803495A
CN102803495A CN2010800639091A CN201080063909A CN102803495A CN 102803495 A CN102803495 A CN 102803495A CN 2010800639091 A CN2010800639091 A CN 2010800639091A CN 201080063909 A CN201080063909 A CN 201080063909A CN 102803495 A CN102803495 A CN 102803495A
Authority
CN
China
Prior art keywords
plant
toxin
sanctuary
cry1ab
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800639091A
Other languages
English (en)
Other versions
CN102803495B (zh
Inventor
T.米德
K.纳瓦
N.P.斯托尔
J.J.希茨
A.T.伍斯利
S.L.伯顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kedihua Agricultural Technology Co ltd
Original Assignee
Dow AgroSciences LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44305718&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102803495(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dow AgroSciences LLC filed Critical Dow AgroSciences LLC
Publication of CN102803495A publication Critical patent/CN102803495A/zh
Application granted granted Critical
Publication of CN102803495B publication Critical patent/CN102803495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal protein (delta-endotoxin)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Abstract

本发明包括用于控制鳞翅类昆虫的方法和植物,所述植物包含Cry1Ca杀虫蛋白和Cry1Ab杀虫蛋白的组合,以延迟或防止昆虫产生抗性。

Description

组合使用Cry1Ca 和Cry1Ab 蛋白用于昆虫抗性管理
发明背景
人类种植谷物用于粮食和能源应用。人类还种植许多其它的作物,包括大豆和棉花。昆虫吃掉并毁坏植物从而破坏了人类的努力。人们每年要花费数十亿美元用于控制害虫,并且它们还会造成另外数十亿美元的损失。合成的有机化学杀虫剂为用于控制害虫的主要工具,但是在一些区域,生物杀虫剂,例如来自苏云金芽孢杆菌(Bacillus thuringiensis)(BT)的杀虫蛋白,发挥着重要的作用。通过转化Bt杀虫蛋白基因产生昆虫抗性植物的能力给现代农业带来了革命,并提高了杀虫蛋白及其基因的重要性和价值。
已经有数种Bt蛋白用于产生抗昆虫的转基因植物,它们现在已经被成功地注册并商业化。这些包括谷物/玉米(corn)中的Cry1Ab,Cry1Ac,Cry1Fa和Cry3Bb,棉花中的Cry1Ac和Cry2Ab,和马铃薯中的Cry3A。
表达这些蛋白的商业产品表达单一的蛋白,但是在如下情况下例外,即期望2种蛋白的组合杀虫谱(例如在玉米中组合Cry1Ab和Cry3Bb以分别提供对鳞翅目害虫和食根昆虫的抗性),或者蛋白的独立作用使它们可用作在易感昆虫群体中延迟抗性产生的工具(例如在棉花中组合Cry1Ac和Cry2Ab以提供对烟草青虫(tobacco budworm)的抗性管理)。
也就是说,昆虫抗性转基因植物的一些品质虽然使这种技术被快速而广泛地采用,但是也带来了担忧,即害虫群体可能对这些植物所产生的杀虫蛋白产生抗性。已经提出了多种策略用于防止(preserve)基于Bt的昆虫抗性性状的效用,包括以高剂量使用蛋白质并与避难所组合,不同毒素交替使用或者共使用(McGaughey等.(1998),“B.t.Resistance Management,”NatureBiotechnol.16:144-146)。
被选择用于昆虫抗性管理(IRM)混杂的蛋白质需要独立地发挥其杀虫效果,从而对一种蛋白质产生的抗性不会赋予对第二种蛋白质的抗性(即对于蛋白质无交叉抗性)。如果例如选择对“蛋白A”有抗性的害虫群体对“蛋白B”敏感,则人们可以得出结论,蛋白A和蛋白B无交叉抗性并且它们的组合可有效延迟对单一蛋白A的抗性。
当没有抗性昆虫群体时,可以基于假定与作用机制和交叉抗性潜力相关的其它特征进行评估。已经有提议使用受体介导的结合来鉴定可能不会显示交叉抗性的杀虫蛋白(van Mellaert等1999)。在这种方法中固有的缺少交叉抗性的关键预测子(predictor)是杀虫蛋白在敏感昆虫物种中不会竞争受体。
在两种B.t.Cry毒素竞争相同受体的情况下,如果昆虫中的受体发生突变使得毒素之一不再与该受体结合从而对该昆虫不再具有杀虫性,则也可能的情况是昆虫对第二种毒素(其竞争性结合相同的受体)也有抗性。然而,如果两种毒素结合两种不同的受体,这可以指示昆虫不会同时对这两种毒素具有抗性。
Cry1Ab是目前用于转基因玉米中保护植物免于各种昆虫害虫的杀虫蛋白。Cry1Ab提供保护的关键谷物害虫是欧洲玉米螟。
在官方B.t.命名委员会的网站上列出了其它的Cry毒素(Crickmore等;lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/)。参见所附的附录A。当前有接近60个主要的“Cry”毒素组(Cry1-Cry59),还有额外的Cyt毒素和VIP毒素等。各数字组中的很多还有大写字母的亚群,并且大写字母亚群又有小写字母的子亚群。(例如,Cry1具有A-L,而Cry1A具有a-i)。
发明内容
本发明部分地涉及一项令人惊讶的发现,即Cry1Ca对蔗螟,包括对Cry1Ab有抗性的蔗螟群体非常有活性。本领域的技术人员会意识到此发现的益处,可产生Cry1Ca和Cry1Ab(包括其杀虫部分)的植物可用于延迟或防止对这些杀虫蛋白单独的任何一个产生抗性。例如,cry1Fa基因也可与这两个基础配对基因/蛋白混杂。
本发明还涉及一项发现,即Cry1Ca和Cry1Ab彼此不会竞争结合来自秋粘虫(Spodoptera frugiperda;FAW)的肠受体。
附图简述
图1-Cry1Ab核心毒素、Cry1Ca核心毒素和125I-标记的Cry1Ca核心毒素蛋白对秋粘虫BBMV’s的竞争结合。
图2-Cry1Ca核心毒素、Cry1Ab核心毒素和125I-标记的Cry1Ab核心毒素蛋白对秋粘虫BBMV’s的竞争结合。
序列简述
SEQ ID NO:1-Cry1Ca核心/Cry1Ab原毒素嵌合蛋白1164aa(DIG-152)
SEQ ID NO:2–Cry1Ca核心毒素
SEQ ID NO:3–Cry1Ab核心毒素
发明详述
本发明部分地涉及令人惊讶的发现,即Cry1Ca对于针对Cry1Ab有抗性的蔗螟(SCB;Diatraea saccharalis)群体非常有活性。因此,本发明部分地涉及令人惊讶的发现,即Cry1Ca可用于与Cry1Ab组合或“混杂”,从而阻止SCB对这些杀虫蛋白的任何单独一个产生抗性。换言之,本发明部分地涉及令人惊讶的发现,即选择对Cry1Ab有抗性的蔗螟群体对Cry1Ca无抗性;对Cry1Ab毒素有抗性的蔗螟对Cry1Ca易感(即无交叉抗性)。因此,本发明包括使用Cry1Ca毒素控制对Cry1Ab有抗性的蔗螟群体。
本领域的技术人员会意识到本公开的益处,表达Cry1Ca和Cry1Ab(包括其杀虫部分)的植物可用于延迟或防止对这些杀虫蛋白的任何单独一个产生抗性。
本发明包括使用Cry1Ca保护甘蔗和其它重要经济植物物种免于由蔗螟或者由已经对Cry1Ab产生抗性的蔗螟群体导致的损害和收得率损失(yieldloss)。蔗螟也可为谷物/玉米的害虫。在一些中美洲和南美洲国家(如巴西和阿根廷)更是如此。因此,例如谷物/玉米也可以根据本发明得到保护。
因此,本发明教导了一种昆虫抗性管理(IRM)混杂,用以防止或减缓(mitigate)蔗螟对Cry1Ab和/或Cry1Ca产生抗性。
此外,使用放射性标记的Cry1Ca和秋粘虫(Spodoptera frugipera)(FAW)昆虫组织的受体结合研究显示,Cry1Ab不会竞争Cry1Ca结合的高亲和性结合位点。这些结果表明,Cry1Ab和Cry1Ca的组合可以用作有效的手段,为产生Cry1Ab和Cry1Ca蛋白的植物(例如玉米和甘蔗)减缓昆虫群体(如FAW和SCB)对Cry1Ab和/或Cry1Ca产生抗性。尽管毒素叠加研究证明,Cry1Ca蛋白与来自秋粘虫(S.frugiperda)的BBMV’s的两个蛋白结合,其中一个40kDa,另一个44 kDa,而Cry1Ab蛋白与150 kDa的单一蛋白结合(Aranda等,1996),这与非竞争性结合研究无关。
因此,本发明还包括Cry1Ca和Cry1Ab的组合,作为IRM混杂以延缓秋粘虫和/或蔗螟对其中任一蛋白产生抗性,或者延缓已对Cry1Ab产生抗性的蔗螟群体产生抗性。
本发明提供了一种用于控制鳞翅类害虫的组合物,包含表达含有Cry1Ca核心毒素的蛋白和含有Cry1Ab核心毒素的蛋白的细胞;
经转化以表达含有Cry1Ca核心毒素的蛋白和含有Cry1Ab核心毒素的蛋白的宿主,其中所述宿主是微生物或植物细胞(本多核苷酸优选在遗传构建体中,在非苏云金芽孢杆菌启动子的控制之下(与之可操作连接/包含);本多核苷酸可包含用于增强在植物中表达的密码子选择);
一种控制鳞翅类害虫的方法,其包括使所述害虫或所述害虫的环境与有效量的可产生含有Cry1Ab核心毒素的蛋白的组合物和表达含有Cry1C核心毒素的蛋白的细胞相接触;
一种植物(例如玉米植物或大豆或棉花或甘蔗),其包含编码含有Cry1Ca核心毒素的蛋白的DNA和编码含有Cry1Ab核心毒素的蛋白的DNA,和所述植物的种子;
一种植物(例如玉米植物或大豆或棉花或甘蔗),其中编码含有Cry1Ca核心毒素的蛋白的DNA和编码含有Cry1Ab核心毒素的蛋白的DNA被渐渗入所述玉米植物,和所述植物的种子。
我们证明,例如,Cry1Ca(来自重组荧光假单胞菌(Pseudomonasfluorescens)菌株MR1206/DC639的蛋白;质粒pMYC2547)在人工饮食生物测试法中可以非常有效地控制经选择对Cry1Ab有抗性的蔗螟(SCB;Diatraea saccharalis)群体。这表明,Cry1Ca可用于控制已对Cry1Ab产生抗性的SCB群体,或减缓SCB群体中Cry1Ab抗性的产生。
部分地根据本文描述的数据,共表达Cry1Ca和Cry1Ab能够产生高剂量的IRM混杂,用于控制SCB。可以向该组合添加其它蛋白以增加抗虫谱。例如,在谷物/玉米中,添加Cry1Fa可以产生对于欧洲玉米螟(ECB)Ostrinianubilalis (Hübner)的IRM混杂,而添加另外一种MOA用于控制SCB。
关于Cry1C作为植物中的潜在生物杀虫剂的综述见(Avisar等2009)。Avisar D,Eilenberg H,Keller M,Reznik N,Segal M,Sneh B,Zilberstein A(2009)The Bacillus thuringiensis delta-endotoxin Cry1C as a potentialbioinsecticide in plants.Plant Science 176:315-324。
昆虫受体。如实施例中所述,使用放射性标记的Cry1Ca核心毒素蛋白的竞争受体结合实验显示,Cry1Ab核心毒素蛋白不竞争FAW昆虫组织中存在的结合Cry1Ca的高亲和性结合位点。这些结果表明,Cry1Ab和Cry1Ca蛋白的组合是减缓FAW群体对Cry1Ab产生抗性(和同样地,对Cry1Ca产生抗性)的有效手段,并且可在表达这两种蛋白质的谷物/玉米植物中增加对这种害虫的抗性水平。
这些数据还提示,Cry1Ca可以有效控制已对Cry1Ab产生抗性的SCB群体。一种应用选择是在已经由于产生了抗性而使Cry1Ab不能有效控制SCB的地域使用这些Cry蛋白。另一种应用选择是Cry1Ca与Cry1Ab组合使用,从而减缓SCB对Cry1Ab产生抗性。
本发明所述的毒素的组合可用于控制鳞翅类害虫。成年鳞翅类,即蝶和蛾,主要以花蜜为食。幼虫,即毛虫,几乎全部以植物为食,并且许多是严重的害虫。毛虫在叶子上面或内部或者植物根或茎上进食,剥夺植物营养,并且常常会破坏植物的物理支撑结构。此外,毛虫还以果实、织物、储存的谷粒和面粉为食,使这些产品毁坏而不能出售或者严重降低其价值。如本文所使用的,鳞翅类害虫是指害虫的各个生命阶段,包括幼虫阶段。
