CN112689677A - 杀昆虫蛋白及其使用方法 - Google Patents

杀昆虫蛋白及其使用方法 Download PDF

Info

Publication number
CN112689677A
CN112689677A CN201980056580.7A CN201980056580A CN112689677A CN 112689677 A CN112689677 A CN 112689677A CN 201980056580 A CN201980056580 A CN 201980056580A CN 112689677 A CN112689677 A CN 112689677A
Authority
CN
China
Prior art keywords
plant
sequence
seq
polypeptide
insecticidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980056580.7A
Other languages
English (en)
Inventor
E·A·M·富克斯
N·K·卡卡尼
K·沃特
山本敬司
郑毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Hi Bred International Inc
Original Assignee
Pioneer Hi Bred International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi Bred International Inc filed Critical Pioneer Hi Bred International Inc
Publication of CN112689677A publication Critical patent/CN112689677A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal protein (delta-endotoxin)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P7/00Arthropodicides
    • A01P7/04Insecticides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Abstract

本公开涉及分子生物学领域。提供了编码杀有害生物蛋白的新颖基因。这些杀有害生物蛋白和编码它们的核酸序列可用于制备杀有害生物制剂和生产有害生物抗性转基因植物。提供了用来产生或改变杀有害生物蛋白的方法,以便改变或增强杀有害生物活性。