本发明的嵌合毒素包括B.t.毒素的完整核心N-端毒素部分,并且在毒素部分末端之后的某点,蛋白质具有向异源原毒素(protoxin)序列的转变。B.t.毒素的N端毒素部分在本文称作“核心”毒素。向异源原毒素区段的转变可以发生在毒素/原毒素连接点附近,或者可选择地,天然原毒素的一部分(延伸越过毒素部分)可以被保留,而向异源原毒素的转变发生在其下游。
作为实例,本发明的一种嵌合毒素具有Cry1Ab的完整核心毒素部分(氨基酸1-601)和异源原毒素(氨基酸602至C端)。在一个优选实施方案中,包含原毒素的嵌合毒素的部分源自Cry1Ab蛋白毒素。作为第二个实例,本发明的第二种嵌合毒素,如SEQ ID NO:1(DIG-152)中公开的,具有Cry1Ca的完整核心毒素部分(氨基酸1-619)和异源原毒素(氨基酸620至C端)。在一个优选实施方案中,包含原毒素的嵌合毒素的部分源自Cry1Ab蛋白毒素。
本领域的技术人员会意识到,B.t.毒素,甚至在某种类型的毒素如CryICa中,可以在一定程度上改变长度以及从毒素部分向原毒素部分转变的确切位置。通常,cry1Ca毒素长度为大约1150-大约1200个氨基酸。从毒素部分向原毒素部分的转变通常发生在全长毒素的大约50%-大约60%。本发明的嵌合毒素包括该核心N端毒素部分的完整区域(expanse)。因此,嵌合毒素包括全长cry1Ca或Cry1Ab B.t.毒素的至少大约50%。这通常为至少大约590个氨基酸。关于原毒素部分,Cry1A(b)原毒素部分的完整区域从毒素部分的末端延伸到该分子的C端。这一部分的最后大约100-150个氨基酸是最关键的,应包含在本发明的嵌合毒素中。
基因和毒素 根据本发明,有用的基因和毒素不仅包括公开的全长序列,还包括保留了本文特别例示的毒素的特征杀虫活性的这些序列的片段、变体、突变体和融合蛋白。如本文所使用的,术语基因的“变体”或“变异”是指编码相同毒素或者编码具有杀虫活性的等价毒素的核苷酸序列。如本文所使用的,术语“等价毒素”是指对靶害虫具有与所要求保护的毒素相同或基本上相同的生物活性的毒素。
如本文所使用的,边界表示大约95%(Cry1Ab和1Ca的)、78%(Cry1A和Cry1C的)和45%(Cry1的)序列同一性,参见“Revision of the Nomenclature forthe Bacillus thuringiensis Pesticidal Crystal Proteins,”N.Crickmore,D.R.Zeigler,J.Feitelson,E.Schnepf,J.Van Rie,D.Lereclus,J.Baum,和D.H.Dean.Microbiologyand Molecular Biology Reviews(1998)Vol 62:807-813。这些截断值(cut offs)也可仅应用于核心毒素(对于Cry1Ab和Cry1Ca毒素)。所附的附录A中列出的GENBANK编号也可用于获得本文公开或提及的任何基因和蛋白的序列。
本领域的技术人员应当显而易见,编码活性毒素的基因可以通过多种手段鉴定和获得。本文例示的特定基因或基因部分可以从在培养物保藏中心保藏的分离物获得,如上所述。这些基因或其部分或变体也可以通过例如使用基因合成仪合成构建。基因的变异可以使用用于制备点突变的标准技术容易地构建。另外,这些基因的片段可使用商业上可获得的外切核酸酶或内切核酸酶根据标准的程序进行制备。例如,可以使用酶如Bal31或定点诱变从这些基因的末端系统地切除核苷酸。另外,编码活性片段的基因可使用多种限制酶获得。可以使用蛋白酶直接获得这些毒素的活性片段。
保留例示的毒素的杀虫活性的片段和等价物也在本发明的范围内。另外,由于遗传密码的冗余性,多种不同的DNA序列可编码本文公开的氨基酸序列。本领域的技术人员完全可以生成这些编码相同的或者基本上相同的毒素的可替换的DNA序列。这些变体DNA序列也在本发明的范围内。如本文所使用的,“基本上相同的”序列是指具有不会实质上影响杀虫活性的氨基酸取代、缺失、添加或插入的序列。保留了杀虫活性的片段也包含在这个定义内。
另一种用于鉴定根据本发明有用的编码毒素的基因和基因部分的方法是通过使用寡核苷酸探针。这些探针是可检测的核苷酸序列。这些序列可以通过用合适的标记加以检测或者可制成固有地发荧光,如国际申请No.WO93/16094中所述。如本领域众所熟知的,如果探针分子与核酸样品通过在两分子之间形成强键而杂交,则有理由假定,探针和样品具有相当的同源性。优选地,杂交通过本领域众所周知的技术在严格条件下进行,如例如在Keller,G.H.,M.M.Manak(1987)DNA Probes,Stockton Press,New York,N.Y,pp.169-170中所述。盐浓度和温度组合的一些实例如下(按照严格性增强的顺序):2X SSPE或SSC在室温;1X SSPE或SSC在42℃;0.1X SSPE或SSC在42℃;0.1X SSPE或SSC在65℃。探针的检测提供了一种用已知的方式确定杂交是否发生的方法。这种探针分析提供了用于鉴定本发明毒素编码基因的快速方法。根据本发明用作探针的核苷酸区段可以用DNA合成仪和标准的步骤合成。这些核苷酸序列也可以用作PCR引物以扩增本发明的基因。
本文特别例示了本发明的某些毒素。因为这些毒素仅仅是本发明毒素的实例,因此应当显而易见,本发明包括具有与例示毒素相同或相似杀虫活性的变体或等价毒素(和编码等价毒素的核苷酸序列)。等价毒素与例示毒素具有氨基酸同源性。该氨基酸同源性通常为大于75%,优选大于90%,最优选大于95%。氨基酸同源性在毒素的关键区域最高,所述关键区域决定其生物活性或者涉及最终负责生物活性的三维构型的确定。在此方面,某些氨基酸取代是可以接受的,并且如果这些取代位于对于活性非关键的区域内或者是不影响分子三维构型的保守氨基酸取代的话,其是可以预期的。例如,氨基酸可以在下面的分类中被替换:非极性、极性不带电荷、碱性和酸性。只要取代不会实质改变化合物的生物活性,一个类型的氨基酸被相同类型的另一种氨基酸代替的保守取代就属于本发明的范围。表1提供了属于每种类型的氨基酸的实例的列表。
  氨基酸类型   氨基酸实例
  非极性   Ala,Val,Leu,Ile,Pro,Met,Phe,Trp
  极性不带电荷   Gly,Ser,Thr,Cys,Tyr,Asn,Gln
  酸性   Asp,Glu
  碱性   Lys,Arg,His
在一些情况下,也可以进行非保守取代。关键的因素是这些取代不会显著降低毒素的生物活性。
重组宿主。编码本发明毒素的基因可以被引入到很多种微生物或植物宿主内。毒素基因的表达直接或间接地导致细胞内产生和保持杀虫剂。交配转移和重组转移可用于产生表达本发明两种毒素的B.t.株。其它的宿主生物体也可以用一种或两种毒素基因转化,然后用于实现协同效应。通过合适的微生物宿主例如假单胞菌属(Pseudomonas),可以将微生物施加到害虫位置,并在那里增殖和被摄取。结果是控制害虫。可选择地,具有毒素基因的微生物可以在使毒素的活性延长并使细胞稳定的条件下被处理。然后将保留毒性活性的经处理的细胞施加到靶害虫的环境中。
当藉由合适的载体将B.t.毒素基因引入到微生物宿主中,并将所述宿主以存活状态施加于环境时,重要的是应使用某些宿主微生物。选择已知占据一种或多种目标作物的“植物圈”(叶面(phylloplane)、叶围(phyllosphere)、根围(rhizosphere)和/或根面(rhizoplane))的微生物宿主。选择这些微生物使得能够与野生型微生物成功地竞争特定的环境(作物或其它昆虫栖息地),以提供稳定地保持和表达可表达多肽杀虫剂的基因,并且理想地,提供使杀虫剂免于环境降解和失活的改进的保护。
已知大量的微生物在多种重要作物的叶面(植物叶子的表面)和/或根围(围绕植物根系的土壤)栖息。这些微生物包括细菌、藻类和真菌。特别感兴趣的是微生物,如细菌例如假单胞菌属、欧文氏菌属(Erwinia)、沙雷氏菌属(Serratia)、克雷伯氏菌属(Klebsiella)、黄单孢菌属(Xanthomonas)、链霉菌属(Streptomyces)、根瘤菌属(Rhizobium)、红假单细胞属(Rhodopseudomonas)、嗜甲基菌属(Methylophilius)、土壤杆菌属(Agrobactenum)、醋酸杆菌属(Acetobacter)、乳杆菌属(Lactobacillus)、节杆菌属(Arthrobacter)、固氮菌属(Azotobacter)、明串球菌属(Leuconostoc)和产碱菌属(Alcaligenes);真菌,特别是酵母,例如酵母属(Saccharomyces)、隐球菌属(Cryptococcus)、克鲁维酵母属(Kluyveromyces)、掷孢酵母属(Sporobolomyces)、红酵母属(Rhodotorula)和短梗霉属(Aureobasidium)。特别感兴趣的是如下的植物圈细菌物种,如丁香假单胞菌(Pseudomonas syringae)、荧光假单胞菌(Pseudomonas fluorescens)、粘质沙雷氏菌(Serratia marcescens)、木醋酸杆菌(Acetobacter xylinum)、根癌土壤杆菌(Agrobacterium tumefaciens)、浑球红假单胞菌(Rhodopseudomonas spheroides)、野油菜黄单孢菌(Xanthomonas campestris)、苜蓿根瘤菌(Rhizobium melioti)、真养产碱菌(Alcaligenes entrophus)和维涅兰德固氮菌(Azotobacter vinlandii);和植物圈酵母物种,如深红酵母(Rhodotorula rubra)、粘红酵母(R.Glutinis)、海洋红酵母(R.Marina)、橙红酵母(R.aurantiaca)、浅白隐球菌(Cryptococcus albidus)、流散隐球菌(C.diffluens)、罗伦特隐球菌(C.Laurentii)、罗斯酵母(Saccharomycesrosei)、有孢酵母(S.pretoriensis)、酿酒酵母(S.cerevisiae)、玫瑰掷孢酵母(Sporobolomyces roseus)、香味掷孢酵母(S.odorus)、维罗纳克鲁维酵母(Kluyveromyces veronae)和出芽短梗霉(Aureobasidium pullulans)。特别感兴趣的是染色的微生物(pigmented microorganisms)。
可以获得大量的方法用于将编码毒素的B.t.基因在允许所述基因稳定保持和表达的条件下引入到微生物宿主中。这些方法是本领域技术人员众所周知的,并且例如在美国专利No.5,135,867中描述,该专利通过提述并入本文。
细胞的处理。可以对表达B.t.毒素的苏云金芽孢杆菌或重组细胞进行处理以延长毒素活性和稳定细胞。在将所形成的杀虫微囊施于靶害虫的环境时,所述微囊将B.t.毒素包含于已稳定化的细胞结构内并保护所述毒素。合适的宿主细胞可以包括原核生物或真核生物,通常被限制于那些不会对高等生物如哺乳动物产生实质毒性的细胞。然而,当毒性物质不稳定或者施加水平足够低以至可以避免对哺乳动物宿主的任何可能的毒性时,也可以使用会产生对高等生物有毒性的物质的生物。作为宿主,特别感兴趣的是原核生物和低等真核生物,如真菌。
尽管在一些情况下可以采用孢子,但是在处理时,细胞通常是完整的并且基本上处于可增殖的形式,而不是处于孢子形式。
微生物细胞(例如含有B.t.毒素基因的微生物)的处理可以通过化学或物理手段进行,或者通过化学和/或物理手段的组合进行,只要该技术不会有害地影响毒素的性质并且不会消除细胞保护毒素的能力即可。化学试剂的实例是卤化剂,特别是原子序号17-80的卤素。更特别地,碘可以在温和的条件下使用足够长的时间以获得期望的结果。其它合适的技术包括醛处理,如戊二醛;抗感染剂处理,如氯化苯甲烃铵(zephiran chloride)和氯化十六烷吡啶(cetylpyridiniumchloride);醇处理,如异丙醇和乙醇;多种组织固定剂处理,如Lugol碘、布安氏固定剂(Bouin’s fixative)、多种酸和海利氏固定剂(Helly’s fixative)(参见:Humason,Gretchen L.,Animal Tissue Techniques,W.H.Freeman and Company,1967);或物理(加热)和化学剂的组合,它们在把细胞施加于宿主环境时可以保留和延长细胞内产生的毒素的活性。物理手段的实例为短波辐射,如γ-辐射和X-辐射、冷冻、UV照射、冷冻干燥等。用于处理微生物细胞的方法在美国专利No.4,695,455和4,695,462中公开,所述专利通过提述并入本文。
细胞一般具有更强的结构稳定性,可提高对环境条件的抗性。当杀虫剂处于原型(proform)时,所选的细胞处理方法应当不抑制杀虫剂被靶害虫病原体从原型加工成成熟形式。例如,甲醛会交联蛋白质并可抑制多肽杀虫剂原型的加工。处理的方法应当能够保留至少相当部分的毒素的生物可用性或生物活性。
出于生产目的在选择宿主细胞时特别感兴趣的特征包括将B.t.基因引入宿主的便宜性,表达系统的可用性,表达效率,杀虫剂在宿主体内的稳定性,和附加遗传能力的存在性。用作杀虫剂微囊的感兴趣特征包括对杀虫剂的保护质量,如厚细胞壁、染色和细胞内包装或形成包涵体;在含水环境中的存活;缺乏哺乳动物毒性;吸引害虫摄食;容易杀死和固定而不会伤害毒素;等等。其它的考虑包括配制和操作的便宜性、经济性、储存稳定性等。
细胞生长。含有B.t.杀虫基因的细胞宿主可以在任何常规的营养培养基中生长,其中DNA构建体提供选择优势,提供选择性培养基使得基本上全部或者全部的细胞保留B.t.基因。然后可以根据常规方法收获这些细胞。可选择地,细胞可以在收获之前被处理。
产生本发明毒素的B.t.细胞可以用标准技术培养基和发酵技术培养。当完成发酵循环时,可以首先通过本领域众所周知的手段将B.t.孢子和结晶与发酵液分离来收获细菌。回收的B.t.孢子和结晶可以通过添加表面活性剂、分散剂、惰性载体和其它有利于操作和施用于特定靶害虫的组分配制成可润湿的粉末、液体浓缩物、颗粒或其它配制物。这些配制物和施用步骤是本领域众所周知的。
配制物。含有引诱剂和B.t.分离物孢子、结晶和毒素的配制的诱饵颗粒,或者含有可以从本文公开的B.t.分离物中获得的基因的重组微生物,可施于土壤。配制的产品也能够作为种子包被或根处理或全植物处理在作物周期(cropcycle)的晚期施加。B.t.细胞的植物和土壤处理可以作为可润湿的粉末、颗粒或尘埃通过与多种惰性材料混合而加以利用,所述惰性材料如无机矿物质(层状硅酸盐、碳酸盐、硫酸盐、磷酸盐等)或植物材料(粉末状玉米穗轴、稻壳、核桃壳等)。配制物可以包括展布剂-粘着剂佐剂(spreader-sticker adjuvant)、稳定剂、其它杀虫添加剂或表面活性剂。液体配制物可为基于水的或非水的,并作为泡沫、凝胶、悬浮液、可乳化的浓缩物等利用。成分可以包括流变剂、表面活性剂、乳化剂、分散剂或聚合物。
本领域的技术人员会意识到,杀虫剂浓度可以变化很大,取决于特定制剂的性质,特别是它是否是浓缩的或者是否直接使用。杀虫剂以按重量计至少1%存在,并可为按重量计100%。干燥配制物中具有按重量计约1-95%的杀虫剂,而液体配制物一般为在液相中按重量计约1-60%的固体。配制物一般具有大约102-大约104个细胞/mg。这些配制物以每公顷大约50mg(液体或固体)至1kg或者更多施用。
所述配制物可通过喷雾、扬尘、撒布(sprinkling)等向鳞翅类害虫的环境(例如叶子或土壤)中施加。
植物转化。用于产生本发明杀虫蛋白的优选重组宿主是转化的植物。编码如本文公开的Bt毒素蛋白的基因可以用多种本领域众所周知的技术插入植物细胞。例如,可以获得大量含有在大肠杆菌中的复制系统和允许选择转化细胞的标记的克隆载体,用于将外源基因插入高等植物。所述载体包括例如pBR322、pUC系列、M13mp系列、pACYC184等。因此,具有编码Bt毒素蛋白序列的DNA片段可在合适限制位点插入所述载体。最终的质粒可用于转化入大肠杆菌(E.Coli)。大肠杆菌细胞在合适的营养介质中培养,然后收获和裂解。回收质粒。作为分析方法,通常进行序列分析、限制分析、电泳和其它生物化学-分子生物学方法。在每个操作后,可以将所用的DNA序列切割并连接到下一个DNA序列。每个质粒序列可以克隆于相同和其它的质粒中。根据将期望基因插入植物的方法,其它的DNA序列可为必需的。如果例如使用Ti或Ri质粒用于转化植物细胞,那么至少Ti或Ri质粒T-DNA的右边界,但常常是左右两个边界,必须连接作为待插入基因的侧翼区。用于转化植物细胞的T-DNA的使用已经被广泛研究,并充分描述于EP 120 516,Lee和Gelvin(2008),Hoekema(1985),Fraley等(1986),和An等(1985)中有,并且在本领域已经被良好建立。
一旦所插入的DNA被整合于植物基因组中,就会相对稳定。转化载体通常含有选择标记,其赋予转化的植物细胞对杀生物剂或抗生素(如双丙氨磷、卡那霉素、G418、博来霉素或潮霉素等)的抗性。因此,单独使用的标记应当允许选择转化的细胞,而非不含插入DNA的细胞。
大量的技术可用于将DNA插入植物宿主细胞。这些技术包括使用根癌土壤杆菌或毛根土壤杆菌(Agrobacterium rhizogenes)作为转化剂的T-DNA转化、融合、注射、生物射弹(biolistics)(微粒子轰击)或电穿孔以及其它可能的方法。如果使用土壤杆菌转化,则待插入的DNA必须被克隆入特殊的质粒,即克隆入中间载体或者克隆入二元载体中。中间载体可以通过同源重组整合入Ti或Ri质粒,归因于与T-DNA中的序列同源的序列。Ti或Ri质粒还包括T-DNA转移必需的vir区(vir region)。中间载体自身在土壤杆菌中不能复制。中间载体可以通过辅助质粒(接合)转移到根癌土壤杆菌中。双元载体自身能够在大肠杆菌和土壤杆菌属中复制。它们包括选择标记基因和被T-DNA左右边界区框定的接头或多接头。它们能够被直接转化进入土壤杆菌属(Holsters等,1978)。用作宿主细胞的土壤杆菌属包括携带致病区的质粒。该致病区是将T-DNA转移入植物细胞所必需的。可以含有额外的T-DNA。使用如此转化的细菌转化植物细胞。可以有利地用根癌土壤杆菌或毛根土壤杆菌培养植物外植体,用于将DNA转入植物细胞。然后在含有用于筛选的杀生物剂或抗生素的合适培养基中从感染的植物材料(例如叶片、茎杆区段、根,还有原生质体或悬浮培养的细胞)再生整个植物。然后测试如此获得的植物是否存在插入的DNA。在注射和电穿孔的情况中,对质粒没有特殊的要求。可以使用普通的质粒,例如pUC衍生物。
被转化的细胞以通常的方式在植物内生长。它们能够形成生殖细胞并将转化的性状传递到后代植物。这些植物可以正常的方式生长并与具有相同转化遗传因子和其它遗传因子的植物杂交。所得的杂交个体具有相应的表型特征。
在本发明的一个优选实施方案中,用其中密码子选择已对植物进行优化的基因转化植物。参见,例如美国专利No.5380831,其通过提述并入本文。虽然本文例示了一些截短的毒素,但是在Bt领域中众所周知的是,130kDa型(全长)毒素具有作为核心毒素的N端半部和作为原毒素“尾”的C端半部。因此,适当的“尾”可与本发明的截短/核心毒素一起使用。参见,例如美国专利No.6218188和美国专利No.6673990。此外,用于生成在植物中使用的合成Bt基因的方法是本领域已知的(Stewart和Burgin,2007)。优选的转化植物的一个非限制性实例是能育的玉米植物,其包含编码Cry1Fa蛋白的植物可表达基因,并进一步包含编码Cry1Ca蛋白的第二植物可表达基因。
将Cry1Ab和Cry1C性状转移(或渐渗)到近交(inbred)玉米种系中可以通过轮回选择育种,例如通过回交实现。在这种情况下,期望的轮回亲本首先与携带赋予Cry1Ab和Cry1C性状的合适基因的近交供体(非轮回亲本)杂交。然后将该杂交的后代与轮回亲本回交,其后选择所得后代的从非轮回亲本转移来的期望性状。在与轮回亲本回交3个,优选4个,更优选5个或更多个世代并对期望性状进行选择后,后代在控制被转移性状的座位(loci)处是杂合体,但在大多数或者基本上全部的其它基因处则与轮回亲本相似(参见,例如Poehlman& Sleper(1995)Breeding Field Crops,第4版,172-175;Fehr(1987)Principles ofCultivar Development,第1卷:Theory and Technique,360-376)。
昆虫抗性管理(IRM)策略。例如Roush等概述了(outline)双毒素策略,也称作“锥形”或“混杂”,用于管理杀虫转基因作物。(The Royal Society.Phil.Trans.R.Soc.Lond.B.(1998)353,1777-1786)。美国环境保护局在其网站上(epa.gov/oppbppd1/biopesticides/pips/bt_corn_refuge_2006.htm)公布了如下的要求,要求提供非转基因(即,非B.t.)避难所(非Bt作物/谷物的块状地(blocks))用于与可产生针对靶害虫的单一Bt蛋白活性的转基因作物一起使用。
针对抗玉米螟Bt(Cry1Ab和Cry1F)谷物/玉米产品的具体结构要求(structured requirement)如下:
结构避难所:
在谷物/玉米带中,20%非鳞翅类Bt谷物/玉米避难所
在棉花带中,50%非鳞翅类Bt避难所
块状地(blocks)
内部(即在Bt田地内)
外部(即Bt田地1/2英里(如果可能1/4英里)内的分离田地使随机配合最大化)
田地内的条带
条带必须至少4行宽(优选6行)以降低幼虫运动效应。
美国玉米生产者协会在其网站上(ncga.com/insect-resistance-management-fact-sheet-bt-corn)也提供了关于避难所要求的相似指导。例如:
玉米螟IRM的要求:
-(避难所)种植在至少20%的玉米田亩以避免杂交
-在产棉区,避难所必须为50%
-(避难所)必须种植在避免杂交的1/2英里内
-避难所可以在Bt田内成条状种植;避难所条带必须至少4行宽
-只有对于靶昆虫达到了经济阈值时才可以用常规的杀虫剂处理避难所
-基于Bt的可喷洒杀虫剂不能用在避难所玉米上
-在每一块具有Bt玉米的农场上必须种植适当的避难所
如Roush等所述(例如在1780和1784页右栏),将均对靶害虫有效并且没有或者仅有很少交叉抗性的两种不同蛋白混杂或锥形混杂,可允许使用更小的避难所。Roush建议,对于成功的混杂,小于避难所10%的避难所尺寸可以提供与对于单一(非锥形混杂)性状大约50%避难所相当的抗性管理。对于目前可以获得的锥形混杂的Bt谷物/玉米产物,美国环境保护局要求所种植的非Bt谷物/玉米的结构避难所(一般5%)显著小于对单一性状产物的要求(一般20%)。
任何上面的百分比(如1F/1Ab的百分比)或者相似的避难所比例可用于本双重或三重混杂或锥形混杂。本发明包括商业田亩(例如超过10英亩的商业田亩),其种植有根据本发明的植物并且种植或者不种植所述避难所。
存在提供避难所的多种方法,包括田地内的多种几何种植模式(如上所述)和包装好(in-bag)的种子混合物,如Roush等(前文)和美国专利No.6,551,962中进一步讨论的。
本文提及或引用的所有专利、专利申请、临时申请和出版物通过提述以其全部内容并入,其程度为它们与本说明书的明确教导没有不一致。除非特别指出或暗示,如本文所使用的,术语“一”、“一个”和“该”的意思是“至少一个”。
下面的实施例说明了本发明。这些实施例不应当认为是限制性的。
实施例1
包含Cry1核心毒素和异源原毒素的嵌合毒素的设计,和在荧光假单胞菌 中产生的DIG-152蛋白的杀虫活性
嵌合毒素 先前在例如美国专利No.5593881和美国专利No.5932209中已经报道了用一种Cry毒素的核心毒素结构域与另一种Cry毒素的原毒素区段融合的嵌合蛋白质。
本发明的Cry1Ca嵌合蛋白变体包括嵌合毒素,所述嵌合毒素含有源自Cry1Ca3杀虫毒素的N端核心毒素区段,并且在核心毒素区段末端后的某点与异源δ内毒素原毒素区段融合。从核心毒素向异源原毒素区段的转变可以存在于天然核心毒素/原毒素连接点附近,天然原毒素的一部分(延伸通过核心毒素区段)可以被保留,而向异源原毒素的转变发生在下游。在变体形式中,核心毒素和原毒素区段可以包括它们所来源的天然毒素的精确氨基酸序列,或者可以包括当区段彼此融合时不会减弱并且可增强区段的生物学功能的氨基酸添加、缺失或取代。
例如,本发明的嵌合毒素包含源自Cry1Ca3的核心毒素区段和异源原毒素。在本发明的一个优选实施方案中,来自Cry1Ca3的核心毒素区段(619个氨基酸)与包含源自Cry1Abδ内毒素的原毒素区段的异源区段(545个氨基酸)融合。嵌合蛋白的1164氨基酸序列(本文称作DIG-152)公开为SEQ ID NO:1。应当理解,包含Cry1Ca3核心毒素变体和源自Cry1Ab的原毒素的其它嵌合融合物也包括在本发明的范围内。
在利用饮食摄入步骤的剂量响应实验中,已经在蔗螟(SCB;Diatraeasaccharalis)和Cry1Ab抗性SCB(rSCB)的新生幼虫上证明了DIG-152蛋白的鳞翅类杀虫活性。通过其中已添加200μL细菌蛋白酶抑制剂(Sigma P4865;按供应商的说明制备)的7.5mL的100mM CAPS pH11,1mM EDTA中在4°轻柔摇动4小时来溶解DIG-152包涵体。在离心以沉淀不溶的材料后,在100mM CAPS,pH11中将储液蛋白浓度调节到4.0mg/mL。对于昆虫生物测定法,通过在将大约0.7mL的饮食分配于128-孔板(Bio-Ba-128,C-D International)的独立的孔之前将适当体积与半人工饮食(Bio-Serv,Frenchtown,NJ)混合来制备0.030μg-102μg/gm饮食的范围内的DIG-152蛋白浓度。
胰蛋白酶活化的Cry1Ab蛋白(用作杀虫活性的阳性对照)在0.03125μg至32μg/gm饮食(通过在饮食准备之前将冻干粉与适量的蒸馏水混合来制备)的范围进行测试。
用蒸馏水(空白对照,用于Cry1Ab测试)或仅用缓冲液(100mM CAPSpH11,用于DIG-152测试)制备的饮食用作对照处理。在每个孔中的饮食表面上释放一个新生蔗螟幼虫(羽化后<24hr)。幼虫接种后,用通风盖(C-DInternational)覆盖孔,并将生物测定板置于环境室内,保持在28°,50%RH和16hr:8hr(明:暗)光周期。在接种后第7天记录幼虫死亡率、幼虫重量和没有显示体重增加(<0.1mg/幼虫)存活幼虫的数目。昆虫株/Cry蛋白浓度的每个组合重复4次,每个重复有16-32个幼虫。
幼虫死亡率标准作为“实际”死亡率测量,其考虑死亡(病态)虫和不显示体重显著增加(即<0.1mg/幼虫)的存活幼虫(发育不良的,非饲育的(non-feeding))。在一种处理中,幼虫的实际死亡率用下式计算:
实际死亡率(%)=[TDS/TNIT]x100
其中TDS是死亡幼虫加发育不良幼虫数目的总数,
TNIT是处理中昆虫的总数。
每个蔗螟(D.Saccharalis)株的“实际”死亡率(下文简称为死亡率)对于饲以用于分析Cry1Ab处理后的结果的水空白对照饮食,或用于DIG-152处理的仅缓冲液处理的饮食观察到的幼虫死亡率进行修正。
进一步分析剂量响应实验的结果以确立GI50值[即饮食中幼虫生长抑制(%GI)值为50的B.t.蛋白浓度]。饲以含有Cry1Ab蛋白的饮食的幼虫的%GI值用下式计算:
%GI=[TWC-TWT]/TWCx100
其中TWC是用水对照饮食饲育的幼虫的总体重,和
TWT是用Cry1Ab处理的饮食饲育的幼虫的总体重。
然而,为了分析作为DIG-152摄取结果的幼虫%GI,用下式计算:
%GI=[TWB-TWT]/TWBx100
其中TWB是仅用缓冲液对照处理的饮食饲育的幼虫的总体重,和
TWT是用DIG-152处理的饮食饲育的幼虫的总体重。
100%的幼虫生长抑制指定于没有显著重量增加(<0.1mg/幼虫)的幼虫的重复(实验)。生长抑制数据用双向ANOVA进行分析,以昆虫株和Cry蛋白浓度作为两个主要因子。使用LSMEANS检验确定在α=0.05水平的处理差异。
表2给出了饮食并入生物测定对蔗螟幼虫的结果。
表2.用含有Cry1Ab或DIG-152蛋白的饮食饲育的Cry1Ab易感(SCB)和Cry1Ab抗性(rSCB)蔗螟的剂量响应幼虫死亡率和生长抑制(%均值±sem)a
Figure BDA00002013471000161
Figure BDA00002013471000171
a一列中所有处理的平均值后面为相同字母表示没有显著差异(P<0.05;LSMEANS检验)。sem=平均值的标准偏差
bμg蛋白/gm饮食
c幼虫死亡率的测量在正文中有定义。
d这些百分比数值用正文中描述的公式计算。
e这些百分比数值用正文中介绍的公式计算。
fNT=没有测试。
数据分析 然后对经过修正的剂量/死亡率数据进行机率分析,用于确定导致50%死亡率(LC50)值的处理蛋白浓度和相应的95%置信区间(CI)。在机率分析中使用的处理包括产生零死亡率的最高浓度、导致100%死亡率的最低浓度,和位于这些极限之间的所有结果。抗性比例的计算用rSCB株的LC50值除以SCB昆虫的LC50值。用致死剂量比例检验(lethal dose ratio test)确定抗性比例在α=0.05水平是否显著。并使用双向ANOVA分析死亡率数据,随后用LSMEANS检验在α=0.05水平确定处理的差异。分析结果在表3中提供。
表3.使用并入了DIG-152蛋白或Cry1Ab蛋白的昆虫饮食对SCB和rSCB幼虫的生物测定实验总结
Figure BDA00002013471000172
a幼虫死亡率的测量如正文所述限定。
b抗性比例,有字母‘S’的表示基于致死剂量实验在5%水平是显著的,而有字母‘NS”的则表示不显著。
本发明DIG-152蛋白的一个特点是,在摄食DIG-152蛋白后,新生蔗螟(Diatraea saccharalis)幼虫的生长被抑制或者幼虫被杀死,其水平与给出相同生物学响应的活化Cry1Ab蛋白的水平相似。DIG-152蛋白的另一特点是,对Cry1Ab蛋白毒性作用有抗性的蔗螟幼虫仍然是对DIG-152蛋白的毒性作用敏感的。
实施例2
编码嵌合蛋白的表达质粒的构建和在假单胞菌属中表达
使用标准克隆方法[如例如Sambrook等,(1989)和Ausubel等,(1995)及其更新版中所述]构建荧光假单胞菌(Pf)表达构建体pMYC2547,其被工程化产生全长的DIG-152嵌合蛋白。蛋白生产在荧光假单胞菌株MB214(MB101菌株的衍生物;荧光假单胞菌生物变种I(P.fluorescens biovar I),其具有经修饰的lac操作子的插入,如美国专利No.5169760所述。基本的克隆策略包括将编码DIG-152的DNA片段亚克隆入质粒载体,从而其置于来自质粒pKK223-3(PL Pharmacia,Milwaukee,WI)的Ptac启动子和rrnBT 1T2终止子的表达控制之下。一个这样的质粒命名为pMYC2547,并且携带这种质粒的MB214分离物命名为Dpf108。
摇瓶中的生长和表达分析 用于表征和昆虫生物测定的DIG-152蛋白的产生通过摇瓶生长的荧光假单胞菌菌株Dpf108实现。由Ptac启动子驱动的DIG-152蛋白产生如先前在美国专利No.5527883中所述进行。微生物操作的细节可在Squires等(2004),美国专利申请20060008877,美国专利申请20080193974和美国专利申请20080058262中得到,所述文件通过提述并入本文。在30°振荡初始温育24小时之后,通过加入异丙基-β-D-1-硫代半乳糖苷(IPTG)来诱导表达。在诱导时和在诱导后多个时间对培养物取样。细胞密度通过在600nm的光密度(OD600)测量。
摇瓶样品的细胞分级和SDS-PAGE分析 在每个取样时间,将样品的密度调节到OD600=20,并将1mL等分试样在14000xg离心5分钟。将细胞沉淀冷冻于-80°。来自冷冻的摇瓶细胞沉淀样品的可溶和不可溶级分使用EasyLyseTM Bacterial Protein Extraction Solution(
Figure BDA00002013471000181
Biotechnologies,Madison,WI)产生。将每个细胞沉淀重悬于1mL EasyLyseTM溶液中,进一步在裂解缓冲液中1:4稀释,并在室温震荡温育30分钟。将裂解物在4°在14,000rpm离心20分钟,并回收上清作为可溶级分。然后将沉淀(不可溶级分)重悬浮于等体积的磷酸盐缓冲盐水中(PBS;11.9mM Na2HPO4,137mM NaCl,2.7mM KCl,pH7.4)。
样品与含有β-巯基乙醇的2X Laemmli样品缓冲液(Sambrook等,前述)1:1混合,并在加载到Criterion XT Bis-Tris 12%凝胶(Bio-Rad Inc.,Hercules,CA)上之前煮沸5分钟。在推荐的XT MOPS缓冲液中进行电泳。凝胶用Bio-Safe Coomassie Stain根据制造商(Bio-Rad)的规程染色,并使用AlphaInnotech成像系统(San Leandro,CA)成像。
包涵体制备 DIG-152包涵体(IB)制备在产生不溶性Bt杀虫蛋白的荧光假单胞菌发酵的细胞上进行,如通过SDS-PAGE和MALDI-MS (基质辅助激光解吸/离子化质谱)证明的。荧光假单胞菌发酵物沉淀在37°水浴中解冻。将细胞在裂解缓冲液[50mM Tris,pH 7.5,200mM NaCl,20mM EDTA二钠盐(乙二胺四乙酸),1%Triton X-100和5mM二硫苏糖醇(DTT);使用前添加5mL/L细菌蛋白酶抑制剂混合物(cocktail)(目录#P8465;Sigma-Aldrich,St.Louis,MO)]中重悬至25%w/v。细胞用手持匀浆器(Tissue Tearor,BioSpecProducts,Inc.,Bartlesville,OK)以最低设置悬浮。通过用金属药刀(spatula)混合向细胞悬浮液添加溶菌酶(25mg的Sigma L7651,来自鸡蛋白),并将悬浮液在室温温育1小时。悬浮液在冰上冷却15分钟,然后用Branson Sonifier 250超声处理(两次1分钟破碎,50%工作周期,30%输出)。细胞裂解物用显微镜检查。如果需要,添加额外的25mg溶菌酶,并重复温育和超声波处理。通过显微镜确认细胞裂解之后,将裂解物在11,500xg离心25分钟(4°)以形成IB沉淀,并弃去上清。IB沉淀用100mL裂解缓冲液重悬,用手持混合器匀浆并如上所述离心。通过重悬(用50mL裂解缓冲液)、匀浆、声处理和离心重复洗涤IB沉淀,直到上清变成无色,并且IB沉淀变得坚实(firm)并且颜色为灰白色。对于最后一次洗涤,IB沉淀在含有2mM EDTA的无菌过滤(0.22μm)蒸馏水中重悬并离心。最终的沉淀在含有2mM EDTA的无菌过滤蒸馏水中重悬,并以1mL等分试样保存于-80°。
IB制备物中蛋白质的SDS-PAGE分析和定量的如下进行:解冻IB沉淀的1mL等分试样,并用无菌过滤蒸馏水按1:20稀释。然后用4X还原性样品缓冲液[250mM Tris,pH6.8,40%甘油(v/v),0.4%溴酚蓝(w/v),8%SDS(w/v)和8%β-巯基乙醇(v/v)]将稀释的样品煮沸,并加载到
Figure BDA00002013471000191
4-20%Tris-甘氨酸,12+2孔凝胶(Invitrogen)上,用1X Tris/甘氨酸/SDS缓冲液(BioRad)跑胶。凝胶在200伏特电泳60分钟,然后用考马斯蓝(50%G-250/50%R-250,溶于45%甲醇,10%乙酸)染色,并用蒸馏水中的7%乙酸,5%甲醇脱色。目标条带的定量通过比较条带的密度测量值和在相同凝胶上运行的牛血清白蛋白(BSA)标准样品以生成标准曲线来执行。
包涵体的溶解 在Eppendorf模型5415C微离心机上以最高设定(大约14,000xg)离心来自Pf克隆DFf108的6mL DIG-152包涵体悬浮液以将包涵物沉淀。除去储存缓冲液上清,并用25mL的100mM碳酸钠缓冲液,pH 11重置于50mL锥形管中。使用移液器重悬包涵体,并涡旋以彻底混合。将管子置于轻柔摇动的平台上,4°过夜,从而提取靶蛋白。提取物在4°30,000xg离心30分钟,最终的上清用Amicon Ultra-15再生纤维素离心过滤装置(30,000Molecular Weight Cutoff;Millipore)浓缩5倍。然后使用一次性PD-10柱(GE Healthcare,Piscataway,NJ)将样品缓冲液变成10mM CAPS[3-(环己氨基)1-丙烷磺酸]pH 10。
包涵体蛋白的溶解和胰蛋白酶活化 在一些情况下,在Eppendorf模型5415C微离心机上以最高设定(大约14,000x g)离心来自Pf克隆DFf108的DIG-152包涵体悬液以将包涵物沉淀。除去储存缓冲液上清,代之以100mMCAPS,pH 11,使蛋白浓度为大约50mg/mL。将管在室温摇动3小时,从而完全溶解蛋白质。以等于5%-10%(w:w,根据IB粉末的初始重量)的量添加胰蛋白酶,并通过在4°温育同时过夜摇动或者在室温摇动温育90-120分钟完成消化。通过10,000xg离心15分钟除去不溶的材料,将上清添加到MonoQ阴离子交换柱(10mmx10cm)。用0%-100%1M NaCl梯度在25个柱体积中洗脱活化的DIG-152蛋白(通过SDS-PAGE确定,见下文)。汇集含有活化蛋白的级分,在需要的情况下,用上述的Amicon Ultra-15再生纤维素离心过滤装置浓缩至小于10mL。然后,将材料在含有100mM NaCl,10%甘油,0.5%Tween-20和1mM EDTA的缓冲液中经过Superdex 200柱(16mmx60cm)。SDS-PAGE分析确定,活化的(酶截短的)蛋白在65-70mL洗脱。汇集含有活化蛋白的级分,并用上述的离心浓缩器浓缩。
凝胶电泳 用于电泳的浓缩蛋白制备物的制备如下,在含有5mM DTT作为还原剂的
Figure BDA00002013471000201
LDS样品缓冲液(Invitrogen)中1:50稀释,并在95°加热4分钟。将样品以两个泳道重复加载到4-12%
Figure BDA00002013471000202
凝胶上,旁边是5个BSA标准,范围是0.2μg-2μg/泳道(用于生成标准曲线)。使用MOPSSDS电泳缓冲液(Invitrogen),以200V施加电压,直至示踪染料到达凝胶的底部。凝胶用45%甲醇、10%乙酸中的0.2%Coomassie Blue G-250染色,然后脱色,首先以45%甲醇、10%乙酸短暂进行,然后以7%乙酸、5%甲醇充分进行,直至背景变清晰。脱色之后,用BioRad Fluor-S MultiImager扫描凝胶。使用仪器的Quantity One Software v.4.5.2获得染色蛋白条带的背景扣除体积(background-subtracted volume),并生成BSA标准曲线,用于计算储存溶液中嵌合DIG-152蛋白的浓度。
实施例3
用于竞争结合实验的Cry1Ca和Cry1Ab核心毒素蛋白的制备和秋粘虫 (Spodoptera frugiperda)刷状缘膜泡的分离
下面的实施例评估了Cry1核心毒素蛋白与昆虫肠组织中的推定受体的竞争性结合。结果显示,125I标记的Cry1Ca核心毒素蛋白以高亲和性结合从秋粘虫制备的刷状缘膜泡(BBMV’s),而Cry1Ab核心毒素蛋白不与此结合竞争。在可选择的方案中,显示125I标记的Cry1Ab核心毒素蛋白以高亲和性结合从秋粘虫制备的BBMV’s,而Cry1Ca核心毒素蛋白不与此结合竞争。
Cry蛋白的纯化 在如实施例2中所述的荧光假单胞杆菌表达株中表达编码包含Cry1Ca3核心毒素和Cry1Ab原毒素的嵌合DIG-152蛋白的基因。以相似的方式,在Pf系统中表达编码Cry1Ab蛋白的基因。将表达Cry1Ab蛋白的荧光假单胞杆菌株命名为DPf88。