Description

杀昆虫蛋白及其使用方法
以电子方式递交的序列表的引用
该序列表的官方副本经由EFS-Web作为ASCII格式的序列表以电子方式提交,文件名为“6806_SeqList”,创建于2019年8月19日,且具有825千字节大小,并与本说明书同时提交。包含在所述ASCII格式的文件中的序列表是本说明书的一部分并且通过引用以其整体并入本文。
相关申请的交叉引用
本申请要求于2018年8月29日提交的美国临时申请号62/724,276的权益,该申请以其全文通过引用并入本文中。
技术领域
本公开涉及分子生物学领域。提供了编码杀有害生物蛋白的新颖基因。这些杀有害生物蛋白和编码它们的核酸序列可用于制备杀有害生物制剂和生产有害生物抗性转基因植物。提供了用来产生或改变杀有害生物蛋白的方法,以便改变或增强杀有害生物活性。
背景技术
使用微生物剂(如真菌、细菌或其他昆虫物种)对具有农业意义的昆虫有害生物进行生物控制,为合成型化学杀有害生物剂提供了环境友好且有商业吸引力的替代方案。一般来说,使用生物杀有害生物剂造成污染和环境危害的风险较低,并且生物杀有害生物剂提供比传统广谱化学杀昆虫剂所特有的靶特异性更强的靶特异性。另外,生物杀有害生物剂往往生产成本较低,并且因此能提高各种作物的经济产量。
已知芽孢杆菌属(Bacillus)微生物的某些物种对一系列昆虫有害生物具有杀有害生物活性,所述昆虫有害生物包括鳞翅目(Lepidoptera)、双翅目(Diptera)、鞘翅目(Coleoptera)、半翅目(Hemiptera)等。苏云金芽孢杆菌(Bacillus thuringiensis,Bt)和日本金龟子芽孢杆菌(Bacillus popilliae)是迄今为止发现的最成功的生物控制剂。昆虫致病性还归因于幼虫芽孢杆菌(B.larvae)、缓病芽孢杆菌(B.lentimorbus)、球形芽孢杆菌(B.sphaericus)和蜡状芽孢杆菌(B.cereus)的菌株。微生物杀昆虫剂,特别是从芽孢杆菌属菌株获得的那些微生物杀昆虫剂,作为有害生物化学控制的替代品在农业上起着重要作用。
通过将作物植物进行遗传工程改造以从芽孢杆菌属产生杀有害生物蛋白,已经开发出抗昆虫增强的作物植物。例如,已经对玉米和棉花植物进行遗传工程改造以产生从苏云金芽孢杆菌菌株分离的杀有害生物蛋白。现在,这些经遗传工程改造的作物广泛应用于农业中,并且为农民提供了取代传统昆虫控制方法的环境友好型替代方案。虽然它们已被证明在商业上非常成功,但是这些经遗传工程改造的抗昆虫作物植物可能仅针对窄范围的经济上重要的昆虫有害生物提供抗性。在一些情况下,昆虫可以对不同杀昆虫化合物产生抗性,这就导致需要鉴定用于有害生物控制的替代性生物控制剂。
因此,仍然需要对昆虫有害生物具有不同范围的杀昆虫活性的新颖杀有害生物蛋白,例如对鳞翅目和鞘翅目中的各种昆虫具有活性的杀昆虫蛋白,所述昆虫包括但不限于已对现存杀昆虫剂产生抗性的昆虫有害生物。
发明内容
在一个方面,提供了用于对细菌、植物、植物细胞、组织以及种子赋予杀有害生物活性的组合物和方法。组合物包括杀有害生物和杀昆虫多肽的核酸分子编码序列、包含那些核酸分子的载体、以及包含所述载体的宿主细胞。组合物还包括所述杀有害生物多肽序列以及针对那些多肽的抗体。组合物还包含经转化的细菌、植物、植物细胞、组织以及种子。
在另一方面,提供了编码改组的Cry毒素多肽的分离或重组的核酸分子,所述多肽包括氨基酸取代、缺失、插入、及其片段。提供了能够编码SEQ ID NO:57-112和275-278以及氨基酸取代、缺失、插入、其片段及其组合的改组的Cry毒素多肽的分离或重组的核酸分子。在某些实施例中,提供了编码杀昆虫多肽的多核苷酸,其中所述多核苷酸包含如SEQ IDNO:57-112、214-246、和275-278中任一项所示的核酸序列。还涵盖了与实施例的核酸序列互补或与实施例的序列杂交的核酸序列。所述核酸序列可以在DNA构建体或表达盒中使用,以用于在多种生物体(包括微生物和植物)中进行转化和表达。所述核苷酸或氨基酸序列可以是合成序列,所述合成序列已经被设计用于在生物体中表达,所述生物体包括但不限于:微生物或植物。
在另一方面,涵盖了改组的Cry毒素多肽。还提供了SEQ ID NO:57-112和275-278的分离或重组的改组的Cry毒素多肽以及氨基酸取代、缺失、插入、其片段及其组合。
在另一方面,提供了用于产生多肽和使用那些多肽来控制或杀灭鳞翅目、鞘翅目、线虫、真菌、和/或双翅目有害生物的方法。实施例的转基因植物表达本文公开的杀有害生物序列中的一种或多种。在不同实施例中,所述转基因植物进一步包含一种或多种另外的抗昆虫基因,例如,用于控制鞘翅目、鳞翅目、半翅目或线虫有害生物的一种或多种另外的基因。本领域技术人员将理解,所述转基因植物可以包含赋予目的农艺性状的任何基因。
在另一方面,还包括用于在样品中检测实施例的核酸和多肽的方法。提供了用于在样品中检测改组的Cry毒素多肽的存在或检测编码改组的Cry毒素多肽的多核苷酸的存在的试剂盒。所述试剂盒可以与实施预期试剂检测的方法所需的所有试剂和对照样品,以及使用说明书一起提供。
在另一方面,实施例的所述组合物和方法可用于产生具有增强的有害生物抗性或耐受性的生物体。这些生物体以及包含所述生物体的组合物对于农业目的是所希望的。实施例的组合物还可用于产生具有杀有害生物活性的经改变或改善的蛋白质,或用于检测改组的Cry毒素多肽的存在。
在另一方面,提供了用于改组Cry毒素多肽的方法,所述方法包括将结构域1(Dm1)的α环结构域从第一Cry毒素交换到第二Cry毒素中。在一些实施例中,改组的Cry毒素多肽具有改变的活性谱。在另一个实施例中,改组的Cry毒素多肽具有改变量的杀有害生物活性。在一些实施例中,改组的cry毒素多肽具有改变的作用模式或作用位点。在一些实施例中,所述改组包括将α环2、3、4、5和/或6从第一Cry毒素交换到第二Cry毒素中。在一些实施例中,所述Cry毒素是天然的Cry毒素。在一些实施例中,所述Cry毒素是改组或杂合的Cry毒素。
附图说明
图1显示了被优化用于大肠杆菌表达且被合成用于一些改组反应并且被模板化用于片段PCR的不同的全型Bt Cry毒素结构域片段(Dm1、Dm2和Dm3)。显示了Dm1、Dm2和Dm3的连接处的边界序列(分别是SEQ ID NO:266和267)。
图2显示了用于交换各种改组的Cry毒素的α环3-5的、如实例2所述合成的12种构建体的文库示意图。在文库1中,将Cry1Jc、Cry1Ca和Cry1Ah的Dm1α片段与Cry1Jc、Cry1Ac和Cry1Ca的Dm3片段连同Cry1Jc Dm2混合在一起。合成了六个构建体。在文库2中,将Cry1Ja、Cry1Ca和Cry1Ah的Dm1α片段与Cry1Ja、Cry1Ac和Cry1Ca的Dm3片段连同Cry1Ja Dm2混合在一起。合成了六个构建体。
图3显示了文库设计,从而在具有不同长度的Cry1Ca Dm3的三个不同交叉点处,用Cry1Ea结构域2(Dm2)和Cry1Ca结构域3(Dm3)改组若干个杂合结构域1(Dm1)。杂合Dm1在α3-5区域处不同。连同9个杂合Dm1,设计了三个Cry1Ea样Dm1杂合体。将不同Cry毒素的Dm1和Dm1α片段与Cry1Ea和Cry1Ca Dm2-Dm3融合片段混合,从而产生不同的新颖的Cry毒素变体。将Cry1Ea Dm2和Cry1CaDm2在不同的交叉点融合,所述交叉点为WTHRS(ECF2文库,SEQ IDNO:251)、ITQIP(ECF3文库,SEQ ID NO:252)和GFTGG(ECF4文库,SEQ ID NO:253)。
图4显示了若干种Cry毒素的比对展示,其中在Dm2和Dm3之间或仅在Dm3内具有7个不同的交叉区域,它们被用作C16、C18和C21Dm1-Dm2主链上Dm3融合的重组位点。Dm3改组是通过在不同交叉(融合)点处,将Dm3与Dm1-Dm2主链融合来进行的。将交叉点标记为F2至F8(SEQ ID NO:251-257)。
图5显示了具有不同标记的结构域的IPRS-C16的同源性模型。改组的α螺旋(单个和组合两者)以黑色表示,并且蛋白的其余部分(Dm1、Dm2和Dm3的其余部分)以灰色着色。α改组在IPRS-C16和IPRS-C21中完成。
图6显示了IPRS-C16的同源性模型(顶视图图像),其显示了Dml的以黑色着色的改组片段(α-3、α-4和一部分的α-5片段)。标记了不同的α螺旋和结构域。螺旋的位置是基于多种Cry毒素的比对和已知Cry毒素的X射线结构信息确定的。
图7显示了使用不同的Cry毒素片段改组产生的所有IPRS-C变体的列表。示出了所有变体的结构域组成。还示出了Dm2和Dm3融合交叉点(F)。确定所有这些变体针对CEW、FAW和ECB的比活性(IC50和LC50),并且列出为已测试。表中的变体是基于其针对FAW、CEW、或两者的活性进行划分的。
图8显示了在实例1、2和3中改组的Dm1的片段(α环3-一部分的α环5)。阴影区域是锚定序列,其中改组的片段与主链融合。通常,5’锚定序列基序是QIEQL(SEQ ID NO:247),并且3’锚定序列基序是ANLHL(SEQ ID NO:250)。这些锚定序列位置中每个位置处的多样性也分栏列在正常锚定序列基序的下方。
图9显示了如实例所述改组的Dm1的片段(α环3、4、5、3-4、4-5、和3-5)。阴影区域是锚定序列,其中改组的片段与主链融合。通常,5’锚定序列基序是QIEQL(SEQ ID NO:247,用于改组α螺旋-3、4&5和3&5)、DPXNP(SEQ ID NO:248,用于改组α-4、4&5)和SLQPG(SEQ IDNO:249,用于改组α-5)。3’锚定序列基序是DPXNP(SEQ ID NO:248,用于改组α-3)、SLQPG(SEQ ID NO:249,用于改组α-3&4)和GQRWG(SEQ ID NO:268,用于改组α-5、4&5和3&5)。这些锚定序列位置中每个位置处的多样性也分栏列在正常锚定序列基序的下方。
图10显示了如实例中所述产生的IPRS变体(和相关的SEQ ID NO)。
图11显示了可以用于α环交换的Cry毒素α环(和相关的SEQ ID NO)。
图12显示了如本文所述可以用于改组的显示杀昆虫活性的专有Cry毒素(和相关的SEQ ID NO)。
图13显示了当与另一种Cry毒素交换时,显示改变的活性的Cry毒素Dm3区域(和相关的SEQ ID NO)。
具体实施方式
如本文所用的,单数形式“一个/种(a/an)”以及“所述(the)”包括复数个指示物,除非上下文中另有明确指明。因此,例如,提及“细胞”包括多个此类细胞,并且提及“蛋白质”包括提及一种或多种蛋白及其等同物,等等。本文所用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常所理解相同的含义,除非另有明确说明。
本公开涉及用于控制有害生物的组合物和方法。所述方法涉及用编码改组的Cry毒素多肽的核酸序列转化生物体。具体地,实施例的核酸序列可用于制备具有杀有害生物活性的植物和微生物。因此,提供了经转化的细菌、植物、植物细胞、植物组织以及种子。所述组合物包括细菌物种的杀有害生物核酸和蛋白。所述核酸序列可用于构建随后转化到目的生物体中的表达载体,作为用于分离其他同源(或部分同源)基因的探针,并且用于通过利用本领域已知的某些方法的多个方面(如定向诱变、结构域交换或DNA改组)产生改变的改组的Cry毒素多肽。改组的Cry毒素多肽可以用于控制或杀灭鳞翅目、鞘翅目、双翅目、真菌、半翅目和线虫有害生物群体,并可用于生产具有杀有害生物活性的组合物。目的昆虫有害生物包括但不限于:鳞翅目物种,所述鳞翅目物种包括但不限于:玉米穗蛾(CEW)(谷实夜蛾)、欧洲玉米螟(European Corn Borer)(ECB)(玉米螟(Ostrinia nubialis)),小菜蛾(diamond-back moth),例如玉米穗虫(Helicoverpa zea Boddie);大豆夜蛾(soybeanlooper),例如大豆尺夜蛾(Pseudoplusia includens Walker);以及黎豆夜蛾(velvetbean caterpillar),例如梨豆夜蛾(Anticarsia gemmatalis Hübner);以及鞘翅目物种,所述鞘翅目物种包括但不限于:西方玉米根虫(Westem corn rootworm)(玉米根萤叶甲(Diabrotica virgifera))-WCRW、南方玉米根虫(Southern corn rootworm)(斑点黄瓜甲虫(Diabrotica undecimpunctata howardi))-SCRW、和北方玉米根虫(Northern cornrootworm)(北方玉米根虫(Diabrotica barberi))-NCRW。
“杀有害生物毒素”或“杀有害生物蛋白”在本文中用以指对一种或多种有害生物具有毒性活性的毒素。例如,有害生物可包括鳞翅目、双翅目、半翅目和鞘翅目或线虫门的成员,或与这种蛋白质具有同源性的蛋白质。已经从生物体中分离出杀有害生物蛋白,所述生物体包括例如,芽孢杆菌属物种、苏云金芽孢杆菌(Bacillus thurengiensi,“Bt”)、假单胞菌属(Pseudomonas)物种、发光杆菌属(Photorhabdus)物种、致病杆菌属(Xenorhabdus)物种、双酶梭菌(Clostridium bifermentans)、和鲍比氏类芽孢杆菌(Paenibacilluspopilliae)。
在一些实施例中,改组的Cry毒素多肽包含从本文公开的全长核酸序列推导出的氨基酸序列,以及由于使用替代性下游起始位点或由于产生具有杀有害生物活性的较短蛋白的加工而比全长序列更短的氨基酸序列。加工可以在其中表达所述蛋白质的生物体内或在摄取所述蛋白质后的有害生物中发生。
在另一方面,提供了用于改组Cry毒素多肽的方法,所述方法包括将结构域1(Dm1)的α环结构域从第一Cry毒素交换或改组到第二Cry毒素中,在第二改组的Cry毒素中产生异源α环区域。
在一些实施例中,本文公开的方法和组合物涉及将结构域3(Dm3)的全部或部分从第一Cry毒素(异源部分)改组或交换到第二Cry毒素中,在第二Cry改组或交换的毒素中产生异源结构域3区域。在一些实施例中,改组或交换的结构域3出现在如SEQ ID NO:250-257所示的任何一个交叉点处。在一些实施例中,结构域3的异源部分包含衍生自Cry1Tf、Cry1Cb、Cry1Fa、Cry 9Eb、Cry1Ae、Cry1Ja、Cry1Da、Cry1Bb或Cry1Ca毒素或SEQ ID NO:259-265或268-270中任一项的片段。
在一些实施例中,改组的Cry毒素多肽具有改变的活性谱。在另一个实施例中,改组的Cry毒素多肽具有改变量的杀有害生物活性。在一些实施例中,改组的cry毒素多肽具有改变的作用模式或作用位点。在一些实施例中,改组的cry毒素多肽具有改变的溶解度。
在一些实施例中,所述改组包括将α环2、3、4、5和/或6的全部或部分从第一Cry毒素交换或改组到第二Cry毒素中,这产生异源α环区域。在一些实施例中,所述Cry毒素是天然的Cry毒素。在一些实施例中,所述Cry毒素是衍生自天然的Cry毒素的改组或杂合的Cry毒素。在一些实施例中,α环交换或改组发生在与SEQ ID NO:247-250中任一项具有至少90%或具有至少95%序列同一性的序列基序上。
在另一个实施例中,α环交换或改组发生在包含SEQ ID NO:247的变体的序列基序上,其中所述变体包含:1)在SEQ ID NO:247的位置1处的组氨酸或精氨酸;2)在SEQ ID NO:247的位置2处的缬氨酸、甲硫氨酸、或亮氨酸;3)在SEQ ID NO:247的位置3处的亮氨酸;4)在SEQ ID NO:247的位置4处的精氨酸、谷氨酸、亮氨酸、或丝氨酸;或5)在SEQ ID NO:247的位置5处的异亮氨酸。
在另一个实施例中,α环交换或改组发生在包含SEQ ID NO:250的变体的序列基序上,其中所述变体包含:1)在SEQ ID NO:250的位置1处的缬氨酸;2)在SEQ ID NO:250的位置2处的苯丙氨酸;或3)在SEQ ID NO:250的位置3处的苯丙氨酸。
在另一个实施例中,α环交换或改组发生在包含SEQ ID NO:248的变体的序列基序上,其中所述变体包含:1)在SEQ ID NO:248的位置1处的天冬酰胺、丝氨酸、苏氨酸、或精氨酸;2)在SEQ ID NO:248的位置2处的精氨酸;3)在SEQ ID NO:248的位置4处的天冬氨酸、甘氨酸、或丙氨酸;4)在SEQ ID NO:248的位置4处的精氨酸、谷氨酸、亮氨酸、或丝氨酸;或5)在SEQ ID NO:248的位置5处的丙氨酸、丝氨酸、苏氨酸、谷氨酸、或缬氨酸。
在另一个实施例中,α环交换或改组发生在包含SEQ ID NO:249的变体的序列基序上,其中所述变体包含:1)在SEQ ID NO:249的位置1处的精氨酸、丙氨酸、苏氨酸、赖氨酸、或甘氨酸;2)在SEQ ID NO:249的位置2处的苏氨酸、丝氨酸、缬氨酸、异亮氨酸、或谷氨酸;3)在SEQ ID NO:249的位置3处的丝氨酸、异亮氨酸、脯氨酸、丙氨酸、精氨酸、苏氨酸、甘氨酸、或天冬酰胺;4)在SEQ ID NO:249的位置4处的天冬酰胺、谷氨酰胺、谷氨酸、甘氨酸、门冬氨酸、丝氨酸、或苏氨酸;5)在SEQ ID NO:249的位置5处的苯丙氨酸、谷氨酸、酪氨酸、或谷氨酰胺。
在另一个实施例中,α环交换或改组发生在包含SEQ ID NO:258的变体的序列基序上,其中所述变体包含:1)在SEQ ID NO:258的位置2处的谷氨酸、丙氨酸、丝氨酸、精氨酸、赖氨酸、或苏氨酸;2)在SEQ ID NO:258的位置3处的丙氨酸、甘氨酸、或谷氨酸;或3)在SEQID NO:258的位置4处的丝氨酸或苯丙氨酸。
因此,本文提供了赋予杀有害生物活性的编码改组的Cry毒素多肽的分离或重组的核酸序列。还提供了改组的Cry毒素多肽的氨基酸序列。由这些改组的Cry毒素基因的翻译而产生的多肽允许细胞控制或杀灭摄取了所述多肽的有害生物。
苏云金芽孢杆菌杀昆虫蛋白类别的成员是本领域技术人员已知的(参见Crickmore等人,Microbiology and Molecular Biology Reviews[微生物学与分子生物学评论](1998)卷62:807-813;和Crickmore等人,“Bacillus thuringiensis toxinnomenclature[苏云金芽孢杆菌毒素命名法]”(2016),网址为btnomenclature.info/,可以使用“www”前缀在万维网上进行访问)。如本文所用的,“Bt Cry毒素”、或“Cry毒素”是指来自苏云金芽孢杆菌的类孢子包含体(晶体)蛋白(其对靶标生物体显示出一些可实验验证的毒性作用)、或与已知Cry蛋白具有明显序列相似性的任何蛋白(Crickmore等人,Microbiology and Molecular Biology Reviews[微生物学与分子生物学评论](1998)卷62:807)。
改组的Cry毒素蛋白及其变体和片段
本公开涵盖了改组的Cry毒素多肽。如本文中可互换地使用的“改组的Cry毒素多肽”和“改组的Cry毒素蛋白”是指具有杀昆虫活性(包括但不限于对鳞翅目和/或鞘翅目的一种或多种昆虫有害生物的杀昆虫活性),并且已经从一种或多种天然苏云金芽孢杆菌Cry毒素多肽改组的多肽。在一些实施例中,改组的Cry毒素多肽包含改组的Cry毒素,其中所述改组包括结构域1(“Dm1”)中的异源α环交换或结构域3(“Dm 3”)的异源片段。考虑了各种改组的Cry毒素多肽。改组的Cry毒素多肽或相关的蛋白的来源包括选自但不限于苏云金芽孢杆菌(Bt)物种的细菌物种。
如本文所用的“充分相同”是指具有至少约70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的序列同一性的氨基酸序列。在一个实施例中,改组的Cry毒素多肽与SEQ ID NO:57-112、214-246、和275-278中任一项相比具有至少约40%、45%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的序列同一性。在本文中与序列同一性百分比一起使用时,术语“约”意指+/-1.0%。
本文所用的“重组蛋白”是指不再处于其天然环境中(例如处于体外或重组细菌或植物宿主细胞中)的蛋白质。
如本文所用的“基本上不含细胞材料”是指包括具有小于约30%、20%、10%或5%(以干重计)的非杀有害生物蛋白(在本文中也称为“污染蛋白”)的蛋白制剂的多肽。
“片段”或“生物活性部分”包括包含与改组的Cry毒素多肽充分同一并且显示杀昆虫活性的氨基酸序列的多肽片段。改组的Cry毒素多肽的“片段”或“生物活性部分”包括如下片段,所述片段包含与SEQ ID NO:57-112、214-246、和275-278中任一项中所示的氨基酸序列充分同一的氨基酸序列,其中所述改组的Cry毒素多肽具有杀昆虫活性。此类生物活性部分可以通过重组技术制备并评价杀昆虫活性。在一些实施例中,改组的Cry毒素多肽片段是相对于SEQ ID NO:57-112、214-246、和275-278中的任一项,通过以下各项进行的来自N-末端和/或C-末端的至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31或更多个氨基酸的N-末端和/或C-末端截短:例如通过蛋白水解、通过插入起始密码子、通过缺失编码缺失的氨基酸的密码子并且同时插入起始密码子、和/或插入终止密码子。在一些实施例中,改组的Cry毒素多肽片段是来自SEQ ID NO:57-112、214-246、和275-278中任一项的N-末端的至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24个氨基酸的N-末端截短。在一些实施例中,改组的Cry毒素多肽片段是相对于SEQ ID NO:57-112、214-246、和275-278中任一项,来自N-末端和/或C-末端的至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34或更多个氨基酸的N-末端和/或C-末端截短。
如本文所用的“变体”是指具有与亲本氨基酸序列具有至少约50%、55%、60%、65%、70%、75%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高同一性的氨基酸序列的蛋白质或多肽。
在一些实施例中,改组的Cry毒素多肽包含与SEQ ID NO:57-112、214-246、和275-278中任一项的氨基酸序列的全长或片段具有至少约40%、45%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的序列同一性的氨基酸序列,其中所述改组的Cry毒素多肽具有杀昆虫活性。
在一些实施例中,改组的Cry毒素多肽包含SEQ ID NO:57-112、214-246、和275-278中任一项或多项的氨基酸序列,其与相应的SEQ ID NO:57-112、214-246、和275-278中任一项或多项的相应位置处的氨基酸相比具有1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95或更多个氨基酸取代。
用于此类操作的方法是本领域通常已知的。例如,可以通过DNA中的突变来制备改组的Cry毒素多肽的氨基酸序列变体。这也可以通过若干种诱变形式中的一种来完成,像例如位点特异性双链断裂技术,和/或定向进化。在一些方面,在所述氨基酸序列中所编码的改变将基本上不影响所述蛋白质的功能。此类变体将具有所需杀有害生物活性。然而,应当理解,可以通过对本公开的组合物使用这些技术改善或改变改组的Cry毒素多肽赋予杀有害生物活性或其他多肽物理特性的能力。
可以在一个或多个预测的非必需氨基酸残基处做出保守氨基酸取代。“非必需”氨基酸残基是可以从改组的Cry毒素多肽的野生型序列改变而来的并且不改变生物活性的残基。“保守氨基酸取代”是其中用具有相似侧链的氨基酸残基替换所述氨基酸残基的取代。在本领域中已经限定了具有相似侧链的氨基酸残基的家族。这些家族包括:具有碱性侧链的氨基酸(例如,赖氨酸、精氨酸、组氨酸);具有酸性侧链的氨基酸(例如,天冬氨酸、谷氨酸);具有极性的、带负电荷的残基及其酰胺的氨基酸(例如,天冬氨酸、天冬酰胺、谷氨酸、谷氨酰胺);具有不带电极性侧链的氨基酸(例如,甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸);具有小脂肪族、非极性或微小极性的残基的氨基酸(例如,丙氨酸、丝氨酸、苏氨酸、脯氨酸、甘氨酸);具有非极性侧链的氨基酸(例如,丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸);具有大脂肪族、非极性残基的氨基酸(例如,甲硫氨酸、亮氨酸、异亮氨酸、缬氨酸、胱氨酸);具有β-支链侧链的氨基酸(例如,苏氨酸、缬氨酸、异亮氨酸);具有芳香族侧链的氨基酸(例如,酪氨酸、苯丙氨酸、色氨酸、组氨酸);具有大芳香族侧链的氨基酸(例如,酪氨酸、苯丙氨酸、色氨酸)。
氨基酸取代可以在保留功能的非保守区域中进行。通常,此类取代并非针对保守氨基酸残基、或针对在保守基序内的氨基酸残基而进行,其中此类残基是蛋白质活性所必要的。保守的并且对于蛋白质活性可能是必需的残基的实例包括例如,在与实施例的序列相似或相关的毒素的比对中所包含的全部蛋白之间是相同的残基(例如,在同源蛋白比对中是相同的残基)。保守的但可以允许保守氨基酸取代、并且仍保留活性的残基的实例包括例如,在与实施例的序列相似或相关的毒素的比对中所包含的全部蛋白质之间仅具有保守取代的残基(例如,在同源蛋白比对中所包含的全部蛋白质之间仅具有保守取代的残基)。然而,本领域的技术人员应当理解,功能性变体在保守的残基中可以具有少量保守或非保守的改变。
可替代地,可以对氨基或羧基末端处的多种蛋白质的蛋白序列进行改变,而基本上不影响活性。这可以包括由现代分子方法所引入的插入、缺失或改变,所述方法如PCR,包括PCR扩增,所述PCR扩增借助于将氨基酸编码序列包括到在PCR扩增中所使用的寡核苷酸之中而改变或延长了这种蛋白质编码序列。可替代地,所添加的蛋白序列可以包括完整的蛋白质编码序列,如在本领域内通常用于产生蛋白质融合物的那些序列。此类融合蛋白常常用于(1)增加目的蛋白质的表达;(2)引入结合结构域、酶活性或表位以促进蛋白质纯化、蛋白质检测或本领域已知的其他实验用途;(3)将蛋白质的分泌或翻译靶向亚细胞器,如革兰氏阴性菌的周质空间、植物的线粒体或叶绿体或真核细胞的内质网,其中后者常常导致蛋白质的糖基化。
本公开的变体核苷酸和氨基酸序列还涵盖了源自诱变和引起重组的程序(如DNA改组)的序列。在这样的程序下,可以使用编码区域的一种或多种不同的改组的Cry毒素多肽来产生具有所需特性的新的改组的Cry毒素多肽。以此方式,由相关序列多核苷酸的群体产生重组多核苷酸文库,所述相关序列多核苷酸包含具有基本序列同一性并且能够在体外或体内同源重组的序列区域。例如,使用这种方法,可以将编码目的结构域的序列基序在杀有害生物基因与其他已知的杀有害生物基因之间进行改组,以获得编码具有改善的目的特性(如增加的杀昆虫活性)的蛋白的新基因。这种DNA改组的策略在本领域中是已知的。参见,例如,Stemmer,(1994)Proc.Natl.Acad.Sci.USA[美国科学院院报]91:10747-10751;Stemmer,(1994)Nature[自然]370:389-391;以及美国专利号5,605,793和5,837,458。
结构域交换或改组是用于产生改变的Cry毒素多肽的另一种机制。可以在改组的Cry毒素多肽之间交换结构域,产生具有改变的杀昆虫活性或靶谱的杂合或嵌合毒素。用于产生重组蛋白并测试其杀有害生物活性的方法是本领域已知的(参见,例如Naimov等人,(2001)Appl.Environ.Microbiol.[应用与环境微生物学]67:5328-5330;de Maagd等人,(1996)Appl.Environ.Microbiol.[应用与环境微生物学]62:1537-1543;Ge等人,(1991)J.Biol.Chem.[生物化学杂志]266:17954-17958;Schnepf等人,(1990)J.Biol.Chem.[生物化学杂志]265:20923-21010;Rang等人,91999)Appl.Environ.Microbiol.[应用与环境微生物学]65:2918-2925)。
在一些实施例中,改组的Cry毒素多肽具有修饰的物理特性。如本文所用的,术语“物理特性”是指适于描述蛋白质的物理化学特征的任何参数。如本文所用的,“目的物理特性”和“目的特性”可互换使用,以指正在研究和/或修饰的蛋白质的物理特性。物理特性的实例包括但不限于:蛋白质表面上的净表面电荷和电荷分布、蛋白质表面上的净疏水性和疏水残基分布、表面电荷密度、表面疏水密度、表面电离基团的总计数、表面张力、蛋白质大小及其在溶液中的分布、熔融温度、热容量、和第二位力系数。物理特性的实例还包括,改组的Cry毒素多肽具有增加的表达、增加的溶解度、降低的植物毒性、和蛋白水解片段在昆虫肠道中的可消化性。模拟胃液消化的模型是本领域技术人员已知的(Fuchs,R.L.和J.D.Astwood.Food Technology[食品技术]50:83-88,1996;Astwood,J.D.等人,NatureBiotechnology[自然生物技术]14:1269-1273,1996;Fu TJ等人,J.Agric Food Chem.[农业与食品化学杂志]50:7154-7160,2002)。
在一些实施例中,变体包括由于诱变而在氨基酸序列方面不同的多肽。本公开所涵盖的变体蛋白质具有生物活性,即它们仍然具有天然蛋白质所需的生物活性(即杀有害生物活性)。在一些实施例中,该变体将具有至少约10%、至少约30%、至少约50%、至少约70%、至少约80%或更高的天然蛋白质的杀昆虫活性。在一些实施例中,所述变体可以具有比天然蛋白质改善的活性。
细菌基因通常在可读框的起始附近具有多个甲硫氨酸起始密码子。通常,在这些起始密码子中的一个或多个处的翻译起始将导致功能性蛋白质的产生。这些起始密码子可以包括ATG密码子。然而,细菌(如,芽孢杆菌属物种)还将密码子GTG识别为起始密码子,并且在GTG密码子处起始翻译的蛋白质在第一个氨基酸处包含甲硫氨酸。在少数情况下,细菌系统中的翻译可以在TTG密码子处起始,尽管在此事件中TTG编码甲硫氨酸。此外,通常不先验地确定细菌中天然使用了这些密码子中的哪一些。因此,应当理解,使用可替代的甲硫氨酸密码子之一也可能导致杀有害生物蛋白的产生。这些杀有害生物蛋白涵盖于本公开之中,并且可以在本公开的方法中使用。应当理解,当在植物中表达时,有必要将可替代的起始密码子改变为ATG以用于正确翻译。
在一些实施例中,改组的Cry毒素多肽包含SEQ ID NO:57-112和275-278中任一个或多个的氨基酸序列。
在一些实施例中,提供了嵌合多肽,其包含本公开的至少两种不同的改组的Cry毒素多肽的区域。
在一些实施例中,提供了嵌合多肽,其包含选自SEQ ID NO:57-112、214-246、和275-278中任一个或多个的至少两种不同的改组的Cry毒素多肽的区域。
在一些实施例中,提供一种或多种嵌合的改组的Cry毒素多肽,其包含与本公开的第二改组的Cry毒素多肽的C-末端区域有效地融合的本公开的第一改组的Cry毒素多肽的N-末端区域。
在其他实施例中,改组的Cry毒素多肽可以表达为具有催化多步翻译后蛋白质剪接的间插序列的前体蛋白。蛋白质剪接涉及从多肽切除间插序列,并伴随连接侧翼序列以产生新的多肽(Chong等人,(1996)J.Biol.Chem.[生物化学杂志],271:22159-22168)。这种被称为内含肽的间插序列或蛋白质剪接元件,通过在N-末端和C-末端剪接点处的以下三个协调反应催化其自身的切除:N-末端半胱氨酸或丝氨酸的酰基重排;两个末端之间形成支链酯或硫酯中间体的酯交换反应,和与内含肽C-末端天冬酰胺的环化相偶联释放内含肽的肽键切割(Evans等人,(2000)J.Biol.Chem.[生物化学杂志],275:9091-9094)。
在另一个实施例中,提供了融合蛋白,在所述融合蛋白的氨基酸序列中包含含有本公开的改组的Cry毒素多肽的氨基酸序列。用于设计和构建融合蛋白(以及编码它们的多核苷酸)的方法是本领域技术人员已知的。编码改组的Cry毒素多肽的多核苷酸可以融合到信号序列,这些信号序列将指导改组的Cry毒素多肽定位于原核或真核细胞的特定区室和/或指导来自原核或真核细胞的实施例的改组的Cry毒素多肽的分泌。
例如,在大肠杆菌(E.coli)中,人们可能希望指导蛋白质表达至周质空间。可以与改组的Cry毒素多肽融合以便指导多肽向细菌周质空间表达的信号序列或蛋白质(或其片段)的实例包括但不限于:pelB信号序列、麦芽糖结合蛋白(MBP)信号序列、MBP、ompA信号序列、周质性大肠杆菌不耐热肠毒素B亚基的信号序列和碱性磷酸酶的信号序列。用于构建将指导蛋白质定位的融合蛋白的若干种载体是可商购的,如可从新英格兰生物实验室(NewEngland Biolabs)获得的pMAL系列的载体(特别是pMAL-p系列)。在具体实施例中,改组的Cry毒素多肽可以与pelB果胶酸裂合酶信号序列融合,以增加革兰氏阴性菌中此类多肽的表达和纯化的效率(参见,美国专利号5,576,195和5,846,818)。
植物质体转运肽/多肽融合是本领域已知的。质外体转运肽如水稻或大麦α-淀粉酶分泌信号也是本领域已知的。质体转运肽通常与待靶向的多肽(例如,融合配偶体)进行N-末端融合。在一个实施例中,融合蛋白基本上由质体转运肽和待靶向的改组的Cry毒素多肽组成。在另一个实施例中,融合蛋白包含质体转运肽和待靶向的多肽。在这类实施例中,质体转运肽优选位于融合蛋白的N-末端。然而,另外的氨基酸残基可以在质体转运肽的N-末端,条件是所述融合蛋白至少部分地靶向质体。在具体实施例中,质体转运肽在融合蛋白的N-末端一半处、N-末端三分之一处或N-末端四分之一处。当插入质体时,大部分或全部质体转运肽通常从融合蛋白上切割。由于具体的细胞间条件或所使用的转运肽/融合配偶体的特定组合,因此在不同植物发育阶段,切割位置可能在植物物种之间略有变化。在一个实施例中,质体转运肽切割是均匀的,使得切割位点在融合蛋白群体中是相同的。在另一个实施例中,质体转运肽不是均匀的,使得切割位点在融合蛋白群体中相差1-10个氨基酸。质体转运肽能以若干种方式之一重组融合到第二蛋白质。在一些实施例中,改组的Cry毒素多肽与异源信号肽或异源转运肽融合。
在一些实施例中,提供了包含本公开的改组的Cry毒素多肽或嵌合的Cry毒素多肽的融合蛋白,所述融合蛋白由选自下组的式表示,该组由以下组成:
R1-L-R2、R2-L-R1、R1-R2或R2-R1
其中R1是本公开的改组的Cry毒素多肽或嵌合的改组的Cry毒素多肽,并且R2是目的蛋白。在一些实施例中,R1和R2是本公开的改组的Cry毒素多肽或嵌合的改组的Cry毒素多肽。所述R1多肽直接或通过接头(L)区段融合至R2多肽。术语“直接”定义在没有肽接头的情况下连接多肽的融合。因此,“L”表示与R1和R2框内融合的化学结合或多肽区段,最常见的是,L是R1和R2通过酰胺键将R1的羧基末端连接到L的氨基末端并且将L的羧基末端连接到R2的氨基末端的线性肽。“框内融合”意指R1和R2的阅读框之间没有翻译终止或中断。连接基团(L)通常是长度在1至500个氨基酸之间的多肽。连接两个分子的接头优选设计成(1)允许两个分子彼此独立地折叠并且起作用,(2)不具有发展可能干扰两种蛋白质的功能性结构域的有序二级结构的倾向,(3)具有可与功能性蛋白质结构域相互作用的最小的疏水或带电特征,并且(4)提供R1和R2的空间分离,使得R1和R2可以与单个细胞上的相应受体同时相互作用。典型地,在柔性蛋白质区域中的表面氨基酸包括Gly、Asn和Ser。期望包含Gly、Asn和Ser的氨基酸序列的几乎任何排列满足上述接头序列的标准。其他中性氨基酸如Thr和Ala也可以用于接头序列。由于在接头序列中添加了独特的限制性位点以便于构建融合体,因此另外的氨基酸也可以包括在接头中。
在一些实施例中,接头包含选自以下式的组的序列:(Gly3Ser)n、(Gly4Ser)n、(Gly5Ser)n、(GlynSer)n或(AlaGlySer)n,其中n是整数。高度柔性接头的一个实例是存在于丝状噬菌体(例如,噬菌体M13或fd)的pIII蛋白质内的富含(GlySer)的间隔子区域(Schaller等人,1975)。此区域在pIII表面蛋白质的两个结构域之间提供长、柔性的间隔子区域。还包括接头,在接头中包括内肽酶识别序列。这种切割位点对于分离融合物的各个组分以确定它们在体外是否适当折叠和是否具有活性可能是有价值的。各种内肽酶的实例包括但不限于:纤溶酶、肠激酶、激肽释放酶、尿激酶、组织纤溶酶原激活剂、梭菌蛋白酶、凝乳酶、胶原酶、鲁塞尔氏蝰蛇毒蛋白酶、后脯氨酸切割酶、V8蛋白酶、凝血酶和因子Xa。在一些实施例中,接头包含来自多基因表达载体(MGEV)的氨基酸,其如美国专利申请公开号US2007/0277263中所公开的被液泡蛋白酶切割。在其他实施例中,来自重链免疫球蛋白IgG、IgA、IgM、IgD或IgE的铰链区域的肽接头区段提供所附着的多肽之间的角度关系。尤其有用的是那些半胱氨酸被丝氨酸替换的铰链区域。本公开的接头包括源自鼠IgGγ2b铰链区域的序列,其中半胱氨酸已变为丝氨酸。融合蛋白不受所使用的接头序列的形式、大小或数目的限制,并且接头的唯一要求是功能上不会不利地干扰融合的各个分子的折叠和功能。
核酸分子及其变体和片段
提供了包含编码Cry毒素多肽或其生物活性部分的核酸序列的分离或重组的核酸分子,以及足以用作杂交探针以鉴定编码具有序列同源性区域的蛋白质的核酸分子的核酸分子。如本文所用的,术语“核酸分子”是指DNA分子(例如,重组DNA、cDNA、基因组DNA、质粒DNA、线粒体DNA)和RNA分子(例如,mRNA)以及使用核苷酸类似物而产生的DNA或RNA的类似物。核酸分子可以是单链的或双链的,但优选地是双链的DNA。
本文所用的“分离的”核酸分子(或DNA)是指不再处于其天然环境中(例如处于体外)的核酸序列(或DNA)。本文所用的“重组的”核酸分子(或DNA)是指在重组细菌或植物宿主细胞中的核酸序列(或DNA)。在一些实施例中,“分离的”或“重组的”核酸不含有在衍生所述核酸的生物体基因组DNA中天然地位于所述核酸侧翼的序列(即,位于所述核酸的5′和3′端的序列)(优选编码蛋白质的序列)。出于本公开的目的,“分离的”或“重组的”当用于指核酸分子时排除分离的染色体。例如,在不同实施例中,编码Cry毒素多肽的重组核酸分子可以包含小于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的核酸序列,所述核酸序列天然地位于衍生出该核酸的细胞的基因组DNA中的核酸分子的侧翼。
在一些实施例中,与天然或基因组核酸序列相比,编码Cry毒素多肽的分离的核酸分子在核酸序列中具有一个或多个改变。在一些实施例中,天然或基因组核酸序列的改变包括但不限于:由于遗传密码的简并性造成的核酸序列改变;与天然或基因组序列相比,由于氨基酸取代、插入、缺失和/或添加造成的核酸序列的改变;一个或多个内含子的去除;一个或多个上游或下游调节区的缺失;和与基因组核酸序列相关的5’和/或3’非翻译区域的缺失。在一些实施例中,编码Cry毒素多肽的核酸分子是非基因组序列。
考虑了编码Cry毒素多肽或相关蛋白质的多种多核苷酸。当可操作地连接到合适的启动子、转录终止和/或聚腺苷酸化序列上时,此类多核苷酸可用于在宿主细胞中产生Cry毒素多肽。这类多核苷酸还可用作用于分离编码Cry毒素多肽或相关蛋白的同源或基本上同源的多核苷酸的探针。
编码多肽的多核苷酸
编码Cry毒素多肽或相关蛋白的多核苷酸的一个来源是芽孢杆菌属细菌,其可以含有分别编码SEQ ID NO:57-112、214-246、和271-274的Cry毒素多肽的SEQ ID NO:1-56、181-213、和271-274中任一项的Cry毒素多核苷酸。SEQ ID NO:1-56、181-213、和271-274中任一个或多个的多核苷酸可用于在重组细菌宿主中表达Cry毒素多肽,所述重组细菌宿主包括但不限于农杆菌属(Agrobacterium)、芽孢杆菌属、埃希氏菌属(Escherichia)、沙门氏菌属(Salmonella)、梭形杆菌属(Lysinibacillus)、醋杆菌属(Acetobacter)、假单胞菌属和根瘤菌属(Rhizobium)细菌宿主细胞。多核苷酸还可用作用于分离编码Cry毒素多肽或相关蛋白的同源或基本上同源的多核苷酸的探针。这样的探针可用于鉴定源自苏云金芽孢杆菌的同源或基本上同源的多核苷酸、或其部分。
编码Cry毒素多肽的多核苷酸也可以从Cry毒素多肽序列从头合成。多核苷酸基因的序列可以通过使用遗传密码从Cry毒素多肽序列推导出来。计算机程序如“BackTranslate”(GCGTM包,阿克莱瑞公司,圣迭戈市,加利福尼亚州)可用于将肽序列转换成编码所述肽的相应核苷酸序列。可以用于获得相应核苷酸编码序列的Cry毒素多肽序列的实例包括但不限于SEQ ID NO:57-112、214-246、和275-278的Cry毒素多肽。此外,本公开的合成的Cry毒素多核苷酸序列可以被设计成使得它们在植物中表达。
在一些实施例中,编码Cry毒素多肽的核酸分子是具有SEQ ID NO:1-56、181-213和271-274中任一项所示的序列的多核苷酸、及其变体、片段和互补序列。本文所用的“互补序列”是指与给定核酸序列充分互补的核酸序列,使得其可以与所述给定核酸序列杂交从而形成稳定的双链体。本文所用的“多核苷酸序列变体”是指除遗传密码的简并性之外编码相同多肽的核酸序列。
在一些实施例中,编码Cry毒素多肽的核酸分子是非基因组核酸序列。如本文所用的,“非基因组核酸序列”或“非基因组核酸分子”或“非基因组多核苷酸”是指与天然或基因组核酸序列相比,具有核酸序列的一个或多个变化的核酸分子。在一些实施例中,天然或基因组核酸分子的改变包括但不限于:由于遗传密码的简并性造成的核酸序列改变;用于在植物中表达的核酸序列的优化;与天然或基因组序列相比,引入至少一个氨基酸取代、插入、缺失和/或添加的核酸序列的改变;去除与所述基因组核酸序列相关联的一个或多个内含子;插入一个或多个异源内含子;缺失与所述基因组核酸序列相关联的一个或多个上游或下游调节区;插入一个或多个异源上游或下游调节区;缺失与所述基因组核酸序列相关的5’和/或3’非翻译区;插入异源5’和/或3’非翻译区;和聚腺苷酸化位点的修饰。在一些实施例中,非基因组核酸分子是合成的核酸序列。
在一些实施例中,编码本文所公开的Cry毒素多肽的核酸分子是具有如下核苷酸序列的非基因组多核苷酸,所述核苷酸序列与SEQ ID NO:1-56、181-213和271-274中任一项的核酸序列具有至少50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的序列同一性,其中所述Cry毒素多肽具有杀昆虫活性。
在一些实施例中,核酸分子编码Cry毒素多肽变体,所述变体包含对SEQ ID NO:57-112、214-246、和275-278中任一项的氨基酸序列的一个或多个氨基酸取代。
还提供了编码转录和/或翻译产物的核酸分子,所述转录和/或翻译产物随后被剪接以最终产生功能性Cry毒素多肽。剪接可以在体外或体内完成,并且可以涉及顺式或反式剪接。用于剪接的底物可以是多核苷酸(例如,RNA转录物)或多肽。多核苷酸的顺式剪接的实例是去除插入到编码序列中的内含子并剪接两个侧翼外显子区域以产生Cry毒素多肽编码序列。反式剪接的实例是通过将所述编码序列分离成两个或更多个片段来对多核苷酸进行加密,所述片段可以单独转录并且然后被剪接以形成全长的杀有害生物编码序列。使用可以引入到构建体中的剪接增强子序列可以促进多肽的顺式或反式剪接(美国专利号6,365,377和6,531,316)。因此,在一些实施例中,这些多核苷酸并不直接编码全长Cry毒素多肽,而是编码Cry毒素多肽的一个或多个片段。这些多核苷酸可用于通过涉及剪接的机制来表达功能性Cry毒素多肽,其中剪接可以在多核苷酸(例如内含子/外显子)和/或多肽(例如内含肽/外显肽)的水平上发生。这可以用于,例如,控制杀有害生物活性的表达,因为如果在允许剪接过程以产生功能性产物的环境中表达所有必需的片段,则仅表达功能性杀有害生物多肽。在另一个实例中,将一个或多个插入序列引入多核苷酸中可促进与低同源性多核苷酸的重组;使用针对所述插入序列的内含子或内含肽便于去除所述间插序列,从而恢复经编码的变体的功能。
作为编码Cry毒素多肽的这些核酸序列的片段的核酸分子也涵盖在实施例中。如本文所用的“核苷酸片段”是指编码Cry毒素多肽的核酸序列的一部分。核酸序列的核苷酸片段可以编码Cry毒素多肽的生物活性部分,或者它可以是可以使用下文公开的方法用作杂交探针或PCR引物的片段。作为编码Cry毒素多肽的核酸序列的片段的核酸分子包含至少约150、180、210、240、270、300、330、360、400、450或500个连续核苷酸或高至存在于编码本文公开的Cry毒素多肽的全长核酸序列中的核苷酸数目,这取决于预期用途。本文所用的“连续核苷酸”是指彼此紧邻的核苷酸残基。实施例的核酸序列的片段将编码保留Cry毒素多肽的生物活性并因此保留杀昆虫活性的蛋白质片段。“保留杀昆虫活性”在本文中用以指具有SEQ ID NO:57-112、214-246、和275-278中所示的全长Cry毒素多肽中任一项的至少约10%、至少约30%、至少约50%、至少约70%、80%、90%、95%或更高的杀昆虫活性的多肽。在一些实施例中,所述杀昆虫活性针对鳞翅目物种。在一个实施例中,所述杀昆虫活性针对鞘翅目物种。在一些实施例中,所述杀昆虫活性针对玉米根虫复合体的一种或多种昆虫有害生物:西方玉米根虫,玉米根萤叶甲(Diabrotica virgifera);北方玉米根虫,巴氏根萤叶甲(D.barberi);南方玉米根虫或斑点黄瓜甲虫;黄瓜十一星叶甲食根亚种(Diabroticaundecimpunctata howardi)、南美叶甲(Diabrotica speciosa)和墨西哥玉米根虫(Mexican corn rootworm,D.virgifera zeae)。在一个实施例中,所述杀昆虫活性针对根萤叶甲属(Diabrotica)物种。
在一些实施例中,Cry毒素多肽由与SEQ ID NO:1-56、181-213、和271-274的核酸序列中任一种充分同源的核酸序列编码。
相对于参考序列(主题序列),“序列同一性百分比(%)”被确定为在比对序列并引入空位(如果需要)以实现最大百分比序列同一性后,并且不考虑作为序列同一性的一部分的任何氨基酸保守取代,候选序列(查询序列)中与参考序列中的相应氨基酸残基或核苷酸相同的氨基酸残基或核苷酸的百分比。用于确定序列同一性百分比目的而进行的比对能以本领域技术范围内的各种方式实现,例如,使用公共可用的计算机软件,例如BLAST、BLAST-2。本领域的技术人员可以确定用于比对序列的适当参数,包括在进行比较的序列的全长度上实现最大比对所需的任何算法。两个序列之间的同一性百分比是序列共有的相同位置的数目的函数(例如,查询序列的同一性百分比=查询序列和主题序列之间的相同位置的数目/查询序列的位置总数×100)。
在一些实施例中,Cry毒素多核苷酸编码包含与贯穿SEQ ID NO:57-112、214-246、和275-278中任一项的氨基酸序列的整个长度具有至少约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的序列同一性的氨基酸序列的Cry毒素多肽。
在一些实施例中,提供了编码嵌合多肽的多核苷酸,所述嵌合多肽包含本公开的至少两种不同的Cry毒素多肽的区域。