通过实施例2的方法纯化蛋白,然后进行胰蛋白酶消化以从全长蛋白产生活化的核心毒素,并通过实施例2中介绍的方法对产物进行纯化。如通过SDS-PAGE而实验确定的,胰蛋白酶处理的(活化的核心毒素)蛋白的制备物为>95%纯,并具有大约65kDa的分子量。如本文所使用的,从DIG-152蛋白制备的活化核心毒素称作Cry1Ca核心毒素蛋白,从Cry1Ab蛋白制备的活化核心毒素称为Cry1Ab核心毒素蛋白。
可溶BBMV’s的制备和分级 采用蛋白定量和SDS-聚丙烯酰胺凝胶电泳的标准方法,例如在Sambrook等(1989)和Ausubel等(1995)及其更新版本中所教导的。
将末龄(Last instar)秋粘虫幼虫禁食过夜,然后在冰上冷却15分钟后解剖。从体腔取出中肠组织,留下与包膜(integument)附着的后肠。将中肠置于9X体积的冰冷匀浆缓冲液(300mM甘露醇,5mM EGTA,17mM Tris碱,pH7.5)中,其中补充了按照供应商的推荐稀释的Protease Inhibitor Cocktail(Sigma-AldrichP-2714)。用玻璃组织匀浆器以15次冲击将组织匀浆。通过Wolfersberger(1993)的MgCl2沉淀法制备BBMV’s。简言之,将等体积的300mM甘露醇中的24mMMgCl2溶液与中肠匀浆物混合,搅拌5分钟,并在冰上放置15min。将溶液在4°以2,500xg离心15min。保留上清,将沉淀悬浮于原始体积的0.5X稀释匀浆缓冲液中并再次离心。合并两次的上清,并在4°以27,000xg离心30min以形成BBMV级分。将沉淀悬浮于BBMV储存缓冲液(10mM HEPES,130mMKCl,10%甘油,pH7.4)中至大约3mg/mL的蛋白浓度。蛋白浓度使用牛血清白蛋白(BSA)作为标准确定。在冷冻样品之前,用QuantiChromTMDALP-250Alkaline Phosphatase Assay Kit(Gentaur Molecular Products,Kampenhout,BE)按照制造商的指示进行碱性磷酸酶测定(BBMV级分的一种标志酶)。这种酶的比活性与初始中肠匀浆物级分中存在的相比通常增加7倍。将BBMV’s等分成250μL样品,在液氮中速冻,并保存于-80°。
电泳蛋白质SDS-PAGE分析在还原性(即5%β-巯基乙醇,BME)和变性(即在2%SDS存在下在90°加热5分钟)条件下进行。将蛋白质加载到4%至20%Tris-甘氨酸聚丙烯酰胺凝胶(BioRad;Hercules,CA)的孔中,并在200伏特分离60分钟。检测蛋白条带,即,用Coomassie Brilliant Blue R-250(BioRad)染色1小时,并以7%乙酸中的5%甲醇溶液脱色。使用BioRadFluro-S Multi ImagerTM进行凝胶显像和分析。蛋白条带的相对分子量通过与加载到凝胶一个孔中的BenchMarkTM Protein Ladder(Life Technologies,Rockville,MD)的样品中观察到的已知分子量的蛋白质的移动性进行比较而确定。
CryCa或CryAb核心毒素蛋白的碘化 纯化的Cry1Ca核心毒素蛋白或Cry1Ab核心毒素蛋白用Pierce Iodination Beads(Thermo Fisher Scientific,Rockford,IL)进行碘化。简言之,两个Iodination Beads用500μL的PBS(20mM磷酸钠,0.15M NaCl,pH7.5)洗涤2次,并置于含100μL PBS的1.5mL离心管中。添加0.5mCi125I-标记的碘化钠,组分在室温反应5分钟,然后向溶液中添加1μg Cry1Ca核心毒素蛋白(或1μg Cry1Ab核心毒素蛋白),并再反应3-5分钟。通过从Iodination Beads移取溶液,并将其施加于在50mMCAPS,pH10.0,1mM DTT(二硫苏糖醇),1mM EDTA和5%甘油中平衡的ZebaTM旋转柱(Invitrogen)而终止反应。Iodination Beads用10μL PBS洗涤2次,并将洗涤液施加于ZebaTM脱盐柱。通过在1,000xg离心2min将放射性溶液洗脱经过旋转柱。然后将125I-放射性标记的Cry1Ca核心毒素蛋白(或Cry1Ab核心毒素蛋白)相对于50mM CAPS,pH10.0,1mM DTT,1mMEDTA和5%甘油进行透析。
成像碘化Cry1Ca或Cry1Ab核心毒素蛋白的放射性纯度通过SDS-PAGE和荧光成像来确定。简言之,SDS-PAGE凝胶使用BioRad凝胶干燥装置按照制造商的指示进行干燥。通过将干燥的凝胶包覆于Mylar胶片(12μm厚)中并在分子动力学储存荧光屏(Molecular Dynamics storagephosphor screen)(35cmx43cm)下曝光1小时使干燥的凝胶成像。平板用分子动力学Storm 820荧光成像仪(Molecular Dynamics Storm 820phosphorimager)显影,并使用ImageQuantTM软件分析图像。
实施例4
125I-标记的Cry1核心毒素蛋白与来自秋粘虫的BBMV的结合
生成饱和曲线以确定在与Cry1Ca和Cry1Ab核心毒素蛋白的结合测定中使用的BBMV蛋白的最佳量。0.5nM 125I-放射性标记的Cry1核心毒素蛋白与0μgmL-500μg/mL范围的多种量的BBMV蛋白在结合缓冲液(8mMNaHPO4,2mM KH2PO4,150mM NaCl,0.1%BSA,pH7.4)中在28°温育1hr。通过将三份重复的150μL反应混合物加样于不同的1.5mL离心管并在室温将样品以14,000xg离心8分钟,而将结合于BBMV蛋白的125I-标记的Cry1核心毒素蛋白与未结合的级分分离。轻柔地除去上清,并将沉淀用冰冷的结合缓冲液洗涤三次。切下含有沉淀的离心管底部,置于13x75mm玻璃培养管中,每个样品在伽马计数器上计数5分钟。获得的CPM(每分钟计数)减去背景CPM(与无BBMV蛋白反应)相对于BBMV蛋白浓度绘图。根据其他人报道的结果(Luo等1999),用于结合测定法的BBMV蛋白的最佳浓度确定为150μg/mL。
实施例5
Cry1Ab和Cry1Ca的核心毒素蛋白与来自秋粘虫的BBMV的竞争结合 测定法
同源和异源竞争结合测定法用150μg/mL的秋粘虫BBMV蛋白和0.5nM 125I-放射性标记的Cry1Ca核心毒素蛋白进行。添加到反应混合物中的竞争性非放射性标记的Cry1Ab核心毒素蛋白的浓度范围是0.045nM-300nM,并同时添加放射性Cry1Ca核心毒素蛋白,以确保真实的结合竞争。温育在28°进行1h,如上所述地测量与BBMV结合(特异性结合)的125I-标记的Cry1Ca核心毒素蛋白的量。非特异性结合用存在1,000nM非放射性标记的Cry1Ca核心毒素蛋白时获得的计数代表。100%的总结合被认为是不存在任何竞争性Cry1Ca核心毒素蛋白时的结合的量。
使用125I-标记的Cry1Ca核心毒素蛋白的受体结合测定法确定了Cry1Ab核心毒素蛋白将这种放射性标记的配体从其来自秋粘虫的BBMV’s上的结合位点取代的能力。结果(图1)显示,在高达300nM(放射性结合配体浓度的600倍)的浓度下,Cry1Ab核心毒素蛋白没有将结合的125I标记的Cry1Ca核心毒素蛋白从其受体蛋白取代下来。正如预期,未标记的Cry1Ca核心毒素蛋白能够将放射性标记的Cry1Ca核心毒素蛋白从其结合蛋白取代下来,显示S形的(sigmoidal)剂量响应曲线,50%取代发生在5nM。
这因此表明,Cry1Ca核心毒素蛋白与秋粘虫BBMVs中不结合Cry1Ab核心毒素蛋白的结合位点相互作用。
实施例6
Cry1Ca和Cry1Ab核心毒素蛋白与来自秋粘虫的BBMV的竞争结合测 定法
同源和异源竞争结合测定法用150μg/mL BBMV蛋白和0.5nM 125I-放射性标记的Cry1Ab核心毒素蛋白进行。添加到反应混合物中的竞争性非放射性标记的Cry1Ca核心毒素蛋白的浓度范围是0.045nM-1000nM,并同时添加放射性Cry1Ab核心毒素蛋白,以确保真实的结合竞争。温育在28°进行1h,如上所述地测量与BBMV结合(特异性结合)的125I-标记Cry1Ab核心毒素蛋白的量。非特异性结合用存在1,000nM非放射性标记的Cry1Ab核心毒素蛋白时获得的计数代表。100%的总结合被认为是不存在任何竞争性Cry1Ca核心毒素蛋白时的结合的量。
使用125I-标记的Cry1Ab核心毒素蛋白的受体结合测定法确定了Cry1Ca核心毒素蛋白将这种放射性标记的配体从其来自秋粘虫的BBMV’s上的结合位点取代的能力。结果(图2)显示,在高达300nM(放射性结合配体浓度的600倍)的浓度下,Cry1Ca核心毒素蛋白没有将结合的125I标记的Cry1Ab核心毒素蛋白从其受体蛋白取代下来。正如预期,未标记的Cry1Ab核心毒素蛋白能够将放射性标记的Cry1Ab核心毒素蛋白从其结合蛋白上取代下来,显示S形的(sigmoidal)剂量响应曲线,50%取代发生在5nM。
这因此表明,Cry1Ab核心毒素蛋白与秋粘虫BBMVs中不结合Cry1Ca核心毒素蛋白的结合位点相互作用。
参考文献
Finney,D.J.1971.Probit analysis.Cambridge University Press,England.
Hua,G.,L.Masson,J.L.Jurat-Fuentes,G.Schwab和M.J.Adang.Binding analyses of Bacillus thuringiensis Cry d-endotoxins using brush bordermembrane vesicles of Ostrinia nubilalis.Applied and EnvironmentalMicrobiology 67[2],872-879.2001.
LeOra Software.1987.POLO-PC.A user’s guide to probit and logitanalysis.Berkeley,CA.
McGaughey,W.H.,F.Gould和W.Gelernter.Bt resistance management.Nature Biotechnology 16[2],144-146.1998
Marcon,P.R.G.C.,L.J.Young,K.Steffey和B.D.Siegfried.1999.Baselinesusceptibility of the European corn borer,Ostrinia nubilalis (Hübner)(Lepidoptera:Pyralidae)to Bacillus thuringiensis toxins.J.Econ.Entomol.92(2):280-285.
Robertson,L.J.和H.K.Preisler.1992.Pesticide bioassays with arthropods.CRC Press,Boca Ranton,FL.
SAS Institute Inc.1988.SAS procedures guide,Release 6.03 edition.SASInstitute Inc,Cary,NC.
Stone,B.F.1968.A formula for determining degree of dominance in casesof monofactorial inheritance of resistance to chemicals.Bull.WHO 38:325-329.
Van Mellaert,H.,J.Botterman,J.Van Rie和H.Joos.Transgenic plantsfor the prevention of development of insects resistant to Bacillus thuringiensistoxins.(Plant Genetic Systems N.V.,Belg.89-401499[400246],57-19901205.EP.5-31-1989
附录A
δ-内毒素列表–来自Crickmore等网站(申请书中引用)
NCBI入口登录号(如果可得)
Figure BDA00002013471000261
Figure BDA00002013471000271
Figure BDA00002013471000281
Figure BDA00002013471000291
Figure BDA00002013471000301
Figure BDA00002013471000311
Figure BDA00002013471000321
Figure BDA00002013471000341
Figure BDA00002013471000351
Figure BDA00002013471000361
Figure BDA00002013471000381
Figure BDA00002013471000382
Figure BDA00002013471000391
Figure BDA00002013471000401
Figure IDA00002013471400011
Figure IDA00002013471400031
Figure IDA00002013471400041
Figure IDA00002013471400051
Figure IDA00002013471400071