在一些实施例中,提供了编码嵌合多肽的多核苷酸,所述嵌合多肽包含与本公开的第二Cry毒素多肽的C-末端区域可操作地融合的本公开的第一Cry毒素多肽的N-末端区域。
实施例还涵盖编码Cry毒素多肽变体的核酸分子。编码Cry毒素多肽的核酸序列的“变体”包括编码本文公开的Cry毒素多肽但是由于遗传密码的简并性而存在保守差异的那些序列以及如上所述的充分同一的那些序列。可以通过使用熟知的分子生物学技术鉴定天然存在的等位基因变体,如聚合酶链式反应(PCR)和如下文概述的杂交技术。变体核酸序列还包括合成来源的核酸序列,所述核酸序列例如通过使用定向诱变而产生,但是仍然编码如下所讨论的所公开的Cry毒素多肽。
本公开提供编码本文公开的任何Cry毒素多肽的分离或重组多核苷酸。本领域普通技术人员将容易理解,由于遗传密码的简并性,存在编码本公开的Cry毒素多肽的许多核苷酸序列。
技术人员将进一步了解,可以通过核酸序列的突变引入变化,从而导致编码的Cry毒素多肽的氨基酸序列的变化,而不改变蛋白质的生物活性。因此,变体核酸分子可以通过以下方式产生:将一个或多个核苷酸取代、添加和/或缺失引入本文公开的相应的核酸序列中,这样使得将一个或多个氨基酸取代、添加或缺失引入所编码的蛋白质中。通过标准技术可以引入突变,如定向诱变和PCR介导的诱变。此类变体核酸序列也被本公开所涵盖。
可替代地,可以通过沿编码序列的全部或部分随机引入突变(如通过饱和诱变)来制备变体核酸序列,并且可以筛选所得突变体赋予杀有害生物活性以鉴定保留活性的突变体的能力。在诱变之后,所编码的蛋白质可以进行重组表达,并且所述蛋白质的活性可以使用标准的测定技术来确定。
本公开的多核苷酸及其片段任选用作各种重组和递归(recursive)重组反应的底物,除了例如Ausubel、Berger和Sambrook所述的标准克隆方法之外,即,以产生具有所需特性的另外的杀有害生物多肽同源物及其片段。各种此类反应是已知的。用于生产本文列出的任何核酸的变体的方法(这些方法包括将此类多核苷酸与第二(或更多)多核苷酸递归重组,从而形成变体多核苷酸文库)也是本公开的实施例,所产生的文库、包含所述文库的细胞和通过此类方法产生的任何重组多核苷酸也是如此。另外,此类方法任选地包括基于杀有害生物活性从此类文库中选择变体多核苷酸,正如其中此类递归重组在体外或体内进行。
各种多样性产生方案(包括核酸递归重组方案)是可获得的并且在本领域中被充分描述。所述程序可以单独和/或组合使用以产生核酸或核酸集合的一种或多种变体,以及所编码蛋白质的变体。单独地或整体地,这些程序提供了产生多样化核酸和核酸集合(包括例如核酸文库)的稳健且广泛适用的方式,所述方式可用于,例如,具有新的和/或改善的特征的核酸、蛋白质、途径、细胞和/或生物体的工程化或快速进化。
虽然为清除起见,在随后的讨论过程中作出了区分和分类,但是应当理解,所述技术通常不是相互排斥的。实际上,各种方法可以单独使用或组合、平行或串联使用,以便取得不同的序列变体。
本文所述的任何多样性产生程序的结果可以是一种或多种核酸的产生,其可以选择或筛选具有或赋予所需特性的核酸或编码具有或者赋予所需特性的蛋白质的核酸。通过本文的或技术人员以其他方式可用的一种或多种方法进行多样化之后,可以针对所需的活性或特性(例如,杀有害生物活性)或在所需的pH下的这种活性等选择所产生的任何核酸。这可以包括通过本领域任何测定来鉴定可以例如以自动化或可自动化形式检测的任何活性,参见例如以下的杀昆虫活性筛选的讨论。各种相关(或甚至不相关)的特性可以由执业者酌情串联或平行评估。
用于产生经修饰的核酸序列(例如编码具有杀有害生物活性的多肽或其片段的那些)的各种多样性产生程序的描述可以在以下出版物和其中引用的参考文献中找到:Soong等人,(2000)Nat Genet[自然遗传学]25(4):436-439;Stemmer等人,(1999)TumorTargeting[肿瘤靶向]4:1-4;Ness等人,(1999)Nat Biotechnol[自然生物技术]17:893-896;Chang等人,(1999)Nat Biotechnol[自然生物技术]17:793-797;Minshull和Stemmer,(1999)Curr Opin Chem Biol[生物化学当代观点]3:284-290;Christians等人,(1999)NatBiotechnol[自然生物技术]17:259-264;Crameri等人,(1998)Nature[自然]391:288-291;Crameri等人,(1997)Nat Biotechnol[自然生物技术]15:436-438;Zhang等人,(1997)PNASUSA[美国科学院院报]94:4504-4509;Patten等人,(1997)Curr Opin Biotechnol[生物技术当代观点]8:724-733;Crameri等人,(1996)Nat Med[自然医学]2:100-103;Crameri等人,(1996)Nat Biotechnol[自然生物技术]14:315-319;Gates等人,(1996)J Mol Biol[分子生物学杂志]255:373-386;Stemmer,(1996)“Sexual PCR and Assembly PCR[有性PCR和组装PCR]”在:The Encyclopedia of Molecular Biology.[分子生物学百科全书]VCH出版商,纽约,第447-457页;Crameri和Stemmer,(1995)BioTechniques[生物技术]18:194-195;Stemmer等人,(1995)Gene[基因],164:49-53;Stemmer,(1995)Science[科学]270:1510;Stemmer,(1995)Bio/Technology[生物/技术]13:549-553;Stemmer,(1994)Nature[自然]370:389-391和Stemmer,(1994)PNAS USA[美国科学院院报]91:10747-10751。
产生多样性的突变方法包括例如定向诱变(Ling等人,(1997)Anal Biochem[分析生物化学]254(2):157-178;Dale等人,(1996)Methods Mol Biol[分子生物学方法]57:369-374;Smith,(1985)Ann Rev Genet[遗传学年评]19:423-462;Botstein和Shortle,(1985)Science[科学]229:1193-1201;Carter,(1986)Biochem J[生物化学杂志]237:1-7和Kunkel,(1987)“The efficiency of oligonucleotide directed mutagenesis[寡核苷酸定向诱变的效率]”,在:Nucleic Acids&Molecular Biology[核酸与分子生物学](Eckstein和Lilley编辑,Springer Verlag[施普林格出版公司],柏林));使用含尿嘧啶的模板的诱变(Kunkel,(1985)PNAS USA[美国科学院院报]82:488-492;Kunkel等人,(1987)Methods Enzymol[酶学方法]154:367-382以及Bass等人,(1988)Science[科学]242:240-245);寡核苷酸定向诱变(Zoller和Smith,(1983)Methods Enzymol[酶学方法]100:468-500;Zoller和Smith,(1987)Methods Enzymol[酶学方法]154:329-350(1987);Zoller和Smith,(1982)Nucleic Acids Res[核酸研究]10:6487-6500);经硫代磷酸修饰的DNA诱变(Taylor等人,(1985)Nucl Acids Res[核酸研究]13:8749-8764;Taylor等人,(1985)NuclAcids Res[核酸研究]13:8765-8787(1985);Nakamaye和Eckstein,(1986)Nucl Acids Res[核酸研究]14:9679-9698;Sayers等人,(1988)Nucl Acids Res[核酸研究]16:791-802以及Sayers等人,(1988)Nucl Acids Res[核酸研究]16:803-814);使用有缺口的双链体DNA的诱变(Kramer等人,(1984)Nucl Acids Res[核酸研究]12:9441-9456;Kramer和Fritz,(1987)Methods Enzymol[酶学方法]154:350-367;Kramer等人,(1988)Nucl Acids Res[核酸研究]16:7207以及Fritz等人,(1988)Nucl Acids Res[核酸研究]16:6987-6999)。
其他合适的方法包括点错配修复(Kramer等人,(1984)Cell[细胞]38:879-887)、使用有修复缺陷的宿主菌株的诱变(Carter等人,(1985)Nucl Acids Res[核酸研究]13:4431-4443以及Carter,(1987)Methods in Enzymol[酶学方法]154:382-403)、缺失诱变(Eghtedarzadeh和Henikoff,(1986)Nucl Acids Res[核酸研究]14:5115)、限制性-选择和限制性-纯化(Wells等人,(1986)Phil Trans R Soc Lond A[伦敦皇家学会哲学会刊系列A]317:415-423)、通过全基因合成的诱变(Nambiar等人,(1984)Science[科学]223:1299-1301;Sakamar和Khorana,(1988)Nucl Acids Res[核酸研究]14:6361-6372;Wells等人,(1985)Gene[基因]34:315-323以及
Figure BDA0002954263880000291
等人,(1985)Nucl Acids Res[核酸研究]13:3305-3316)、双链断裂修复(Mandecki,(1986)PNAS USA[美国科学院院报],83:7177-7181以及Arnold,(1993)Curr Opin Biotech[生物技术当代观点]4:450-455)。许多上述方法的另外的细节可以在Methods Enzymol[酶学方法]第154卷中找到,其还描述了用各种诱变方法进行故障问题解决的有用对照。
实施例的核苷酸序列还可以用于从细菌来源分离相应的序列,这些细菌来源包括但不限于假单胞菌属物种。以这种方式,可以使用如PCR、杂交等方法来鉴定此类序列(基于其与本文所示序列的序列同源性)。实施例涵盖基于与本文所示全部序列或其片段的序列同一性选择的序列。此类序列包括作为公开序列的直向同源物的序列。术语“直向同源物”是指源自共同祖先基因并且由于物种形成而在不同物种中发现的基因。当其核苷酸序列和/或其编码的蛋白序列共有如本文其他地方所定义的基本同一性时,在不同物种中发现的基因被认为是直向同源物。直向同源物的功能通常在物种间是高度保守的。
在PCR方法中,可以设计寡核苷酸引物用于PCR反应,以从由任何目的生物体提取的cDNA或基因组DNA扩增相应的DNA序列。用于设计PCR引物以及PCR克隆的方法是本领域通常已知的并且公开于Sambrook等人,(1989)Molecular Cloning:A Laboratory Manual[分子克隆:实验室手册](第2版,Cold Spring Harbor Laboratory Press[冷泉港实验室出版社],Plainview[普莱恩维尤],纽约),以下为“Sambrook”中。还参见,Innis等人编辑,(1990)PCR Protocols:A Guide to Methods and Applications[PCR方案:方法和应用指南](Academic Press[学术出版社],纽约);Innis和Gelfand编辑,(1995)PCR Strategies[PCR策略](Academic Press[学术出版社],纽约);和Innis和Gelfand编辑,(1999)PCRMethods Manual[PCR方法手册](Academic Press[学术出版社],纽约)。已知的PCR方法包括但不限于:使用成对引物、巢式引物、单特异性引物、简并引物、基因特异性引物、载体特异性引物、部分错配引物等的方法。
为了从细菌收集物中鉴定潜在的Cry毒素多肽,可以使用蛋白质印迹和/或ELISA方法用针对Cry毒素多肽产生的抗体筛选细菌细胞裂解物。这种类型的测定能以高通量方式进行。可以通过各种技术(如基于抗体的蛋白质纯化和鉴定)进一步分析阳性样品。产生抗体的方法是本领域公知的,如下文所述。
可替代地,基于质谱的蛋白质鉴定方法可以使用文献中的方案用于鉴定Cry毒素多肽的同源物(Scott Patterson,(1998),10.22,1-24,由约翰威利父子出版公司(JohnWiley&Son Inc)出版的Current Protocol in Molecular Biology[当前分子生物学方案])。具体来说,使用基于LC-MS/MS的蛋白质鉴定方法将给定细胞裂解物或所需分子量富集样品(从Cry毒素多肽的相关分子量带的SDS-PAGE凝胶切除)的MS数据与本文公开的Cry毒素多肽的序列信息结合。肽序列中的任何匹配表明在样品中具有同源蛋白的可能性。可以使用另外技术(蛋白质纯化和分子生物学)来分离蛋白质并鉴定同源物的序列。
在杂交方法中,全部或部分杀有害生物核酸序列可用于筛选cDNA或基因组文库。用于构建此类cDNA和基因组文库的方法是本领域通常已知的,并且公开于Sambrook和Russell,(2001),同上。所谓的杂交探针可以是基因组DNA片段、cDNA片段、RNA片段或其他寡核苷酸,并且可以用一个可检测基团(如32P或任何其他可检测的标记,如其他放射性同位素、荧光化合物、酶或酶辅因子)进行标记。用于杂交的探针可以通过标记基于本文公开的编码已知的Cry毒素多肽的核酸序列的合成的寡核苷酸来制备。可以另外使用简并引物,所述简并引物是基于在所述核酸序列或所编码的氨基酸序列中的保守核苷酸或氨基酸残基而设计的。这种探针典型地包含以下核酸序列的区域,所述核酸序列区域在严格条件下与编码本公开的Cry毒素多肽的核酸序列或其片段或变体的至少约12个、至少约25个、至少约50、75、100、125、150、175或200个连续核酸进行杂交。用于制备用于杂交的探针的方法和严格条件是本领域通常已知的,并且公开于Sambrook和Russell,(2001),同上,其通过引用并入本文。
抗体
还涵盖实施例的Cry毒素多肽的抗体或者Cry毒素多肽的变体或片段的抗体。本公开的抗体包括保留其结合Cry毒素多肽的能力的多克隆和单克隆抗体及其片段。据信抗体、单克隆抗体或其片段能够与分子结合,前提是所述抗体、单克隆抗体或其片段能够与所述分子特异性反应,从而将所述分子与抗体、单克隆抗体或其片段结合。术语“抗体”(Ab)或“单克隆抗体”(Mab)意在包括能够结合半抗原的完整分子及其片段或结合区域或结构域(例如,像Fab和F(ab).sub.2片段)。此类片段典型地通过蛋白水解切割(如木瓜蛋白酶或胃蛋白酶)产生。可替代地,可以通过应用重组DNA技术或通过合成化学来产生半抗原结合片段。制备本公开的抗体的方法是本领域通常已知的。例如,参见Antibodies,A LaboratoryManual[抗体,实验室手册],Ed Harlow和David Lane(编辑)Cold Spring HarborLaboratory[冷泉港实验室],N.Y.[纽约](1988),以及其中引用的参考文献。阐述免疫学的一般原则的标准参考文献包括:Klein,J.Immunology:The Science of Cell-NoncellDiscrimination[免疫学杂志:细胞-非细胞鉴别科学],约翰威利父子公司,纽约(1982);Dennett等人,Monoclonal Antibodies,Hybridoma:A New Dimension in BiologicalAnalyses[单克隆抗体,杂交瘤:生物分析的新维度],Plenum Press[普莱纽姆出版社],纽约(1980)以及Campbell,″Monoclonal Antibody Technology[单克隆抗体技术],″在Laboratory Techniques in Biochemistry and Molecular Biology[生物化学与分子生物学实验室技术],第13卷,Burdon等人,(编辑),Elsevier[爱思唯尔出版社],Amsterdam[阿姆斯特丹](1984)。还参见,美国专利号4,196,265;4,609,893;4,713,325;4,714,681;4,716,111;4,716,117和4,720,459。针对Cry毒素多肽或其抗原结合部分的抗体可以通过多种技术产生,所述技术包括常规的单克隆抗体方法,例如Kohler和Milstein,(1975)Nature[自然]256:495中所述的标准体细胞杂交技术。还可以使用产生单克隆抗体的其他技术,如B淋巴细胞的病毒或致癌性转化。用于制备杂交瘤的动物系统是小鼠系统。分离用于融合的免疫的脾细胞的免疫方案和技术是本领域已知的。融合配偶体(例如,小鼠骨髓瘤细胞)和融合方法也是已知的。本公开的抗体和单克隆抗体可以通过利用Cry毒素多肽作为抗原来制备。
提供了用于检测样品中Cry毒素多肽的存在或检测编码Cry毒素多肽的核苷酸序列的存在的试剂盒。在一个实施例中,试剂盒提供了用于检测组织样品中Cry毒素多肽的存在的基于抗体的试剂。在另一个实施例中,试剂盒提供了用于检测编码Cry毒素多肽的一种或多种多核苷酸的存在的经标记的核酸探针。将所述试剂盒与用于进行检测方法的适当的试剂和对照物,以及试剂盒的使用说明书一起提供。
受体鉴定和分离
还涵盖了针对实施例的Cry毒素多肽或其变体或片段的受体。用于鉴定受体的方法是本领域已知的(参见,Hofmann等人,(1988)Eur.J.Biochem.[欧洲生物化学杂志]173:85-91;Gill等人,(1995)J.Biol.Chem.[生物化学杂志]27277-27282),并且可以使用所述方法使用来自易感昆虫的刷状缘膜囊泡来鉴定和分离识别Cry毒素多肽的受体。除了所引用的文献中列出的放射性标记方法之外,可以将Cry毒素多肽用荧光染料和其他常见标记如链霉亲和素进行标记。可以根据以上Hofmann和Gill的参考文献中列出的方案制备易感昆虫(如大豆夜蛾和椿象)的刷状缘膜囊泡(BBMV),并在SDS-PAGE凝胶上分离,并在合适的膜上印迹。标记的Cry毒素多肽可以与BBMV的印迹膜一起孵育,并且标记的Cry毒素多肽可以用标记的报道基因识别。与Cry毒素多肽相互作用的一个或多个蛋白带的鉴定可以通过基于N-末端氨基酸气相测序或基于质谱的蛋白鉴定方法进行检测(Patterson,(1998)10.22,1-24,由约翰威利父子出版公司(John Wiley&Son Inc)出版的Current Protocolin Molecular Biology[当前分子生物学方案])。一旦鉴定出蛋白质,可以从易感昆虫的基因组DNA或cDNA文库中克隆相应的基因,并且可以直接用Cry毒素多肽测量结合亲和力。通过Cry毒素多肽的杀昆虫活性的受体功能可以通过RNAi型的基因敲除法验证(Rajagopal等人,(2002)J.Biol.Chem.[生物化学杂志],277:46849-46851)。
核苷酸构建体、表达盒和载体
本文使用术语“核苷酸构建体”并不旨在将实施例限制为包含DNA的核苷酸构建体。本领域普通技术人员将认识到,核苷酸构建体,特别是由核糖核苷酸构成的多核苷酸和寡核苷酸以及核糖核苷酸和脱氧核糖核苷酸的组合也可用于本文公开的方法中。实施例的核苷酸构建体、核酸和核苷酸序列另外涵盖这种构建体、分子和序列的所有互补形式。此外,实施例的核苷酸构建体、核苷酸分子和核苷酸序列涵盖能用于实施例的转化植物方法的所有核苷酸构建体、分子和序列,包括但不限于由脱氧核糖核苷酸、核糖核苷酸及其组合所构成的那些。这种脱氧核糖核苷酸和核糖核苷酸既包括天然存在的分子也包括合成的类似物。实施例的核苷酸构建体、核酸和核苷酸序列还涵盖核苷酸构建体的所有形式,所述形式包括但不限于单链形式、双链形式、发夹、茎环结构等。
另外的实施例涉及经转化的生物体,如选自以下的生物体:植物和昆虫细胞、细菌、酵母、杆状病毒、原生动物、线虫和藻的生物体。经转化的生物体包含:实施例的DNA分子、含有DNA分子的表达盒或含有表达盒的载体,它可以稳定地并入经转化的生物体的基因组。
在DNA构建体中提供实施例的序列,用于在目的生物体中表达。所述构建体将包括可操作地连接到实施例的序列的5′和3′的调节序列。如本文所用的,术语“可操作地连接”是指启动子和第二序列之间的功能性连接,其中启动子序列启动并介导相应于第二序列的DNA序列的转录。通常,可操作地连接意味着所连接的核酸序列是连续的,并且在必要时在相同阅读框中连接两个蛋白质编码区域。所述构建体可以另外含有待共转化进生物体的至少一个另外的基因。可替代地,可以在多个DNA构建体上提供一个或多个另外的基因。
提供的这种DNA构建体具有用于插入本公开的Cry毒素多肽基因序列的多个限制性位点,该多肽基因序列将位于调节性区域的转录调节之下。DNA构建体可以另外包含选择性标记基因。
按5′到3′的转录方向,DNA构建体将通常包括:转录和翻译起始区域(即,启动子)、实施例的DNA序列以及在用作宿主的生物体内具有功能的转录和翻译终止区域(即,终止区)。针对实施例的宿主生物体和/或序列,转录起始区(即,启动子)可以是天然的、类似的、外源的或异源的。此外,所述启动子可以是天然序列,或可替代地,是合成序列。如本文所用的,术语“外源”表示在引入启动子的天然生物体中没有发现启动子。在启动子或任何其他核苷酸或氨基酸序列对于实施例的序列而言是“外源的”或“异源的”情况下,它是指所述核苷酸或氨基酸序列对于实施例的可操作地连接的序列而言不是天然的或天然存在的启动子或核苷酸序列。如本文所用的,嵌合基因包含可操作地连接到转录起始区的编码序列,所述转录起始区对于所述编码序列是异源的。当所述启动子是天然(native或natural)序列时,可操作地连接的序列的表达从野生型表达变化,这导致表型的改变。
在一些实施例中,所述DNA构建体包含编码实施例的Cry毒素多肽的多核苷酸。在一些实施例中,所述DNA构建体包含多核苷酸,所述多核苷酸编码包含实施例的Cry毒素多肽的融合蛋白。
在一些实施例中,DNA构建体还可以包括转录增强子序列。如本文所用的,术语“增强子”是指可以刺激启动子活性的DNA序列,并且可以是插入以增强启动子的水平或组织特异性的启动子的先天元件或异源元件。各种增强子是本领域已知的,包括例如,在植物中具有基因表达增强特性的内含子(美国专利申请公开号2009/0144863)、泛素内含子(即,玉蜀黍泛素内含子1(参见,例如,NCBI序列S94464))、ω增强子或ω主要增强子(Gallie等人,(1989)Molecular Biology of RNA[RNA的分子生物学],Cech编辑(利斯公司(Liss),纽约)237-256和Gallie等人,(1987)Gene[基因]60:217-25)、CaMV 35S增强子(参见,例如,Benfey等人,(1990)EMBOJ.[欧洲分子生物学杂志]9:1685-96),并且也可以使用美国专利号7,803,992的增强子。以上转录增强子的列表并不意指是限制性的。任何适当转录增强子都可用于实施例中。
终止区对于转录起始区可以是天然的,对于可操作地连接的目的DNA序列可以是天然的,对于植物宿主可以是天然的,或者可以源自另一种来源(即,对于启动子、目的序列、植物宿主、或其任何组合而言是外源的或异源的)。
方便的终止区可获自根癌农杆菌(A.tumefaciens)的Ti质粒,如章鱼碱合酶和胭脂碱合酶终止区。还参见Guerineau等人,(1991)Mol.Gen.Genet.[分子遗传学和普通遗传学]262:141-144;Proudfoot,(1991)Cell[细胞]64:671-674;Sanfacon等人,(1991)GenesDev.[基因与发育]5:141-149;Mogen等人,(1990)Plant Cell[植物细胞]2:1261-1272;Munroe等人,(1990)Gene[基因]91:151-158;Ballas等人,(1989)Nucleic Acids Res.[核酸研究]17:7891-7903以及Joshi等人,(1987)Nucleic Acid Res.[核酸研究]15:9627-9639。
适当时可以优化核酸以增加在宿主生物体中的表达。因此,在宿主生物体是植物的情况下,合成核酸可以使用植物偏好性密码子来合成以改善表达。有关宿主偏好性使用的讨论,参见,例如Campbell和Gowri,(1990)Plant Physiol.[植物生理学]92:1-11。例如,虽然实施例的核酸序列在单子叶和双子叶植物物种中均可以表达,但是可以修饰序列,以考虑单子叶或双子叶植物的特定偏好和GC含量偏好,因为这些偏好已经表现出了差异(Murray等人(1989)Nucleic Acids Res.[核酸研究]17:477-498)。因而,特定氨基酸的玉米偏好性可以源自玉米的已知基因序列。来自玉蜀黍植物的28种基因的玉蜀黍使用在Murray等人(同上)的表4中列出。本领域中可获得用于合成植物偏好性基因的方法。参见,例如,Murray等人,(1989)Nucleic Acids Res.[核酸研究]17:477-498,和Liu H等人MolBio Rep[分子生物学报告]37:677-684,2010,其通过引用并入本文。玉米(Zea maize)使用表也可以在kazusa,or.jp//cgi-bin/show.cgi?species=4577上找到,所述网址可以使用www前缀进行访问。大豆(Glycine max)使用表可以在kazusa.or.jp//cgi-bin/show.cgi?species=3847&aa=1&style=N上找到,所述网址可以使用www前缀进行访问。
在一些实施例中,编码Cry毒素多肽的重组核酸分子具有玉米优化的密码子。
已知有另外的序列修饰能增强细胞宿主中的基因表达。这些包括消除以下序列:编码假聚腺苷酸化信号的序列、编码外显子-内含子剪接位点信号的序列、编码转座子样重复序列的序列和得到充分表征的、可能不利于基因表达的其他序列。可以将序列的GC含量调整至给定细胞宿主的平均水平,如通过参考在所述宿主细胞中表达的已知基因而计算的。如本文所用的,术语“宿主细胞”是指包含载体并支持表达载体的复制和/或表达的细胞。宿主细胞可以是原核细胞如大肠杆菌,或真核细胞如酵母、昆虫、两栖类或哺乳动物细胞、或单子叶或双子叶植物细胞。单子叶宿主细胞的实例是玉蜀黍宿主细胞。当可能时,修饰序列以避免出现可预测的发夹二级mRNA结构。
表达盒可以另外包含5′前导序列。此类前导序列可以起到增强翻译的作用。翻译前导序列在本领域是已知的,并且包括:小核糖核酸病毒前导序列,例如EMCV前导序列(脑心肌炎5′非编码区)(Elroy-Stein等人,(1989)Proc.Natl.Acad.Sci.USA[美国科学院院报],86:6126-6130);马铃薯Y病毒属前导序列,例如,TEV前导序列(烟草蚀纹病毒)(Gallie等人,(1995)Gene[基因]165(2):233-238)、MDMV前导序列(玉米矮花叶病毒)、人免疫球蛋白重链结合蛋白(BiP)(Macejak等人,(1991)Nature[自然]353:90-94);来自苜蓿花叶病毒的外壳蛋白mRNA的非翻译前导序列(AMV RNA 4)(Jobling等人,(1987)Nature[自然]325:622-625);烟草花叶病毒前导序列(TMV)(Gallie等人,(1989)Molecular Biology of RNA[RNA的分子生物学],Cech编著(利斯公司,纽约),第237-256页)和玉米褪绿斑驳病毒(maize chlorotic mottle)前导序列(MCMV)(Lommel,等人,(1991)Virology[病毒学]81:382-385)。还参见,Della-Cioppa等人,(1987)Plant Physiol.[植物生理学]84:965-968。此类构建体还可以包含“信号序列”或“前导序列”,以促进所述肽的共翻译成或翻译后运输至某些细胞内结构,如叶绿体(或其他质体)、内质网或高尔基体。
如本文所用的,“信号序列”是指已知或怀疑导致跨细胞膜的共翻译或翻译后肽运输的序列。在真核生物中,这典型地涉及分泌到高尔基体内,伴随某些产生的糖基化。通常将细菌的杀昆虫毒素合成为原毒素,所述原毒素在所述靶标有害生物的肠中被蛋白水解激活(Chang,(1987)Methods Enzymol.[酶学方法]153:507-516)。在一些实施例中,所述信号序列位于所述天然的序列中,或可以源自实施例的序列。如本文所用的,术语“前导序列”是指当翻译时产生足以引发肽链与亚细胞器的共翻译转运的氨基酸序列的任何序列。因此,这包括通过进入内质网内、进入液泡、质体(包括叶绿体、线粒体)等中来对运输和/或糖基化进行靶向的前导序列。靶向叶绿体类囊体腔室的核编码蛋白具有由基质靶向信号肽和腔靶向信号肽组成的特征二分型转运肽。基质靶向信息位于转运肽的氨基-近端部分。腔靶向信号肽位于转运肽的羧基近端部分,并且包含用于靶向腔的所有信息。高等植物叶绿体蛋白质组学的最新研究已在鉴定许多核编码的腔蛋白质中取得了进展(Kieselbach等人FEBSLETT[欧洲生化学会联盟通讯]480:271-276,2000;Peltier等人.Plant Cell[植物细胞]12:319-341,2000;Bricker等人.Biochim.Biophys Acta[生物化学与生物物理学学报]1503:350-356,2001),根据本公开可能使用所述核编码的腔蛋白质的腔靶向信号肽。Kieselbach等人,Photosynthesis Research[光合作用研究]78:249-264,2003报道了来自拟南芥属(Arabidopsis)约80种蛋白质以及来自菠菜和豌豆的同源蛋白。特别地,此公开物的表2(其通过引用并入本说明书中)公开了通过其登录号鉴定的来自叶绿体腔的85种蛋白质(还参见美国专利申请公开2009/09044298)。
本领域技术人员熟知的合适的叶绿体转运肽(CTP)还包含嵌合CT’s,所述嵌合CT’s包括但不限于:来自以下的CTP的N-末端结构域、中心结构域或C-末端结构域:水稻(Oryzasativa)1-脱氧-D木酮糖-5-磷酸合酶、水稻-超氧化物歧化酶、水稻-可溶性淀粉合酶、水稻-NADP-依赖性苹果酸酶、水稻-磷酸2-脱氢-3-脱氧庚酸醛缩酶2、水稻-L-抗坏血酸过氧化物酶5、水稻-磷酸葡聚糖水二激酶、玉蜀黍ssRUBISCO、玉蜀黍-β-葡糖苷酶、玉蜀黍-苹果酸脱氢酶、玉蜀黍硫氧还蛋白M-型(参见美国专利申请公开2012/0304336)。
可以针对在叶绿体中的表达来优化待靶向叶绿体的Cry毒素多肽基因,以解决植物核与该细胞器之间使用的差异。以此方式,可以使用叶绿体偏好性序列合成目的核酸。
在制备表达盒时,可以操作各种DNA片段,以提供处于适当方向以及合适时,处于适当阅读框中的DNA序列。为此,可采用衔接子(adapter)或接头以连接DNA片段,或可以涉及其他操作以提供方便的限制性位点、去除多余的DNA、去除限制性位点等。为此目的,可以涉及体外诱变、引物修复、限制性酶切(restriction)、退火、再取代(例如转换和颠换)。
许多启动子可用于实施所述实施例。可基于所需结果,选择启动子。核酸可与组成型、组织偏好性、诱导型或其他启动子组合用于在宿主生物体中的表达。用于植物宿主细胞中的合适的组成型启动子包括,例如Rsyn7启动子的核心启动子和其他在WO 1999/43838和美国专利号6,072,050中公开的组成型启动子;核心CaMV 35S启动子(Odell等人,(1985)Nature[自然]313:810-812);水稻肌动蛋白(McElroy等人,(1990)Plant Cell[植物细胞]2:163-171);泛素(Christensen等人,(1989)Plant Mol.Biol.[植物分子生物学]12:619-632和Christensen等人,(1992)Plant Mol.Biol.[植物分子生物学]18:675-689);pEMU(Last等人,(1991)Theor.Appl.Genet.[理论与应用遗传学]81:581-588);MAS(Velten等人,(1984)EMBO J.[欧洲分子生物学学会杂志]3:2723-2730);ALS启动子(美国专利号5,659,026)等。其他组成型启动子包括例如以下美国专利号中所讨论的那些:5,608,149;5,608,144;5,604,121;5,569,597;5,466,785;5,399,680;5,268,463;5,608,142和6,177,611。
根据所需结果,从诱导型启动子表达基因可能是有益的。用于调节实施例的核苷酸序列在植物中表达的特别引人关注的是伤口诱导型启动子。这种伤口诱导型启动子可能对昆虫摄食引起的损害作出反应,并且包括马铃薯蛋白酶抑制剂(pin II)基因(Ryan(1990)Ann.Rev.Phytopath.[植物病理学年评]28:425-449;Duan等人(1996)NatureBiotechnology[自然生物技术]14:494-498);wun1和wun2(美国专利号5,428,148);win1和win2(Stanford等人(1989)Mol.Gen.Genet.[分子遗传学和普通遗传学]215:200-208);系统素(McGurl等人(1992)Science[科学]225:1570-1573);WIP1(Rohmeier等人(1993)PlantMol.Biol.[植物分子生物学]22:783-792;Eckelkamp等人(1993)FEBS Letters[欧洲生化学会联盟通讯]323:73-76);MPI基因(Corderok等人(1994)Plant J.[植物杂志]6(2):141-150)等。
此外,可以在实施例的方法和核苷酸构建体中使用病原体诱导型启动子。这种病原体诱导型启动子包括来自发病相关蛋白(PR蛋白)的那些,其在病原体感染后被诱导;例如,PR蛋白、SAR蛋白、β-1,3-葡聚糖酶、几丁质酶等。参见,例如Redolfi等人,(1983)Neth.J.Plant Pathol.[荷兰植物病理学杂志]89:245-254;Uknes等人,(1992)Plant Cell[植物细胞]4:645-656;以及Van Loon,(1985)Plant Mol.Virol.[植物分子病毒学]4:111-116。还参见WO 1999/43819。
引人关注的是在病原体感染部位处或附近局部表达的启动子。参见,例如Marineau等人,(1987)Plant Mol.Biol.[植物分子生物学]9:335-342;Matton等人,(1989)Molecular Plant-Microbe Interactions[分子植物-微生物相互作用]2:325-331;Somsisch等人,(1986)Proc.Natl.Acad.Sci.USA[美国科学院院报]83:2427-2430;Somsisch等人,(1988)Mol.Gen.Genet.[分子遗传学和普通遗传学]2:93-98以及Yang,(1996)Proc.Natl.Acad.Sci.USA[美国科学院院报]93:14972-14977。还参见Chen等人,(1996)Plant J.[植物杂志]10:955-966;Zhang等人,(1994)Proc.Natl.Acad.Sci.USA[美国科学院院报]91:2507-2511;Warner等人,(1993)Plant J.[植物杂志]3:191-201;Siebertz等人,(1989)Plant Cell[植物细胞]1:961-968;美国专利号5,750,386(线虫诱导型)及其中引用的参考文献。特别引人关注的是玉蜀黍PRms基因的诱导型启动子,其表达是由病原体串珠镰刀菌(Fusarium moniliforme)诱导的(参见,例如Cordero等人,(1992)Physiol.Mol.Plant Path.[生理学与分子植物病理学]41:189-200)。
可以使用化学调节型启动子以通过应用外源化学调节剂来调节植物中的基因表达。取决于目标,所述启动子可以是化学诱导型启动子,其中施用化学品来诱导基因表达,或化学抑制型启动子,其中施用化学品来抑制基因表达。化学诱导型启动子是本领域已知的,并且包括但不限于由苯磺酰胺除草剂安全剂激活的玉蜀黍In2-2启动子、由用作萌前除草剂的疏水亲电子化合物激活的玉蜀黍GST启动子、以及由水杨酸激活的烟草PR-1a启动子。其他引人关注的化学品调节型启动子包括类固醇应答启动子(参见,例如,Schena等人,(1991)Proc.Natl.Acad.Sci.USA[美国科学院院报]88:10421-10425和McNellis等人,(1998)Planr J.[植物杂志]14(2):247-257中的糖皮质激素诱导型启动子)以及四环素诱导型和四环素抑制型启动子(参见,例如,Gatz等人,(1991)Mol.Gen.Genet.[分子遗传学和普通遗传学]227:229-237,以及美国专利号5,814,618和5,789,156)。
组织偏好性启动子可以用于靶向特定植物组织内的增强的Cry毒素多肽表达。组织偏好性启动子包括描述于以下文献中的那些:Yamamoto等人,(1997)Plant J.[植物杂志]12(2):255-265;Kawamata等人,(1997)Plant Cell Physiol.[植物细胞生理学]38(7):792-803;Hansen等人,(1997)Mol.Gen Genet.[分子遗传学和普通遗传学]254(3):337-343;Russell等人,(1997)Transgenic Res.[转基因研究]6(2):157-168;Rinehart等人,(1996)Plant Physiol[植物生理学]112(3):1331-1341;Van Camp等人,(1996)PlantPhysiol.[植物生理学]112(2):525-535;Canevascini等人,(1996)Plant Physiol.[植物生理学]112(2):513-524;Yamamoto等人,(1994)Plant Cell Physiol[植物细胞生理学]35(5):773-778;Lam,(1994)Results Probl.Cell Differ.[细胞分化的结果和问题]20:181-196;Orozco等人,(1993)Plant Mol Biol.[植物分子生物学]23(6):1129-1138;Matsuoka等人,(1993)Proc Natl.Acad.Sci.USA[美国科学院院报]90(20):9586-9590和Guevara-Garcia等人,(1993)Plant J.[植物杂志]4(3):495-505。必要的话,此类启动子可经修饰用于弱表达。
叶偏好性启动子是本领域已知的。参见,例如,Yamamoto等人,(1997)Plant J.[植物杂志]12(2):255-265;Kwon等人,(1994)Plant Physiol.[植物生理学]105:357-67;Yamamoto等人,(1994)Plant Cell Physiol[植物细胞生理学]35(5):773-778;Gotor等人,(1993)Plant J.[植物杂志]3:509-18;Orozco等人,(1993)Plant Mol.Biol.[植物分子生物学]23(6):1129-1138以及Matsuoka等人,(1993)Proc.Natl.Acad.Sci.USA[美国科学院院报]90(20):9586-9590。
根偏好性或根特异性的启动子是已知的,并且可以从来自文献中的许多可获得的启动子来选择,或者从不同相容物种重新分离。参见,例如Hire等人,(1992)PlantMol.Biol.[植物分子生物学]20(2):207-218(大豆根特异性谷氨酰胺合成酶基因);Keller和Baumgartner,(1991)Plant Cell[植物细胞]3(10):1051-1061(法国菜豆的GRP 1.8基因中的根特异性控制元件);Sanger等人,(1990)Plant Mol.Biol.[植物分子生物学]14(3):433-443(根癌农杆菌(Agrobacterium tumefaciens)的甘露聚糖合成酶(MAS)基因的根特异性启动子)以及Miao等人,(1991)Plant Cell[植物细胞]3(1):11-22(编码细胞溶质谷氨酰胺合成酶(GS)的全长cDNA克隆,其在大豆的根和根瘤中表达)。还参见,Bogusz等人,(1990)Plant Cell[植物细胞]2(7):633-641,其中描述了从来自固氮的非豆科植物榆科山黄麻(Parasponia andersonii)以及相关的非固氮的非豆科植物山黄麻(Trematomentosa)的血红蛋白基因分离的两个根特异性启动子。这些基因的启动子与β-葡糖醛酸糖苷酶报告基因连接,并且被引入非豆科作物烟草(Nicotiana tabacum)和豆科作物百脉根(Lotus corniculatus)两者中,并且在两种情况下都保留了根特异性启动子活性。Leach和Aoyagi,(1991)描述了他们对发根农杆菌(Agrobacterium rhizogenes)的高表达的rolC和rolD根诱导基因的启动子的分析(参见,Plant Science[植物科学](Limerick)79(1):69-76)。他们得出结论,增强子和组织偏好性DNA决定簇在所述启动子中是解离的。Teeri等人,(1989)使用与lacZ的基因融合以显示编码章鱼碱合酶的农杆菌属T-DNA基因尤其是在根尖的表皮中有活性,并且TR2′基因在完整植物中具有根特异性并且被叶组织中的创伤刺激,这是与杀昆虫的或杀幼虫的基因一起使用的尤其希望的特征组合(参见,EMBO J.[欧洲分子生物学学会杂志]8(2):343-350)。与nptII(新霉素磷酸转移酶II)融合的TR1′基因显示相似的特征。另外的根偏好性启动子包括VfENOD-GRP3基因启动子(Kuster等人,(1995)Plant Mol.Biol.[植物分子生物学]29(4):759-772);和rolB启动子(Capana等人,(1994)Plant Mol.Biol.[植物分子生物学]25(4):681-691)。还参见,美国专利号5,837,876;5,750,386;5,633,363;5,459,252;5,401,836;5,110,732和5,023,179。在US 20130117883中公开了拟南芥(Arabidopsis thaliana)根偏好性调节序列。
“种子偏好性”启动子包括“种子特异性”启动子(在种子发育期间有活性的那些启动子如种子贮藏蛋白的启动子)以及“种子发芽性”启动子(在种子发芽期间有活性的那些启动子)。参见Thompson等人,(1989)BioEssays[生物学论文集]10:108。此类种子偏好性启动子包括但不限于Cim1(细胞分裂素诱导的信息);cZ19B1(玉蜀黍19kDa玉米醇溶蛋白);和milps(肌醇-1-磷酸合酶)(参见,美国专利号6,225,529)。γ-玉米醇溶蛋白和Glb-1是胚乳特异性启动子。对于双子叶植物,种子特异性启动子包括但不限于:库尼兹(Kunitz)胰蛋白酶抑制剂3(KTi3)(Jofuku和Goldberg,(1989)Plant Cell[植物细胞]1:1079-1101)、豆-β菜豆素、油菜籽蛋白、β-伴大豆球蛋白、大豆球蛋白1、大豆凝集素、十字花科蛋白等。对于单子叶植物,种子特异性启动子包括但不限于玉米15kDa玉米醇溶蛋白、22kDa玉米醇溶蛋白、27kDa玉米醇溶蛋白、g-玉米醇溶蛋白、蜡质、收缩素1、收缩素2、球蛋白1等。还参见WO2000/12733,其中公开了来自end1和end2基因的种子偏好性启动子。在双子叶植物中,种子特异性启动子包括但不限于:来自拟南芥属的种皮启动子,pBAN;和来自拟南芥属的早期种子启动子,p26、p63、和p63tr(美国专利号7,294,760和7,847,153)。在特定组织中具有“偏好性”表达的启动子在所述组织中比在至少一种其他植物组织中以更高程度表达。一些组织偏好性启动子几乎专门在特定组织中表达。
当需要低水平表达时,可使用弱启动子。通常,如本文所用的术语“弱启动子”是指以低水平驱动编码序列的表达的启动子。低水平表达旨在约1/1000转录物至约1/100,000转录物至约1/500,000转录物之间的水平。可替代地,应当认识到,术语“弱启动子”还涵盖仅在少数细胞中驱动表达但不在其他细胞中表达,从而具有低水平总表达的启动子。当启动子以不可接受的高水平驱动表达时,可以删除或修饰部分启动子序列以降低表达水平。
此类弱组成型启动子包括例如Rsyn7启动子的核心启动子(WO 1999/43838和美国专利号6,072,050)、核心35S CaMV启动子等。其他组成型启动子包括例如以下专利文献中所公开的那些:美国专利号5,608,149;5,608,144;5,604,121;5,569,597;5,466,785;5,399,680;5,268,463;5,608,142和6,177,611。
以上启动子的列表并不意指是限制性的。任何适当的启动子都可用于实施例中。
通常,表达盒将包含选择性标记基因,用于选择经转化的细胞。利用选择性标记基因来选择经转化的细胞或组织。标记基因包括编码抗生素抗性的基因,例如编码新霉素磷酸转移酶II(NEO)和潮霉素磷酸转移酶(HPT)的基因,以及赋予除草剂化合物(如草胺磷、溴草腈、咪唑啉酮和2,4-二氯苯氧乙酸(2,4-D))抗性的基因。合适的选择性标记基因的其他实例包括但不限于编码对如下的耐受性的基因:氯霉素(Herrera Estrella等人,(1983)EMBO J.[欧洲分子生物学学会杂志]2:987-992);氨甲蝶呤(Herrera Estrella等人,(1983)Nature[自然]303:209-213和Meijer等人,(1991)Plant Mol.Biol.[植物分子生物学]16:807-820);链霉素(Jones等人,(1987)Mol.Gen.Genet.[分子遗传学和普通遗传学]210:86-91);壮观霉素(Bretagne-Sagnard等人,(1996)Transgenic Res.[转基因研究]5:131-137);博来霉素(Hille等人,(1990)Plant Mol.Biol.[植物分子生物学]7:171-176);磺酰胺类(Guerineau等人,(1990)Plant Mol.Biol.[植物分子生物学]15:127-136);溴草腈(Stalker等人,(1988)Science[科学]242:419-423);草甘膦(Shaw等人,(1986)Science[科学]233:478-481以及美国专利申请序列号10/004,357和10/427,692);草丁膦(DeBlock等人,(1987)EMBO J.[欧洲分子生物学学会杂志]6:2513-2518)。主要参见Yarranton,(1992)Curr.Opin.Biotech.[生物技术当代观点]3:506-511;Christopherson等人,(1992)Proc.Natl.Acad.Sci.USA[美国科学院院报]89:6314-6318;Yao等人,(1992)Cell[细胞]71:63-72;Reznikoff,(1992)Mol.Microbiol.[分子微生物学]6:2419-2422;Barkley等人,(1980)在The Operon[操纵子]中,第177-220页;Hu等人,(1987)Cell[细胞]48:555-566;Brown等人,(1987)Cell[细胞]49:603-612;Figge等人,(1988)Cell[细胞]52:713-722;Deuschle等人,(1989)Proc.Natl.Acad.Sci.USA[美国科学院院报]86:5400-5404;Fuerst等人,(1989)Proc.Natl.Acad.Sci.USA[美国科学院院报]86:2549-2553;Deuschle等人,(1990)Science[科学]248:480-483;Gossen,(1993)Ph.D.Thesis[博士学位论文],University of Heidelberg[德国海德堡大学];Reines等人,(1993)Proc.Natl.Acad.Sci.USA[美国科学院院报]90:1917-1921;Labow等人,(1990)Mol.Cell.Biol.[分子细胞生物学]10:3343-3356;Zambretti等人,(1992)Proc.Natl.Acad.Sci.USA[美国科学院院报]89:3952-3956;Baim等人,(1991)Proc.Natl.Acad.Sci.USA[美国科学院院报]88:5072-5076;Wyborski等人,(1991)NucleicAcids Res.[核酸研究]19:4647-4653;Hillenand-Wissman(1989)TopicsMol.Struc.Biol.[热点分子结构生物学]10:143-162;Degenkolb等人(1991)Antimicrob.Agents Chemother.[抗菌剂与化疗]35:1591-1595;Kleinschnidt等人,(1988)Biochemistry[生物化学]27:1094-1104;Bonin,(1993)Ph.D.Thesis[博士学位论文]University of Heidelberg[德国海德堡大学];Gossen等人,(1992)Proc.Natl.Acad.Sci.USA[美国科学院院报]89:5547-5551;Oliva等人,(1992)Antimicrob.Agents Chemother.[抗微生物剂化学疗法]36:913-919;Hlavka等人,(1985)Handbook of Experimental Pharmacology[实验药理学手册],78卷(Springer-Verlag,Berlin[柏林施普林格出版社])和Gill等人,(1988)Nature[自然]334:721-724。
以上选择性标记基因的列表并不意在是限制性的。任何选择性标记基因都可用于实施例中。
植物转化
所述实施例的方法涉及将多肽或多核苷酸引入植物。如本文所用的,“引入”意指将所述多核苷酸或多肽呈送给所述植物,以此类方式使得所述序列进入所述植物细胞的内部。所述实施例的方法不取决于用于将一个或多个多核苷酸或一个或多个多肽引入植物中的具体方法,只要所述多核苷酸或多肽进入所述植物的至少一个细胞的内部即可。将一个或多个多核苷酸或一个或多个多肽引入植物的方法是本领域已知的,所述方法包括但不限于稳定转化法、瞬时转化法和病毒介导法。
如本文所用的,“稳定转化”意指引入植物中的核苷酸构建体整合到所述植物的基因组中,并且能够被其子代遗传。如本文所用的,“瞬时转化”意指将多核苷酸引入所述植物中并且不整合到所述植物的基因组中,或者将多肽引入植物中。如本文所用的,“植物”是指整株植物、植物器官(例如叶、茎、根等)、种子、植物细胞、繁殖体、及其胚胎和子代。植物细胞可以是分化的或未分化的(例如愈伤组织、悬浮培养细胞、原生质体、叶子细胞、根细胞、韧皮部细胞和花粉)。
转化方案以及将核苷酸序列引入植物中的方案可以根据要靶向转化的植物或植物细胞的类型(即,单子叶植物或双子叶植物)而异。将核苷酸序列引入到植物细胞中并随后插入到植物基因组中的合适方法包括显微注射(Crossway等人,(1986)Biotechniques[生物技术]4:320-334)、电穿孔(Riggs等人,(1986)Proc.Natl.Acad.Sci.USA[美国科学院院报]83:5602-5606)、农杆菌介导的转化(美国专利号5,563,055和5,981,840)、直接基因转移(Paszkowski等人,(1984)EMBOJ[欧洲分子生物学学会杂志]3:2717-2722)以及弹道粒子加速(参见,例如美国专利号4,945,050;5,879,918;5,886,244和5,932,782;Tomes等人,(1995)Plant Cell,Tissue,and Organ Culture:Fundamental Methods[植物细胞、组织和器官培养:基本方法],Gamborg和Phillips编辑(Springer-Verlag,Berlin[德国柏林施普林格出版公司]);和McCabe等人,(1988)Biotechnology[生物技术]6:923-926);以及Lecl转化法(WO 00/28058)。对于马铃薯转化法,参见Tu等人,(1998)Plant Molecular Biology[植物分子生物学]37:829-838和Chong等人,(2000)Transgenic Research[转基因研究]9:71-78。可以在以下文献中找到另外的转化方法:Weissinger等人,(1988)Ann.Rev.Genet.[遗传学年鉴]22:421-477;Sanford等人,(1987)Particulate Science and Technology[微粒科学与技术]5:27-37(洋葱);Christou等人,(1988)Plant Physiol.[植物生理学]87:671-674(大豆);McCabe等人,(1988)Bio/Technology[生物/技术]6:923-926(大豆);Finer和McMullen,(1991)In Vitro Cell Dev.Biol.[体外细胞生物学和发育生物学]27P:175-182(大豆);Singh等人,(1998)Theor.Appl.Genet.[理论与应用遗传学]96:319-324(大豆);Datta等人,(1990)Biotechnology[生物技术]8:736-740(水稻);Klein等人,(1988)Proc.Natl.Acad.Sci.USA[美国科学院院报]85:4305-4309(玉蜀黍);Klein等人,(1988)Biotechnology[生物技术]6:559-563(玉蜀黍);美国专利号5,240,855、5,322,783和5,324,646;Klein等人,(1988)Plant Physiol.[植物生理学]91:440-444(玉蜀黍);Fromm等人,(1990)Biotechnology[生物技术]8:833-839(玉蜀黍);Hooykaas-VanSlogteren等人,(1984)Nature[自然](伦敦)311:763-764;美国专利号5,736,369(谷类);Bytebier等人,(1987)Proc.Natl.Acad.Sci.USA[美国科学院院报]84:5345-5349(百合科(Liliaceae));De Wet等人,(1985)The Experimental Manipulation of Ovule Tissues[胚珠组织的实验操作],Chapman等人编辑(Longman[朗文出版社],纽约),第197-209页(花粉);Kaeppler等人,(1990)Plant Cell Reports[植物细胞报告]9:415-418和Kaeppler等人,(1992)Theor.Appl.Genet.[理论与应用遗传学]84:560-566(晶须介导的转化);D′Halluin等人,(1992)Plant Cell[植物细胞]4:1495-1505(电穿孔);Li等人,(1993)PlantCell Reports[植物细胞报告],12:250-255以及Christou和Ford,(1995)Annals ofBotany[植物学年报]75:407-413(水稻);Osjoda等人,(1996)Nature Biotechnology[自然生物技术]14:745-750(经由根癌农杆菌的玉蜀黍)。
在具体实施例中,可以使用各种瞬时转化方法将实施例的序列提供给植物。此类瞬时转化方法包括但不限于将Cry毒素多核苷酸或其变体和片段直接引入植物或将Cry毒素多肽转录物引入植物中。此类方法包括例如显微注射或粒子轰击。参见,例如,Crossway等人,(1986)Mol Gen.Genet.[分子遗传学和普通遗传学]202:179-185;Nomura等人,(1986)Plant Sci.[植物科学]44:53-58;Hepler等人,(1994)Proc.Natl.Acad.Sci.[美国科学院院报]91:2176-2180和Hush等人,(1994)The Journal of Cell Science[细胞科学杂志]107:775-784。可替代地,可以使用本领域已知的技术将Cry毒素多核苷酸瞬时转化到植物中。此类技术包括病毒载体系统,和以阻止DNA后续释放的方式使多核苷酸沉淀。因此,可以从粒子结合的DNA进行转录,但其被释放以整合至基因组的频率大大降低了。此类方法包括使用包被有聚乙烯亚胺(PEI;西格玛公司(Sigma)#P3143)的粒子。
用于在植物基因组的具体位置靶向插入多核苷酸的方法是本领域已知的。在一个实施例中,利用位点特异性重组系统实现多核苷酸在所需的基因组位置处的插入。参见,例如WO 1999/25821、WO 1999/25854、WO 1999/25840、WO 1999/25855和WO 1999/25853。简而言之,实施例的多核苷酸可以包含在侧翼为两个不相同重组位点的转移盒内。将转移盒引入植物中,所述植物已经稳定地将靶位点并入其基因组中,所述靶位点侧翼为与转移盒的位点相对应的两个不相同的重组位点。提供适当的重组酶,并将所述转移盒整合到靶位点。由此,目的多核苷酸被整合在植物基因组中的具体染色体位置处。
植物转化载体可以由实现植物转化所需的一种或多种DNA载体组成。例如,本领域常见做法是利用由多于一个连续DNA片段组成的植物转化载体。这些载体在本领域中通常被称为“双元载体”。双元载体以及具有辅助质粒的载体最常用于农杆菌介导的转化,其中实现有效转化所需的DNA片段的大小和复杂性相当大,并且将功能分离到单独的DNA分子上是有利的。双元载体典型地含有包含T-DNA转移(如左边界和右边界)所需的顺式作用序列的质粒载体、经工程改造成能够在植物细胞中表达的选择性标记、和“目的基因”(经工程改造成能够在需要产生转基因植物的植物细胞中表达的基因)。此质粒载体上也存在细菌复制所需的序列。将顺式作用序列以允许有效转移到植物细胞中并在其中表达的方式进行排列。例如,所述选择性标记基因和杀有害生物基因位于左边界和右边界之间。通常第二质粒载体包含反式作用因子,所述反式作用因子介导从农杆菌属到植物细胞的T-DNA转化。如本领域所理解的,所述质粒通常含有允许通过农杆菌感染植物细胞、以及通过在边界序列切割进行DNA的转移和vir介导的DNA转移的毒力功能(Vir基因)(Hellens和Mullineaux,(2000)Trends in Plant Science[植物科学趋势]5:446-451)。若干种类型的农杆菌菌株(例如LBA4404、GV3101、EHA101、EHA105等)可用于植物转化。通过其他方法如显微投影、显微镜注射、电穿孔、聚乙二醇等来转化植物不需要第二质粒载体。
通常,植物转化方法涉及将异源DNA转移到靶植物细胞中(例如未成熟或成熟的胚、悬浮培养物、未分化的愈伤组织、原生质体等),随后施加最大阈值水平的适当选择(取决于选择性标记基因)以从一组未转化的细胞群中回收经转化的植物细胞。在将异源外源DNA整合到植物细胞中之后,然后在培养基中施加最大阈值水平的适当选择以杀死未转化的细胞,并通过定期转移到新鲜培养基中来分离并增殖从所述选择处理中存活的推定经转化的细胞。通过连续传代和使用合适的选择进行攻击,识别并增殖了所述用所述质粒载体转化的细胞。然后,可以使用分子和生物化学的方法来证实整合到所述转基因植物的基因组中的目的异源基因的存在。
典型地将外植体转移到新鲜供应的相同培养基中并将其常规培养。随后,在被置于补充有最大阈值水平的选择剂的再生培养基上之后,所述经转化的细胞分化成芽。然后将所述芽转移到用于回收已生根的芽或小植物的选择性生根培养基上。然后转基因的小植株成长为成熟植物并产生稔性种子(例如Hiei等人,(1994)The Plant Journal 6:271-282;Ishida等人,(1996)Nature Biotechnology[自然生物技术]14:745-750)。典型地将外植体转移到新鲜供应的相同培养基中并将其常规培养。用于生产转基因植物的技术和方法的一般描述发现于以下文献中:Ayres和Park,(1994)Critical Reviews in PlantScience[植物科学评论]13:219-239以及Bommineni和Jauhar,(1997)Maydica[美迪卡杂志]42:107-120。由于经转化的材料含有许多细胞;所以在受试的靶愈伤组织或组织或细胞群的任何部分中同时存在经转化的细胞和未经转化的细胞。杀死未经转化的细胞并允许经转化细胞增殖的能力产生经转化的植物培养物。通常,去除未经转化的细胞的能力限制经转化的植物细胞的快速恢复和转基因植物的成功生成。
可依据常规方式将已转化的细胞培育成植株。参见,例如,McCormick等人,(1986)Plant Cell Reports[植物细胞报告]5:81-84。然后可以培育这些植株,并用相同的经转化株系或者不同的株系授粉,并鉴定出具有所需表型特征的组成型或诱导型表达的所得杂合体。可以培育两代或更多代,以确保所需表型特征的表达稳定地保持并遗传,并且然后收获种子以确保已经实现了所需表型特征的表达。
可以通过使植物与病毒或者病毒核酸接触而向植物提供实施例的核苷酸构建体。通常,此类方法涉及将目的核苷酸构建体掺入病毒DNA或RNA分子内。应当认识到,可以最初将这些实施例的重组蛋白作为病毒多蛋白的一部分合成,然后可以将合成的蛋白在体内或在体外通过蛋白水解加工从而产生所希望的Cry毒素多肽。还认识到,包含这些实施例的Cry毒素多肽的氨基酸序列的至少一部分的这种病毒多蛋白可具有所需的杀有害生物活性。此类病毒多蛋白和编码它们的核苷酸序列涵盖在所述实施例中。为植物提供核苷酸构建体并在植物中产生编码的蛋白的方法是本领域已知的,其涉及病毒DNA或RNA分子。参见,例如美国专利号5,889,191、5,889,190、5,866,785、5,589,367和5,316,931。
用于转化叶绿体的方法是本领域已知的。参见,例如,Svab等人,(1990)Proc.Natl.Acad.Sci.USA[美国科学院院报]87:8526-8530;Svab和Maliga,(1993)Proc.Natl.Acad.Sci.USA[美国科学院院报]90:913-917;Svab和Maliga,(1993)EMBO J.[欧洲分子生物学学会杂志]12:601-606。所述方法依赖于粒子枪递送含有选择性标记的DNA和通过同源重组将DNA靶向质体基因组。另外,通过利用核编码的和质体导向的RNA合酶的组织偏好性表达,通过反式激活沉默的质体携带的转基因,实现质体转化。这种系统已被报道于以下文献中:McBride等人,(1994)Proc.Natl.Acad.Sci.USA[美国科学院院报]91:7301-7305。
所述实施例进一步涉及实施例的经转化植物的植物繁殖材料,包括但不限于种子、块茎、球茎、鳞茎、叶以及根和芽的插条。
所述实施例可用于转化任何植物物种,包括但不限于单子叶植物和双子叶植物。目的植物的实例包括但不限于玉米(corn,Zea mays),芸苔属(Brassica)物种(例如,甘蓝型油菜(B.hapus)、芜菁(B.rapa)、芥菜(B.juncea))(特别是可用作种子油来源的那些芸苔属物种),苜蓿(紫花苜蓿(Medicago sativa)),水稻(rice,Oryza sativa),黑麦(rye,Secale cereale),高粱(sorghum,Sorghum bicolor,Sorghum vulgare),粟(例如,珍珠粟(pearl millet,Pennisetum glaucum)、黍(proso millet,Panicum miliaceum)、谷子(foxtail millet,Setaria italica)、龙爪稷(finger millet,Eleusine coracana)),向日葵(sunflower,Helianthus annuus),红花(safflower,Carthamus tinctorius),小麦(wheat,Triticum aestivum),大豆(soybean,Glycine max),烟草(tobacco,Nicotianatabacum),马铃薯(potato,Solanum tuberosum),花生(peanut,Arachis hypogaea),棉花(海岛棉(Gossypium barbadense)、陆地棉(Gossypium hirsutum)),甘薯(番薯(Ipomoeabatatas)),木薯(cassava,Manihot esculenta),咖啡(咖啡属(Coffea)物种),椰子(coconut,Cocos nucifera),菠萝(pineapple,Ananas comosus),柑橘树(柑橘属(Citrus)物种),可可(cocoa,Theobroma cacao),茶树(tea,Camellia sinensis),香蕉(芭蕉属(Musa)物种),鳄梨(avocado,Persea americana),无花果(fig,Ficus casica),番石榴(guava,Psidiumguajava),芒果(mango,Mangifera indica),橄榄(olive,Oleaeuropaea),木瓜(番木瓜(Carica papaya)),腰果(cashew,Anacardium occidentale),澳洲坚果(macadamia,Macadamia integrifolia),巴旦杏(almond,Prunus amygdalus),甜菜(sugar beets,Beta vulgaris),甘蔗(甘蔗属(Saccharum)物种),燕麦,大麦,蔬菜,观赏植物和针叶树。
蔬菜包括番茄(tomatoes,Lycopersicon esculentum)、莴苣(例如,莴苣(Lactucasativa))、青豆(菜豆(Phaseolus vulgaris))、利马豆(lima bean,Phaseolus limensis)、豌豆(香豌豆属(Lathyrus)物种)和黄瓜属的成员例如黄瓜(cucumber,C.sativus)、香瓜(cantaloupe,C.cantalupensis)和甜瓜(musk melon,C.melo)。观赏植物包括杜鹃(杜鹃花属(Rhododendron)物种)、绣球花(hydrangea,Macrophylla hydrangea)、木槿(hibiscus,Hibiscus rosasanensis)、玫瑰(蔷薇属(Rosa)物种)、郁金香(郁金香属(Tulipa)物种)、水仙(水仙属(Narcissus)物种)、矮牵牛(petunias,Petunia hybrida)、康乃馨(carnation,Dianthus caryophyllus)、一品红(poinsettia,Euphorbia pulcherrima)和菊花。可以用于实践实施例的针叶树包括(例如)松树如火炬松(loblolly pine,Pinus taeda)、湿地松(slash pine,Pinus elliotii)、西黄松(ponderosa pine,Pinus ponderosa)、黑松(lodgepole pine,Pinus contorta)和辐射松(Monterey pine,Pinus radiata);花旗松(Douglas-fir,Pseudotsuga menzlesii);西方铁杉(Western hemlock,Tsugacanadensis);北美云杉(Sitka spruce,Picea glauca);红杉(redwood,Sequoiasempervirens);枞树(true firs),如银杉(胶冷杉(Abies amabilis))和胶枞(香脂冷杉(Abies balsamea));以及雪松,如西方红雪松(北美乔柏(Thuja plicata))和阿拉斯加黄雪松(黄扁柏(Chamaecyparis nootkatensis))。所述实施例的植物包括作物植物(例如玉米、苜蓿、向日葵、芸苔属、大豆、棉花、红花、花生、高粱、小麦、粟、烟草等),如玉米和大豆植物。
草坪草包括但不限于:一年生早熟禾(annual bluegrass,Poa annua);一年生黑麦草(黑麦草(Lolium multiflorum));加拿大早熟禾(Canada bluegrass,Poacompressa);紫羊茅(Chewing’s fescue,Festuca rubra);细弱翦股颖(colonialbentgrass,Agrostis tenuis);匍匐翦股颖(creeping bentgrass,Agrostis palustris);沙生冰草(crested wheatgrass,Agropyron desertorum);扁穗冰草(fairwaywheatgrass,Agropyron cristatum);硬羊茅(长叶羊茅(Festuca longifolia));草地早熟禾(Kentucky bluegrass,Poa pratensis);鸭茅(orchardgrass,Dactylis glomerata);多年生黑麦草(perennial ryegrass,Lolium perenne);红狐茅(紫羊茅(Festuca rubra));小糠草(redtop,Agrostis alba);粗茎早熟禾(rough bluegrass,Poa trivialis);羊茅(sheep fescue,Festuca ovina);无芒雀麦(smooth bromegrass,Bromus inermis);高羊茅(tall fescue,Festuca arundinacea);梯牧草(timothy,Phleum pratense);绒毛剪股颖(velvet bentgrass,Agrostis canina);碱茅(weeping alkaligrass,Puccinelliadistans);蓝茎冰草(western wheatgrass,Agropyron smithii);狗牙根(狗牙根属(Cynodon)物种);圣奥古斯丁草(St.Augustine grass,Stenotaphrum secundatum);结缕草(结缕属(Zoysia)物种);百喜草(Bahia grass,Paspalum notatum);地毯草(carpetgrass,Axonopus affinis);假俭草(centipede grass,Eremochloa ophiuroides);隐花狼尾草(kikuyu grass,Pennisetum clandesinum);海滨雀稗(seashore paspalum,Paspalumvaginatum);格兰马草(blue gramma,Bouteloua gracilis);野牛草(buffalo grass,Buchloe dactyloids);垂穗草(sideoats gramma,Bouteloua curtipendula)。
目的植物包括提供目的种子的谷物类植物、油料种子植物和豆科植物。目的种子包括谷物种子,例如玉米、小麦、大麦、水稻、高粱、黑麦、粟等。油料种子植物包括棉花、大豆、红花、向日葵、芸苔属、玉米、苜蓿、棕榈、椰子、亚麻、蓖麻、橄榄等。豆科植物包括豆类和豌豆。豆类包括瓜耳豆、槐豆、胡芦巴、大豆、四季豆、豇豆、绿豆、利马豆、蚕豆、小扁豆、鹰嘴豆等。
在将异源外源DNA引入植物细胞后,通过各种方法(如分析与已整合的基因相关的核酸、蛋白质和代谢物)证实异源基因在所述植物基因组中的转化或整合。
PCR分析是移植到土壤中之前在早期阶段筛选转化的细胞、组织或芽中存在并入的基因的快速方法(Sambrook和Russell,(2001)Molecular Cloning:A LaboratoryManual.[分子克隆:实验手册]Cold Spring Harbor Laboratory Press[冷泉港实验室出版社],Cold Spring Harbor[冷泉港],NY[纽约州])。使用对目的基因或农杆菌属载体背景等具有特异性的寡核苷酸引物进行PCR。
植物转化可以通过基因DNA印迹分析来证实(Sambrook和Russell,(2001),同上)。在RNA印迹分析中,从转化体的特定组织中分离RNA,在甲醛琼脂凝胶中进行分级,并根据本领域常规使用的标准程序将其印迹到尼龙过滤器上(Sambrook和Russell,(2001),同上)。然后通过本领域已知的方法通过将所述过滤器与来自杀有害生物基因的放射性探针杂交来测试由所述杀有害生物基因编码的RNA的表达(Sambrook和Russell,(2001)同上)。可以在这些转基因植物上进行蛋白质印迹、生化测定等,以通过使用与Cry毒素多肽上存在的一个或多个表位结合的抗体的标准方法(Sambrook和Russell,(2001),同上)来确认由该杀有害生物基因编码的蛋白的存在。
将基因组编辑技术引入植物的方法
在一些实施例中,可以使用基因组编辑技术将所公开的Cry毒素多核苷酸组合物引入植物的基因组中,或者可以使用基因组编辑技术编辑植物基因组中先前引入的Cry毒素多核苷酸。例如,可以通过使用双链断裂技术(如TALEN、大范围核酸酶、锌指核酸酶、CRISPR-Cas等)将所公开的多核苷酸引入植物基因组中需要的位置上。例如,为了位点特异性插入的目的,可以使用CRISPR-Cas系统将所公开的多核苷酸引入基因组中需要的位置上。植物基因组中需要的位置可以是任何对于插入来说需要的靶位点,如适于育种的基因组区域,或者可以是位于具有现有的目的性状的基因组窗口中的靶位点。现有的目的性状可能是内源性状或先前引入的性状。
在一些实施例中,在将所公开的Cry毒素多核苷酸先前已经引入到基因组中的情况下,可以使用基因组编辑技术来改变或修饰引入的多核苷酸序列。可以将位点特异性修饰引入所公开的Cry毒素多核苷酸组合物中,所述位点特异性修饰包括使用用于引入位点特异性修饰的任何方法产生的修饰,所述方法包括但不限于通过使用基因修复寡核苷酸(例如美国公开2013/0019349),或通过使用双链断裂技术,如TALEN、大范围核酸酶、锌指核酸酶、CRISPR-Cas等。此类技术可用于通过在引入的多核苷酸内的核苷酸的插入、缺失或取代来修饰先前引入的多核苷酸。可替代地,可以使用双链断裂技术向引入的多核苷酸中添加另外的核苷酸序列。可以添加的另外的序列包括另外的表达元件(如增强子序列和启动子序列)。在另一个实施例中,可以使用基因组编辑技术在植物基因组内定位紧邻本文公开的Cry毒素多核苷酸组合物的另外的杀昆虫活性蛋白,以产生杀昆虫活性蛋白的分子堆叠物。
“改变的靶位点”、“改变的靶序列”、“修饰的靶位点”和“修饰的靶序列”在本文中可互换地使用,并且意指如本文公开的靶序列,当与未改变的靶序列相比时,所述靶序列包含至少一个改变。此类“改变”包括,例如:(i)至少一个核苷酸的替代、(ii)至少一个核苷酸的缺失、(iii)至少一个核苷酸的插入、或(iv)(i)-(iii)的任何组合。
转基因植物中性状的堆叠
转基因植物可以包含本文公开的一种或多种杀昆虫多核苷酸与一种或多种另外的多核苷酸的堆叠,导致多个多肽序列的产生或抑制。包含多核苷酸序列堆叠的转基因植物可以通过传统育种方法或通过遗传工程方法中的一种或两种获得。所述方法包括但不限于:育种各自包含目的多核苷酸的单个系,用随后的基因转化包含本文公开的基因的转基因植物,并将基因共转化为单个植物细胞。如本文所用的,术语“堆叠”包括使多个性状在同一植物中存在(即,将两个性状并入核基因组中,将一个性状并入核基因组中,并且将一个性状并入质体的基因组中,或者这两种性状都被并入质体的基因组中)。在一个非限制性实例中,“堆叠性状”包括其中序列在物理上彼此相邻的分子堆叠物。如本文所用的性状是指源自特定序列或序列组群的表型。可以使用包含多个基因或在多个载体上分别携带的基因的单一转化载体进行基因的共转化。如果通过遗传转化植物来堆叠序列,则目的多核苷酸序列可以在任意时间并以任意顺序组合。可以用共转化方案将所述性状与转化盒的任何组合所提供的目的多核苷酸一起引入。例如,若引入两个序列,则这两个序列可包含在分开的转化盒(反式)或包含在同一个转化盒(顺式)中。所述序列的表达可以通过相同的启动子或通过不同的启动子驱动。在某些情况下,可能需要引入将抑制目的多核苷酸的表达的转化盒。这可以与其他抑制盒或过度表达盒的任何组合进行组合以在所述植物中产生所需性状组合。进一步应当认识到,可以使用位点特异性重组系统在所需的基因组位置堆叠多核苷酸序列。参见,例如,WO 1999/25821、WO 1999/25854、WO 1999/25840、WO 1999/25855和WO1999/25853,将其全部通过引用并入本文。
在一些实施例中,单独或与一种或多种另外的昆虫抗性性状堆叠的编码本文公开的一种或多种Cry毒素多肽的多核苷酸中的一种或多种可以与一种或多种另外的输入性状(例如,除草剂抗性、真菌抗性、病毒抗性、胁迫耐受性、抗病性、雄性不育性、茎强度等)或输出性状(例如,增加的产量、改性淀粉、改善的油特性、平衡的氨基酸、高赖氨酸或甲硫氨酸、增加的消化性、改善的纤维品质、抗旱性等)堆叠。因此,多核苷酸实施例可用于提供具有灵活地且成本有效地控制任何数量的农艺有害生物的能力的经改善的作物品质的完整农艺学方案。
可用于堆叠的转基因包括但不限于:赋予除草剂抗性的转基因;赋予或贡献于改变的谷物特征的转基因;控制雄性不育的基因;创建用于位点特异性DNA整合的位点的基因;影响非生物胁迫抗性的基因;赋予增加的产量的基因;赋予植物可消化性的基因;以及赋予昆虫抗性或抗病性的转基因。
赋予昆虫抗性的转基因的实例包括编码苏云金芽孢杆菌(Bacillusthuringiensis)蛋白质、其衍生物或其上建模的合成多肽的基因。参见,例如,Geiser等人,(1986)Gene[基因]48:109,其公开了Btδ-内毒素基因的克隆和核苷酸序列。此外,编码δ-内毒素基因的DNA分子可购自美国典型培养物保藏中心(American Type CultureCollection)(美国马里兰州罗克韦尔市(Rockville,Md.)),例如
Figure BDA0002954263880000571
登录号40098、67136、31995和31998下。经遗传工程改造的苏云金芽孢杆菌转基因的其他非限制性实例在以下专利和专利申请中给出:美国专利号5,188,960;5,689,052;5,880,275;5,986,177;6,023,013、6,060,594、6,063,597、6,077,824、6,620,988、6,642,030、6,713,259、6,893,826、7,105,332;7,179,965、7,208,474;7,227,056、7,288,643、7,323,556、7,329,736、7,449,552、7,468,278、7,510,878、7,521,235、7,544,862、7,605,304、7,696,412、7,629,504、7,705,216、7,772,465、7,790,846、7,858,849和WO 1991/14778;WO 1999/31248;WO2001/12731;WO 1999/24581和WO 1997/40162。
编码杀有害生物蛋白的基因也可以堆叠,包括但不限于:来自假单胞菌属物种的杀昆虫蛋白,例如PSEEN3174(Monalysin,(2011)PLoS Pathogens[公共科学图书馆:病原体],7:1-13),来自假单胞菌蛋白菌(Pseudomonas protegens)菌株CHA0和Pf-5(之前为荧光假单胞菌(fluorescens))(Pechy-Tarr,(2008)Environmental Microbiology[环境微生物学]10:2368-2386:GenBank登录号EU400157);来自台湾假单胞菌(Liu等人,(2010)J.Agric.Food Chem.[农业与食品化学杂志],58:12343-12349)和来自假产碱假单胞菌(Zhang等人,(2009)Annals of Microbiology[微生物学杂志]59:45-50和Li等人,(2007)Plant Cell Tiss.Organ Cult.[植物细胞,组织和器官培养杂志]89:159-168)的杀昆虫蛋白;来自发光杆菌属物种和致病杆菌属物种的杀昆虫蛋白(Hinchliffe等人,(2010)TheOpen Toxinology Journal[开放的毒理学杂志]3:101-118和Morgan,等人,(2001)Appliedand Envir.Micro.[应用与环境微生物学]67:2062-2069;来自美国专利号6,048,838和美国专利号6,379,946的杀昆虫蛋白;US 9,688,730的PIP-1多肽;US 9,475,847的AfIP-1A和/或AfIP-1B多肽;美国公开号US 20160186204的PIP-47多肽;PCT公开号WO 2016/114973的IPD045多肽、IPD064多肽、IPD074多肽、IPD075多肽、和IPD077多肽;PCT序列号PCT/US17/56517的IPD080多肽;序列号PCT/US17/54160的IPD078多肽、IPD084多肽、IPD085多肽、IPD086多肽、IPD087多肽、IPD088多肽、和IPD089多肽;美国专利公开号US 20160366891的PIP-72多肽;美国公开号US 20170166921的PtIP-50多肽和PtIP-65多肽;美国序列号62/521084的IPD098多肽、IPD059多肽、IPD108多肽、IPD109多肽;美国公开号US20160347799的PtIP-83多肽;美国公开号US 20170233440的PtIP-96多肽;PCT公开号WO 2017/23486的IPD079多肽;PCT公开号WO 2017/105987的IPD082多肽、序列号PCT/US17/30602的IPD090多肽、美国序列号62/434020的IPD093多肽;序列号PCT/US17/39376的IPD103多肽;美国序列号62/438179的IPD101多肽;美国序列号US 62/508,514的IPD121多肽;和δ-内毒素,包括但不限于Cry1、Cry2、Cry3、Cry4、Cry5、Cry6、Cry7、Cry8、Cry9、Cry10、Cry11、Cry12、Cry13、Cry14、Cry15、Cry16、Cry17、Cry18、Cry19、Cry20、Cry21、Cry22、Cry23、Cry24、Cry25、Cry26、Cry27、Cry 28、Cry 29、Cry 30、Cry31、Cry32、Cry33、Cry34、Cry35,Cry36、Cry37、Cry38、Cry39、Cry40、Cry41、Cry42、Cry43、Cry44、Cry45、Cry 46、Cry47、Cry49、Cry50、Cry51、Cry52、Cry53、Cry 54、Cry55、Cry56、Cry57、Cry58、Cry59、Cry60、Cry61、Cry62、Cry63、Cry64、Cry65、Cry66、Cry67、Cry68、Cry69、Cry70、Cry71、和Cry72类的δ-内毒素基因以及苏云金芽孢杆菌细胞溶解性Cyt1和Cyt2基因。
δ-内毒素的实例还包括但不限于美国专利号5,880,275和7,858,849的Cry1A蛋白;美国专利号8,304,604和8.304,605的DIG-3或DIG-11毒素(Cry蛋白(如Cry1A)的α螺旋1和/或α螺旋2变体的N-末端缺失),美国专利申请序列号10/525,318的Cry1B;美国专利号6,033,874的Cry1C;美国专利号5,188,960、6,218,188的Cry1F;美国专利号7,070,982;6,962,705和6,713,063的Cry1A/F嵌合体;美国专利号7,064,249的Cry2蛋白,如Cry2Ab蛋白);Cry3A蛋白,包括但不限于通过融合至少两种不同Cry蛋白的可变区和保守区的独特组合产生的经工程改造的杂合杀昆虫蛋白(eHIP)(美国专利申请公开号2010/0017914);Cry4蛋白;Cry5蛋白;Cry6蛋白;美国专利号7,329,736、7,449,552、7,803,943、7,476,781、7,105,332、7,378,499和7,462,760的Cry8蛋白;Cry9蛋白,如Cry9A、Cry9B、Cry9C、Cry9D、Cry9E、和Cry9F家族的成员;Cry15蛋白,描述于Naimov等人,(2008)Applied andEnvironmental Microbiology[应用与环境微生物学]74:7145-7151中;美国专利号6,127,180、6,624,145和6,340,593的Cry22、Cry34Ab1蛋白;美国专利号6,248,535、6,326,351、6,399,330、6,949,626、7,385,107和7,504,229的CryET33和CryET34蛋白;美国专利公开号2006/0191034、2012/0278954,和PCT公开号WO 2012/139004的CryET33和CryET34同源物;美国专利号6,083,499、6,548,291和6,340,593的Cry35Ab1蛋白;Cry46蛋白、Cry 51蛋白、Cry二元毒素;TIC901或相关毒素;US 2008/0295207的TIC807;PCT US 2006/033867的ET29、ET37、TIC809、TIC810、TIC812、TIC127、TIC128;美国专利号8,236,757的AXMI-027、AXMI-036、和AXMI-038;US7,923,602的AXMI-031、AXMI-039、AXMI-040、AXMI-049;WO 2006/083891的AXMI-018、AXMI-020和AXMI-021;WO 2005/038032的AXMI-010;WO 2005/021585的AXMI-003;US 2004/0250311的AXMI-008;US 2004/0216186的AXMI-006;US 2004/0210965的AXMI-007;US 2004/0210964的AXMI-009;US 2004/0197917的AXMI-014;US 2004/0197916的AXMI-004;WO 2006/119457的AXMI-028和AXMI-029;WO 2004/074462的AXMI-007、AXMI-008、AXMI-0080rf2、AXMI-009、AXMI-014和AXMI-004;美国专利号8,084,416的AXMI-150;US 20110023184的AXMI-205;US 2011/0263488的AXMI-011、AXMI-012、AXMI-013、AXMI-015、AXMI-019、AXMI-044、AXMI-037、AXMI-043、AXMI-033、AXMI-034、AXMI-022、AXMI-023、AXMI-041、AXMI-063、和AXMI-064;US 2010/0197592的AXMI-R1和相关蛋白;WO2011/103248的AXMI221Z、AXMI222z、AXMI223z、AXMI224z和AXMI225z;WO 11/103247的AXMI218、AXMI219、AXMI220、AXMI226、AXMI227、AXMI228、AXMI229、AXMI230、和AXMI231;美国专利号8,334,431的AXMI-115、AXMI-113、AXMI-005、AXMI-163和AXMI-184;US 2010/0298211的AXMI-001、AXMI-002、AXMI-030、AXMI-035、和AXMI-045;US2009/0144852的AXMI-066和AXMI-076;美国专利号8,318,900的AXMI128、AXMI130、AXMI131、AXMI133、AXMI140、AXMI141、AXMI142、AXMI143、AXMIl44、AXMI146、AXMI148、AXMI149、AXMI152、AXMI153、AXMI154、AXMI155、AXMI156、AXMI157、AXMI158、AXMI162、AXMI165、AXMI166、AXMI167、AXMI168、AXMI169、AXMI170、AXMIl71、AXMI172、AXMI173、AXMI174、AXMI175、AXMI176、AXMI177、AXMI178、AXMI179、AXMI180、AXMI181、AXMI182、AXMI185、AXMI186、AXMI187、AXMI188、AXMI189;US2010/0005543的AXMI079、AXMI080、AXMI081、AXMI082、AXMI091、AXMI092、AXMI096、AXMI097、AXMI098、AXMI099、AXMI100、AXMI101、AXMI102、AXMI103、AXMI104、AXMI107、AXMI108、AXMI109、AXMI110、AXMI111、AXMI112、AXMI114、AXMI116、AXMI117、AXMI118、AXMI119、AXMI120、AXMI121、AXMIl22、AXMI123、AXMI124、AXMI1257、AXMI1268、AXMI127、AXMI129、AXMI164、AXMI151、AXMI161、AXMI183、AXMI132、AXMI138、AXMI137;和美国专利号8,319,019的具有修饰的蛋白水解位点的Cry蛋白如Cry1A和Cry3A;以及美国专利申请公开号2011/0064710的来自苏云金芽孢杆菌菌株VBTS 2528的Cry1Ac、Cry2Aa和Cry1Ca毒素蛋白。其他Cry蛋白是本领域技术人员熟知的(参见,Crickmore等人,“Bacillus thuringiensis toxin nomenclature[苏云金芽孢杆菌毒素命名法]”(2011),网址为lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/,可以使用“www”前缀在万维网上访问)。Cry蛋白的杀昆虫活性是本领域技术人员所熟知的(综述参见vanFrannkenhuyzen,(2009)J.Invert.Path.[无脊椎动物病理学杂志]101:1-16)。使用Cry蛋白作为转基因植物性状是本领域技术人员所熟知的,并且Cry转基因植物(包括但不限于Cry1Ac、Cry1Ac+Cry2Ab、Cry1Ab、Cry1A.105、Cry1F、Cry1Fa2、Cry1F+Cry1Ac、Cry2Ab、Cry3A、mCry3A、Cry3Bb1、Cry34Ab1、Cry35Ab1、Vip3A、mCry3A、Cry9c和CBI-Bt)已获得监管部门的批准(参见,Sanahuja,(2011)Plant Biotech Journal[植物生物技术杂志]9:283-300和CERA(2010)转基因作物数据库环境风险评估中心(CERA)(GM Crop Database Centerfor Environmental Risk Assessment),ILSI研究基金会,华盛顿特区,网址为cera-gmc.org/index.php?action=gm_crop_database,可以使用“www”前缀在万维网上访问)。本领域技术人员熟知的多于一种杀有害生物蛋白也可以在植物中表达,这些杀有害生物蛋白如Vip3Ab和Cry1Fa(US 2012/0317682)、CrylBE和Cry1F(US2012/0311746)、Cry1CA和Cry1AB(US 2012/0311745)、Cry1F和CryCa(US 2012/0317681)、Cry1DA和Cry1BE(US 2012/0331590)、Cry1DA和Cry1Fa(US 2012/0331589)、Cry1AB和Cry1BE(US 2012/0324606)、以及Cry1Fa和Cry2Aa、Cry1I或Cry1E(US 2012/0324605)。杀有害生物蛋白还包括杀昆虫脂肪酶,这些杀昆虫脂肪酶包括美国专利号7,491,869的脂质酰基水解酶,和胆固醇氧化酶,如来自链霉菌属(Streptomyces)(Purcell等人(1993)Biochem Biophys Res Commun[生物化学与生物物理学研究通讯]15:1406-1413)。杀有害生物蛋白还包括美国专利号5,877,012、6,107,279、6,137,033、7,244,820、7,615,686和8,237,020中的VIP(营养性杀昆虫蛋白)毒素等。其他VIP蛋白质是本领域技术人员熟知的(参见,lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html,其可以使用“www”前缀在万维网上访问)。杀有害生物蛋白还包括可从如下生物体获得的毒素复合物(TC)蛋白质:致病杆菌属、发光杆菌属和类芽孢杆菌属(Paenibacillus)(参见美国专利号7,491,698和8,084,418)。一些TC蛋白具有“独立”杀昆虫活性并且其他TC蛋白增强由相同给定生物体产生的独立毒素的活性。可以通过源自不同属的来源生物体的一种或多种TC蛋白“增效剂”来增强“独立”TC蛋白(例如来自发光杆菌属、致病杆菌属或类芽孢杆菌属)的毒性。有三种主要类型的TC蛋白。如本文所提及的,A类蛋白(“蛋白A”)是独立毒素。B类蛋白(“蛋白B”)和C类蛋白(“蛋白C”)增强了A类蛋白的毒性。A类蛋白的实例是TcbA、TcdA、XptA1和XptA2。B类蛋白的实例是TcaC、TcdB、XptB1Xb和XptC1Wi。C类蛋白的实例是TccC、XptC1Xb和XptB1Wi。杀有害生物蛋白还包括蜘蛛、蛇和蝎毒蛋白。蜘蛛肽的实例包括但不限于莱科毒素(lycotoxin)-1肽及其突变体(美国专利号8,334,366)。
赋予昆虫抗性的其他转基因可通过干扰核糖核酸(RNA)分子(通过RNA干扰)来下调靶基因在昆虫有害生物物种中的表达。RNA干扰是指由短干扰RNA(siRNA)介导的动物中序列特异性转录后基因沉默的过程(Fire等人,(1998)Nature[自然]391:806)。RNAi转基因可以包括但不限于下调靶基因在昆虫有害生物中的表达的dsRNA、siRNA、miRNA、iRNA、反义RNA或正义RNA分子的表达。PCT公开WO 2007/074405描述了抑制无脊椎动物有害生物(包括科罗拉多马铃薯甲虫(Colorado potato beetle))中靶基因表达的方法。PCT公开WO 2005/110068描述了抑制无脊椎动物有害生物(特别是包括西方玉米根虫)中靶基因表达的方法,所述方法作为控制昆虫侵袭的手段。此外,PCT公开WO 2009/091864描述了用于抑制来自昆虫有害生物物种(包括来自草盲蝽属的有害生物)的靶基因的组合物和方法。