Claims (28)

1.一种转基因植物,包括编码Cry1C杀虫蛋白的DNA和编码Cry1Ab杀虫蛋白的DNA。
2.权利要求1的植物的种子。
3.权利要求1的转基因植物,其中编码Cry1Ca杀虫蛋白的DNA和编码Cry1Ab杀虫蛋白的DNA被渐渗到所述植物中。
4.权利要求3的植物的种子。
5.一块植物田,包括非-Bt避难所(refuge plant)植物和多个权利要求1的转基因植物,其中所述避难所植物占所述田地中全部作物植物的少于40%。
6.权利要求5的植物田,其中所述避难所植物占所述田地中全部作物植物的少于30%。
7.权利要求5的植物田,其中所述避难所植物占所述田地中全部作物植物的少于20%。
8.权利要求5的植物田,其中所述避难所植物占所述田地中全部作物植物的少于10%。
9.权利要求5的植物田,其中所述避难所植物占所述田地中全部作物植物的少于5%。
10.权利要求5的植物田,其中所述避难所植物成块状或条状种植。
11.一种种子混合物,包括来自非Bt避难所植物的避难所种子和多个权利要求7的种子,其中所述避难所种子占混合物中全部种子的少于40%。
12.权利要求11的种子混合物,其中所述避难所种子占混合物中全部种子的少于30%。
13.权利要求11的种子混合物,其中所述避难所种子占混合物中全部种子的少于20%。
14.权利要求11的种子混合物,其中所述避难所种子占混合物中全部种子的少于10%。
15.权利要求11的种子混合物,其中所述避难所种子占混合物中全部种子的少于5%。
16.一种管理昆虫对Cry毒素产生抗性的方法,所述方法包括种植种子以产生权利要求5的植物田。
17.权利要求1的植物,所述植物进一步包含编码含有Cry1Fa核心毒素的蛋白质的DNA。
18.一块植物田,包括非-Bt避难所植物和多个权利要求17的玉米植物,其中所述避难所植物占所述田地中全部作物植物的少于大约20%。
19.一块植物田,包括多个权利要求17的植物,其中所述田地包含少于大约10%的避难所植物。
20.一种管理昆虫对Cry毒素产生抗性的方法,所述方法包括种植种子以产生权利要求19的植物田。
21.一种控制鳞翅类害虫的组合物,包含表达有效量的含Cry1Ab核心毒素的蛋白质和含Cry1C核心毒素的蛋白质的细胞。
22.权利要求21的组合物,包含经转化以表达含Cry1Ab核心毒素的蛋白质和含Cry1C核心毒素的蛋白质的宿主,其中所述宿主是微生物或植物细胞。
23.一种控制鳞翅类害虫的方法,包括向所述害虫或所述害虫的环境提供有效量的权利要求21的组合物。
24.权利要求5或18的田地,其中所述植物占地超过10英亩。
25.权利要求1、3和17中任一项的植物,其中所述植物选自玉米、大豆、甘蔗和棉花。
26.权利要求1、3和17中任一项的植物,其中所述植物是玉米植物。
27.权利要求1、3、17、25和26中任一项的植物的植物细胞,其中所述植物细胞包含编码所述Cry1C杀虫蛋白的所述DNA和编码所述Cry1Ab杀虫蛋白的所述DNA,其中所述Cry1C杀虫蛋白与SEQ ID NO:2是至少99%同一的,而所述Cry1D杀虫蛋白与SEQ ID NO:3是至少99%同一的。
28.权利要求1、3、17、25和26中任一项的植物,其中所述Cry1C杀虫蛋白包含SEQ ID NO:2,而所述Cry1Ab杀虫蛋白包含SEQ ID NO:3。
CN201080063909.1A 2009-12-16 2010-12-16 组合使用Cry1Ca 和Cry1Ab 蛋白用于昆虫抗性管理 Active CN102803495B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28429209P 2009-12-16 2009-12-16
US61/284,292 2009-12-16
PCT/US2010/060819 WO2011084622A1 (en) 2009-12-16 2010-12-16 Combined use of cry1ca and cry1ab proteins for insect resistance management