提供的RNAi转基因用于靶向液泡ATP酶H亚基的RNAi,可用于控制如美国专利申请公开号2012/0198586中所述的鞘翅目有害生物群体和侵染。PCT公开WO 2012/055982描述了抑制或下调编码以下的靶基因表达的核糖核酸(RNA或双链RNA):昆虫核糖体蛋白,如核糖体蛋白L19、核糖体蛋白L40或核糖体蛋白S27A;昆虫蛋白酶体亚基,如Rpn6蛋白、Pros25、Rpn2蛋白、蛋白酶体β1亚基蛋白或Prosβ2蛋白;COPI囊泡的昆虫β-外被体、COPI囊泡的γ-外被体、COPI囊泡的β′-外被体蛋白或ζ-外被体;昆虫跨膜四蛋白(Tetraspanin)2 A蛋白(推定的跨膜结构域蛋白);属于肌动蛋白家族的昆虫蛋白,如肌动蛋白5C;昆虫泛素-5E蛋白;昆虫Sec23蛋白,其是参与细胞内蛋白质转运的GTP酶激活剂;涉及运动活性的作为非常规肌球蛋白的昆虫皱纹蛋白质;涉及核替代mRNA剪接调节的昆虫曲颈蛋白;昆虫囊泡H+-ATP酶G亚基蛋白和昆虫Tbp-1如Tat结合蛋白。PCT公开WO 2007/035650描述了抑制或下调编码Snf7的靶基因表达的核糖核酸(RNA或双链RNA)。美国专利申请公开2011/0054007描述了靶向RPS10的多核苷酸沉默元件。PCT公开WO 2016/205445描述了减少生育力的多核苷酸沉默元件与靶多核苷酸,包括NCLB、MAEL、BOULE、和VgR。美国专利申请公开2014/0275208和US 2015/0257389描述了靶向RyanR和PAT3的多核苷酸沉默元件。PCT公开WO/2016/138106、WO 2016/060911、WO 2016/060912、WO 2016/060913、和WO 2016/060914描述了靶向赋予对鞘翅目和半翅目有害生物的抗性的COPI外被体亚单位核酸分子的多核苷酸沉默元件。美国专利申请公开2012/029750、US 20120297501和2012/0322660描述了干扰核糖核酸(RNA或双链RNA),所述干扰核糖核酸在被昆虫有害生物物种摄取时起作用以下调昆虫有害生物中靶基因的表达,其中所述RNA包含至少一个沉默元件,其中所述沉默元件是包含经退火的互补链的双链RNA区域,所述双链RNA区域的一条链包含或由如下核苷酸序列组成,所述核苷酸序列至少部分地与靶基因中的靶标核苷酸序列互补。美国专利申请公开2012/0164205描述了干扰双链核糖核酸以抑制无脊椎动物有害生物的潜在靶标,包括:Chd3同源序列、β-微管蛋白同源序列、40 kDa V-ATP酶同源序列、EF1α同源序列、26S蛋白质体亚基p28同源序列、保幼激素环氧化物酶水解酶同源序列、溶胀依赖氯通道蛋白同源序列、葡萄糖-6-磷酸1-脱氢酶蛋白同源序列、Act42A蛋白同源序列、ADP-核糖因子1同源序列、转录因子IIB蛋白同源序列、几丁质酶同源序列、泛素缀合酶同源序列、甘油醛-3-磷酸脱氢酶同源序列、泛素B同源序列、保幼激素酯酶同源物、和α微管蛋白同源序列。
在有害生物控制方面的用途
在有害生物控制或使其他生物体工程化中使用包含实施例的核酸序列或其变体的菌株作为杀有害生物剂的一般方法是本领域已知的。
可以选择已知占据一种或多种目的作物的“植物圈”(叶面、叶际、根围和/或根面)的微生物宿主。选择这些微生物以便能够在特定环境中与野生型微生物成功竞争,提供表达一种或多种Cry毒素多肽的基因的稳定的维持和表达,并且理想的是,增加对所述杀有害生物剂的保护使其不受环境降解和失活的影响。
可替代地,通过将异源基因引入细胞宿主中来产生Cry毒素多肽。异源基因的表达直接或间接地导致杀有害生物剂在细胞内产生和维持。然后,当将细胞应用于一种或多种靶有害生物的环境中时,在延长所述细胞中所产生的毒素的活性的条件下处理这些细胞。所得产物保留所述毒素的毒性。然后可以根据常规技术配制这些天然包封的Cry毒素多肽,以施用于靶标有害生物所寄宿的环境(例如,土壤、水和植物的叶子)中。参见,例如EPA0192319及其中引用的参考文献。
杀有害生物组合物
在一些实施例中,活性成分能以组合物的形式施用并且可以与其他化合物同时或相继施用于需要处理的作物区域或植物。这些化合物可以是在单次施用所述制剂后允许长期对靶区域进行给予的肥料、除草剂、冷冻保护剂、表面活性剂、洗涤剂、杀有害生物肥皂、休眠油、聚合物和/或延时释放的或可生物降解的运载体制剂。它们还可以是选择性除草剂、化学杀昆虫剂、杀病毒剂、杀微生物剂、杀变形虫剂、杀有害生物剂、杀真菌剂、杀细菌剂、杀线虫剂、杀软体动物剂或这些制品中的若干种的混合物,如果需要,与在制剂领域内通常使用的另外的农业上可接受的运载体、表面活性剂或促进施用的助剂一起。合适的运载体和助剂可以是固体或液体,并且对应于在制剂技术中常常采用的物质,例如天然的或再生的矿物质、溶剂、分散剂、润湿剂、增粘剂、粘合剂或肥料。类似地,制剂可以制备成可食用的“诱饵”或者塑成有害生物“陷阱”以允许靶标有害生物取食或摄食所述杀有害生物制剂。
施用含有由细菌菌株产生的一种或多种Cry毒素多肽中的至少一种的活性成分或农用化学组合物的方法包括叶子施用、种子包衣和土壤施用。施用次数和施用速度取决于相应有害生物侵染的强度。
可以将组合物配制成粉末、尘剂、丸剂、颗粒、喷雾、乳液、胶体、溶液等,并且可以通过干燥、冻干、匀浆、萃取、过滤、离心、沉降或浓缩包含所述多肽的细胞培养物等常规方法进行制备。在所有这类含有至少一种这样的杀有害生物多肽的组合物中,所述多肽能以按重量计从约1%至约99%的浓度存在。
可以通过本公开的方法在给定区域中杀灭鳞翅目、双翅目、异翅目、线虫、半翅目或鞘翅目有害生物或减少其数量,或者可以预防性地将其施用于环境区域以防止易感有害生物的侵袭。优选地,所述有害生物摄入杀有害生物有效量的多肽或与其接触。如本文所用的,“杀有害生物有效量”是指能够对至少一种有害生物造成死亡或显著减少有害生物生长、取食或正常生理发育的杀有害生物剂的量。所述量将根据例如待控制的具体靶标有害生物,待处理的特定环境、地点、植物、作物或农业场所,环境条件以及杀有害生物有效的多肽组合物施用的方法、速率、浓度、稳定性和数量等因素而变化。制剂也可以根据气候条件、环境因素和/或施用频率和/或有害生物侵染的严重程度而变化。
可以通过用所需的农业上可接受的运载体配制细菌细胞、晶体和/或孢子悬浮液或分离的蛋白组分来制备所需的杀有害生物剂组合物。可以在施用之前以适当方式(如冻干、冷冻干燥、干燥)或者在水性运载体、培养基或合适的稀释剂(如盐水或其他缓冲液)中配制所述组合物。配制的组合物可以是尘剂或颗粒状物质的形式或者在油(植物或矿物)或水或油/水乳液中的悬浮液或者作为可湿性粉剂或者与适用于农业应用的任何其他运载体材料组合的形式。合适的农业运载体可以是固体或液体,并且是本领域公知的。术语“农业上可接受的运载体”涵盖通常用于杀有害生物剂制剂技术的所有佐剂、惰性组分、分散剂、表面活性剂、增粘剂、粘合剂等;这些是杀有害生物剂制剂技术人员所熟知的。制剂可以与一种或多种固体或液体佐剂混合,并通过各种方法(例如通过使用常规制剂技术将杀有害生物组合物与合适的佐剂均匀混合、共混和/或研磨)制备。美国专利号6,468,523中描述了合适的制剂和施用方法。还可以用一种或多种化学组合物处理植物,所述化学组合物包括一种或多种除草剂、杀昆虫剂或杀真菌剂。示例性化学组合物包括:果实/蔬菜除草剂:莠去津、除草定、敌草隆、草甘膦、利谷隆、嗪草酮、西玛津、氟乐灵、吡氟禾草灵、草铵膦、氯吡嘧磺隆Gowan、百草枯、戊炔草胺、烯禾啶、氟丙嘧草酯、氯吡嘧磺隆、茚嗪氟草胺(Indaziflam);果实/蔬菜杀昆虫剂:涕灭威、苏云金芽孢杆菌、甲萘威、克百威、毒死蜱、氯氰菊酯、溴氰菊酯、二嗪磷、马拉硫磷、阿维菌素、氟氯氰菊酯/β-氟氯氰菊酯、高氰戊菊酯、λ-氯氟氰菊酯、灭螨醌、联苯肼酯、甲氧虫酰肼、双苯氟脲、环虫酰肼、噻虫啉、呋虫胺、嘧螨酯、唑虫酰胺、噻虫胺、螺螨酯、γ-氯氟氰菊酯、螺甲螨酯、多杀菌素、氯虫酰胺、氰虫酰胺、Spinoteram、杀虫脲、螺虫乙酯、吡虫啉、氯虫双酰胺、硫双威、氰氟虫腙、氟啶虫胺腈、丁氟螨酯、Cyanopyrafen、吡虫啉、噻虫胺、噻虫嗪、Spinotoram、硫双威、氟啶虫酰胺、甲硫威、因灭汀-苯甲酸盐、茚虫威、噻唑磷、苯线磷、硫线磷、蚊蝇醚、苯丁锡、噻螨酮、灭多威、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮;果实/蔬菜杀真菌剂:多菌灵、百菌清、EBDC、硫、甲基硫菌灵、嘧菌酯、霜脲氰、氟啶胺、乙膦酸、异菌脲、醚菌酯、甲霜灵/精甲霜灵、肟菌酯、噻唑菌胺、丙森锌、肟菌酯、环酰菌胺、富马酸噁咪唑、氰霜唑、咪唑菌酮、苯酰菌胺、啶氧菌酯、吡唑醚菌酯、环氟菌胺、啶酰菌胺;谷物除草剂:异丙隆、溴苯腈、碘苯腈、苯氧基类、氯磺隆、炔草酸、禾草灵、吡氟草胺、噁唑禾草灵、双氟磺草胺、氟草烟、甲磺隆、醚苯磺隆、氟酮磺隆、碘磺隆、丙苯磺隆、氟吡酰草胺、甲磺胺磺隆、氟丁酰草胺、唑啉草酯、酰嘧磺隆、噻吩磺隆甲基、苯磺隆、氟啶嘧磺隆、磺酰磺隆、磺酰草吡唑、甲氧磺草胺、氟噻草胺、肟草酮、吡咯磺隆;谷物杀真菌剂:多菌灵、百菌清、嘧菌酯、环唑醇、嘧菌环胺、丁苯吗啉、氟环唑、醚菌酯、喹氧灵、戊唑醇、肟菌酯、硅氟唑、啶氧菌酯、吡唑醚菌酯、醚菌胺、丙硫菌唑、氟嘧菌酯;谷物杀昆虫剂:乐果、λ-氯氟氰菊酯、溴氰菊酯、α-氯氰菊酯、β-氟氯氰菊酯、联苯菊酯、吡虫啉、噻虫胺、噻虫嗪、噻虫啉、啶虫脒、呋虫胺、Clorphyriphos、甲胺磷、乙酰甲胺磷、抗蚜威、甲硫威;玉米除草剂:莠去津、甲草胺、溴苯腈、乙草胺、麦草畏、二氯吡啶酸、(S-)二甲酚草胺、草铵膦、草甘膦、异噁唑草酮、(S-)异丙甲草胺、甲基磺草酮、烟嘧磺隆、氟嘧磺隆、砜嘧磺隆、磺草酮、甲酰胺磺隆、苯吡唑草酮、环磺酮(Tembotrione)、嘧啶肟草醚、酮脲磺草吩酯、氟噻草胺、吡咯磺隆;玉米杀昆虫剂:克百威、毒死蜱、联苯菊酯、氟虫腈、吡虫啉、λ-氯氟氰菊酯、七氟菊酯、特丁硫磷、噻虫嗪、噻虫胺、螺甲螨酯、氯虫双酰胺、杀虫脲、氯虫酰胺、溴氰菊酯、硫双威、β-氟氯氰菊酯、氯氰菊酯、联苯菊酯、虱螨脲、杀虫隆、七氟菊酯、嘧丙磷、乙虫腈、氰虫酰胺、噻虫啉、啶虫脒、呋虫胺、阿维菌素、甲硫威、螺螨酯、螺虫乙酯;玉米杀真菌剂:种衣酯、福美双、丙硫菌唑、戊唑醇、肟菌酯;水稻除草剂:丁草胺、敌稗、四唑嘧磺隆、苄嘧磺隆、氰氟草酯、杀草隆、四唑酰草胺、唑吡嘧磺隆、苯噻草胺、去稗安、吡嘧磺隆、稗草畏、二氯喹啉酸、禾草丹、茚草酮、氟噻草胺、四唑酰草胺、氯吡嘧磺隆、去稗安、苯并双环酮、环酯草醚、五氟磺草胺、双草醚、丙炔噁草酮、乙氧嘧磺隆、丙草胺、甲基磺草酮、特呋三酮、噁草酮、噁唑禾草灵、吡丙醚;水稻杀昆虫剂:二嗪磷、杀螟硫磷、仲丁威、久效磷、丙硫克百威、噻嗪酮、呋虫胺、氟虫腈、吡虫啉、异丙威、噻虫啉、环虫酰肼、噻虫啉、呋虫胺、噻虫胺、乙虫腈、氯虫双酰胺、氯虫酰胺、溴氰菊酯、啶虫脒、噻虫嗪、氰虫酰胺、多杀菌素、Spinotoram、因灭汀-苯甲酸盐、氯氰菊酯、毒死蜱、杀螟丹、甲胺磷、醚菊酯、三唑磷、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、克百威、丙硫克百威;水稻 杀真菌剂:甲基硫菌灵、嘧菌酯、环丙酰菌胺、敌瘟磷、嘧菌腙、异稻瘟净、稻瘟灵、戊菌隆、噻菌灵、咯喹酮、三环唑、肟菌酯、双氯氰菌胺、氰菌胺、硅氟唑、噻酰菌胺;棉花除草剂:敌草隆、伏草隆、MSMA、乙氧氟草醚、扑草净、氟乐灵、唑草酮、烯草酮、吡氟禾草灵-丁基、草甘膦、达草灭、二甲戊乐灵、嘧硫草醚钠、三氟啶磺隆、得杀草、草铵膦、丙炔氟草胺、塞苯隆;棉花 杀昆虫剂:乙酰甲胺磷、涕灭威、毒死蜱、氯氰菊酯、溴氰菊酯、马拉硫磷、久效磷、阿维菌素、啶虫脒、因灭汀-苯甲酸盐、吡虫啉、茚虫威、λ-氯氟氰菊酯、多杀菌素、硫双威、γ-氯氟氰菊酯、螺甲螨酯、啶虫丙醚、氟啶虫酰胺、氯虫双酰胺、杀虫脲、氯虫酰胺、β-氟氯氰菊酯、螺虫乙酯、噻虫胺、噻虫嗪、噻虫啉、呋虫胺、氯虫双酰胺、氰虫酰胺、多杀菌素、Spinotoram、γ-氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、硫双威、阿维菌素、氟啶虫酰胺、啶虫丙醚、螺甲螨酯、氟啶虫胺腈、丙溴磷、三唑磷、硫丹;棉花杀真菌 剂:土菌灵、甲霜灵、喹硫磷;大豆除草剂:甲草胺、灭草松、氟乐灵、氯嘧磺隆-乙基、氯酯磺草胺、噁唑禾草灵、氟磺胺草醚、吡氟禾草灵、草甘膦、甲氧咪草烟、灭草喹、咪草烟、(S-)异丙甲草胺、嗪草酮、二甲戊乐灵、得杀草、草铵膦;大豆杀昆虫剂:λ-氯氟氰菊酯、灭多威、对硫磷、硫威(Thiocarb)、吡虫啉、噻虫胺、噻虫嗪、噻虫啉、啶虫脒、呋虫胺、氯虫双酰胺、氯虫酰胺、氰虫酰胺、多杀菌素、Spinotoram、因灭汀-苯甲酸盐、氟虫腈、乙虫腈、溴氰菊酯、β-氟氯氰菊酯、γ和λ氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、螺虫乙酯、螺螨酯、杀虫脲、氟啶虫酰胺、硫双威、β-氟氯氰菊酯;大豆杀真菌剂:嘧菌酯、环唑醇、氟环唑、粉唑醇、吡唑醚菌酯、戊唑醇、肟菌酯、丙硫菌唑、四氟醚唑;甜菜除草 :杀草敏、甜菜安、乙氧氟草黄、甜菜宁、野麦畏、二氯吡啶酸、吡氟禾草灵、环草定、苯嗪草酮、喹草酸、噻草酮、氟胺磺隆、得杀草、喹禾灵;甜菜杀昆虫剂:吡虫啉、噻虫胺、噻虫嗪、噻虫啉、啶虫脒、呋虫胺、溴氰菊酯、β-氟氯氰菊酯、γ/λ氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、七氟菊酯、氯虫酰胺、氰虫酰胺、氟虫腈、克百威;卡诺拉油菜除草剂:二氯吡啶酸、禾草灵、吡氟禾草灵、草铵膦、草甘膦、吡草胺、氟乐灵、胺苯磺隆、喹草酸、喹禾灵、烯草酮、得杀草;卡诺拉油菜杀真菌剂:嘧菌酯、多菌灵、咯菌腈、异菌脲、丙氯灵、烯菌酮;卡诺拉油菜杀昆虫剂:克百威、有机磷酸盐类、拟除虫菊酯、噻虫啉、溴氰菊酯、吡虫啉、噻虫胺、噻虫嗪、啶虫脒、呋虫胺、β-氟氯氰菊酯、γ以及λ氯氟氰菊酯、τ-氟氰胺菊酯、乙虫腈、多杀菌素、Spinotoram、氯虫双酰胺、氯虫酰胺、氰虫酰胺、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮。
在一些实施例中,除草剂是莠去津、除草定、敌草隆、氯磺隆、甲磺隆、噻吩磺隆甲基、苯磺隆、乙草胺、麦草畏、异噁唑草酮、烟嘧磺隆、砜嘧磺隆、嘧硫草醚钠、丙炔氟草胺、氯嘧磺隆-乙基、嗪草酮、喹禾灵、精-异丙甲草胺(S-metolachlor)、环己通(Hexazinne)或其组合。
在一些实施例中,杀昆虫剂是高氰戊菊酯、氯虫苯甲酰胺、灭多威、茚虫威、草氨酰或其组合。
杀有害生物和杀昆虫活性
“有害生物”包括但不限于:昆虫、真菌、细菌、线虫、螨、蜱等。昆虫有害生物包括选自以下各目的昆虫:鞘翅目、双翅目、膜翅目(Hymenoptera)、鳞翅目、食毛目(Mallophaga)、同翅目(Homoptera)、半翅目、直翅目(Orthroptera)、缨翅目(Thysanoptera)、革翅目(Dermaptera)、等翅目(Isoptera)、虱目(Anoplura)、蚤目(Siphonaptera)、毛翅目(Trichoptera)等,特别是鳞翅目和鞘翅目。
本领域的技术人员会知道,不是所有的化合物均对所有有害生物同样有效。实施例的化合物显示针对昆虫有害生物的活性,其可以包括经济上重要的农艺学、森林、温室、苗圃观赏植物、食物和纤维,公共和动物健康,国内和商业结构,家庭和储存产品有害生物。
鳞翅目幼虫包括但不限于:夜蛾科(Noctuidae)中的夜蛾、地老虎、尺蠖和实夜蛾亚科,草地贪夜蛾(Spodoptera frugiperda JE Smith)(秋夜蛾(fall armyworm));甜菜夜蛾(S.exigua Hübner)(甜菜粘虫(beet armyworm));斜纹夜蛾(S.litura Fabricius)(斜纹夜蛾(tobacco cutworm),茶蚕(cluster caterpillar));蓓带夜蛾(Mamestraconfigurata Walker)(披肩粘虫(bertha armyworm));甘蓝夜蛾(M.brassicae Linnaeus)(菜夜蛾(cabbage moth));小地老虎(Agrotis ipsilon Hufhagel)(黑切根虫(blackcutworm));西方灰地老虎(A.orthogonia Morrison)(西部切根虫(western cutworm));粒肤地老虎(A.subterranea Fabricius)(粒肤切根虫(granulate cutworm));棉叶波纹夜蛾(Alabama argillacea Hübner)(棉叶虫(cotton leaf worm));粉纹夜蛾(Trichoplusiani Hübner)(甘蓝银纹夜蛾(cabbage looper));大豆尺夜蛾(Pseudoplusia includensWalker)(大豆夜蛾(soybean looper));梨豆夜蛾(Anticarsia gemmatalis Hübner)(黎豆夜蛾(velvetbean caterpillar));粗长须夜蛾(Hypena scabra Fabricius)(苜猜绿夜蛾(green cloverworm));烟芽夜蛾(Heliothis virescens Fabricius)(烟青虫(tobaccobudworm));一星黏虫(Pseudaletia unipuncta Haworth)(夜蛾);粗皮委夜蛾(Athetismindara Barnes and Mcdunnough)(粗皮切根虫(rough skinned cutworm));暗缘地老虎(Euxoa messoria Harris)(暗黑切根虫(darksided cutworm));棉斑实蛾(Eariasinsulana Boisduval)(多刺螟蛉(spiny bollworm));翠纹钻夜蛾(E.vittellaFabricius)(斑点螟蛉(spotted bollworm));棉铃虫(Helicoverpa armigera Hübner)(美洲螟蛉(American bollworm));玉米穗虫(玉米穗蛾(corn earworm)或棉铃虫(cottonbollworm));斑马纹夜蛾(Melanchra picta Harris)(斑马纹夜蛾(zebra caterpillar));柑橘夜蛾(Egira (Xylomyges)curialis Grote)(柑橘地老虎(citrus cutworm));来自螟蛾科玉米螟(Ostrinia nubilalis Hübner,欧洲玉米螟(European corn borer))的螟虫、鞘蛾、结网虫、锥形虫(coneworms)、和雕叶虫(skeletonizers);脐橙螟蛾(Amyeloistransitella Walker)(脐橙螟(naval orangeworm));地中海粉螟(Anagasta kuehniellaZeller)(地中海粉斑螟(Mediterranean flour moth));干果斑螟(Cadra cautellaWalker)(粉斑螟(almond moth));二化螟(Chilo suppressalis Walker)(水稻螟虫(ricestem borer));斑禾草螟(C.partellus),(高粱螟(sorghum borer));米螟(Corcyracephalonica Stainton)(米蛾(rice moth));玉米根草螟(Crambus caliginosellusClemens)(玉米根结网虫(corn root webworm));早熟禾草螟(C.teterrellus Zincken)(早熟禾草螟(bluegrass webworm));稻纵卷叶螟(Cnaphalocrocis medinalis Guenée)(稻纵卷叶螟(rice leaf roller))葡萄里予螟(Desmia funeralis Hübner)(葡萄野螟(grape leaffolder));甜瓜绢野螟(Diaphania hyalinata Linnaeus)(甜瓜野螟(melonworm));黄瓜绢野螟(D.nitidalis Stoll)(泡菜虫(pickleworm));巨座玉米螟(Diatraeagrandiosella Dyar)(西南玉米秆草螟(southwestern corn borer))、蔗螟(D.saccharalis Fabricius)(甘蔗螟虫(surgarcane borer));墨西哥稻螟(Eoreumaloftini Dyar)(墨西哥稻螟(Mexican rice borer));烟草粉斑螟(Ephestia elutella Hübner)(烟草飞蛾(tobacco(cacao)moth));大蜡螟(Galleria mellonella Linnaeus)(大蜡蛾(greater wax moth));水稻切叶野螟(Herpetogramma licarsisalis Walker)(草地螟(sod webworm));向日葵同斑螟(Homoeosoma electellum Hulst)(向日葵螟(sunflowermoth));南美玉米苗斑螟(Elasmopalpus lignosellus Zeller)(小玉米茎蛀虫(lessercornstalk borer));小蜡螟(Achroia grisella Fabricius)(小蜡蛾(lesser waxmoth));草地螟(Loxostege sticticalis Linnaeus)(草地螟(beet webworm));茶树螟(Orthaga thyrisalis Walker)(茶树蛾(tea tree web moth));豆英野螟(Marucatestulalis Geyer)(豆英蛀螟(bean pod borer));印度谷螟(Plodia interpunctella Hübner)(印度谷螟(Indian meal moth));三化螟(Scirpophaga incertulas Walker)(三化螟(yellow stem borer));温室螟(Udea rubigalis Guenée)(芹菜卷叶螟(celeryleaftier));和卷蛾科(Tortricidae)中的卷叶虫、蚜虫、种实虫以及果实虫,西部黑头长翅卷蛾(Acleris gloverana Walsingham)(西部黑头蚜虫(Western blackheadedbudworm));东部黑头长翅卷蛾(A.variana Fernald)(东部黑头蚜虫(Easternblackheaded budworm));果树黄卷蛾(Archips argyrospila Walker)(果树卷叶蛾(fruittree leaf roller));罗萨娜黄卷蛾(A.rosana Linnaeus)(欧洲卷叶蛾(European leafroller));和其他黄卷蛾属物种,苹小卷叶蛾(Adoxophyes orana Fischer von
Figure BDA0002954263880000731
)(苹果小卷蛾(summer fruit tortrix moth));条纹向日葵螟(Cochylishospes Walsingham)(带状向日葵斑蛾(banded sunflower moth));榛小卷蛾(Cydialatiferreana Walsingham)(filbertworm);苹果蠹蛾(C.pomonella Linnaeus)(苹果蚕蛾(codling moth));杂色卷叶蛾(Platynota flavedana Clemens)(色稻纵卷叶螟(variegated leafroller));荷兰石竹小卷蛾(P.stulfana Walsingham)(杂食卷叶蛾(omnivorous leafroller));鲜食葡萄小卷蛾(Lobesia botrana Denis&Schiffermüller)(欧洲葡萄蛾(European grape vine moth));苹白小卷蛾(Spilonota ocellana Denis&Schiffermüller)(苹果芽小卷叶蛾(eyespotted bud moth));萄果实虫主虫(Endopizaviteana Clemens)(葡萄小卷叶蛾(grape berry moth));女贞细卷蛾(Eupoeciliaambiguella Hübner)(葡萄果蠹蛾(vine moth));巴西苹果卷叶虫(Bonagota salubricolaMeyrick)(巴西苹果小卷叶蛾(Brazilian apple leafroller));东方果实蛾(Grapholitamolesta Busck)(梨小食心虫(oriental fruit moth));向日葵芽蛾(Suleimahelianthana Riley)(向日葵芽蛾(sunflower bud moth));带卷蛾属物种(Argyrotaeniaspp.);卷叶蛾属物种(Choristoneura spp.)。
鳞翅目中选择的其他农艺学有害生物包括但不限于秋星尺蠖(Alsophilapometaria Harris)(秋星尺蠖(fall cankerworm));桃条麦蛾(Anarsia lineatellaZeller)(桃条麦蛾(peach twig borer));栎橙纹犀额蛾(Anisota senatoria J.E.Smith)(橙色斑纹橡木虫(orange striped oakworm));柞蚕(Antheraea pernyi Guérin-Méneville)(中橡木柞蚕虫(Chinese Oak Tussah Moth));家蚕(Bombyx mori Linnaeus)(桑蚕(Silkworm));棉潜蛾(Bucculatrix thurberiella Busck)(棉叶潜蛾(cotton leafperforator));纹黄豆粉蝶(Colias eurytheme Boisduval)(苜蓿粉蝶(alfalfacaterpillar));核桃舟蛾(Datana integerrima Grote&Robinson)(核桃天社蛾(walnutcaterpillar));落叶松毛虫(Dendrolimus sibiricus Tschetwerikov)(西伯利亚蚕蛾(Siberian silk moth)),白尺蠖蛾(Ennomos subsignaria Hübner)(榆角尺蠖(elmspanworm));菩提尺蠖(Erannis tiliaria Harris)(椴尺蠖(linden looper));黄毒蛾(Euproctis chrysorrhoea Linnaeus)(棕尾毒蛾(browntail moth));黑拟蛉蛾(Harrisina americana Guérin-Méneville)(野棉花夜蛾(grapeleaf skeletonizer));牧草天蚕蛾(Hemileuca oliviae Cockrell)(牧草天蚕蛾(range caterpillar));美国白蛾(Hyphantria cunea Drury)(美国白蛾(fall webworm));番茄茎麦蛾(Keiferialycopersicella Walsingham)(番茄蛲虫(tomato pinworm));东部铁杉尺蠖指明亚种(Lambdina fiscellaria fiscellaria Hulst)(东部铁杉尺蠖(Eastern hemlocklooper));西部铁杉尺蠖(L.fiscellaria lugubrosa Hulst)(西部铁杉尺蠖(Westernhemlock looper));柳毒蛾(Leucoma salicis Linnaeus)(雪毒蛾(satin moth));舞毒蛾(Lymantria dispar Linnaeus)(舞毒蛾(gypsy moth));番茄天蛾(Manducaquinquemaculata Haworth)(五点天蛾(five spotted hawk moth),番茄天蛾(tomatohornworm));烟草天蛾(M.sexta Haworth)(番茄天蛾(tomato hornworm)、烟草天蛾(tobacco hornworm));冬尺蠖蛾(Operophtera brumata Linnaeus)(冬尺蠖蛾(wintermoth));春尺蠖(Paleacrita vernata Peck)(春尺蠖(spring cankerworm));美洲大芷凤蝶(Papilio cresphontes Cramer)(大黄带凤蝶(giant swallowtail),柑桔凤蝶(orangedog));加州木角斗蛾(Phryganidia californica Packard)(加州槲蛾(Califomiaoakworm));柑桔潜蛾(Phyllocnistis citrella Stainton)(柑桔潜叶蛾(citrusleafminer));斑幕潜叶蛾(Phyllonorycter blancardella Fabricius)(斑点幕型潜叶虫(spotted tentiform leafminer));欧洲粉蝶(Pieris brassicae Linnaeus)(大白粉蝶(large white butterfly));菜青虫(P.rapae Linnaeus)(小白粉蝶(small whitebutterfly));暗脉菜粉蝶(P.napi Linnaeus)(绿脉菜粉蝶(green veined whitebutterfly));洋蓟葱羽蛾(Platyptilia carduidactyla Riley)(洋蓟羽蛾(artichokeplume moth));小菜蛾(Plutella xylostella Linnaeus)(小菜蛾(diamondback moth));棉红铃虫(Pectinophora gossypiella Saunders)(粉螟蛉(pink bollworm));多形云粉蝶(Pontia protodice)(Boisduval和Leconte)(南方菜青虫(Southern cabbageworm));杂食尺蠖(Sabulodes aegrotata Guenée)(杂食尺蠖(omnivorous looper));红抚天社蛾(Schizura concinna J.E.Smith)(红疣天社蛾(red humped caterpillar));麦蛾(Sitotroga cerealella Olivier)(麦蛾(Angoumois grain moth));松异带蛾(Thaumetopoea pityocampa Schiffermuller)(松树列队毛虫(pine processionarycaterpillar));幕谷蛾(Tineola bisselliella Hummel)(负袋夜蛾(webbingclothesmoth));番茄斑潜蝇(Tuta absoluta Meyrick)(番茄斑潜蝇(tomatoleafminer));苹果巢蛾(Yponomeuta padella Linnaeus)(巢蛾(ermine moth));Heliothis subflexa Guenée;天幕毛虫属(Malacosoma)物种和古毒蛾属(Orgyia)物种。
目的是鞘翅目的幼虫和成体,其包括来自长角象科(Anthribidae)、豆象科(Bruchidae)和象甲科(Curculionidae)的象鼻虫(包括但不限于:墨西哥棉铃象(Anthonomus grandis Boheman)(棉铃象甲(boll weevil));稻水象甲(Lissorhoptrusoryzophilus Kuschel)(稻水象虫(rice water weevil));谷象(Sitophilus granariusLinnaeus)(谷象(granary weevil));米象(S.oryzae Linnaeus)(米象(rice weevil));三叶草叶象(Hypera punctata Fabricius)(车轴草叶象虫(clover leaf weevil));密点细枝象(Cylindrocopturus adspersus LeConte)(向日葵茎象鼻虫(sunflower stemweevil));黄褐小爪象(Smicronyx fulvus LeConte)(红葵花籽象甲(red sunflower seedweevil));灰色小爪象(S.sordidus LeConte)(灰葵花籽象甲(gray sunflower seedweevil));玉米隐啄象(Sphenophorus maidis Chittenden)(玉米象虫(maizebillbug)));叶甲科(Chrysomelidae)的跳甲、黄瓜叶甲、根虫、叶甲、马铃薯叶甲以及潜叶虫(包括但不限于:马铃薯叶甲(Leptinotarsa decemlineata Say)(马铃薯甲虫(Coloradopotato beetle));玉米根萤叶甲指明亚种(Diabrotica virgifera virgifera LeConte)(西方玉米根虫);北方玉米根虫(D.barberi(Smith和Lawrence))(北方玉米根虫(northerncorn rootworm));黄瓜十一星叶甲食根亚种(D.undecimpunctata howardi Barber)(南方玉米根虫(southern corn rootworm));玉米铜色跳甲(Chaetocnema pulicariaMelsheimer)(玉米跳甲(corn flea beetle));十字花科跳甲(Phyllotreta cruciferaeGoeze)(十字花科蔬菜跳甲(Crucifer flea beetle));黄曲条跳甲(Phyllotretastriolata)(黄曲条跳甲(stripped flea beetle));肖叶甲褐斑(Colaspis brunneaFabricius)(葡萄肖叶甲(grape colaspis));橙足负泥虫(Oulema melanopus Linnaeus)(谷叶甲虫(cereal leaf beetle));向日葵叶甲(Zygogramma exclamationis Fabricius)(向日葵叶甲(sunflower beetle)));来自瓢虫科(Coccinellidae)的甲虫(包括但不限于:墨西哥豆瓢虫(Epilachna varivestis Mulsant)(墨西哥豆瓢虫(Mexican beanbeetle)));金龟子和来自金龟子科(Scarabaeidae)的其他甲虫(包括但不限于:日本丽金龟(Popillia japonica Newman)(日本金龟子(Japanese beetle));北方圆头犀金龟(Cyclocephala borealis Arrow)(北方独角仙(northern masked chafer),白蛴螬(whitegrub));南方圆头犀金龟(C.immaculata Olivier)(南方独角仙(southern maskedchafer),白蛴螬(white grub));欧洲切根鳃金龟(Rhizotrogus majalis Razoumowsky)(欧洲金龟子(European chafer));长毛食叶然金龟(Phyllophaga crinita Burmeister)(白蛴螬(white grub));胡萝卜金龟(Ligyrus gibbosus De Geer)(胡萝卜金龟(carrotbeetle)));来自皮蠹科(Dermestidae)的红缘皮蠹(carpet beetle);来自叩甲科(Elateridae)、伪金针虫属物种(Eleodes spp.)、梳爪叩头虫属物种(Melanotus spp.)的金针虫;宽胸金针虫属物种(Conoderus spp.);叩甲属物种(Limonius spp.);缺隆叩甲属物种(Agriotes spp.);特尼塞拉属物种(Ctenicera spp.);埃俄罗斯属物种(Aeolusspp.);来自小蠹科(Scolytidae)的树皮甲虫和来自拟步甲科(Tenebrionidae)的甲虫。
引人关注的是双翅目的成虫和未成熟的虫,包括潜叶虫玉米斑潜蝇(Agromyzaparvicornis Loew)(玉米斑潜蝇(corn blotch leafminer));摇蚊科(包括但不限于:高粱瘿蚊(Contarinia sorghicola Coquillett)(高梁瘿蚊(sorghum midge));黑森瘿蚊(Mayetiola destructor Say)(黑森蝇(Hessian fly));麦红吸浆虫(Sitodiplosismosellana Géhin)(小麦吸浆虫(wheat midge));葵花籽蚊(Neolasiopteramirtfeldtiana Felt)(向日葵籽瘿蚊(sunflower seed midge));果蝇(实蝇科(Tephritidae))、瑞典麦秆蝇(Oscinella frit Linnaeus)(果蝇(frit flies));蛆虫(包括但不限于:灰地种蝇(Delia platura Meigen)(种蝇(seedcorn maggot));麦地种蝇(D.coarctata Fallen)(麦种蝇(wheat bulb fly))和其他地种蝇属,美洲麦秆蝇(Meromyza americana Fitch)(美洲麦秆蝇(wheat stem maggot));家蝇(Muscadomestica Linnaeus)(家蝇(house flies));夏厕蝇(Fannia canicularis Linnaeus)、小舍蝇(F.femoralis Stein)(小家蝇(lesser houseflies));厩螫蝇(Stomoxys calcitransLinnaeus)(螫蝇(stable flies));秋家蝇,角蝇,绿头苍蝇,金蝇属物种(Chrysomyaspp.);伏蝇属物种(Phormia spp.);和其他麝香蝇(muscoid fly)有害生物、马蝇虻属物种(horse flies Tabanus spp.);肤蝇胃蝇属物种(bot flies Gastrophilus spp.);狂蝇属物种(Oestrus spp.);纹皮蝇皮蝇属物种(cattle grubs Hypoderma spp.);鹿蝇斑虻属物种(deer flies Chrysops spp.);绵羊虱蝇(Melophagus ovinus Linnaeus)(绵羊蜱)和其他短角亚目(Brachycera),蚊子伊蚊属物种(mosquitoes Aedes spp.);疟蚊属物种(Anopheles spp.);家蚊属物种(Culex spp.);黑蝇原蚋属物种(black fliesProsimulium spp.);蚋属物种(Slmulium spp.);吸血蠓、沙蝇、眼菌蚊(sciarid)和其他长角亚目(Nematocera)。
作为目的昆虫包括了半翅目和同翅目的成体和若虫,例如但不限于:来自球蚜科(Adelgidae)的球蚜、来自盲蝽科(Miridae)的盲蝽、来自蝉科(Cicadidae)的蝉、叶蝉、小绿叶蝉属物种(Empoasca spp.);来自叶蝉科(Cicadellidae)的,来自菱蜡蝉科(Cixiidae)、青翅飞虱科(Flatidae)、蜡蝉总科(Fulgoroidea)、瓢蜡蝉科(Issidae)和(Delphacidae)的飞虱,来自角蝉科(Membracidae)的角蝉,来自木虱科(Psyllidae)的木虱,来自粉虱科(Aleyrodidae)的粉虱,来自蚜科(Aphididae)的蚜虫,来自根瘤蚜科(Phylloxeridae)的葡萄根瘤蚜,来自粉蚧科(Pseudococcidae)的粉蚧,来自链介壳虫科(Asterolecanidae)、蚧科(Coccidae)、粉蚧科(Dactylopiidae)、盾蚧科(Diaspididae)、绒蚧科(Eriococcidae)、旌介壳虫科(Ortheziidae)、刺葵介壳虫科(Phoenicococcidae)和绵蚧科(Margarodidae)的介壳虫,来自网蝽科的网蝽,来自蝽科(Pentatomidae)的椿象,长蝽(cinch bug),土长蝽属物种(Blissus spp.);和来自长蝽科(Lygaeidae)的其他籽长蝽、来自沫蝉科(Cercopidae)的沫蝉、来自缘蝽科(Coreidae)的南瓜缘蝽和来自红蝽科(Pyrrhocoridae)的秋恙螨和棉蝽。
来自同翅目的农业上的重要成员进一步包括但不限于:豌豆蚜(Acyrthisiphonpisum Harris)(豌豆蚜虫(pea aphid));黑豆蚜(Aphis craccivora Koch)(蚕豆蚜(cowpea aphid));黑豆蚜(A.fabae Scopoli)(蚕豆蚜(black bean aphid));棉蚜(A.gossypii Glover)(棉蚜(cotton aphid),瓜叶菊蚜虫(melon aphid));玉米根蚜(A.maidiradicis Forbes,corn root aphid);苹果黄蚜(A.pomi De Geer)(苹蚜(appleaphid));绣线菊蚜(A.spiraecola Patch,spirea aphid);茄粗额蚜(Aulacorthum solaniKaltenbach)(指顶花无网长管蚜(foxglove aphid));草莓钉蚜(Chaetosiphonfragaefolii Cockerell)(草莓毛管蚜(strawberry aphid));麦双尾蚜(Diuraphis noxiaKurdjumov/Mordvilko)(俄罗斯小麦蚜虫(Russian wheat aphid));车前圆尾蚜(Dysaphisplantaginea Paaserini)(苹粉红劣蚜(rosy apple aphid));苹果绵蚜(Eriosomalanigerum Hausmann,woolly apple aphid);甘蓝蚜(Brevicoryne brassicae Linnaeus)(菜蚜(cabbage aphid));桃粉大尾蚜(Hyalopterus pruni Geoffroy)(桃大尾蚜(mealyplum aphid));萝卜蚜(Lipaphis erysimi Kaltenbach,turnip aphid);麦无网长管蚜(Metopolophium dirrhodum Walker)(麦蚜虫(cereal aphid));马铃薯长管蚜(Macrosiphum euphorbiae Thomas)(马铃薯蚜(potato aphid));桃蚜(Myzus persicaeSulzer,peach-potato aphid,green peach aphid));莴苣衲长管蚜(Nasonoviaribisnigri Mosley)(莴苣蚜(lettuce aphid));瘿绵对属物种(Graptostethus spp.)(根蚜虫(root aphids)和倍蚜(gall aphids));玉米蚜(Rhopalosiphum maidis Fitch,cornleaf aphid);禾谷缢管蚜(R.padi Linnaeus,bird cherry-oat aphid);麦二叉蚜(Schizaphis graminum Rondani,greenbug);牛鞭草蚜(Sipha flava Forbes)(甘蔗黄蚜(yellow sugarcane aphid));麦长管蚜(Sitobion avenae Fabricius,English grainaphid);苜蓿斑蚜(Therioaphis maculata Buckton,spotted alfalfa aphid);茶二叉蚜(Toxoptera aurantii Boyer de Fonscolombe)(黑色柑橘蚜(black citrus aphid)和褐色橘蚜(T.citricida Kirkaldy)(桔二叉蚜(brown citrus aphid));球属物种(Adelgesspp.)(球蚜(adelgids));长山核桃根瘤蚜(Phylloxera devastatrix Pergande)(山胡桃根瘤蚜(pecan phylloxera));烟粉虱(Bemisia tabaci Gennadius)(烟粉虱(tobaccowhitefly),甘薯粉虱(sweetpotato whitefly));银叶粉虱(B.argentifolii Bellows&Perring,silverleaf whitefly);柑橘粉虱(Dialeurodes citri Ashmead)(柑桔粉虱(citrus whitefly));结翅白粉虱(Trialeurodes abutiloneus)(带状翅白粉虱(bandedwinged whitefly)和温室粉虱(T.vaporariorum Westwood)(温室粉虱(greenhouse whitefly));马铃薯小绿叶蝉(Empoasca fabae Harris)(马铃薯叶蝉(potato leafhopper));灰飞虱(Laodelphax striatellus Fallen,smaller brownplanthopper);二点叶蝉(Macrolestes quadrilineatus Forbes)(紫菀叶蝉(asterleafhopper));黑尾叶蝉(Nephotettix cinticeps Uhler)(绿叶蝉(green leafhopper));二条斑黑尾叶蝉(N.nigropictus
Figure BDA0002954263880000801
)(稻叶蝉(rice leafhopper));褐飞虱(Nilaparvatalugens
Figure BDA0002954263880000802
,brown planthopper);玉米蜡蝉(Peregrinus maidis Ashmead)(玉米飞虱(corn planthopper));白背飞虱(Sogatella furcifera Horvath,white-backedplanthopper);稻条背飞虱(Sogatodes orizicola Muir)(稻飞虱(rice delphacid));苹果白叶蝉(Typhlocyba pomaria McAtee)(苹白小叶蝉(white apple leafhopper));葡萄斑叶蝉属物种(Erythroneoura spp.)(葡萄叶蝉(grape leafhoppers));十七年蝉(Magicicada septendecim Linnaeus)(周期蝉(periodical cicada));吹绵蚧(Iceryapurchasi Maskell,cottony cushion scale);梨圆蚧(Quadraspidiotus perniciosusComstock,San Jose scale);臀纹粉蚧(Planococcus citri Risso)(桔粉蚧(citrusmealybug));粉蚧属物种(Pseudococcus spp.)(其他粉蚧系群);梨木虱(Cacopsyllapyricola Foerster,pear psylla);柿木虱(Trioza diospyri Ashmead,persimmonpsylla)。
来自半翅目的农业上重要的目的物种包括但不限于:拟绿蝽(Acrosternumhilare Say)(稻绿蝽(green stink bug));南瓜缘蝽(Anasa tristis De Geer)(南瓜虫(squash bug));美洲谷长蝽指明亚种(Blissus leucopterus leucopterus Say)(麦长蝽(chinch bug));方翅网蝽(Corythuca gossypii Fabricius)(棉网蝽(cotton lacebug));番茄蝽(Cyrtopeltis modesta Distant,tomato bug);棉蝽(Dysdercussuturellus Herrich-
Figure BDA0002954263880000811