Publications (2)

Publication Number Publication Date
CN102803495A true CN102803495A (zh) 2012-11-28
CN102803495B CN102803495B (zh) 2015-06-10

Family

ID=44305718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080063909.1A Active CN102803495B (zh) 2009-12-16 2010-12-16 组合使用Cry1Ca 和Cry1Ab 蛋白用于昆虫抗性管理

Country Status (19)

Country Link
US (1) US9139844B2 (zh)
EP (1) EP2513314B2 (zh)
JP (1) JP5969920B2 (zh)
KR (1) KR101841294B1 (zh)
CN (1) CN102803495B (zh)
AR (1) AR079501A1 (zh)
AU (1) AU2010339911B2 (zh)
BR (1) BR112012014746B1 (zh)
CA (1) CA2782549A1 (zh)
CL (1) CL2012001632A1 (zh)
CO (1) CO6561805A2 (zh)
ES (1) ES2598491T3 (zh)
IL (1) IL220340A (zh)
MX (1) MX344313B (zh)
NZ (1) NZ601095A (zh)
RU (1) RU2596406C2 (zh)
UA (1) UA112287C2 (zh)
WO (1) WO2011084622A1 (zh)
ZA (1) ZA201204916B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103725704A (zh) * 2014-01-17 2014-04-16 北京大北农科技集团股份有限公司 控制害虫的构建体及其方法
CN110981948A (zh) * 2019-12-23 2020-04-10 隆平生物技术(海南)有限公司 一种植物抗虫基因及其载体和应用

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102012019434B1 (pt) * 2011-07-26 2021-11-09 Dow Agrosciences Llc Métodos de controle de pestes, de insetos, molécula e sequência de dna diagnóstica para o evento de soja 9582.814.19.1
US9688730B2 (en) * 2012-07-02 2017-06-27 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2014071182A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
CA2901316A1 (en) 2013-03-15 2014-09-25 Pioneer Hi-Bred International, Inc. Phi-4 polypeptides and methods for their use
CA2920339C (en) 2013-08-16 2023-10-24 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
BR122020001770B1 (pt) 2013-09-13 2022-11-29 Pioneer Hi-Bred International, Inc Construto de dna, método de obtenção de planta transgênica, proteína de fusão, método para controlar uma população de praga de inseto, método para inibir o crescimento ou matar uma praga de inseto
UA120608C2 (uk) 2014-02-07 2020-01-10 Піонір Хай-Бред Інтернешнл, Інк. Очищений поліпептид ptip-83 та спосіб його застосування
CN106232620B (zh) 2014-02-07 2022-05-13 先锋国际良种公司 杀昆虫蛋白及其使用方法
WO2016000237A1 (en) 2014-07-03 2016-01-07 Pioneer Overseas Corporation Plants having enhanced tolerance to insect pests and related constructs and methods involving insect tolerance genes
US10028510B2 (en) 2014-08-28 2018-07-24 Dow Agrosciences Llc DIG-17 insecticidal cry toxins
WO2016032836A1 (en) * 2014-08-28 2016-03-03 Dow Agrosciences Llc Dig-14 insecticidal cry toxins
US10435706B2 (en) 2014-10-16 2019-10-08 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2016144688A1 (en) 2015-03-11 2016-09-15 Pioneer Hi Bred International Inc Insecticidal combinations of pip-72 and methods of use
RU2017144238A (ru) 2015-05-19 2019-06-19 Пайонир Хай-Бред Интернэшнл, Инк. Инсектицидные белки и способы их применения
EP3310803A1 (en) 2015-06-16 2018-04-25 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
MX2018000615A (es) 2015-07-13 2018-08-01 Pivot Bio Inc Metodos y composiciones para mejorar atributos de plantas.
CN116003550A (zh) 2015-08-06 2023-04-25 先锋国际良种公司 植物来源的杀昆虫蛋白及其使用方法
US11236347B2 (en) 2015-08-28 2022-02-01 Pioneer Hi-Bred International, Inc. Ochrobactrum-mediated transformation of plants
CA3001001A1 (en) 2015-10-05 2017-04-13 Massachusetts Institute Of Technology Nitrogen fixation using refactored nif clusters
EP3390431A1 (en) 2015-12-18 2018-10-24 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CN117003840A (zh) 2016-04-14 2023-11-07 先锋国际良种公司 具有改善的活性谱的杀昆虫多肽及其用途
EP3445861B1 (en) 2016-04-19 2021-12-08 Pioneer Hi-Bred International, Inc. Insecticidal combinations of polypeptides having improved activity spectrum and uses thereof
EA201892293A1 (ru) 2016-05-04 2019-04-30 Пайонир Хай-Бред Интернэшнл, Инк. Инсектицидные белки и способы их применения
CA3022858A1 (en) 2016-06-16 2017-12-21 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
EP3475430B1 (en) 2016-06-24 2022-06-01 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
EP3478052B1 (en) 2016-07-01 2021-08-25 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
WO2018013333A1 (en) 2016-07-12 2018-01-18 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
BR112019008800A2 (pt) 2016-11-01 2019-07-16 Pioneer Hi Bred Int polipeptídeo inseticida, composição inseticida, polinucleotídeo recombinante, construto de dna, célula de planta ou planta transgênica, método para inibir o crescimento ou exterminar uma população de praga de inseto agrícola, método para inibir o crescimento ou exterminar uma praga de inseto, método para controlar infestação de inseto lepidoptera e/ou coleoptera em uma planta transgênica e fornecer gerenciamento de resistência de inseto e uso de pelo menos um polipeptídeo inseticida
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
BR112019012339A2 (pt) 2016-12-14 2019-11-26 Pioneer Hi Bred Int polipeptídeo inseticida recombinante, composição, construto de dna, célula hospedeira, planta transgênica, método para inibir o crescimento ou extermínio de uma praga de inseto ou população de praga, polipeptídeo ipd093 quimérico e proteína de fusão
US11213028B2 (en) 2016-12-22 2022-01-04 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
AU2018207204B2 (en) 2017-01-12 2023-11-30 Pivot Bio, Inc. Methods and compositions for improving plant traits
WO2018140214A1 (en) 2017-01-24 2018-08-02 Pioneer Hi-Bred International, Inc. Nematicidal protein from pseudomonas
BR112019016394A2 (pt) 2017-02-08 2020-04-07 Pioneer Hi Bred Int construto de dna, pilha molecular, pilha de melhoramento, planta transgênica ou progênie da mesma, composição e método para controlar uma população de praga de inseto
UA126807C2 (uk) 2017-05-11 2023-02-08 Піонір Хай-Бред Інтернешнл, Інк. Інсектицидний білок і спосіб його застосування
BR112019024827A2 (pt) 2017-05-26 2020-06-16 Pioneer Hi-Bred International, Inc. Construto de dna, planta transgênica ou progênie da mesma, composição e método para controlar uma população de pragas de insetos
CN107383177B (zh) * 2017-08-16 2020-08-14 中国农业大学 人工合成用于转基因抗虫植物的Bt杀虫基因mcry1Ab
US20200165626A1 (en) 2017-10-13 2020-05-28 Pioneer Hi-Bred International, Inc. Virus-induced gene silencing technology for insect control in maize
CN107810759A (zh) * 2017-11-26 2018-03-20 胡作林 一种玉米螟防治方法
WO2019165245A1 (en) 2018-02-22 2019-08-29 Zymergen Inc. Method for creating a genomic library enriched for bacillus and identification of novel cry toxins
EP3759122A1 (en) 2018-03-02 2021-01-06 Zymergen Inc. Insecticidal protein discovery platform and insecticidal proteins discovered therefrom
CA3087861A1 (en) 2018-03-02 2019-09-06 Pioneer Hi-Bred International, Inc. Plant health assay
US11702668B2 (en) 2018-05-22 2023-07-18 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
BR112020026771A2 (pt) 2018-06-27 2021-03-30 Pivot Bio, Inc. Composições agrícolas que compreendem micróbios de fixação de nitrogênio remodelados
CN112689677A (zh) 2018-08-29 2021-04-20 先锋国际良种公司 杀昆虫蛋白及其使用方法
CN112771068A (zh) * 2018-09-11 2021-05-07 先锋国际良种公司 杀昆虫蛋白及其使用方法
CN110117314B (zh) * 2019-03-27 2022-02-08 广州哈维种业有限公司 人工合成Bt杀虫蛋白基因Cry1Ab-GM1、其表达载体及其应用
WO2021076346A1 (en) 2019-10-18 2021-04-22 Pioneer Hi-Bred International, Inc. Maize event dp-202216-6 and dp-023211-2 stack
EP4143211A2 (en) 2020-05-01 2023-03-08 Pivot Bio, Inc. Modified bacterial strains for improved fixation of nitrogen
CA3186978A1 (en) 2020-07-14 2022-01-20 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
BR112023002603A2 (pt) 2020-08-10 2023-04-04 Pioneer Hi Bred Int Elementos reguladores de plantas e métodos de uso dos mesmos
AU2022301301A1 (en) 2021-07-02 2023-12-14 Pivot Bio, Inc. Genetically-engineered bacterial strains for improved fixation of nitrogen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133942A1 (en) * 2001-03-30 2004-07-08 Paul Miles Novel pesticidal toxins
US20050155103A1 (en) * 1996-11-27 2005-07-14 Monsanto Technology Llc Transgenic plants expressing lepidopteran-active delta-endotoxins
US20050216969A1 (en) * 2004-03-26 2005-09-29 Dow Agrosciences Llc Cry1F and Cry1AC transgenic cotton lines and event-specific identification thereof
US20080311096A1 (en) * 2004-03-05 2008-12-18 Lang Bruce A Combinations of Cry1Ab and Cry1Fa as an insect resistance management tool
CN101405296A (zh) * 2006-03-21 2009-04-08 拜尔生物科学公司 编码杀虫蛋白的新基因

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8600161A (pt) 1985-01-18 1986-09-23 Plant Genetic Systems Nv Gene quimerico,vetores de plasmidio hibrido,intermediario,processo para controlar insetos em agricultura ou horticultura,composicao inseticida,processo para transformar celulas de plantas para expressar uma toxina de polipeptideo produzida por bacillus thuringiensis,planta,semente de planta,cultura de celulas e plasmidio
EP0400246A1 (en) * 1989-05-31 1990-12-05 Plant Genetic Systems, N.V. Prevention of Bt resistance development
US6777589B1 (en) * 1990-01-22 2004-08-17 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5723758A (en) 1991-09-13 1998-03-03 Mycogen Corporation Bacillus thuringiensis genes encoding lepidopteran-active toxins
GB9318207D0 (en) * 1993-09-02 1993-10-20 Sandoz Ltd Improvements in or relating to organic compounds
US6114608A (en) * 1997-03-14 2000-09-05 Novartis Ag Nucleic acid construct comprising bacillus thuringiensis cry1Ab gene
US6868634B2 (en) * 2001-10-04 2005-03-22 Mississippi State University Insect resistance management in agricultural applications
EP2087120A2 (en) * 2006-12-08 2009-08-12 Pioneer Hi-Bred International Inc. Novel bacillus thuringiensis crystal polypeptides, polynucleotides, and compositions thereof
US9994621B2 (en) 2007-06-01 2018-06-12 Bayer Cropscience N.V. Genes encoding insecticidal proteins
CA2723188A1 (en) * 2008-05-01 2009-11-05 Bayer Bioscience N.V. Armyworm insect resistance management in transgenic plants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050155103A1 (en) * 1996-11-27 2005-07-14 Monsanto Technology Llc Transgenic plants expressing lepidopteran-active delta-endotoxins
US20040133942A1 (en) * 2001-03-30 2004-07-08 Paul Miles Novel pesticidal toxins
US20080311096A1 (en) * 2004-03-05 2008-12-18 Lang Bruce A Combinations of Cry1Ab and Cry1Fa as an insect resistance management tool
US20050216969A1 (en) * 2004-03-26 2005-09-29 Dow Agrosciences Llc Cry1F and Cry1AC transgenic cotton lines and event-specific identification thereof
CN101405296A (zh) * 2006-03-21 2009-04-08 拜尔生物科学公司 编码杀虫蛋白的新基因

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREW PAUL GUTIERREZ等: "Physiologically based demographics of Bt cotton–pest interactions I. Pink bollworm resistance, refuge and risk", 《ECOLOGICAL MODELLING》 *
T SALM等: "Insect resistance of transgenic plants that expression modified bacillus thuringiensis cryIA(b) and CryIC genes:aresisitance management strategy", 《PLANT MOLECULAR BIOLOGY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103725704A (zh) * 2014-01-17 2014-04-16 北京大北农科技集团股份有限公司 控制害虫的构建体及其方法
CN103725704B (zh) * 2014-01-17 2015-11-18 北京大北农科技集团股份有限公司 控制害虫的构建体及其方法
CN110981948A (zh) * 2019-12-23 2020-04-10 隆平生物技术(海南)有限公司 一种植物抗虫基因及其载体和应用

Also Published As

Publication number Publication date
CA2782549A1 (en) 2011-07-14
CO6561805A2 (es) 2012-11-15
JP5969920B2 (ja) 2016-08-17
RU2012130022A (ru) 2014-01-27
CN102803495B (zh) 2015-06-10
KR101841294B1 (ko) 2018-03-22
NZ601095A (en) 2015-05-29
CL2012001632A1 (es) 2013-01-25
EP2513314B1 (en) 2016-09-21
IL220340A (en) 2016-07-31
MX344313B (es) 2016-12-13
ES2598491T3 (es) 2017-01-27
US9139844B2 (en) 2015-09-22
AU2010339911A1 (en) 2012-07-12
AR079501A1 (es) 2012-02-01
US20120311745A1 (en) 2012-12-06
MX2012007135A (es) 2012-10-09
EP2513314A1 (en) 2012-10-24
WO2011084622A1 (en) 2011-07-14
BR112012014746A2 (pt) 2015-08-25
AU2010339911B2 (en) 2016-04-21
EP2513314A4 (en) 2013-07-24
RU2596406C2 (ru) 2016-09-10
UA112287C2 (uk) 2016-08-25
ZA201204916B (en) 2013-02-27
KR20140015155A (ko) 2014-02-06
BR112012014746B1 (pt) 2024-03-05
EP2513314B2 (en) 2019-09-11
JP2013514770A (ja) 2013-05-02

Similar Documents

Publication Publication Date Title
CN102803495B (zh) 组合使用Cry1Ca 和Cry1Ab 蛋白用于昆虫抗性管理
CN102753695B (zh) 组合使用Cry1Ab 与Cry1Be 用于抗性昆虫的管理
RU2603257C2 (ru) КОМБИНИРОВАННОЕ ПРИМЕНЕНИЕ БЕЛКОВ Cry1Da И Cry1Fa ДЛЯ ВЫРАБАТЫВАНИЯ РЕЗИСТЕНТНОСТИ К НАСЕКОМЫМ
RU2590592C2 (ru) ПРИМЕНЕНИЕ Cry1Da В СОЧЕТАНИИ С Cry1Be ДЛЯ УПРАВЛЕНИЯ УСТОЙЧИВЫМИ НАСЕКОМЫМИ
CN102821596B (zh) CRY1Ca和CRY1Fa蛋白在昆虫抗性管理中的组合应用
CN102821597B (zh) Vip3Ab和CRY1Fa用于管理抗性昆虫的组合用途
CN102753013B (zh) 组合使用Vip3Ab与Cry1Ca用于抗性昆虫的管理
RU2569108C2 (ru) ПРИМЕНЕНИЕ Cry1Da В СОЧЕТАНИИ С Cry1Ca ДЛЯ УПРАВЛЕНИЯ УСТОЙЧИВЫМИ НАСЕКОМЫМИ
RU2608500C2 (ru) Комбинированное применение vip3ab и cry1ab для регулирования устойчивых насекомых
JP2016501511A (ja) 抵抗性のフォールアーミーワーム昆虫の管理のための組み合わせたCry1Eaの使用
JP2014525748A (ja) Cry1Abと組み合わせたDIG3殺虫性結晶タンパク質の使用
TW201738380A (zh) 用於植物蟲害管理的四種vip與cry蛋白質毒素之組合
JP5913124B2 (ja) サトウキビでのCry抵抗性のシュガーケーンボーラーの防除および昆虫抵抗性管理のためのCRY1FaおよびCRY1Abタンパク質の併用
RU2575084C2 (ru) ПРИМЕНЕНИЕ Vip3Ab В СОЧЕТАНИИ С Cry1Ca ДЛЯ УПРАВЛЕНИЯ УСТОЙЧИВЫМИ НАСЕКОМЫМИ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Indiana, USA

Patentee after: Kedihua Agricultural Technology Co.,Ltd.

Address before: Indiana, USA

Patentee before: DOW AGROSCIENCES LLC

CP01 Change in the name or title of a patent holder