)(棉红蝽(cotton stainer));褐臭蝽(Euschistus servusSay,brown stink bug);一斑臭蝽(E.variolarius Palisot de Beauvois,one-spottedstink bug);长蝽属物种(Graptostethus spp.)(果实蝽系群(complex of seed bugs));松叶根蝽(Leptoglossus corculus Say,leaf-footed pine seed bug);美洲牧草盲蝽(Lygus lineolaris Palisot de Beauvois)(牧草盲蝽(tarnished plant bug));牧草盲蝽(L.Hesperus Knight)(西部牧草盲蝽(Western tarnished plant bug));牧草盲蝽(L.pratensis Linnaeus,common meadow bug);长毛草盲蝽(L.rugulipennis Poppius,European tarnished plant bug);长绿盲蝽(Lygocoris pabulinus Linnaeus)(苹绿盲蝽(common green capsid));稻绿蝽(Nezara viridula Linnaeus)(南方绿椿象(southerngreen stink bug));美洲稻蝽(Oebalus pugnax Fabricius)(稻褐蝽(rice stink bug));马利筋长蝽(Oncopeltus fasciatus Dallas)(大马利筋长蝽(large milkweed bug));棉跳盲蝽(Pseudatomoscelis seriatus Reuter)(棉跳盲蝽(cotton fleahopper))。
此外,实施例可以对半翅目有效,如草莓蝽(Calocoris norvegicus Gmelin)(草莓长蝽(strawberry bug));荒野奥盲蝽(Orthops campestris Linnaeus);苹果盲蝽(Plesiocoris rugicollis Fallen)(苹盲蝽(apple capsid));番茄蝽(Cyrtopeltismodestus Distant,tomato bug);黑斑烟盲蝽(Cyrtopeltis notatus Distant)(吸蝇(suckfly));白斑盲蝽(Spanagonicus albofasciatus Reuter,whitemarkedfleahopper);皂英蝽(Diaphnocoris chlorionis Say)(皂角蝽(honeylocust plantbug));洋葱蝽(Labopidicola allii Knight)(葱盲蝽(onion plant bug));棉盲蝽(Pseudatomoscelis seriatus Reuter,cotton fleahopper);苜蓿褐盲蝽(Adelphocorisrapidus Say,rapid plant bug);四线盲蝽(Poecilocapsus lineatus Fabricius)(四线叶虫(four-lined plant bug));小长蝽(Nysius ericae Schilling)(多彩长蝽(falsechinch bug));假麦长蝽(Nysius raphanus Howard,false chinch bug);稻绿蝽(Nezaraviridula Linnaeus)(南方绿椿象(Southern green stink bug));扁盾蝽属物种(Eurygaster spp.);缘蝽科物种(Coreidae spp.);红蝽科物种(Pyrrhocoridae spp.);谷蛾科物种(Tinidae spp.);负子蝽科物种(Blostomatidae spp.);猎蝽科物种(Reduviidaespp.)物种和臭虫科物种(Cimicidae spp.)。
另外,包括蜱螨目(Acari)(螨类)的成体和幼虫,如小麦瘤瘿螨(Aceriatosichella Keifer)(小麦卷叶螨(wheat curl mite));麦岩螨(Petrobia latens Müller)(褐色小麦螨(brown wheat mite));在叶螨科(Tetranychidae)中蜘蛛螨和红螨,苹果全爪螨(Panonychus ulmi Koch)(欧洲红螨(European red mite));二斑叶螨(Tetranychus urticae Koch)(二点叶螨(two spotted spider mite));迈叶螨(T.mcdanieli McGregor)(迈叶螨(McDaniel mite));朱砂叶螨(T.cinnabarinusBoisduval,carmine spider mite);土耳其斯坦叶螨(T.turkestani Ugarov&Nikolski,strawberry spider mite);细须螨科中的葡萄短须螨,桔短须螨(Brevipalpus lewisiMcGregor,citrus flat mite);瘿螨科(Eriophyidae)中的锈螨和芽瘿螨以及其他叶取食螨和对人类和动物健康重要的螨,即表皮螨科(Epidermoptidae)的尘螨、蠕形螨科(Demodicidae)的毛囊螨、食甜螨科(Glycyphagidae)的谷螨,硬蜱科(Ixodidae)的蜱。黑脚硬蜱(Ixodes scapularis Say)(鹿蜱(deertick));全环硬蜱(I.holocyclus Neumann)(澳大利亚致瘫痪埤(Australian paralysis tick));变异矩头蜱(Dermacentor variabilisSay)(美洲犬蜱(American dog tick));美洲钝眼蜱(Amblyomma americanum Linnaeus)(孤星蜱(lone star tick))以及在痒螨科、蒲螨科和疥螨科中的痒螨和疥螨。
引人关注的是缨尾目(Thysanura)的昆虫有害生物,如衣鱼(Lepisma saccharinaLinnaeus)(蠹虫(silverfish));斑衣鱼(Thermobia domestica Packard)(小灶衣鱼(firebrat))。
覆盖的另外的节肢动物有害生物包括:蜘蛛目(Araneae)中的蜘蛛,例如褐隐毒蛛(Loxosceles reclusa Gertsch and Mulaik)(棕色遁蛛(brown recluse spider));和黑寡妇蜘蛛(Latrodectus mactans Fabricius,black widow spider);和蚰蜒目(Scutigeromorpha)中的蜈蚣,例如蚰蜒(Scutigera coleoptrata Linnaeus)(家蜈蚣)。
引人关注的昆虫有害生物包括椿象和其他相关昆虫的超家族,包括但不限于属于以下各科的物种:蝽科(稻绿蝽、茶翅蝽(Halyomorpha halys)、Piezodorus guildini、褐臭蝽、拟绿蝽、英雄美洲蝽(Euschistus heros)、美洲蝽(Euschistus tristigmus)、拟绿蝽、褐蝽(Dichelops melacanthus)、和蓓蝽(Bagrada hilaris)(蓓蝽(Bagrada Bug))),龟蝽科(Plataspidae)(筛豆龟蝽(Megacopta cribraria)-豆平腹蝽蟓(Bean plataspid))和土蝽科(Scaptocoris castanea-Root stink bug),以及鳞翅目物种包括但不限于:小菜蛾,例如,玉米穗虫;大豆夜蛾,例如大豆尺夜蛾,以及黎豆夜蛾(例如梨豆夜蛾)。
用于测量杀有害生物活性的方法是本领域中所熟知的。参见,例如,Czapla和Lang,(1990)J.Econ.Entomol.[经济昆虫学杂志]83:2480-2485;Andrews等人,(1988)Biochem.J.[生物化学杂志]252:199-206;Marrone等人,(1985)J.of EconomicEntomology[经济昆虫学杂志]78:290-293以及美国专利号5,743,477。通常,在取食测定中混合并使用了所述蛋白质。参见,例如,Marrone等人,(1985),J.of Economic Entomology[经济昆虫学杂志]78:290-293。此类测定可以包括将植物与一种或多种有害生物接触,并且确定所述植物存活和/或造成所述有害生物死亡的能力。
线虫包括寄生线虫如根结线虫、胞囊线虫、和腐线虫,包括异皮线虫属物种(Heterodera spp.)、根结线虫属物种(Meloidogyne spp.)、和球异皮线虫属物种(Globodera spp.);特别是胞囊线虫的成员,包括但不限于:大豆异皮线虫(Heteroderaglycines)(大豆胞囊线虫(soybean cyst nematode));甜菜异皮线虫(Heteroderaschachtii)(甜菜胞囊线虫(beet cyst nematode));燕麦异皮线虫(Heterodera avenae)(谷物胞囊线虫(cereal cyst nematode))和马铃薯金线虫(Globodera rostochiensis)和马铃薯白线虫(Globodera pailida)(马铃薯胞囊线虫(potato cyst nematodes))。腐线虫包括短体线虫属物种(Pratylenchus spp)。
种子处理
为了保护并提高产量生产和性状技术,种子处理方案可以为昆虫、杂草和疾病提供另外的作物计划灵活性和成本有效的控制。种子材料可以用包含化学或生物除草剂、除草剂安全剂、杀昆虫剂、杀真菌剂、发芽抑制剂和增强剂、营养素、植物生长调节剂和激活剂、杀细菌剂、杀线虫剂、杀鸟剂和/或杀软体动物剂的组合的组合物进行处理,典型地进行表面处理。这些化合物典型地与制剂领域中通常使用的其他运载体、表面活性剂或促进施加的助剂一起配制。所述涂层可通过用液体制剂浸渍增殖材料或通过用组合的湿或干制剂进行涂覆来施加。可用作种子处理的各种类型化合物的实例提供在以下中:The PesticideManual:A World Compendium[农药手册:世界简编],C.D.S.Tomlin编著,由British CropProduction Council[英国作物生产委员会]出版。
可用于作物种子的一些种子处理包括但不限于下列一种或多种:脱落酸,阿拉酸式苯-S-甲基,阿维菌素,杀草强,阿扎康唑,固氮螺菌属(azospirillum),印楝素,嘧菌酯,芽孢杆菌属物种(包括蜡状芽孢杆菌、坚强芽孢杆菌(Bacillus firmus)、巨大芽孢杆菌(Bacillus megaterium)、短小芽孢杆菌(Bacillus pumilis)、球形芽孢杆菌(Bacillussphaericus)、枯草芽孢杆菌和/或苏云金芽孢杆菌物种中的一种或多种),短根瘤菌属物种(bradyrhizobium spp.)(包括甜菜慢生根瘤菌(bradyrhizobium betae)、香炉盘慢生根瘤菌(bradyrhizobium canariense)、埃氏慢生根瘤菌(bradyrhizobium elkanii)、西表岛慢生根瘤菌(bradyrhizobium iriomotense)、慢生型大豆根瘤菌(bradyrhizobiumjaponicum)、bradyrhizobium liaonigense、bradyrhizobium pachyrhizi和/或圆明慢生根瘤菌(bradyrhizobium yuanmingense)),克菌丹,萎锈灵,壳聚糖,噻虫胺,铜,溴氰虫酰胺,苯醚甲环唑,氯唑灵,氟虫腈,咯菌腈,氟嘧菌酯,氟喹唑,解草胺,氟草肟,超敏蛋白,抑霉唑,吡虫啉,种菌唑,isoflavenoids,脂质几丁寡糖,代森锰锌,锰,代森锰,精甲霜灵,甲霜灵,叶菌唑,腈菌唑,PCNB,氟唑菌苯胺,青霉菌属,吡噻菌胺,氯菊酯,啶氧菌酯,丙硫菌唑,唑菌胺酯,氯虫酰胺,精-异丙甲草胺,皂苷,氟唑环菌胺,TCMTB,戊唑醇,噻苯咪唑,噻虫嗪,硫威,福美双,甲基立枯磷,三唑醇,木霉属,肟菌酯,灭菌唑和/或锌。PCNB种皮是指包含喹硫磷和氯唑灵的EPA注册号00293500419。TCMTB是指2-(硫氰基甲基硫代)苯并噻唑。
可以测试具有具体转基因性状的种子品种和种子以确定哪些种子处理方案和施加率可以补充所述品种和转基因性状以增加产量。例如,具有良好产量潜力但丝黑穗病易感性的品种可以受益于使用提供针对丝黑穗病的保护的种子处理,具有良好产量潜力但胞囊线虫易感性的品种可以受益于使用提供针对胞囊线虫的保护的种子处理等。同样,涵盖赋予抗昆虫的转基因性状的品种可以从种子处理赋予的第二种作用模式中获益,涵盖赋予除草剂抗性的转基因性状的品种可以从用安全剂的种子处理中获益,这种安全剂增强植物对所述除草剂的抗性等。此外,当与种子处理组合时,正确使用种子处理所产生的良好根系建立和早期出苗可能导致更有效的氮利用,更好的抗干旱能力以及包含某种性状的一种或多种品种的产量潜力的总体增加。
用于杀灭昆虫有害生物和控制昆虫群体的方法
在一些实施例中,提供了用于杀灭昆虫有害生物的方法,所述方法包括将昆虫有害生物同时地或依次地与杀昆虫有效量的本公开的重组Cry毒素多肽接触。在一些实施例中,提供了用于杀灭昆虫有害生物的方法,所述方法包括将昆虫有害生物与杀昆虫有效量的SEQ ID NO:57-112、214-246、和275-278的重组杀有害生物蛋白中的一种或多种或其变体或杀昆虫活性片段接触。
在一些实施例中,提供了用于控制昆虫有害生物群体的方法,所述方法包括将昆虫有害生物群体同时地或依次地与杀昆虫有效量的本公开的重组Cry毒素多肽中的一种或多种接触。在一些实施例中,提供了用于控制昆虫有害生物群体的方法,所述方法包括将昆虫有害生物群体与杀昆虫有效量的SEQ ID NO:57-112、214-246、和275-278的重组Cry毒素多肽中的一种或多种或其变体或杀昆虫活性片段接触。如本文所用的,“控制有害生物群体”或“控制有害生物”是指对有害生物的任何影响,其导致对有害生物造成的损害的限制。控制有害生物包括但不限于以一定方式杀灭有害生物、抑制有害生物发育、改变有害生物能育性或生长,使得有害生物对植物造成较少的损害,减少所产生后代的数量,产生适应力较弱的有害生物,产生易受捕食者攻击的有害生物或阻止有害生物啃食植物。
在一些实施例中,提供了用于控制对杀有害生物蛋白具有抗性的昆虫有害生物群体的方法,所述方法包括将昆虫有害生物群体同时地或依次地与杀昆虫有效量的本公开的重组Cry毒素多肽中的一种或多种接触。在一些实施例中,提供了用于控制对杀有害生物蛋白具有抗性的昆虫有害生物群体的方法,所述方法包括将昆虫有害生物群体与杀昆虫有效量的SEQ ID NO:57-112、214-246、和275-278的重组Cry毒素多肽中的一种或多种或其变体或杀昆虫活性片段接触。
在一些实施例中,提供了用于保护植物免受昆虫有害生物侵害的方法,所述方法包括使至少一种编码本公开的Cry毒素多肽的重组多核苷酸在植物或其细胞中表达。在一些实施例中,提供了用于保护植物免受昆虫有害生物侵害的方法,所述方法包括使编码SEQID NO:57-112、214-246、和275-278的一种或多种Cry毒素多肽或其变体或杀昆虫活性片段的重组多核苷酸在植物或其细胞中表达。
抗昆虫管理(IRM)策略
苏云金芽孢杆菌δ-内毒素在转基因玉米植物中的表达已被证明是控制农业上重要的昆虫有害生物的有效手段(Perlak等人,1990;1993)。然而,在某些情况下昆虫已经进化,所述昆虫对在转基因植物中表达的苏云金芽孢杆菌δ-内毒素是具有抗性的。如果这种抗性普遍存在,它将明显限制包含编码这种苏云金芽孢杆菌δ-内毒素的基因的种质的商业价值。
增加转基因杀昆虫剂对靶标有害生物的有效性并且同时减少杀昆虫剂抗性有害生物发展的一种方法是:将非转基因(即,非杀昆虫蛋白)庇护所(一部分非杀昆虫作物/玉米),与生产对靶标有害生物具有活性的单一杀昆虫活性蛋白的转基因作物一起使用。美国环境保护局(United States Environmental Protection Agency)(epa.gov/oppbppdl/biopesticides/pips/bt_corn_refuge_2006.htm,其可以使用www前缀进行访问)发布了与生产一种对靶标有害生物具有活性的单一Bt蛋白的转基因作物一起使用的要求。另外,国家玉米种植者协会(National Corn Growers Association)在其网站上(ncga.com/insect-resistance-management-fact-sheet-bt-corn,所述网址可使用www前缀访问)也提供了有关庇护所要求的类似指导。由于庇护区内的昆虫所造成的损失,较大的庇护所可能会降低总产量。
增加转基因杀昆虫剂对靶标有害生物的有效性并且同时减少杀昆虫剂抗性有害生物发展的另一种方法是具有杀昆虫基因的储存库,所述储存库可以有效地对抗昆虫有害生物的组,并通过不同的作用方式显现其作用。
在植物中表达对相同昆虫物种有毒的两种或更多种杀昆虫组合物,每种杀昆虫剂以有效水平表达是实现对抗性发展的控制的另一种方法。这是基于以下原则:对两种不同作用模式的抗性演变比仅一种远远更不可能。例如,Rouss概述了用于管理杀昆虫转基因作物的双毒素策略,也称为“金字塔结构”或“堆叠”。(The Royal Society.Phil.Trans.R.Soc.Lond.B.[皇家学会伦敦皇家学会哲学会刊B系列],(1998)353:1777-1786)。每种都能有效抵抗靶有害生物并几乎没有或没有交叉抗性的两种不同蛋白质的堆叠或金字塔结构可以允许使用较小的庇护所。美国环境保护局要求所种植非Bt玉米的结构性庇护所(通常为5%)比单一性状产品(通常为20%)显著更少。存在提供庇护所的IRM效应的各种方法,包括在田地中的各种几何种植模式和包装好(in-bag)的种子混合物,如进一步通过Roush所讨论的。
在一些实施例中,本公开的Cry毒素多肽可用作与其他杀有害生物蛋白或其他转基因(即RNAi性状)(包括但不限于Bt毒素、致病杆菌属物种或发光杆菌属物种杀昆虫蛋白、其他杀昆虫活性蛋白等)组合(即,金字塔化)的昆虫抗性管理策略。
提供了在促进抗昆虫管理的转基因植物中控制一种或多种鳞翅目和/或鞘翅目昆虫侵染的方法,所述方法包括在植物中表达具有不同作用模式的至少两种不同的杀昆虫蛋白。
在一些实施例中,控制转基因植物中鳞翅目和/或鞘翅目昆虫侵染并促进抗昆虫管理的方法中包括对鳞翅目和/或鞘翅目昆虫呈现至少一种Cry毒素多肽杀昆虫蛋白。
在一些实施例中,控制转基因植物中鳞翅目和/或鞘翅目昆虫侵染并促进昆虫抗性管理的方法包括对鳞翅目和/或鞘翅目昆虫呈现至少一种SEQ ID NO:57-112、214-246、和275-278的Cry毒素多肽或其变体或杀昆虫活性片段。
还提供了降低鳞翅目和/或鞘翅目昆虫对在所述植物中表达杀昆虫蛋白以控制所述昆虫物种的转基因植物产生抗性的可能性的方法,所述方法包括对昆虫物种具有杀昆虫作用的至少一种Cry毒素多肽与具有不同作用模式的针对昆虫物种的第二杀昆虫蛋白的组合表达。
提高植物产量的方法
提供了用于提高植物产量的方法。所述方法包括提供表达编码本文公开的杀有害生物多肽序列的多核苷酸的植物或植物细胞,并在有害生物(所述多肽对其具有杀有害生物活性)侵袭的田地中种植所述植物或其种子。在一些实施例中,所述多肽对鳞翅目、鞘翅目、双翅目、半翅目或线虫有害生物具有杀有害生物活性,并且所述田地被鳞翅目、半翅目、鞘翅目、双翅目或线虫有害生物侵染。
如本文所定义的,植物的“产量”是指植物生产的生物质的质量和/或数量。如本文所用的,“生物质”是指任何经测量的植物产物。生物质产量的增加是所测量的植物产物的产量上的任何改善。增加植物产量具有几个商业应用。例如,增加植物叶生物质可以增加用于人或动物消耗的叶菜类的产量。此外,增加叶生物质可用于增加植物来源的药物或工业产品的产量。产量上的增加可以包括任何统计学上显著的增加,包括但不限于,与不表达杀有害生物序列的植物相比,产量上至少增加1%、至少增加3%、至少增加5%、至少增加10%、至少20%增加、至少30%、至少50%、至少70%、至少100%或更大的增加。
在具体方法中,表达至少一种本文公开的Cry毒素多肽的植物的经改善的有害生物抗性使得植物产量得到增加。一种或多种Cry毒素多肽的表达导致有害生物侵染或取食植物的能力下降,从而提高植物产量。
加工方法
进一步提供了加工植物、植物部分或种子以从包含至少一种Cry毒素多核苷酸的植物、植物部分或种子获得食物或饲料产品的方法。可以对本文提供的植物、植物部分或种子进行加工以产生通过加工具有商业价值的植物、植物部分或种子获得的衍生物的油、蛋白质产物和/或副产品。非限制性实例包括包含编码一种或多种Cry毒素多肽的核酸分子的转基因种子,其可以被加工以产生大豆油、大豆产品和/或大豆副产品。
“加工”是指用于获得任何大豆产品的任何物理和化学方法,并且包括但不限于热调节(heat conditioning)、剥落和研磨、挤出、溶剂萃取或水性浸泡以及全部或部分种子萃取。
以下实例是通过说明的方式但不是通过限制的方式来提供的。
实例
实例1:各种Cry毒素结构域片段的合成
针对大肠杆菌表达优化并合成了42种全型Cry毒素的全结构域片段(Dm1、Dm2和Dm3)(参见图1)。将所有结构域片段克隆到pUC19亚克隆中以便表达。这些片段被用作许多成批改组文库的起始材料。所有全型Cry毒素蛋白信息均从NCBI基因库,Crickmore等人,“Bacillus thuringiensis toxin nomenclature[苏云金芽孢杆菌毒素命名法]”(2011)获得,网址为lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/(其可以使用“www”前缀在万维网上访问),以及btnomenclature.info/(其可以使用“www”前缀在万维网上访问)。表1列出了合成的全型毒素片段。
表1.全型Bt毒素合成片段
Figure BDA0002954263880000901
Figure BDA0002954263880000911
实例2:载体插入物和主链组装
使用Q5高保真DNA聚合酶(NEB M0491L)扩增插入物(结构域1、2或3,或亚结构域片段)的PCR产物,同时使用Phusion高保真DNA聚合酶(赛默飞世尔公司(ThermoFisher)F530L或NEB M0530L)扩增质粒主链,按照相应DNA聚合酶方案中建议的温度和循环说明进行操作。
将所有文库克隆到pMAL载体pVER6805中,从而以His-MBP-毒素构型表达。产生插入物(Dm1、2和3)PCR片段后,通过反向PCR产生含有His+MBP和另外的必需载体元件的载体主链(长度为8至9kb,不包括插入物部分)。
插入物和主链主要使用NEBuilder高保真DNA组装预混液(NEB E2621L)组装成质粒,使用10ul反应物(其从最初的20ul方案按比例缩小)并且遵循建议的孵育温度和长度。
用去离子水以1∶2稀释NEBuilder组装反应物,并且将1ul用于50ul的1∶8稀释的电感受态BL21(DE3)细胞(Lucigen公司E.cloni EXPRESS 60300-2)的转化。可替代地,GeneArt无缝克隆和组装试剂盒(GeneArt Seamless Cloning and Assembly Kit,英杰公司(Invitrogen)A13288)有时会按照反应指导用于插入物和主链的组装。为了进行转化,将10ul的反应物添加到50ul的英杰公司(Invitrogen)OneShot化学感受态TOP10细胞(包括试剂盒一起)中。使培养物生长,并且使用Miniprep试剂盒(凯杰公司(Qiagen)27104)制备质粒DNA。然后,将质粒DNA用于转化50ul的化学感受态BL21-Gold(DE3)细胞(安捷伦(Agilent)230132)。
将BL21细胞铺板到具有100μg/ml羧苄青霉素选择的LB琼脂平板上,并且在37℃下生长过夜。接种150-160ul LB碳水化合物(100ug/ml)的起子培养物,并且在37℃下伴随摇动生长过夜。将Magic Media培养物(英杰公司(Invitrogen)K6803)以深孔板形式生长,其中1ml的Magic Media培养基接种有20ul的起子培养物。将Magic Media板在25℃下,培养8小时,然后在16℃下培养64小时,伴随以250rpm摇动。将板以4000rpm旋转15分钟。弃去上清液,向每个孔中添加钢球,并且将板在-80℃下储存过夜。
将板涡旋直至细胞沉淀物重悬,并且然后在37℃下以250rpm摇动1.5至2小时。在-80℃下储存过夜后,将板解冻,并且用大磁体将钢球去除,随后在4℃下以4000rpm旋转20分钟。
为了制备用于Western分析的样品,将7.5ul的上清液加7.5ul的去离子水与5ul的E-PAGE样品上样缓冲液(包含英杰公司(Invitrogen)E-PAGE 96孔6%凝胶EP09606一起)(添加了4%β巯基乙醇)组合。将样品在70℃加热10分钟,并且在4℃下,以4000rpm旋转5min。然后在96孔E-PAGE凝胶中上样5ul的样品加15ul的去离子水,以及5ul的E-PAGE SeeBlue预染标准品(英杰公司(Invitrogen)LC5700)加15ul的去离子水。凝胶在E-Base凝胶装置(英杰公司(Invitrogen)EBM03和EBD03)的程序EP上运行20分钟。
根据制造商的指导,使用iBlot2系统(英杰公司(Invitrogen)IB21001)将蛋白从凝胶转移到硝酸纤维素膜(英杰公司(Invitrogen)IB23001)。在室温下,将膜用SuperBlockT20(TBS)封闭缓冲液(赛默飞世尔公司(ThermoFisher)37536)封闭1小时,并且然后在4℃下与1∶2000稀释于SuperBlock T20中的小鼠中产生的西格玛公司(Sigma)单克隆抗麦芽糖结合蛋白-碱性磷酸酶抗体(A3963-5ML)一起孵育过夜。用TBS-T(0.05%Tween-20)进行10分钟的洗涤(3次)后,根据制造商的方案,使用伯乐公司(Bio-Rad)碱性磷酸酶缀合底物试剂盒(170-6432)将印迹显影。然后将表现出良好表达谱的蛋白通过昆虫测定进行筛选。
为了产生在表达筛选后进行加工的蛋白,将甘油储液压印在LB碳水化合物(100ug/ml)上,并且在30℃或37℃下孵育过夜。将来自这些板的菌落用于接种在37℃下生长过夜的3ml LB碳水化合物(100ug/ml)起子培养物。分别用1ml至2ml起子培养物(即最终体积的1%)接种100ml至200ml的Magic Media培养物(英杰公司(Invitrogen)K6803),并且以250rpm,在25℃下摇动8小时,然后在16℃下摇动64小时。将培养物在4℃下,以9000rpm旋转10min。
改组的杀昆虫蛋白(“IPRS”多肽或蛋白)在修饰的pMAL载体(来自新英格兰生物实验室(New England Biolabs)的目录号E8000S)中作为与MBP(麦芽糖结合蛋白)的融合物表达。修饰pMAL载体以在位置1处的甲硫氨酸之后将6X His标签附接到MBP的N-末端。将含有杀昆虫蛋白基因的质粒克隆到大肠杆菌BL21(DE3)中。将BL21细胞在摇床中、在96孔深板或烧瓶中、在MagicMediaTM(生命技术公司(Life Technologies))中生长,所述摇床以250rpm在37℃下运行8小时,随后在16℃下运行64小时。在16℃孵育期间,MBP-毒素融合蛋白作为可溶性蛋白质积累在BL21细胞中。
为了纯化融合蛋白,通过离心收获大肠杆菌细胞,并且将其在由50ml磷酸钠缓冲液(含有300mM NaCl、2U/ml内切核酸酶(Epicenter公司)和5mM MaCl2,pH 8)中的2mg/ml溶菌酶组成的溶菌酶溶液中在37℃下伴随温和摇动3小时进行处理。然后用1%Triton X100将经溶菌酶处理的大肠杆菌细胞破碎,并且通过以4000rpm、30min(96孔板)或以9000rpm(烧瓶产生的样品)离心制备含有毒素的透明裂解物。通过亲和层析法,使用来自QiagenTM的NiNTA琼脂糖,按照制造商的标准程序,从透明裂解物中纯化His标记的MBP-毒素蛋白质。对于在96孔板中制备的那些透明裂解物样品,使用Pall CorporationTM(港湾公园驱动港25号,华盛顿,纽约州,11050(25Harbor Park Drive Port Washington,NY 11050))96深孔过滤板作为亲和层析柱。将从NiNTA琼脂糖洗脱的经纯化的毒素蛋白质通过Sephadex G25,以便将磷酸盐缓冲液变为25 mM HEPES-NaOH,pH 8,并且用于昆虫生物测定以确定杀昆虫剂。将MBP在25℃下用1/100(w/w)Factor Xa(新英格兰生物实验室(New England Biolabs))消化过夜,并且通过Superdex 200柱色谱法利用MBP对Superdex的尺寸差异和弱亲和力从毒素中去除。
使用LabChipTM GXII装置(卡尺生物科学公司(Caliper LifeSciences))通过毛细管电泳确定蛋白质浓度。将蛋白质分析重复至少3次,直到最终浓度在预定的偏差内(小于10%)被认为是可靠的。
IPRS多肽变体针对主要玉米有害生物——欧洲玉米螟(ECB,欧洲玉米螟(Ostrinia nubilalis))、玉米穗蛾(ECW,玉米穗虫(Helicoverpa zea))和秋黏虫(FAW,草地贪夜蛾(Spodoptera frugiperda))的活性通过摄食试验来确定,如以下文献描述的:Cong,R等人,Proceedings of the 4th Pacific Rim Conferences on Biotechnology ofBacillus thuringiensis and its environmental impact[苏云金芽孢杆菌生物技术及其对环境的影响的第四届太平洋沿岸会议论文集],第118-123页,由R.J.Akhurst、C.E.Beard和P.Hughes编辑,发表于2002年,堪培拉(Canberra),澳大利亚。简言之,关于含有杀昆虫蛋白的人工饲料(artificial diet)进行试验。如实例1所描述的制备杀昆虫蛋白,并且将10μL的蛋白质样品与40μL的熔融(40℃-50℃)人工昆虫饲料混合,所述饲料是基于用于鳞翅目昆虫配制的南国预混物(Southland Premix)(南国产品公司(SouthlandProducts),湖村(Lake Village),阿肯色州)用低温熔化琼脂糖制备的。将食物-杀昆虫蛋白混合物置于96孔微量滴定板的每个孔中。在28℃下,将一只或多只新生昆虫幼虫置于每个孔中,对于CEW和FAW饲养4天,并且对于ECB饲养5天。
实例3:Cry1Jα环3-5改组(针对IPRS命中C21和C51)
全结构域1(Dm1)改组通常导致非常低的可溶性表达。相反,数据表明,涵盖Dm的α环3至5的区域1)与其余的蛋白具有最小相互作用;以及2)暴露于溶剂中,被改组(参见表2、3和10,以及图5和6)。因此,预测α环3-5区域的改组对改组的多肽的溶解度有影响,并且可能改变杀昆虫活性。作为概念文库(concept library)的证明,制备了两个小型文库。在每个文库中,CrylJc和Cry1Ja的α环3-5区域与Cry1Ca和Cry1Ahα环3-5区域交换。选择Dm1的QIEQL(SEQ ID NO:247,在α环2B的末端)和ANLHL(SEQ ID NO:251,在α环5的中间)之间的共有区域进行改组。这五个氨基酸区段(SEQ ID NO:247和251)在若干种Cry1毒素之间高度保守(参见图8和9)。还鉴定了α环3和4(SEQ ID NO:248)、与α环4和5(SEQ ID NO:249)之间的共有区域,以便进行潜在的嵌合α环交换。除了α环3-5交换之外,还将Cry1Jc和Cry1Ja的结构域3与Cry1Ac和Cry1Ca的结构域3进行交换(参见图8和9)。总文库大小为6,具有针对两个主链的总共12种构建体(参见图2)。如实例2中所述合成针对文库的所有12种构建体。改组中使用的各种Cry毒素的α环3-5氨基酸序列区域在SEQ ID NO:159-180中示出(分别由如SEQ ID NO:137-158中所示的DNA序列编码)。
为了将这些基因表达为MBP融合蛋白,将它们克隆到pMal载体中。从pUC19载体PCR扩增毒素序列。通过反向PCR pMal载体获得载体主链。然后,使用基于同源性的克隆试剂盒Geneart和NEBuilder连接插入物和载体主链两者。将这十二个克隆转化到BL21大肠杆菌细胞中,并且直接进行蛋白纯化,而无需检查表达。
将蛋白纯化、定量并提交用于针对CEW和FAW的昆虫测定。进行初始测试,以便是/否进行测定来评估活性。基于初步结果,将选择的克隆提交用于比活性的剂量反应测定。随后,测试了一个或多个活性克隆的针对其他鳞翅目有害生物(SBL、VBC和ECB)的活性,以确定它们的活性谱(参见表2)。
表2.活性克隆的活性谱
Figure BDA0002954263880000961
*N.A.意指测试时无活性;N.M.意指测试时无死亡;并且N.D.意指未确定。
实例4:Cry1Ea主链上的Dm1α环3-5和Dm3改组,针对以下IPRS命中:IPRS-C13、 IPRS-14、IPRS-15、IPRS-16、IPRS-17、IPRS-19和IPRS-31
基于1Jc主链的α环3-5文库的成功,设计文库从而在具有不同长度的杂合结构域3的三个不同交叉点上,用Cry1Ea结构域2(Dm2)和Cry1Ca结构域3(Dm3)改组若干个杂合结构域1(Dm1)结构域。杂合Dm1彼此相似,除了在α3-5区域。连同9个杂合Dm1,改组中还使用了三个Cry1Ea样Dm1。
合成了11个Dm1(两个Cry1Ea样Dm1和9个杂合Dm1)和三个Cry1Ea Dm2-Cry1Ca Dm3片段(在三个不同交叉点融合的Cry1Ea Dm2和Cry1Ca Dm3)。构建了3个文库(ECF2、3和4)(参见图3)。在ECF2文库中,将11个Dm1用Cry1Ea Dm2和Cry1Ca Dm3改组。将Cry1Ea Dm2与Cry1Ca Dm3在Dm3中的交叉区域1(SEQ ID NO:251)处融合。在ECF3文库中,将11个Dm1用Cry1Ea Dm2和Cry1CaDm3改组。将Cry1Ea Dm2与Cry1Ca Dm3在Dm3中的共有交叉区域2(SEQID NO:252)处融合。在ECF4文库中,将11个Dm1用Cry1Ea Dm2和Cry1Ca Dm3改组。将Cry1EaDm2与Cry1Ca Dm3在Dm3中的共有交叉区域3(SEQ ID NO:253)处融合。
为了将这些基因表达为MBP融合蛋白,在pMal载体中,制备所有3个文库。从pUC19载体PCR扩增Dm1和3个Dm2-Dm3片段。通过pMal载体主链的反向PCR获得载体主链。然后,使用基于同源性的克隆试剂盒Geneart和NEBuilder组装插入物(Dm1、Dm2-Dm2)和载体主链两者。
对所有33个克隆(11个克隆/文库)进行序列确认,并且将其转化到BL21大肠杆菌细胞中,并且使用蛋白质印迹检查其表达。所有表达的22个克隆均在200ml培养物中生长,并且将蛋白质纯化、定量、并提交用于针对FAW的昆虫测定。将基于初始测试结果选择的克隆提交用于剂量反应测定,以获得比活性。随后,测试了在测试条件下最具活性的克隆(IPRS-C16,SEQ ID NO:62)针对其他鳞翅目有害生物(SBL、VBC和ECB)的活性,以及某些其他克隆,从而确定它们的活性谱(参见表3和4)。
表3.改组克隆的活性谱
Figure BDA0002954263880000971
*N.A.意指测试时无活性;并且N.D.意指未确定。
实例5:C16和C21上的Dm3片段改组
结构域3(Dm3)被认为涉及次级受体识别。因此,在IPRS-C16(SEQ ID NO:62)、IPRS-C18(SEQ ID NO:66)、和IPRS-C21(SEQ ID NO:88)上进行Dm3改组,从而产生独特的变体并且可能具有不同的作用位点(SOA)。基于若干种Cry毒素的比对,将在Dm2和Dm3之间的7个不同的交叉区域(通常是保守的)用作IPRS-C16、IPRS-C18和IPRS-C21 Dm1-Dm2主链上Dm3融合的重组位点。
选择了53种不同的合成的Cry毒素结构域-3作为多样性的来源。PCR扩增每个结构域的7个片段(交叉共有区域1-7,SEQ ID NO:251-257;参见表5和图4),并且基于交叉点进行合并(每个池含有53个PCR片段)。制备了两组Dm3 PCR片段池,每组含有7个单独的Dm3片段池。针对IPRS-C21主链制备了一个组,并且针对IPRS-C16和IPRS-C18主链制备了另一个组。形成每个组的对应池是相同的,除了交叉区域同源性之外(图4)。
通过使用主链特异性PCR引物,对排除要交换的区域的主链进行反向PCR来制备7个(交叉1-7,也分别称为F2-F8)载体主链。由于IPRS-C16和IPRS-C18具有相同的Dm3,因此针对这两个主链使用了通用引物。
将每个具体Dm3池与相应的反向PCR载体主链组装在一起,从而获得药表达为MBP融合蛋白的pMal载体主链中的所有变体。序列确认后将所有变体重新排列。仅进一步纯化那些在大肠杆菌可溶级分中表达的克隆,并且测试其昆虫活性。最初针对FAW筛选了IPRS-C16和IPRS-C18 Dm3变体,并且针对CEW筛选了IPRS-C21变体。进一步测试了活性变体对其他鳞翅目有害生物的活性谱(参见表4和图7)。Dm3变体保留了活性,但是与它们的亲本相比,如针对其各自的靶昆虫(IPRS-C16和IPRS-C18:FAW,IPRS-C21:CEW)进行的测试,其活性降低。
表4.针对其他鳞翅目有害生物的Dm3交换活性谱
Figure BDA0002954263880000991
*N.A.意指测试时无活性;N.M.意指测试时无死亡;N.D.意指未确定;并且F数是交叉点
表5.Cry毒素Dm3片段交叉点:
Figure BDA0002954263880000992
实例6:MP1068主链上的顺序α环3-5和Dm3改组
MP1068(SEQ ID NO:214)是专有Cry毒素。它与CrylAc具有63%同源性。它的Dm1与Cry1Ac 84%相似,Dm2是独特的,其与Cry1Nb具有45%同源性,并且Dm3与Cry1Bh具有79%同源性。由于MP1068 Dm2非常独特,所以产生了基于MP1068 Dm2作为主链的变体。最初,MP1068毒素区域表达为MBP融合蛋白;但是由于所有表达的蛋白均在不溶级分中,因此尝试不成功。为了克服可溶性表达问题,对暴露于溶剂中的α环3-5片段进行改组(参见图5和6),从而产生具有昆虫活性的MP1068的变体,随后对所述主链进行Dm3改组以改善活性。
通过反向PCR主链特异性引物获得pMal载体主链中的MP1068。该载体主链沿MP1068毒素具有所有载体组分,除了α环3-5区域之外。从合成的Dm1片段PCR扩增23个α环3-5片段(表5)。合并等量的所有α环3-5片段,并且进行凝胶纯化。使用Geneart(英杰公司(Invitrogen))基于同源性的组装试剂盒,组装α环3-5PCR片段池和MP1068载体主链。将组装的反应物转化进BL21细胞并且铺板。收集三个96孔板的菌落并且直接测试其可溶性表达。重新排列所有表达的克隆并且送去测序以去除冗余序列。
测序数据揭示,存在9个独特的MP1068变体(交换了不同的α环3-5序列)。在饮食测定中测试了所有9个变体针对CEW、FAW和ECB的昆虫活性(表6和图7)。
表6.MP1068α交换的变体昆虫活性
Figure BDA0002954263880001001
*N.A.意指测试时无活性;N.M.意指测试时无死亡;并且N.D.意指未确定。
选择IPRS-C23作为用于进一步Dm3改组的主链(参见实例5),因为与测试的其他2个活性克隆相比,它更具活性。选择来自Cry1Ca、Cry1Cb、Cry1Da、MP258(参见US20160194364 A1,SEQ ID NO:16,通过引用并入本文)、Cry1Bb和Cry1Ja的6个Dm3作为多样性的来源。通过PCR扩增,获得每个Dm3的5个片段(交叉点1-4,也称为F2至F5交叉点)。将单独的片段(例如,多样性中所有Dm3的F2)合并到5个Dm3池中(F2至F5池)。通过反向PCR获得了不包括要交换的区域的载体主链。为了促进基于同源性的组装,载体主链和插入物(Dm3池)的末端具有15bp的相同序列重叠。使用NEB builder或Gene Art组装试剂盒凝胶纯化组装插入物池和载体主链。然后将组装反应物转化到BL21细胞中,并且通过测序筛选收集的菌落。重新排列单独的独特克隆,并且使用伯乐公司(Bio-Rad)96孔E-Page凝胶和印迹检查表达。使在可溶级分中表达杂合毒素的克隆在150ml的magic media培养物中生长,并且通过标准Ni-NTA纯化进行纯化,并且测试其昆虫活性。
纯化了所有可能的30个克隆,并且测试了它们对CEW、FAW和ECB的活性,并且发现测试中10个是活性变体,这10个活性变体中的6个针对所有三种测试的昆虫均显示出改善的活性(表7)。
表7.C23 Dm3改组活性
Figure BDA0002954263880001011
*N.A.意指测试时无活性;N.M.意指测试时无死亡;N.D.意指未确定;并且F数是交叉点
实例7:在GS062主链上的顺序Dm1和Dm3改组(C45、46、47、48和C49)
GS062(SEQ ID NO:224)是一种专有毒素,其与Cry1Da具有62%同源性。结构域分析揭示,它是一种杂合毒素,其中结构域1是Cry1Ac型(77%),Dm2是Cry1Ca型(80%),并且Dm3是Cry1Hb型(79%)。测试时,GS062仅对ECB有活性,但是对CEW和FAW无活性。将天然GS062在GS062主链上进行家族改组Dm1,以改善对ECB的活性,并且然后进行改组Dm3,以添加对CEW或FAW的特异性。
从其各自的亲本Cry毒素PCR扩增来自若干种专有Cry1毒素的完整Dm1。合并所有PCR扩增的片段,并且凝胶纯化以去除亲本克隆的任何残迹。然后,使用具有代表各种Dm1片段的天然氨基酸多样性的PCR,允许合并的Dm1片段重组。在Herculase II(Stratagene公司)反应中组装了含有0.5-1.0μM合并文库寡核苷酸和Dm1片段的4个50μL组装反应物。通过向含有GS062 Dm2、Dm3的pMal载体主链中添加具有30bp同源性的0.5μM的侧翼引物,进行随后的PCR反应,从而扩增完全延伸的大约1Kb基因。
通过pMal载体中的GS062毒素的反向PCR获得载体主链。以这样的方式设计反向PCR引物以从PCR片段中排除GS062 Dm1,如此反向PCR载体主链片段将包括所有pMal载体组分以及MBP、GS062 Dm2和Dm3。
使用英杰公司(Invitrogen)Geneart DNA片段组装试剂盒组装拯救的Dm1混合物。将组装反应物转化到英杰公司(Invitrogen)Top10化学感受态细胞中。序列分析后,合并所有菌落,并且制备混合质粒制剂。将混合的质粒转化到Lucigen公司电感受态BL21细胞中用于蛋白表达。
收集大约3000个大肠杆菌(BL21)菌落,并且使用蛋白质印迹筛选全长MBP-毒素蛋白表达。收集大约400个在大肠杆菌中的可溶级分中表达杂合毒素的克隆并重新排列。从这些克隆中纯化蛋白,并进行提交用于确定其在是/否测定中的ECB活性。然后,基于ECB活性,对筛选的400个克隆中的40个活性克隆进行重新排列和测序。测序时,将冗余的克隆(具有相同序列的克隆)去除,并且仅将16个独特的克隆重新排列、纯化,并且以剂量反应方式测试其对ECB和SBL的比活性。
由于选择用于改组的Dm1之间缺乏足够的同源性,因此许多克隆具有完整的Dm1或其中随机突变交换到GS062主链(Dm2-Dm3)上的Dm1。这16个命中的Dm1来自MP477(SEQ IDNO:223)、GS128(SEQ ID NO:244)和GS002(SEQ ID NO:235)。以剂量反应方式测试了这16个克隆的ECB和SBL活性。经测试,这16个克隆均未对ECB产生任何可测量的比活性数(IC或LC50),但是具有GS002 Dm1的1个克隆显示出良好的SBL活性(表8)。
表8.GS062主链交换的Dm1活性
Figure BDA0002954263880001031
*N.A.意指测试时无活性;N.M.意指测试时无死亡;并且N.D.意指未确定。
经测试,IPRS-C49显示对CEW和FAW无活性,但是对SBL具有高活性,对VBC具有中等活性,并且对ECB具有轻微活性(参见表8)。
选择IPRS-C49(SEQ ID NO:112)作为用于进一步Dm3改组的主链(参见实例3),因为与其他3个活性克隆相比,它更具活性。选择来自Cry1Ca、Cry1Cb、Cry1Da、Cry1Ab、Cry1Ac和Cry1Be的6个Dm3作为多样性的来源。
纯化所有可能的30个克隆,并且测试其针对CEW和FAW的活性。经测试,4个变体对于CEW有活性,但是对于FAW无活性。选择了4个活性变体中的2个用于进一步的鳞翅目活性谱研究,结果显示其针对ECB、SBL和VBC的活性改善(表9)。
表9.C49 Dm3改组的变体活性。
Figure BDA0002954263880001032
*N.A.意指测试时无活性;N.M.意指测试时无死亡;N.D.意指未确定;并且F数是交叉点
使用GS047(SEQ ID NO:228)完成类似的改组。纯化所有可能的30个克隆,并且测试其针对CEW和FAW的活性。4个变体对于FAW有活性。经测试,所有4个都显示FAW活性(SEQID NO:275-278,分别由SEQ ID NO:271-274编码)。
实例8:C16和C21上的Dm1α环交换(α环3、4、5、3-4、4-5和3-5改组)
基于α环3-5片段改组策略的成功(用于不同的成批改组策略),对α螺旋的改组的个体和组合进行了测试,从而显示哪个α螺旋或哪些α螺旋可以改善活性或可溶性表达。在先前的文库中改组的α环3-5片段包括α环3、4、和仅一部分α环5。在此文库中,单独地或以组合存在的改组的α环3、α环4和完整的α环5在两个成批改组的变体C16和C21上。在此文库中改组的α环3-5片段比在所有先前文库中改组的α环3-5片段略微更长(参见图8和9)。
从45个合成的Dm1片段PCR扩增α环3、4、5、3-4、4-5和3-5(参见图11)。从C21获得Cry1Ca的不同α环片段,其含有Cry1Caα环3-5片段。每个主链制备6个不同的单独的和组合的α环片段池(α环3池、4池、5池、3-4池,4-5池、和3-5池)。Cry1Ea和Cry1Ca的α片段未分别包含在与C16和C21相对应的池中,从而避免产生亲本主链。用Dpn-1消化所有池并且凝胶纯化,从而避免亲本污染。表10显示PCR扩增了哪些不同的结构域1α螺旋。因为C21含有Cry1Caα环3-5片段,获得了Cry1Ca的不同α片段。
通过使用主链特异性引物,反向PCR产生对应的α环3、4、5、3-4、4-5和3-5区域的C16和C21载体主链,其不包含待改组的区域。
进行了12个组装反应(6个池/主链)。凝胶纯化的载体主链与各自的α螺旋片段池组装在一起,从而获得pMal载体中所有要表达为MBP融合蛋白的变体。序列确认后,将所有独特的变体重新排列,并且仅进一步纯化可溶级分中表达的那些克隆,并且测试其昆虫活性。针对FAW测试了基于C16的变体,并且针对CEW测试了C21变体,因为C16和C21分别对FAW和CEW具有活性。分离出14个活性变体(来自C16主链的8个和来自C21主链的6个)。表10显示了变体的测试活性。
表10.C16和C21α环3、4、5、3-4、4-5和3-5变体的杀昆虫活性
Figure BDA0002954263880001051

Claims (49)

1.一种包含异源α环区域的杀昆虫多肽,其中所述杀昆虫多肽衍生自Cry毒素。
2.权利要求1的杀昆虫多肽,其中所述异源α环区域具有至少一个边界共有序列,所述边界共有序列包含与SEQ ID NO:247、248、249、250或258中任一个具有至少90%序列同一性的氨基酸序列。
3.权利要求2的杀昆虫多肽,其中所述至少一个与SEQ ID NO:247具有至少90%序列同一性的边界共有序列包含:
i.在SEQ ID NO:247的位置1处的组氨酸或精氨酸;
ii在SEQ ID NO:247的位置2处的缬氨酸、甲硫氨酸、或亮氨酸;
iii.在SEQ ID NO:247的位置3处的亮氨酸;
iv.在SEQ ID NO:247的位置4处的精氨酸、谷氨酸、亮氨酸、或丝氨酸;或者
v.在SEQ ID NO:247的位置5处的异亮氨酸。
4.权利要求1的杀昆虫多肽,其中将所述异源α环区域暴露于溶剂。
5.权利要求1的杀昆虫多肽,其中所述杀昆虫多肽包含Cry1类Bt衍生的多肽。
6.权利要求1的杀昆虫多肽,其中所述杀昆虫多肽包含与SEQ ID NO:57-112中所示序列中任一个具有至少90%序列同一性的氨基酸序列。
7.一种分离的多核苷酸,所述分离的多核苷酸编码权利要求1的杀昆虫多肽。
8.权利要求7的分离的多核苷酸,其中所述分离的多核苷酸包含与SEQ ID NO:1-56中所示序列中任一个具有至少90%序列同一性的核酸序列。
9.一种DNA构建体,所述DNA构建体包含权利要求7的多核苷酸。
10.一种宿主细胞,所述宿主细胞包含权利要求9的DNA构建体。
11.权利要求10的宿主细胞,其中所述宿主细胞是植物细胞。
12.权利要求10的宿主细胞,其中所述宿主细胞是细菌细胞。
13.一种转基因植物,所述转基因植物包含权利要求9的DNA构建体。
14.一种用于改变杀昆虫多肽的活性的方法,所述方法包括:
a.将第一杀昆虫多肽的α环区域改组为第二杀昆虫多肽的结构域1的相应α环区域,产生异源杀昆虫多肽;以及
b.针对改变的杀昆虫活性筛选所述异源多肽;
其中所述杀昆虫多肽衍生自Cry毒素。
15.权利要求14的方法,其中所述α环区域包含α环3、4或5中的至少一个。
16.权利要求14的方法,其中所述α环区域包含边界序列,所述边界序列与SEQ ID NO:247、248、249、250或258中任一个具有至少90%序列同一性。
17.权利要求14的方法,所述方法进一步包括修饰植物以编码具有改变的杀昆虫活性的异源肽。
18.权利要求14的方法,其中所述α环区域源自Cry毒素,并且进一步其中所述Cry毒素具有如下氨基酸序列,所述氨基酸序列包含与SEQ ID NO:159-180或214-246中任一个具有至少95%序列同一性的序列。
19.一种分离的多核苷酸,所述分离的多核苷酸包含编码杀昆虫多肽的多核苷酸,其中所述杀昆虫多肽在结构域1中包含异源α环区域,并且其中所述杀昆虫多肽衍生自Cry毒素。
20.权利要求19的分离的多核苷酸,所述分离的多核苷酸进一步包含:可操作地连接到所述分离的多核苷酸的异源启动子。
21.权利要求19的分离的多核苷酸,其中所述编码杀昆虫多肽的多核苷酸进一步包含编码所述异源α环区域的异源多核苷酸。
22.一种表达盒,所述表达盒包含权利要求19的分离的多核苷酸。
23.一种DNA构建体,所述DNA构建体包含权利要求22的表达盒。
24.一种宿主细胞,所述宿主细胞包含权利要求23的DNA构建体。
25.权利要求24的宿主细胞,其中所述宿主细胞是细菌细胞。
26.权利要求24的宿主细胞,其中所述宿主细胞是植物细胞。
27.一种改变杀昆虫多肽的杀昆虫活性的方法,所述方法包括:
i.改组衍生自Cry毒素的杀昆虫蛋白的结构域3,其中所述改组包括在结构域3中的共有序列处的交叉,其中交叉序列与SEQ ID NO:251-257中任一个具有至少90%序列同一性;以及
ii针对改变的杀昆虫活性筛选所述改组的杀昆虫多肽。
28.权利要求27的方法,其中所述改组的杀昆虫多肽包含结构域3的异源片段。
29.权利要求28的方法,其中所述结构域3的异源部分包含衍生自CrylIf、CrylCb、CrylFa、Cry9Eb、CrylAe、CrylJa、CrylDa、CrylBb或CrylCa毒素的片段。
30.权利要求28的方法,其中所述结构域3的异源部分包含与SEQ ID NO:159-180、214-246、259-265或268-270中任一个具有至少95%序列同一性的片段。
31.权利要求27的方法,所述方法进一步包括在所述筛选步骤之前,修饰植物以编码具有改变的杀昆虫活性的异源肽。
32.一种重组杀昆虫多肽,所述重组杀昆虫多肽与SEQ ID NO:57-112或214-246或其片段中任一个的氨基酸序列具有至少95%序列同一性,其中所述重组杀昆虫多肽具有杀昆虫活性。
33.一种组合物,所述组合物包含至少一种权利要求32的重组杀昆虫多肽。
34.一种重组多核苷酸,所述重组多核苷酸编码权利要求32的杀昆虫多肽。
35.权利要求34的重组多核苷酸,其中所述多核苷酸具有经优化用于在农业上重要的作物中表达的密码子。
36.权利要求34的重组多核苷酸,其中所述重组多核苷酸包含与SEQ ID NO:1-56或181-213中任一个具有至少95%序列同一性的核酸序列。
37.权利要求34的重组多核苷酸,其中所述重组多核苷酸可操作地连接到异源启动子。
38.一种DNA构建体,所述DNA构建体包含可操作地连接到异源调节元件的权利要求34的重组多核苷酸。
39.一种用权利要求38的DNA构建体转化的宿主细胞。
40.权利要求39的宿主细胞,其中所述宿主细胞是细菌细胞或植物细胞。
41.权利要求40的宿主细胞,其中所述植物细胞是单子叶植物或双子叶植物细胞。
42.一种转基因植物,所述转基因植物包含权利要求34的多核苷酸。
43.一种转基因植物,所述转基因植物包含权利要求38的DNA构建体。
44.一种抑制昆虫有害生物或有害生物群体的生长或将其杀灭的方法,所述方法包括使所述昆虫有害生物或有害生物群体与在结构域1中包含异源α环区域的杀昆虫多肽接触,其中所述杀昆虫多肽衍生自Cry毒素。
45.一种抑制昆虫有害生物或有害生物群体的生长或将其杀灭的方法,所述方法包括在植物中表达权利要求34的多核苷酸。
46.权利要求44的方法,其中所述昆虫有害生物或有害生物群体对至少一种Cry杀昆虫蛋白具有抗性。
47.一种DNA构建体,所述DNA构建体包含编码与SEQ ID NO:57-112、214-246、和275-278中任一个的氨基酸序列具有至少95%序列同一性的多肽的多核苷酸;和异源调节元件,其中所述异源调节元件可操作地连接到所述多核苷酸。
48.权利要求47的DNA构建体,其中所述多核苷酸包含与SEQ ID NO:1-56、181-213、或271-274中任一个具有至少95%序列同一性的核酸序列。
49.一种转基因植物,所述转基因植物包含权利要求47的DNA构建体。
CN201980056580.7A 2018-08-29 2019-08-22 杀昆虫蛋白及其使用方法 Pending CN112689677A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862724276P 2018-08-29 2018-08-29
US62/724276 2018-08-29
PCT/US2019/047660 WO2020046701A1 (en) 2018-08-29 2019-08-22 Insecticidal proteins and methods for their use

Publications (1)

Publication Number Publication Date
CN112689677A true CN112689677A (zh) 2021-04-20

Family

ID=68000058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980056580.7A Pending CN112689677A (zh) 2018-08-29 2019-08-22 杀昆虫蛋白及其使用方法

Country Status (9)

Country Link
US (1) US11878999B2 (zh)
EP (1) EP3844283A1 (zh)
CN (1) CN112689677A (zh)
AR (1) AR116025A1 (zh)
AU (1) AU2019332792A1 (zh)
BR (1) BR112021003797A2 (zh)
CA (1) CA3106444A1 (zh)
MX (1) MX2021002290A (zh)
WO (1) WO2020046701A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245502A (zh) * 1996-11-27 2000-02-23 艾可根公司 编码鳞翅目活性的δ-内毒素的DNA和其用途
US20030188335A1 (en) * 2002-03-27 2003-10-02 Rakesh Tuli Chimeric & endotoxin protein with extraordinarily high insecticidal activity
US6780408B1 (en) * 1993-09-02 2004-08-24 Syngenta Participations Ag Genes encoding hybrid bacillus thuringiensis toxins
CN101842384A (zh) * 2007-06-26 2010-09-22 先锋高级育种国际公司 对鳞翅目具有活性的新型苏云金杆菌基因
US20120210462A1 (en) * 2011-02-11 2012-08-16 Pioneer Hi-Bred International, Inc. Synthetic insecticidal proteins active against corn rootworm
US20150232877A1 (en) * 2012-10-15 2015-08-20 Ruth Cong Methods and compositions to enhance activity of cry endotoxins
CN104902744A (zh) * 2012-10-05 2015-09-09 美国陶氏益农公司 Cry1Ea在组合中用于管理抗性秋粘虫昆虫的用途
CN106795525A (zh) * 2014-10-15 2017-05-31 先锋国际良种公司 具有广谱活性的杀昆虫多肽及其用途
CN108064233A (zh) * 2015-05-19 2018-05-22 先锋国际良种公司 杀昆虫蛋白及其使用方法

Family Cites Families (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196265A (en) 1977-06-15 1980-04-01 The Wistar Institute Method of producing antibodies
US4714681A (en) 1981-07-01 1987-12-22 The Board Of Reagents, The University Of Texas System Cancer Center Quadroma cells and trioma cells and methods for the production of same
US4716111A (en) 1982-08-11 1987-12-29 Trustees Of Boston University Process for producing human antibodies
US4713325A (en) 1983-06-14 1987-12-15 The Regents Of The University Of California Hybridomas producing monoclonal antibodies specific for FeLV p27
US4716117A (en) 1984-10-26 1987-12-29 Chiron Corporation Monoclonal antibodies to factor VIIIC
CA1207852A (en) 1984-02-29 1986-07-15 William D. Cornish Non-resonant microwave frequency halver
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US4720459A (en) 1985-02-14 1988-01-19 Medical College Of Wisconsin Research Foundation, Inc. Myelomas for producing human/human hybridomas
US5569597A (en) 1985-05-13 1996-10-29 Ciba Geigy Corp. Methods of inserting viral DNA into plant material
US5576195A (en) 1985-11-01 1996-11-19 Xoma Corporation Vectors with pectate lyase signal sequence
US5268463A (en) 1986-11-11 1993-12-07 Jefferson Richard A Plant promoter α-glucuronidase gene construct
US5608142A (en) 1986-12-03 1997-03-04 Agracetus, Inc. Insecticidal cotton plants
US5316931A (en) 1988-02-26 1994-05-31 Biosource Genetics Corp. Plant viral vectors having heterologous subgenomic promoters for systemic expression of foreign genes
US5990387A (en) 1988-06-10 1999-11-23 Pioneer Hi-Bred International, Inc. Stable transformation of plant cells
ATE242327T1 (de) 1988-09-06 2003-06-15 Bayer Bioscience Nv Pflanzen, die mit einer lepidopter-lethalen dns- sequenz aus bazillus thuringiensis transformiert werden
US5045469A (en) 1988-10-27 1991-09-03 Mycogen Corporation Novel bacillus thuringiensis isolate denoted B. T. PS81F, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
US5023179A (en) 1988-11-14 1991-06-11 Eric Lam Promoter enhancer element for gene expression in plant roots
DK0413019T3 (da) 1989-02-24 2001-11-12 Monsanto Technology Llc Syntetiske plantegener og fremgangsmåde til fremstilling af disse
US5110732A (en) 1989-03-14 1992-05-05 The Rockefeller University Selective gene expression in plants
US5240855A (en) 1989-05-12 1993-08-31 Pioneer Hi-Bred International, Inc. Particle gun
US5879918A (en) 1989-05-12 1999-03-09 Pioneer Hi-Bred International, Inc. Pretreatment of microprojectiles prior to using in a particle gun
US5206166A (en) 1989-05-18 1993-04-27 Mycogen Corporation Genes encoding lepidopteran-active toxins and transformed hosts
US5188960A (en) 1989-06-27 1993-02-23 Mycogen Corporation Bacillus thuringiensis isolate active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
US5187091A (en) 1990-03-20 1993-02-16 Ecogen Inc. Bacillus thuringiensis cryiiic gene encoding toxic to coleopteran insects
ATE225853T1 (de) 1990-04-12 2002-10-15 Syngenta Participations Ag Gewebe-spezifische promotoren
EP0461799A3 (en) 1990-06-14 1992-03-11 Mycogen Corporation Novel bacillus thuringiensis isolate having anti-protozoan activity
US5498830A (en) 1990-06-18 1996-03-12 Monsanto Company Decreased oil content in plant seeds
US5686069A (en) 1990-10-15 1997-11-11 Mycogen Corporation Protein toxins active against lepidopteran pests
US5932782A (en) 1990-11-14 1999-08-03 Pioneer Hi-Bred International, Inc. Plant transformation method using agrobacterium species adhered to microprojectiles
US5459252A (en) 1991-01-31 1995-10-17 North Carolina State University Root specific gene promoter
US5399680A (en) 1991-05-22 1995-03-21 The Salk Institute For Biological Studies Rice chitinase promoter
AU668096B2 (en) 1991-08-27 1996-04-26 Syngenta Participations Ag Proteins with insecticidal properties against homopteran insects and their use in plant protection
JPH06511152A (ja) 1991-10-04 1994-12-15 ノースカロライナ ステイト ユニバーシティー 病原体耐性トランスジェニック植物
US5324646A (en) 1992-01-06 1994-06-28 Pioneer Hi-Bred International, Inc. Methods of regeneration of Medicago sativa and expressing foreign DNA in same
US5273746A (en) 1992-01-29 1993-12-28 Mycogen Corporation Bacillus thuringiensis isolates active against phthiraptera pests
US5428148A (en) 1992-04-24 1995-06-27 Beckman Instruments, Inc. N4 - acylated cytidinyl compounds useful in oligonucleotide synthesis
US5401836A (en) 1992-07-16 1995-03-28 Pioneer Hi-Bre International, Inc. Brassica regulatory sequence for root-specific or root-abundant gene expression
HUT70467A (en) 1992-07-27 1995-10-30 Pioneer Hi Bred Int An improved method of agrobactenium-mediated transformation of cultvred soyhean cells
US5743477A (en) 1992-08-27 1998-04-28 Dowelanco Insecticidal proteins and method for plant protection
IL108241A (en) 1992-12-30 2000-08-13 Biosource Genetics Corp Plant expression system comprising a defective tobamovirus replicon integrated into the plant chromosome and a helper virus
US5877012A (en) 1993-03-25 1999-03-02 Novartis Finance Corporation Class of proteins for the control of plant pests
US5814618A (en) 1993-06-14 1998-09-29 Basf Aktiengesellschaft Methods for regulating gene expression
US5789156A (en) 1993-06-14 1998-08-04 Basf Ag Tetracycline-regulated transcriptional inhibitors
US5689052A (en) 1993-12-22 1997-11-18 Monsanto Company Synthetic DNA sequences having enhanced expression in monocotyledonous plants and method for preparation thereof
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5633363A (en) 1994-06-03 1997-05-27 Iowa State University, Research Foundation In Root preferential promoter
US5530195A (en) 1994-06-10 1996-06-25 Ciba-Geigy Corporation Bacillus thuringiensis gene encoding a toxin active against insects
US5736369A (en) 1994-07-29 1998-04-07 Pioneer Hi-Bred International, Inc. Method for producing transgenic cereal plants
US5608144A (en) 1994-08-12 1997-03-04 Dna Plant Technology Corp. Plant group 2 promoters and uses thereof
US5659026A (en) 1995-03-24 1997-08-19 Pioneer Hi-Bred International ALS3 promoter
US5837876A (en) 1995-07-28 1998-11-17 North Carolina State University Root cortex specific gene promoter
US6083499A (en) 1996-04-19 2000-07-04 Mycogen Corporation Pesticidal toxins
US6072050A (en) 1996-06-11 2000-06-06 Pioneer Hi-Bred International, Inc. Synthetic promoters
US6063756A (en) 1996-09-24 2000-05-16 Monsanto Company Bacillus thuringiensis cryET33 and cryET34 compositions and uses therefor
US6017534A (en) 1996-11-20 2000-01-25 Ecogen, Inc. Hybrid Bacillus thuringiensis δ-endotoxins with novel broad-spectrum insecticidal activity
US6713063B1 (en) 1996-11-20 2004-03-30 Monsanto Technology, Llc Broad-spectrum δ-endotoxins
US5986177A (en) 1997-01-10 1999-11-16 Agricultural Genetic Engineering Research Institute Bacillus thuringiensis isolates with broad spectrum activity
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
EP0915909B1 (en) 1997-05-05 2007-06-13 Dow AgroSciences LLC Insecticidal protein toxins from xenorhabdus
US6218188B1 (en) 1997-11-12 2001-04-17 Mycogen Corporation Plant-optimized genes encoding pesticidal toxins
EP1032692A1 (en) 1997-11-18 2000-09-06 Pioneer Hi-Bred International, Inc. Targeted manipulation of herbicide-resistance genes in plants
NZ504511A (en) 1997-11-18 2002-12-20 Pioneer Hi Bred Int Recombinant proteins comprising fused first and second distinct site specific recombinase and use in methods for the integration of foreign DNA into eukaryotic genomes
ATE454459T1 (de) 1997-11-18 2010-01-15 Pioneer Hi Bred Int Mobilisierung eines viralen genoms aus t-dna durch ortsspezifische rekombinationssysteme
WO1999025821A1 (en) 1997-11-18 1999-05-27 Pioneer Hi-Bred International, Inc. Compositions and methods for genetic modification of plants
EP1040192B1 (en) 1997-12-18 2006-08-09 Monsanto Technology LLC Insect-resistant transgenic plants and methods for improving delta-endotoxin activity against insects
US6077824A (en) 1997-12-18 2000-06-20 Ecogen, Inc. Methods for improving the activity of δ-endotoxins against insect pests
US6060594A (en) 1997-12-18 2000-05-09 Ecogen, Inc. Nucleic acid segments encoding modified bacillus thuringiensis coleopteran-toxic crystal proteins
US6063597A (en) 1997-12-18 2000-05-16 Monsanto Company Polypeptide compositions toxic to coleopteran insects
US6023013A (en) 1997-12-18 2000-02-08 Monsanto Company Insect-resistant transgenic plants
EP1056862A1 (en) 1998-02-26 2000-12-06 Pioneer Hi-Bred International, Inc. Family of maize pr-1 genes and promoters
DE69920879T2 (de) 1998-02-26 2005-10-13 Pioneer Hi-Bred International, Inc. Konstitutive maispromotoren
BRPI9816295C8 (pt) 1998-03-03 2019-03-19 Monsanto Technology Llc método de controle de infestação de uma planta de soja por um inseto da família tortricidae
WO2000011177A1 (en) 1998-08-20 2000-03-02 Pioneer Hi-Bred International, Inc. Seed-preferred promoters
AU5788299A (en) 1998-08-28 2000-03-21 Pioneer Hi-Bred International, Inc. Seed-preferred promoters from (end) genes
ATE327333T1 (de) 1998-10-23 2006-06-15 Mycogen Corp Für 15kda und 45kda pestizid-proteine kodierende pflanzen-optimierte polynukleotide
US6468523B1 (en) 1998-11-02 2002-10-22 Monsanto Technology Llc Polypeptide compositions toxic to diabrotic insects, and methods of use
US6489542B1 (en) 1998-11-04 2002-12-03 Monsanto Technology Llc Methods for transforming plants to express Cry2Ab δ-endotoxins targeted to the plastids
WO2000028058A2 (en) 1998-11-09 2000-05-18 Pioneer Hi-Bred International, Inc. Transcriptional activator lec1 nucleic acids, polypeptides and their uses
CA2364997A1 (en) 1999-03-05 2000-09-08 Maxygen, Inc. Encryption of traits using split gene sequences
US6531316B1 (en) 1999-03-05 2003-03-11 Maxyag, Inc. Encryption of traits using split gene sequences and engineered genetic elements
WO2001012731A1 (en) 1999-08-19 2001-02-22 Ppg Industries Ohio, Inc. Hydrophobic particulate inorganic oxides and polymeric compositions containing same
US6248535B1 (en) 1999-12-20 2001-06-19 University Of Southern California Method for isolation of RNA from formalin-fixed paraffin-embedded tissue specimens
EP1311162B1 (en) 2000-08-25 2005-06-01 Syngenta Participations AG Bacillus thurigiensis crystal protein hybrids
US6713259B2 (en) 2000-09-13 2004-03-30 Monsanto Technology Llc Corn event MON810 and compositions and methods for detection thereof
US7605304B2 (en) 2000-10-24 2009-10-20 E.I. Du Pont De Nemours And Company Genes encoding novel bacillus thuringiensis proteins with pesticidal activity against coleopterans
US20030024005A1 (en) 2000-11-17 2003-01-30 Hillyard Jeanna R. Cotton event PV-GHBK04 (757) and compositions and methods for detection thereof
AR035799A1 (es) 2001-03-30 2004-07-14 Syngenta Participations Ag Toxinas insecticidas aisladas de bacillus thuringiensis y sus usos.
AU2003279760A1 (en) 2002-06-26 2004-01-19 E. I. Du Pont De Nemours And Company Genes encoding proteins with pesticidal activity
US7462760B2 (en) 2002-06-26 2008-12-09 Pioneer Hi-Bred International, Inc. Genes encoding plant protease-resistant pesticidal proteins and method of their use
UA87808C2 (ru) 2002-07-29 2009-08-25 Монсанто Текнолоджи, Ллс Зерновые растения pv-zmir13 (mon863) и композиции и способы их обнаружения
CA2514041A1 (en) 2003-01-21 2004-08-12 Dow Agrosciences Llc Mixing and matching tc proteins for pest control
US20040210964A1 (en) 2003-02-20 2004-10-21 Athenix Corporation AXMI-009, a delta-endotoxin gene and methods for its use
US20040197917A1 (en) 2003-02-20 2004-10-07 Athenix Corporation AXMI-014, delta-endotoxin gene and methods for its use
US7355099B2 (en) 2003-02-20 2008-04-08 Athenix Corporation AXMI-004, a delta-endotoxin gene and methods for its use
US20040216186A1 (en) 2003-02-20 2004-10-28 Athenix Corporation AXMI-006, a delta-endotoxin gene and methods for its use
EP1594966B1 (en) 2003-02-20 2008-10-22 Athenix Corporation Delta-endotoxin genes and methods for their use
US20040210965A1 (en) 2003-02-20 2004-10-21 Athenix Corporation AXMI-007, a delta-endotoxin gene and methods for its use
US7351881B2 (en) 2003-02-20 2008-04-01 Athenix Corporation AXMI-008, a delta-endotoxin gene and methods for its use
CN1836045B (zh) 2003-03-28 2012-05-09 孟山都技术有限公司 用于早期种子发育的新型植物启动子
PT1620571E (pt) 2003-05-02 2015-09-03 Du Pont Milho do evento tc1507 e métodos para deteção deste
US8796026B2 (en) 2003-07-07 2014-08-05 Monsanto Technology Llc Insecticidal proteins secreted from Bacillus thuringiensis and uses therefor
US7253343B2 (en) 2003-08-28 2007-08-07 Athenix Corporation AXMI-003, a delta-endotoxin gene and methods for its use
US7393922B2 (en) * 2003-08-29 2008-07-01 The Ohio State University Research Foundation Insecticidal Cry4Ba proteins with enhanced toxicity
US20050183161A1 (en) 2003-10-14 2005-08-18 Athenix Corporation AXMI-010, a delta-endotoxin gene and methods for its use
US7629504B2 (en) 2003-12-22 2009-12-08 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis cry9 nucleic acids
MXPA06009411A (es) 2004-02-20 2007-03-29 Pioneer Hi Bred Int Lipasas y metodos de uso.
PT2184360E (pt) 2004-02-25 2015-12-02 Pioneer Hi Bred Int Novos polipéptidos cristalinos de bacillus thuringiensis, polinucleótidos e composições destes
US7179965B2 (en) 2004-03-26 2007-02-20 Dow Agrosciences Llc Cry1F and Cry1Ac transgenic cotton lines and event-specific identification thereof
US20060021087A1 (en) 2004-04-09 2006-01-26 Baum James A Compositions and methods for control of insect infestations in plants
UA97088C2 (ru) 2004-09-29 2012-01-10 Пионер Хай-Бред Интернешнл, Инк. Трансгенная кукуруза das-59122-7, стойкая к насекомым, и способы его обнаружения
NZ560935A (en) 2005-01-31 2009-06-26 Athenix Corp AXMI-018, AXMI-020, and AXMI-021, a family of delta-endotoxin genes and methods for their use as pesticides
EP2045327B8 (en) 2005-03-08 2012-03-14 BASF Plant Science GmbH Expression enhancing intron sequences
US7601498B2 (en) 2005-03-17 2009-10-13 Biotium, Inc. Methods of using dyes in association with nucleic acid staining or detection and associated technology
CA2601857A1 (en) 2005-04-01 2006-10-12 Nadine Carozzi Axmi-027, axmi-036 and axmi-038, a family of delta-endotoxin genes and methods for their use
WO2006119457A1 (en) 2005-05-02 2006-11-09 Athenix Corporation Axmi-028 and axmi-029, family of novel delta-endotoxin genes and methods for their use
US7622641B2 (en) 2005-08-24 2009-11-24 Pioneer Hi-Bred Int'l., Inc. Methods and compositions for providing tolerance to multiple herbicides
CA2622660C (en) 2005-09-16 2017-11-07 Devgen Nv Transgenic plant-based methods for plant pests using rnai
EP1929017B1 (en) 2005-09-16 2011-12-07 Bayer CropScience AG Transplastomic plants expressing lumen-targeted protein
PL2431473T3 (pl) 2005-09-16 2017-05-31 Monsanto Technology Llc Sposoby genetycznej kontroli inwazji owadów u roślin i kompozycje do tego przeznaczone
EP2923563A3 (en) 2006-01-12 2015-10-14 Cibus Europe B.V. EPSPS mutants
US7449552B2 (en) 2006-04-14 2008-11-11 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis cry gene and protein
US7329736B2 (en) 2006-04-14 2008-02-12 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis cry gene and protein
BRPI0712168A2 (pt) 2006-05-25 2012-03-13 Hexima Ltd veìculo de expressão de multigenes, vetor de expressão de veìculo de expressão de multigenes, célula de planta, planta trnsgênica, vetor de transformação de planta, métodos de expressar concorrentemente duas a oito proteìnas e de expressar concorrentemente 3 a 8 protéinas em uma célula de planta
AU2007260716B2 (en) 2006-06-14 2013-05-02 BASF Agricultural Solutions Seed US LLC Axmi-031, axmi-039, axmi-040 and axmi-049, a family of delta-endotoxin genes and methods for their use
EP2455392A3 (en) 2006-06-15 2012-08-22 Athenix Corporation A family of pesticidal proteins and methods for their use
WO2008011574A2 (en) 2006-07-21 2008-01-24 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis toxin with anti-lepidopteran activity
KR20090054965A (ko) 2006-07-21 2009-06-01 파이어니어 하이-브레드 인터내셔날 인코포레이티드 신규한 유전자를 동정하는 방법
CN101600801B (zh) 2006-12-08 2013-01-02 先锋高级育种国际公司 新苏云金芽孢杆菌晶体多肽、多核苷酸及其组合物
CN103588865B (zh) 2007-03-28 2016-09-07 先正达参股股份有限公司 杀虫的蛋白质
US8609936B2 (en) 2007-04-27 2013-12-17 Monsanto Technology Llc Hemipteran-and coleopteran active toxin proteins from Bacillus thuringiensis
US20090144852A1 (en) 2007-10-16 2009-06-04 Athenix Corporation Axmi-066 and axmi-076: delta-endotoxin proteins and methods for their use
US8809625B2 (en) 2008-01-17 2014-08-19 Pioneer Hi-Bred International, Inc. Compositions and methods for the suppression of target polynucleotides from Lygus
JP2011526150A (ja) 2008-06-25 2011-10-06 アテニックス・コーポレーション 毒素遺伝子およびその使用法
CN110734919A (zh) 2008-07-02 2020-01-31 阿森尼克斯公司 Axmi-il5、axmi-113、axmi-005、axmi-163和axmi-184∶vip3a杀虫蛋白及其使用方法
US8084416B2 (en) 2008-12-23 2011-12-27 Athenix Corp. AXMI-150 delta-endotoxin gene and methods for its use
CN104293804A (zh) 2009-01-23 2015-01-21 先锋国际良种公司 具有鳞翅目活性的新苏云金芽孢杆菌基因
EP2728007B1 (en) 2009-02-05 2017-01-25 Athenix Corporation Variant Axmi-R1 delta-endotoxin genes and methods for their use
JP5746055B2 (ja) 2009-02-27 2015-07-08 アテニックス・コーポレーションAthenix Corporaton 殺虫性タンパク質及びその使用方法
CN102421792B (zh) 2009-03-11 2015-11-25 阿森尼克斯公司 Axmi-001、axmi-002、axmi-030、axmi-035和axmi-045: 来自苏云金芽孢杆菌的杀虫蛋白及其用法
US8033349B2 (en) 2009-03-12 2011-10-11 Ford Global Technologies, Inc. Auto-seek electrical connection for a plug-in hybrid electric vehicle
CN102459315B (zh) 2009-04-17 2016-03-02 陶氏益农公司 Dig-3杀虫cry毒素
US8334366B1 (en) 2009-04-29 2012-12-18 The United States Of America, As Represented By The Secretary Of Agriculture Mutant lycotoxin-1 peptide sequences for insecticidal and cell membrane altering properties
MX2011013675A (es) 2009-06-16 2012-01-20 Dow Agrosciences Llc Toxinas cry dig-11 insecticidas.
EP2449109B1 (en) 2009-07-02 2016-09-28 Athenix Corporation Axmi-205 pesticidal gene and methods for its use
BR122018067925B8 (pt) 2009-08-28 2022-12-06 Du Pont Polinucleotídeo isolado, cassete de expressão, método para controlar uma praga de plantas do tipo coleoptera e método para obtenção de uma planta
US8551757B2 (en) 2009-09-11 2013-10-08 Valent Biosciences Corporation Bacillus thuringiensis isolate
KR101841295B1 (ko) 2009-12-16 2018-03-22 다우 아그로사이언시즈 엘엘씨 곤충 내성 관리를 위한 CRY1Ca 및 CRY1Fa 단백질의 조합 용도
RU2596406C2 (ru) 2009-12-16 2016-09-10 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи КОМБИНИРОВАННОЕ ИСПОЛЬЗОВАНИЕ БЕЛКОВ CRY1Ca И CRY1Ab ДЛЯ КОНТРОЛЯ УСТОЙЧИВОСТИ НАСЕКОМЫХ
AR079622A1 (es) 2009-12-16 2012-02-08 Dow Agrosciences Llc Combinaciones de proteinas insecticidas que comprenden cry1ab y cry2aa, que se unen a sitios receptores unicos en el perforador de maiz europeo, utiles para prevenir el desarrollo de resistencia a insectos.
EP2513317B1 (en) 2009-12-16 2018-01-24 Dow Agrosciences LLC Use of cry1da in combination with cry1be for management of resistant insects
UA111934C2 (uk) 2009-12-16 2016-07-11 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі ТРАНСГЕННА РОСЛИНА, ЩО МІСТИТЬ ДНК, ЯКА КОДУЄ ІНСЕКТИЦИДНИЙ БІЛОК Vip3Ab, І ДНК, ЯКА КОДУЄ ІНСЕКТИЦИДНИЙ БІЛОК Cry1Fa, СТІЙКА ДО ЛУСКОКРИЛИХ ШКІДНИКІВ
BR122019001711B8 (pt) 2009-12-16 2022-10-11 Dow Agrosciences Llc Composição e método para o controle de pragas de lepidópteros
US20120317682A1 (en) 2009-12-16 2012-12-13 Dow Agrosciences Llc Combined use of vip3ab and cry1fa for management of resistant insects
MX2012009634A (es) 2010-02-18 2012-09-28 Athenix Corp Genes delta-endotoxinicos axmi218, axmi219, axmi220, axmi226, axmi227, axmi228, axmi229, axmi230, y axmi231 y metodos para sus uso.
BR112012020705B8 (pt) 2010-02-18 2022-07-05 Athenix Corp Molécula de ácido nucleico recombinante, vetor, célula hospedeira microbiana, polipeptídeo recombinante com atividade pesticida, composição, bem como métodos para o controle de uma população de pragas de lepidópteros, para matar uma praga de lepidóptero, para a produção de um polipeptídeo com atividade pesticida, para a proteção de uma planta de uma praga, e para aumentar o rendimento em uma planta
WO2012006426A2 (en) 2010-07-09 2012-01-12 Grassroots Biotechnology, Inc. Regulatory polynucleotides and uses thereof
RU2662995C2 (ru) 2010-10-27 2018-07-31 Девген Нв Уменьшение экспрессии генов у насекомых-вредителей
BRPI1107329A2 (pt) 2010-12-30 2019-11-19 Dow Agrosciences Llc moléculas de ácido nucléico que direcionadas à subunidade h de atpase vacuolar que conferem resistência a pragas de coleópteros, vetor de transformação de planta, célula transformada, bem como métodos para controlar uma população de praga de coleóptero, controlar uma infestação pela dita praga, melhorar o rendimento de uma safra e para produzir uma célula transgênica
WO2012109430A2 (en) 2011-02-11 2012-08-16 Monsanto Technology Llc Pesticidal nucleic acids and proteins and uses thereof
CN111197051B (zh) 2011-04-07 2023-10-20 孟山都技术公司 具有对抗半翅目和/或鳞翅目昆虫的活性的昆虫抑制毒素家族
ES2668630T3 (es) 2011-04-20 2018-05-21 Devgen Nv Regulación por disminución de la expresión génica en plagas de insectos
US9150625B2 (en) 2011-05-23 2015-10-06 E I Du Pont De Nemours And Company Chloroplast transit peptides and methods of their use
NZ629649A (en) 2012-03-09 2017-03-31 Vestaron Corp Toxic peptide production, peptide expression in plants and combinations of cysteine rich peptides
US9688730B2 (en) 2012-07-02 2017-06-27 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US9475847B2 (en) 2012-07-26 2016-10-25 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US9920316B2 (en) 2013-03-14 2018-03-20 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
BR112016002596B1 (pt) 2013-08-08 2023-03-14 Pioneer Hi-Bred International, Inc Molécula de ácido nucleico isolada, construto de dna, célula hospedeira bacteriana, polipeptídeo isolado, composição, método para controlar uma população, método para matar uma praga, método para produzir um polipeptídeo, método para produzir uma planta ou célula vegetal, método para proteger uma planta, método para exterminar ou controlar uma população
EA030896B1 (ru) 2013-08-16 2018-10-31 Пайонир Хай-Бред Интернэшнл, Инк. Инсектицидные белки и способы их применения
BR122021005579B1 (pt) 2013-09-13 2022-11-29 Pioneer Hi-Bred International, Inc Construto de dna, método de obtenção de planta transgênica, proteína de fusão, método para controlar uma população de praga de inseto, método para inibir o crescimento ou matar uma praga de inseto
CN114763376A (zh) 2014-02-07 2022-07-19 先锋国际良种公司 杀昆虫蛋白及其使用方法
CN117903266A (zh) 2014-02-07 2024-04-19 先锋国际良种公司 杀昆虫蛋白及其使用方法
US20150257389A1 (en) 2014-03-14 2015-09-17 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
KR20170068467A (ko) 2014-10-13 2017-06-19 다우 아그로사이언시즈 엘엘씨 딱정벌레류 및 노린재류 해충에 대한 저항성을 부여하는 copi 코토머 델타 서브유닛 핵산 분자
KR20170067756A (ko) 2014-10-13 2017-06-16 다우 아그로사이언시즈 엘엘씨 딱정벌레류 및 노린재류 해충에 대한 저항성을 부여하는 copi 코토머 감마 서브유닛 핵산 분자
JP2017538396A (ja) 2014-10-13 2017-12-28 ダウ アグロサイエンシィズ エルエルシー 鞘翅目および半翅目害虫に対する抵抗性を付与するcopiコートマーベータサブユニット核酸分子
CA2963794A1 (en) 2014-10-13 2016-04-21 Dow Agrosciences Llc Copi coatomer alpha subunit nucleic acid molecules that confer resistance to coleopteran and hemipteran pests
BR112017007932A2 (pt) 2014-10-16 2018-01-23 Du Pont proteínas inseticidas e métodos para uso das mesmas
SG11201702749RA (en) 2014-10-16 2017-05-30 Monsanto Technology Llc Novel chimeric insecticidal proteins toxic or inhibitory to lepidopteran pests
BR112017015341A2 (pt) 2015-01-15 2018-01-09 Pioneer Hi Bred Int polipeptídeo inseticida e seu uso, composição inseticida, polinucleotídeo recombinante, construto de dna, planta transgênica ou célula de planta, método para inibir o crescimento, método para controlar a infestação de insetos
CN107406849A (zh) 2015-02-27 2017-11-28 先锋国际良种公司 用以防治昆虫有害生物的组合物和方法
CN107771181A (zh) 2015-06-16 2018-03-06 先锋国际良种公司 用以防治昆虫有害生物的组合物和方法
MX2018001523A (es) 2015-08-06 2018-03-15 Pioneer Hi Bred Int Proteinas insecticidas derivadas de plantas y metodos para su uso.
BR112018004633A2 (pt) 2015-09-09 2018-10-23 Syngenta Participations Ag composições e métodos para detecção de proteínas
WO2017105987A1 (en) 2015-12-18 2017-06-22 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CN109862780A (zh) 2016-10-19 2019-06-07 先锋国际良种公司 针对鳞翅目有害生物的广谱杀昆虫多肽及其使用方法
US11692013B2 (en) 2016-10-19 2023-07-04 Pioneer Hi-Bred International, Inc. Broad spectrum insecticidal polypeptide against lepidopteran pests and methods of use thereof
CN111465406A (zh) 2017-12-15 2020-07-28 先正达参股股份有限公司 用于检测靶蛋白的非抗体配体
BR112020012477A2 (pt) 2017-12-19 2020-11-24 Pioneer Hi-Bred International, Inc. polipeptídeo recombinante; polipeptídeo inseticida recombinante; composição agrícola; construto de dna; célula hospedeira; planta transgênica; método para inibir o crescimento ou exterminar uma praga de inseto ou população de praga; método para controlar a infestação de praga; e método para melhorar o rendimento de uma cultura
US20190276840A1 (en) 2018-03-09 2019-09-12 James A. Baum Methods and compositions for making and using compatible insecticidal proteins

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780408B1 (en) * 1993-09-02 2004-08-24 Syngenta Participations Ag Genes encoding hybrid bacillus thuringiensis toxins
CN1245502A (zh) * 1996-11-27 2000-02-23 艾可根公司 编码鳞翅目活性的δ-内毒素的DNA和其用途
US20030188335A1 (en) * 2002-03-27 2003-10-02 Rakesh Tuli Chimeric & endotoxin protein with extraordinarily high insecticidal activity
CN1625562A (zh) * 2002-03-27 2005-06-08 科学与工业研究会 CRY1EA和CRY1CA的嵌合型δ-内毒素蛋白
CN101842384A (zh) * 2007-06-26 2010-09-22 先锋高级育种国际公司 对鳞翅目具有活性的新型苏云金杆菌基因
US20120210462A1 (en) * 2011-02-11 2012-08-16 Pioneer Hi-Bred International, Inc. Synthetic insecticidal proteins active against corn rootworm
CN104902744A (zh) * 2012-10-05 2015-09-09 美国陶氏益农公司 Cry1Ea在组合中用于管理抗性秋粘虫昆虫的用途
US20150232877A1 (en) * 2012-10-15 2015-08-20 Ruth Cong Methods and compositions to enhance activity of cry endotoxins
CN106795525A (zh) * 2014-10-15 2017-05-31 先锋国际良种公司 具有广谱活性的杀昆虫多肽及其用途
CN108064233A (zh) * 2015-05-19 2018-05-22 先锋国际良种公司 杀昆虫蛋白及其使用方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALEJANDRA BRAVO等: "Evolution of Bacillus thuringiensis Cry toxins insecticidal activity", 《MICROBIAL BIOTECHNOLOGY》, vol. 6, no. 1, pages 17 - 26, XP055398341, DOI: 10.1111/j.1751-7915.2012.00342.x *
CE´CILE RANG等: "Exchange of Domain I from Bacillus thuringiensis Cry1 Toxins Influences Protoxin Stability and Crystal Formation", 《CURRENT MICROBIOLOGY》, vol. 43, pages 1 - 6 *
MARY-CARMEN TORRES-QUINTERO等: "Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity", 《SCIENTIFIC REPORTS》, vol. 8, pages 1 - 12 *

Also Published As

Publication number Publication date
US11878999B2 (en) 2024-01-23
MX2021002290A (es) 2021-04-28
WO2020046701A1 (en) 2020-03-05
AR116025A1 (es) 2021-03-25
EP3844283A1 (en) 2021-07-07
CA3106444A1 (en) 2020-03-05
US20210347830A1 (en) 2021-11-11
AU2019332792A1 (en) 2021-01-28
BR112021003797A2 (pt) 2021-05-25

Similar Documents

Publication Publication Date Title
EP3102684B1 (en) Insecticidal proteins and methods for their use
CN109475096B (zh) 植物来源的杀昆虫蛋白及其使用方法
CN107108705B (zh) 杀昆虫蛋白及其使用方法
CN109863167B (zh) 杀昆虫蛋白及其使用方法
CN112020302B (zh) 来自植物的杀昆虫蛋白及其使用方法
US20220024993A1 (en) Insecticidal proteins and methods for their use
US11825843B2 (en) Insecticidal proteins and methods for their use
CN110621780B (zh) 杀昆虫蛋白及其使用方法
CN112771068A (zh) 杀昆虫蛋白及其使用方法
CA2880226C (en) Recombinant alcaligenes faecalis insecticidal polypeptides and methods for their use
CN112867796A (zh) 杀昆虫蛋白及其使用方法
CN115867564A (zh) 杀昆虫蛋白及其使用方法
US11970705B2 (en) Insecticidal proteins and methods for their use
US11193139B2 (en) Insecticidal proteins and methods for their use
US11878999B2 (en) Insecticidal proteins and methods for their use
BR112019013010B1 (pt) Polipeptídeo ipd-101 recombinante, polinucleotídeo recombinante, método para produzir uma planta transgênica ou célula de planta, construto de dna, composição, proteína de fusão, método para controlar uma população de praga de inseto, método para inibir o crescimento ou exterminar uma praga de inseto e uso do polipeptídeo ipd-101

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination