CN102781660A - 基于脉冲激光烧蚀制造纳米颗粒溶液 - Google Patents

基于脉冲激光烧蚀制造纳米颗粒溶液 Download PDF

Info

Publication number
CN102781660A
CN102781660A CN2011800089503A CN201180008950A CN102781660A CN 102781660 A CN102781660 A CN 102781660A CN 2011800089503 A CN2011800089503 A CN 2011800089503A CN 201180008950 A CN201180008950 A CN 201180008950A CN 102781660 A CN102781660 A CN 102781660A
Authority
CN
China
Prior art keywords
target
laser beam
liquid
nano particle
family
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800089503A
Other languages
English (en)
Inventor
刘冰
车勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMRA America Inc
Original Assignee
IMRA America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMRA America Inc filed Critical IMRA America Inc
Publication of CN102781660A publication Critical patent/CN102781660A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/001Devices without movable or flexible elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明公开了一种基于脉冲激光烧蚀制备太阳光吸收化合物材料的纳米颗粒的方法。所述方法使用脉冲持续时间为10飞秒至500皮秒的脉冲激光束照射太阳光吸收化合物材料的靶材料,以烧蚀所述靶从而产生所述靶的纳米颗粒。收集所述纳米颗粒,并将所述纳米颗粒的溶液施加到基底上以制备薄膜太阳能电池。该方法维持了起始靶的化学计量性和晶体结构。该方法是一种成本显著更低的薄膜太阳能电池制造方法。

Description

基于脉冲激光烧蚀制造纳米颗粒溶液
相关申请
本申请要求2010年2月10日提交的美国临时申请序列号61/302995的权益。
关于联邦资助研究的声明
无。
发明领域
本发明涉及制备薄膜太阳能电池,且更具体涉及在液体中使用源材料的脉冲激光烧蚀来制备用于薄膜太阳能电池制造中的纳米颗粒溶液。
发明背景
与单晶太阳能电池相比,薄膜太阳能电池消耗显著更少的源材料且因此制造成本较低。在目前的薄膜太阳能电池制造中,作为最关键层的光吸收层通常是使用真空方法制造的,例如热蒸发、化学气相沉积和溅射。对于由以下构成的化合物太阳光吸收材料化合物,需要精确控制膜沉积:II-VI族元素如CdTe,或III-V族元素,或IB-III-VI2族元素如黄铜矿CuInSe2和CuIn1-xGaxSe2。控制组成元素之间的原子比例是确保正确的结构相和膜的所需电导率、空穴传导和良好的空穴迁移率的关键。例如,对于包含CuIn1-xGaxSe2的CIGS膜(其中x~0.2-0.3),组成元素之间的原子比例Cu:(In+Ga):Se应当接近25%:25%:50%,且允许的起伏小于几个百分比。从该组成比例的偏离会引起与电导率、固有缺陷行为、带隙和结构相有关的问题,从而最终降低太阳能电池的转换效率。
使用热蒸发来实现所需目的,这要求仔细监视和控制每种独立元素源的蒸发速率和蒸气束的均匀覆盖。此类制造工艺涉及在生产线内的复杂参数控制,这是该方法的高生产成本的主要因素。另外,存在与沉积均匀膜和前体相分离的困难相关的问题。
为了避免上述问题,开发了非真空和基于溶液的印制方法。在这些方法中,首先将元素源材料制成小的亚微米颗粒并分散到溶剂中。在与合适的粘合剂混合之后,溶液变为稠的糊料从而适合于印制薄膜。美国专利US6,268,014公开了一种基于机械研磨来制备亚微米尺度的金属氧化物和硒化物的细粉末的方法。然后以计算的重量比例将组成元素的前体粉末(即CuxO,In2O3,和CuxSe)混合并分散到溶液中从而制成用于喷印的糊料。与这种方法相关的一种困难涉及平均颗粒尺寸和尺寸分布,这些决定了堆积密度。机械研磨可产生亚微米颗粒直至几百纳米的颗粒,这仍在产物膜中留下数十纳米的未填充孔隙。因此为确保无针孔的层,人们需要使用更多材料从而提高了制造成本。
美国专利US7,306,823公开了一种制造被称为纳米油墨的纳米尺寸颗粒的溶液,其用于印制化合物CIGS膜。在该方法中,首先将元素源材料之一例如Cu制成纳米颗粒并将其分散到溶液中,所述纳米颗粒具有几十至几百纳米的直径。然后使用电化学方法用In层和Ga层涂覆这些Cu颗粒。这种工艺是耗时的并且非常昂贵。另外,对于恰当化学计量性的所需In层和Ga层的厚度取决于Cu芯的尺寸,这在具有大的尺寸分布时变得难以控制的。
对于简单的二元化合物材料例如CdSe的纳米颗粒,已存在许多成功的基于溶液的合成方法。然而对于复杂的材料例如CIGS,组成的精确控制仍具挑战性。例如,当使用金属氧化物作为前体时,需要高温氢还原来还原这些金属氧化物,这在时间和能量方面均非常昂贵。这是因为大多数金属氧化物在热力学上是非常稳定的,例如In2O3和Ga2O3的生成焓均低于-900kJ/mol,而水的生成焓是-286kJ/mol。不完全的还原将不仅导致杂质相而且还导致不适当的组成。
近年来,脉冲激光烧蚀已显示在各种液体中产生单质金属纳米颗粒。该方法是基于靶材料的激光引起的蒸发。典型的脉冲激光包括准分子激光和Nd:YAG激光,它们可提供脉冲持续时间为几纳秒(ns)且脉冲能量为几百毫焦耳(mJ)的激光脉冲。由于这些短激光脉冲极高的峰值功率(~GW),当它们聚焦在靶表面上时,定义为面积功率密度(以W/cm2计)或者当脉冲持续时间已知时更方便地定义为面积能量密度(以J/cm2计)的注量(fluence),易于超过大多数材料的烧蚀阈值,并且在照射下该材料被同时蒸发。当在液体例如水中进行烧蚀时,激光引起的蒸气在液体约束下快速地重新成核并且形成纳米尺寸的颗粒。已使用这种方法在水和其它液体中成功地制成贵金属纳米颗粒。
对于化合物材料,本方法的发明人近期证实,利用脉冲激光,意指脉冲持续时间为500皮秒以下的激光,可在烧蚀期间维持靶材料的组成使得产物纳米颗粒具有与靶相同的化学计量性组成。另外,这些产物纳米颗粒还维持与靶材料相同的晶体结构。据认为这些结果可能是在适当注量范围下进行脉冲激光烧蚀的直接后果。据推理当靶材料离解的时间尺度短于组成变化和结构改变的时间尺度时,在从块体靶向纳米颗粒产物的转变期间初始组成和晶体结构得以维持。
非常希望开发一种用于制造薄膜太阳能电池的方法,该方法快速、高度可重现并且比现有方法更廉价。还希望产生一种适合于各种起始材料并且不受起始材料限制的方法。
发明概述
本发明是一种基于脉冲激光烧蚀靶材料的单步方法,用以在液体中制造太阳光吸收化合物材料的纳米颗粒。这些纳米颗粒然后可用于制造薄膜太阳能电池。使用该方法,产物纳米颗粒维持起始材料的化合物组成和晶体结构。本发明是一种制备太阳光吸收化合物材料的纳米颗粒的方法,包括步骤:提供太阳光吸收化合物材料的靶;用脉冲激光束照射所述靶并烧蚀所述靶从而产生所述靶的纳米颗粒,所述脉冲激光束的脉冲持续时间为10飞秒至100纳秒,更优选为10飞秒至200皮秒;和收集所述纳米颗粒,其中所述纳米颗粒保持所述靶的化学计量性和晶体结构。
在多种实施方案中,靶材料由太阳光吸收化合物材料半导体制成。例如,显示了利用本发明制造CIGS纳米颗粒。作为一种四元化合物,CIGS是目前用于薄膜太阳能电池中的太阳光吸收器的最复杂的材料。本发明制备了具有适当化学组成的CIGS纳米颗粒。另外,本发明制备了具有恰当的CIGS黄铜矿晶体结构的CIGS薄膜。向溶液添加适宜的粘合剂材料可制备更稠的糊料从而使过程加速,且随后的退火能改善膜的品质。
附图简述
图1是依照本发明的激光烧蚀系统的示意图;
图2示意图解了依照本发明从纳米颗粒溶液形成薄膜的步骤;
图3显示了依照本发明制备的CIGS膜的横截面的电子显微照片;
图4显示了依照本发明制备的CIGS膜的能量色散X射线(EDX)谱;和
图5显示了依照本发明制备的CIGS膜的结构相的X射线衍射图。
发明详述
图1示意性图解说明了依照本发明用于在液体中制备复杂化合物的纳米颗粒的激光基系统。在一种实施方案中,从脉冲激光源(未显示)接收激光束1并且用透镜2进行聚焦。激光束1的源可以是种子激光器或本领域中已知的任何其它激光源,只要其具有如下所述的脉冲持续时间、重复率和功率水平。然后将聚焦的激光束1从透镜2通向导向机构3用以控制激光束1的移动。导向机构3可以是本领域已知的任何导向机构,包括例如压电镜(piezo-mirror)、声-光偏转器、旋转多边形、振动镜和棱镜。该导向机构3优选是能够实现激光束1的受控且快速移动的振动镜3。该导向装置3将激光束1引向靶4。该靶4由期望的太阳光吸收化合物材料制成,如下所述。例如,在一种实施方案中,其是具有期望的化学计量组成的CIGS盘片。其也可以是任何其它适宜的太阳光吸收化合物材料。靶4被浸没到液体5表面下方几毫米至优选小于1厘米的距离。不需要将靶4完全浸没到液体5中,只要靶4的一部分与液体5接触,激光束1可在靶-液体界面处进行烧蚀。容器7在其顶部具有可移去的玻璃窗6,该容器7为靶4提供了位置。O形环类型的密封件8位于玻璃窗6和容器7的顶部之间以便防止液体5从容器7中泄露出来。容器7包括入口12和出口14,因此液体5可越过靶4并且使得可被再循环。容器7任选地位于移动台9上,该移动台9可产生容器7的平移运动和液体5的移动。使用液体5的流动将产生的靶4的纳米颗粒10携带离开容器7以便在别处被收集。流体5的越过靶4的流动还可冷却激光距焦体积。液体5的流动速率和体积应当足以填充靶4和玻璃窗6之间的间隙。另外,其必须足以防止在激光烧蚀期间产生的任何气泡停留在玻璃窗6上。液体5可以是对激光束1的波长大体上透明的任何液体并且优选是靶材料4的不良溶剂。在一种实施方案中,液体5是电阻率大于0.05MOhm.cm且优选大于1MOhm.cm的去离子水。在其他实施方案中,其可以是挥发性液体例如乙醇或其它醇或者其可以是液氮或其混合物。当被收集的纳米颗粒10被收集并浓缩时或者将它们施加在基底上以形成薄膜太阳能电池时,使用挥发性液体作为液体5可具有益处。在烧蚀期间也可以将其他功能性化学试剂添加到液体5中。例如,可添加表面活性剂例如十二烷基硫酸钠(SDS)以便防止颗粒在液体5中聚结。典型的SDS摩尔浓度可为10-3-10-1摩尔/升(M)。当激光脉冲持续时间在200皮秒至100纳秒的范围内时,表面活性剂特别有助于制造无聚结的分散颗粒溶液。
在至少一种实施方案中,激光波长是1000纳米,其以最小的吸收率穿过水。激光脉冲重复率优选是100kHz以上。脉冲能量优选为1微焦耳(μJ)以上。本申请的受让人IMRA America Inc.公开了若干光纤基啁啾(fiber-based chirped)脉冲放大系统,这些系统提供从10飞秒至200皮秒的超短脉冲持续时间,1-100μJ范围的单脉冲能量,和大于10瓦特(W)的高平均功率。根据本发明使用的激光束的脉冲持续时间是10飞秒至100纳秒,更优选为10飞秒至200皮秒。脉冲能量优选为100纳焦耳至1毫焦耳且更优选为1μJ至10μJ。脉冲重复率为1Hz至100MHz,优选小于100MHz,且更优选为100kHz至1MHz。在多种实施方案中,根据本发明的烧蚀中使用的激光依次包括:具有30-100MHz的高重复率的种子激光器,该种子激光器还典型包括振荡器、脉冲展宽器、和前置放大器;光闸,其用以从所述种子激光器选择脉冲;和末级功率放大器,其将所选的脉冲放大。这些激光系统特别适用用于本发明。这些系统的波长典型为1030纳米。本发明不限于该激光束波长,相反地可使用二次谐波发生来产生可见光和紫外(UV)范围内的波长。通常,近红外(NIR)、可见光或UV区中的波长均可用于本发明。
在一种实施方案中,导向机构3是振动镜3,其配置用以激光束1在靶4表面上的快速光栅扫描(rastering)或其它移动。振动镜3的振动频率优选为10Hz以上,并且其优选具有0.1mrad以上的角振幅以及更优选1.0mrad以上的角振幅,使得靶4表面上的光栅扫描速度是0.01米/秒以上且更优选为0.1米/秒以上。此类镜3可以是压电驱动镜、电流计镜、或用于移动激光束1的其他适宜设备。
靶4可以是任何适宜的太阳光吸收化合物材料,包括二元、三元和四元化合物材料。适宜的二元化合物材料可选自元素周期表的IIB族和VIA族,例如CdTe和CdSe。适宜的三元化合物材料可选自元素周期表的IB族、IIIA族和VIA族例如CuInSe2和CuInS2。适宜的四元化合物材料可选自IB族、IIIA族和VIA族,例如CuInGaSe2和CuInGaS2。其它适宜的四元化合物材料可选自IB族、IIB族、IVA族和VIA族,例如Cu2ZnSnS4和Cu2ZnSnSe4
在一种实施方案中,通过循环系统进行流体5穿过容器7的流动,且流动速度优选为1.0毫升/秒以上且更优选为10.0毫升/秒以上。流体5的流动对于使产生的纳米颗粒10在液体5中均匀分布以及将它们从容器7中移出是必要的。优选维持充足体积的液体5以避免在靶4上方液体5厚度的任何起伏。如果液体5厚度变动则其可能改变激光束1的光程性质并引起所产生的纳米颗粒10的尺寸的较宽分布。流动流体5上方的光学窗口6有助于在靶4上方保持恒定的液体5厚度。当循环系统不可用时,向移动台9引入横向振动移动,例如垂直于激光束1(如图1所示),也能够使液体5局部流过烧蚀点。移动台9优选具有几Hz的振动频率和几毫米的振幅。也可使用振动器来使液体5循环,其中振动器的循环移动使容器7内的液体5也具有循环移动,因此纳米颗粒10可均匀分布在液体5中。利用使液体5循环的这两种方法中的任一种,玻璃窗口6不是必须的;然而,使用任一种将在靶4上方的液体5厚度中引入非均匀性并且将引起较宽的纳米颗粒10的尺寸分布。
在一个实例中,靶是多晶CIGS的薄盘片。该靶中的组成元素Cu:In:Ga:Se之间的名义原子比率是25%:20%:5%:50%,根据靶制造商Konjudo Chemical Laboratory Co.Ltd.。该四元化合物材料CIGS具有1.0-1.2eV的带隙。使用波长为1000纳米的激光束,相应的光子能量是1.2eV,这高于该CIGS材料的带隙。激光束因此被这种靶材料强烈吸收。光吸收深度据估计小达~1μm。这导致低的烧蚀阈值,据估计该阈值为0.1J/cm2左右。在实施非本发明的方法中,典型的激光焦斑尺寸是20-40微米直径,更优选约30微米直径。使用30微米直径的焦斑尺寸,烧蚀CIGS所需的最小脉冲能量是约0.7μJ。
在本发明的实施中,将靶材料置于容器中并且当产生烧蚀的纳米颗粒时从液体中收集这些纳米颗粒。所述纳米颗粒优选具有2-200纳米的尺寸。如果需要,可通过本领域已知的过滤或离心分离将这些纳米颗粒浓缩。如果必要也可以进行这种操作来改变液体,以便随后将纳米颗粒施加到基底上。图2示出了从本发明方法产生的纳米颗粒制造薄膜太阳能电池的两个后续步骤。将纳米颗粒悬浮液20涂布到基底22上。在干燥之后,纳米颗粒悬浮液20的沉积物形成密堆的薄膜24。这两个步骤对于形成太阳能电池的大多数基于溶液的方法而言是常见的,并且本领域中已知添加适当的粘合剂以便制造较稠的糊料并且加速工艺。还已知的是在硒蒸气中对形成的膜24进行退火以便增强所述膜的结构品质。此类步骤可与本发明一起进行实施。可以使用各种基底22,包括半导体、玻璃、金属涂覆的玻璃、和金属板和金属箔。典型的金属基底包括但不限于钼、铜、钛和钢。
图3示出了根据本发明制成的CIGS膜的截面的电子显微图像。按如下方式对上述的CIGS盘片进行烧蚀。将靶盘片置于去离子水中,处在水表面下方3毫米处。将脉冲激光设定为500kHz的重复率、10μJ的脉冲能量、700飞秒的脉冲持续时间、和1000纳米的波长。用170毫米透镜将激光束聚焦到所述靶盘片上。在烧蚀期间该光束以2米/秒以上的线速度光栅扫描(rastered)。总烧蚀时间是约30分钟。然后将纳米颗粒溶液倒在硅基底上。在室温下于环境空气中使一滴溶液干燥从而获得薄膜。也可以同本发明一起使用其它施加方法例如刮涂(blade spreading)、旋涂、丝网印制和喷墨印制。
图4显示了上面关于图3所述的根据本发明方法制备的CIGS薄膜的能量色散x射线谱。鉴别所有四种组成元素Cu、In、Ga和Se的特征x射线发射。发射强度的定量分析给出该膜的Cu:In:Ga:Se原子比为21.3%:19.3%:4.7%:54.6%,这非常接近于上述初始靶的名义值。这证实本发明方法在纳米颗粒以及由它们制备的薄膜中维持了靶材料的组成。
图5显示了上面关于图3所述的根据本发明方法制备的CIGS薄膜的x射线衍射图。主要的衍射峰112、204和116证实该膜具有期望的CIGS黄铜矿晶体相。因此,本发明还制备出与靶材料具有相同晶体结构的纳米颗粒以及由它们形成的薄膜。发明人已发现,在室温下干燥CIGS膜之后,获得了期望的恰当黄铜矿微晶相。这证实了本发明的另一优点,即使用低处理温度的能力。尽管毫无疑问在硒气氛中进一步退火可进一步改善所制备膜的结构品质,然而在室温下成功制造出多晶CIGS膜将显著降低随后的退火步骤的能量成本。
虽然不希望受限于特定理论,本发明人进行如下推理:在根据本发明的脉冲激光烧蚀期间,特定激光引起的相转变导致化学计量性和晶体结构的期望维持。由于极短的激光脉冲,热和压力两者均快速积聚在照射体积内。瞬间温度可高达5000℃以及瞬间压力可达到GPa范围。这些极端条件的累积时间典型为2-30皮秒量级,允许可忽略不及的热和体积弛豫,特别是对具有低的载流子浓度的电介质。在这些极端条件下,材料去除以爆炸方式发生,其时间尺度为纳秒量级。这种时间尺度显著短于组成改变和晶体结构改变所需的时间,所述组成改变和晶体结构改变的发生典型需微秒以上。因此,在组成和晶体结构可发生改变之前烧蚀结束并且纳米颗粒产生。
已根据相关的法律标准描述了前述发明,因此本说明书是示例性的而非限制性的。所公开的实施方案的变体和变型对于本领域技术人员来说是明显的并在本发明的范围内。因此,通过研究以下权利要求书才能确定本发明提供的法律保护范围。

Claims (25)

1.一种由化合物靶生产太阳光吸收化合物材料的纳米颗粒的方法,包括步骤:
a)提供与液体接触的太阳光吸收化合物材料的块体靶;
b)用脉冲激光束照射所述靶并烧蚀所述靶从而产生所述靶的纳米颗粒;和
c)收集所述纳米颗粒,其中所述纳米颗粒保持所述靶的化学计量性和晶体结构。
2.权利要求1的方法,其中步骤a)包括提供二元化合物材料作为所述靶,该二元化合物材料由选自元素周期表的IIB族和VIA族的元素构成。
3.权利要求1的方法,其中步骤a)包括提供三元化合物材料作为所述靶,该三元化合物材料由选自元素周期表的IB族、IIIA族和VIA族的元素构成。
4.权利要求1的方法,其中步骤a)包括提供四元化合物材料作为所述靶,该四元化合物材料由选自元素周期表的IB族、IIB族、IIIA族、IVA族和VIA族的元素构成。
5.权利要求1的方法,其中步骤a)包括提供下列之一作为所述靶:CdTe、CdSe、CuInSe2、CuInS2、CuInGaSe2、CuInGaS2、Cu2ZnSnS4或Cu2ZnSnSe4
6.权利要求1的方法,其中步骤a)包括提供铜、铟、镓、锌或锡的二元合金、三元合金或四元合金作为所述靶。
7.权利要求1的方法,其中步骤b)包括用脉冲持续时间在约10飞秒至10纳秒范围内的脉冲激光束照射所述靶。
8.权利要求7的方法,其中步骤b)包括用脉冲持续时间在约10飞秒至200皮秒范围内的脉冲激光束照射所述靶。
9.权利要求1的方法,其中步骤b)包括用脉冲能量在约100纳焦耳至10毫焦耳范围内的脉冲激光束照射所述靶。
10.权利要求1的方法,其中步骤b)包括用脉冲能量为约1微焦耳至10微焦耳的脉冲激光束照射所述靶。
11.权利要求1的方法,其中步骤b)包括用脉冲重复率小于约100MHz的脉冲激光束照射所述靶。
12.权利要求11的方法,其中步骤b)包括用脉冲重复率在约100kHz至1MHz范围内的脉冲激光束照射所述靶。
13.权利要求1的方法,其中步骤b)包括用波长在UV、可见光、近红外范围内的脉冲激光束照射所述靶。
14.权利要求1的方法,其中步骤b)包括使用振动镜在靶上移动所述激光束。
15.权利要求14的方法,其中所述振动镜具有10Hz以上的频率以及0.1mrad以上的角振幅,使得激光束焦斑在靶表面上以0.01米/秒以上的速度移动。
16.权利要求1的方法,其中步骤b)包括提供具有约20-40微米范围内的焦斑直径的脉冲激光束。
17.权利要求1的方法,其中步骤b)包括产生具有约2纳米至200纳米的尺寸分布的纳米颗粒。
18.权利要求1的方法,其中步骤a)包括提供浸没在液体中的靶以及其中所述步骤b)包括用脉冲激光束照射处在液体中的靶。
19.权利要求1的方法,其中步骤a)包括提供去离子水、有机溶剂或液氮作为所述液体。
20.权利要求1的方法,其中步骤a)所述液体还包含表面活性剂。
21.权利要求1的方法,其中步骤a)还包括使所述液体以1.0毫升/秒以上的速度循环流过所述靶。
22.权利要求1的方法,还包括如下步骤:
d)将收集的纳米颗粒施加到基底上从而在该基底上形成太阳光吸收薄膜。
23.权利要求22的方法,其中步骤d)还包括通过液滴涂布、旋涂、刮涂、丝网印制或喷墨印制将所收集的处在溶液中的纳米颗粒施加到基底上。
24.权利要求22的方法,其中步骤d)包括将所收集的纳米颗粒施加到基底上,所述基底包括半导体、玻璃、聚合物膜、金属、金属涂覆的玻璃、或金属箔,进一步包括使用钼、铜、钛之一或其混合物作为所述金属。
25.光伏太阳能电池器件,其包含通过权利要求22的方法制造的太阳光吸收层。
CN2011800089503A 2010-02-10 2011-02-03 基于脉冲激光烧蚀制造纳米颗粒溶液 Pending CN102781660A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US30299510P 2010-02-10 2010-02-10
US61/302,995 2010-02-10
US12/951,585 US20110192450A1 (en) 2010-02-10 2010-11-22 Method for producing nanoparticle solutions based on pulsed laser ablation for fabrication of thin film solar cells
US12/951,585 2010-11-22
PCT/US2011/023527 WO2011100152A1 (en) 2010-02-10 2011-02-03 Producing nanoparticle solutions based on pulsed laser ablation

Publications (1)

Publication Number Publication Date
CN102781660A true CN102781660A (zh) 2012-11-14

Family

ID=44316777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800089503A Pending CN102781660A (zh) 2010-02-10 2011-02-03 基于脉冲激光烧蚀制造纳米颗粒溶液

Country Status (5)

Country Link
US (1) US20110192450A1 (zh)
JP (1) JP2013519505A (zh)
CN (1) CN102781660A (zh)
DE (1) DE102010055404A1 (zh)
WO (1) WO2011100152A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743527A (zh) * 2015-04-22 2015-07-01 山东师范大学 一种硒化铋纳米颗粒的制备方法
CN105366954A (zh) * 2015-12-04 2016-03-02 南京理工大学 一种纳米氧化钨电致变色薄膜的制备方法
CN105960299A (zh) * 2014-02-10 2016-09-21 智能封装有限责任公司技术服务 用于施加传导的纳米颗粒到基质上的装置
CN105983706A (zh) * 2015-02-13 2016-10-05 京华堂实业股份有限公司 纳米粒子制造系统
CN107598155A (zh) * 2017-09-08 2018-01-19 中国科学院合肥物质科学研究院 铅纳米颗粒及其制备方法
CN109664029A (zh) * 2017-10-11 2019-04-23 株式会社迪思科 激光加工装置
CN110253027A (zh) * 2019-06-24 2019-09-20 北京莱泽光电技术有限公司 纳米粉末合金制备方法以及装置
CN110342569A (zh) * 2019-06-24 2019-10-18 吉林大学 一种形貌可控的CuInS2纳米材料的高压制备方法
CN113913858A (zh) * 2021-10-25 2022-01-11 天津大学 一种液氮环境脉冲激光直写制备富含晶体缺陷的催化电极的制备方法
CN114751649A (zh) * 2022-04-25 2022-07-15 哈尔滨工业大学 一种利用激光制备材料表面纳米颗粒的方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8540173B2 (en) * 2010-02-10 2013-09-24 Imra America, Inc. Production of fine particles of functional ceramic by using pulsed laser
US9815263B2 (en) 2011-01-10 2017-11-14 The United States Of America As Represented By The Administrator Of Nasa Method for manufacturing a thin film structural system
JP5671724B2 (ja) * 2011-02-21 2015-02-18 株式会社奈良機械製作所 液相レーザーアブレーション方法及び装置
US9849512B2 (en) 2011-07-01 2017-12-26 Attostat, Inc. Method and apparatus for production of uniformly sized nanoparticles
CN102531039A (zh) * 2012-03-13 2012-07-04 浙江理工大学 一种ZnO纳米粒子的制备方法
US10483532B2 (en) 2012-08-07 2019-11-19 Cornell University Binder-free and carbon-free nanoparticle containing component, methods and applications
DE102012107896A1 (de) * 2012-08-28 2014-03-06 Reinhausen Plasma Gmbh Verfahren und Vorrichtung zum Verbinden von Leitern mit Substraten
JP6063320B2 (ja) * 2012-09-21 2017-01-18 積水化学工業株式会社 硫化物半導体微粒子の製造方法
DE102013209983A1 (de) * 2013-05-28 2014-12-18 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Verfahren zur Herstellung einer Dünnschichtsolarzelle und einer Verbindungshalbleiterschicht hierfür
TWI585033B (zh) * 2015-02-13 2017-06-01 京華堂實業股份有限公司 奈米粒子製造系統
US9839652B2 (en) 2015-04-01 2017-12-12 Attostat, Inc. Nanoparticle compositions and methods for treating or preventing tissue infections and diseases
CN107614629A (zh) 2015-04-13 2018-01-19 阿托斯塔特公司 抗腐蚀纳米颗粒组合物
US11473202B2 (en) 2015-04-13 2022-10-18 Attostat, Inc. Anti-corrosion nanoparticle compositions
US10201571B2 (en) 2016-01-25 2019-02-12 Attostat, Inc. Nanoparticle compositions and methods for treating onychomychosis
CN106492715B (zh) * 2016-12-19 2023-02-10 广东工业大学 一种制备微粒的方法及装置
JP6985102B2 (ja) * 2017-10-31 2021-12-22 株式会社ディスコ レーザー加工装置
US11646453B2 (en) 2017-11-28 2023-05-09 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
US11018376B2 (en) 2017-11-28 2021-05-25 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
DE102018216824A1 (de) * 2018-10-01 2020-04-02 Universität Duisburg-Essen Kompakte Vorrichtung und Verfahren zur Herstellung von Nanopartikeln in Suspension
US11885800B2 (en) 2019-10-18 2024-01-30 Imra America, Inc. Method and system for detecting analyte of interest using magnetic field sensor and magnetic particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050243396A1 (en) * 2004-04-12 2005-11-03 Mitsumi Fujii Deflector mirror, optical scanning device, and image forming apparatus
US20080175982A1 (en) * 2006-06-12 2008-07-24 Robinson Matthew R Thin-film devices formed from solid group iiia alloy particles
US20090311513A1 (en) * 2007-02-07 2009-12-17 Imra America, Inc. Method for depositing crystalline titania nanoparticles and films

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059759A (en) * 1976-05-25 1977-11-22 The United States Of America As Represented By The United States Energy Research And Development Administration Passive and active pulse stacking scheme for pulse shaping
JPS63188470A (ja) * 1987-01-30 1988-08-04 Toshiba Corp レ−ザはんだ付け装置
JP2671915B2 (ja) * 1988-03-15 1997-11-05 松下電工株式会社 表面検査装置用の位置検出器
US5539764A (en) * 1994-08-24 1996-07-23 Jamar Technologies Co. Laser generated X-ray source
US5742634A (en) * 1994-08-24 1998-04-21 Imar Technology Co. Picosecond laser
US5790574A (en) * 1994-08-24 1998-08-04 Imar Technology Company Low cost, high average power, high brightness solid state laser
US5660746A (en) * 1994-10-24 1997-08-26 University Of South Florida Dual-laser process for film deposition
US5756924A (en) * 1995-09-28 1998-05-26 The Regents Of The University Of California Multiple laser pulse ignition method and apparatus
US5720894A (en) * 1996-01-11 1998-02-24 The Regents Of The University Of California Ultrashort pulse high repetition rate laser system for biological tissue processing
US5880877A (en) * 1997-01-28 1999-03-09 Imra America, Inc. Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier
US5948483A (en) * 1997-03-25 1999-09-07 The Board Of Trustees Of The University Of Illinois Method and apparatus for producing thin film and nanoparticle deposits
US6156030A (en) * 1997-06-04 2000-12-05 Y-Beam Technologies, Inc. Method and apparatus for high precision variable rate material removal and modification
US5818630A (en) * 1997-06-25 1998-10-06 Imra America, Inc. Single-mode amplifiers and compressors based on multi-mode fibers
AUPO912797A0 (en) * 1997-09-11 1997-10-02 Australian National University, The Ultrafast laser deposition method
US6268014B1 (en) * 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US6324195B1 (en) * 1999-01-13 2001-11-27 Kaneka Corporation Laser processing of a thin film
US7723642B2 (en) * 1999-12-28 2010-05-25 Gsi Group Corporation Laser-based system for memory link processing with picosecond lasers
US6281471B1 (en) * 1999-12-28 2001-08-28 Gsi Lumonics, Inc. Energy-efficient, laser-based method and system for processing target material
KR100830128B1 (ko) * 2000-01-10 2008-05-20 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 초단 펄스 폭을 가진 레이저 펄스의 버스트로 메모리링크를 처리하기 위한 레이저 시스템 및 방법
US7671295B2 (en) * 2000-01-10 2010-03-02 Electro Scientific Industries, Inc. Processing a memory link with a set of at least two laser pulses
US6552301B2 (en) * 2000-01-25 2003-04-22 Peter R. Herman Burst-ultrafast laser machining method
US6639177B2 (en) * 2001-03-29 2003-10-28 Gsi Lumonics Corporation Method and system for processing one or more microstructures of a multi-material device
KR100438408B1 (ko) * 2001-08-16 2004-07-02 한국과학기술원 금속간의 치환 반응을 이용한 코어-쉘 구조 및 혼합된합금 구조의 금속 나노 입자의 제조 방법과 그 응용
US6664498B2 (en) * 2001-12-04 2003-12-16 General Atomics Method and apparatus for increasing the material removal rate in laser machining
JP2004202439A (ja) * 2002-12-26 2004-07-22 National Institute Of Advanced Industrial & Technology ナノ粒子の製造装置及びナノ粒子の製造方法
US7330301B2 (en) * 2003-05-14 2008-02-12 Imra America, Inc. Inexpensive variable rep-rate source for high-energy, ultrafast lasers
US7113327B2 (en) * 2003-06-27 2006-09-26 Imra America, Inc. High power fiber chirped pulse amplification system utilizing telecom-type components
US20060086834A1 (en) * 2003-07-29 2006-04-27 Robert Pfeffer System and method for nanoparticle and nanoagglomerate fluidization
US20050167405A1 (en) * 2003-08-11 2005-08-04 Richard Stoltz Optical ablation using material composition analysis
KR101123911B1 (ko) * 2003-08-19 2012-03-23 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 특별히 맞추어진 전력 프로파일을 구비한 레이저 펄스를 사용하여 링크 처리를 하는 방법 및 레이저 시스템
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US7486705B2 (en) * 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US7879410B2 (en) * 2004-06-09 2011-02-01 Imra America, Inc. Method of fabricating an electrochemical device using ultrafast pulsed laser deposition
KR101317067B1 (ko) * 2004-09-15 2013-10-11 고쿠리츠 다이가쿠 호진 교토 다이가쿠 금속미립자의 제조방법
JP2006122845A (ja) * 2004-10-29 2006-05-18 Nara Kikai Seisakusho:Kk 液相レーザーアブレーション装置
CN100467118C (zh) * 2005-08-08 2009-03-11 鸿富锦精密工业(深圳)有限公司 纳米粒子制备装置
US8241393B2 (en) * 2005-09-02 2012-08-14 The Curators Of The University Of Missouri Methods and articles for gold nanoparticle production
TW200802903A (en) * 2006-02-16 2008-01-01 Solexant Corp Nanoparticle sensitized nanostructured solar cells
JP4872802B2 (ja) * 2007-05-25 2012-02-08 株式会社豊田中央研究所 液相レーザーアブレーション装置及びそれを用いた液相レーザーアブレーション方法
KR101144807B1 (ko) * 2007-09-18 2012-05-11 엘지전자 주식회사 태양전지 박막조성용 잉크와 그 제조방법, 이를 이용한cigs 박막형 태양전지, 및 그 제조 방법
KR101421719B1 (ko) * 2007-09-18 2014-07-30 삼성전자주식회사 금속 하이드록시 탄산염을 이용한 나노 형광체의 제조방법및 그로부터 제조된 나노 형광체
US20090246413A1 (en) * 2008-03-27 2009-10-01 Imra America, Inc. Method for fabricating thin films
JP4974301B2 (ja) * 2008-04-04 2012-07-11 昭和シェル石油株式会社 太陽電池モジュールの製造方法
US8246714B2 (en) * 2009-01-30 2012-08-21 Imra America, Inc. Production of metal and metal-alloy nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids
JP2011115750A (ja) * 2009-12-07 2011-06-16 Toyota Central R&D Labs Inc 液相レーザーアブレーション装置及び液相レーザーアブレーション方法
US8992815B2 (en) * 2010-02-10 2015-03-31 Imra America, Inc. Production of organic compound nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050243396A1 (en) * 2004-04-12 2005-11-03 Mitsumi Fujii Deflector mirror, optical scanning device, and image forming apparatus
US20080175982A1 (en) * 2006-06-12 2008-07-24 Robinson Matthew R Thin-film devices formed from solid group iiia alloy particles
US20090311513A1 (en) * 2007-02-07 2009-12-17 Imra America, Inc. Method for depositing crystalline titania nanoparticles and films

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960299B (zh) * 2014-02-10 2019-05-14 智能封装有限责任公司技术服务 用于施加传导的纳米颗粒到基质上的装置
CN105960299A (zh) * 2014-02-10 2016-09-21 智能封装有限责任公司技术服务 用于施加传导的纳米颗粒到基质上的装置
CN105983706A (zh) * 2015-02-13 2016-10-05 京华堂实业股份有限公司 纳米粒子制造系统
CN104743527B (zh) * 2015-04-22 2017-04-26 山东师范大学 一种硒化铋纳米颗粒的制备方法
CN104743527A (zh) * 2015-04-22 2015-07-01 山东师范大学 一种硒化铋纳米颗粒的制备方法
CN105366954B (zh) * 2015-12-04 2017-12-12 南京理工大学 一种纳米氧化钨电致变色薄膜的制备方法
CN105366954A (zh) * 2015-12-04 2016-03-02 南京理工大学 一种纳米氧化钨电致变色薄膜的制备方法
CN107598155A (zh) * 2017-09-08 2018-01-19 中国科学院合肥物质科学研究院 铅纳米颗粒及其制备方法
CN107598155B (zh) * 2017-09-08 2019-08-23 中国科学院合肥物质科学研究院 铅纳米颗粒的制备方法
CN109664029A (zh) * 2017-10-11 2019-04-23 株式会社迪思科 激光加工装置
CN110253027A (zh) * 2019-06-24 2019-09-20 北京莱泽光电技术有限公司 纳米粉末合金制备方法以及装置
CN110342569A (zh) * 2019-06-24 2019-10-18 吉林大学 一种形貌可控的CuInS2纳米材料的高压制备方法
CN110342569B (zh) * 2019-06-24 2021-09-21 吉林大学 一种形貌可控的CuInS2纳米材料的高压制备方法
CN113913858A (zh) * 2021-10-25 2022-01-11 天津大学 一种液氮环境脉冲激光直写制备富含晶体缺陷的催化电极的制备方法
CN113913858B (zh) * 2021-10-25 2022-05-17 天津大学 一种液氮环境脉冲激光直写制备富含晶体缺陷的催化电极的制备方法
CN114751649A (zh) * 2022-04-25 2022-07-15 哈尔滨工业大学 一种利用激光制备材料表面纳米颗粒的方法
CN114751649B (zh) * 2022-04-25 2023-08-25 哈尔滨工业大学 一种利用激光制备材料表面纳米颗粒的方法

Also Published As

Publication number Publication date
US20110192450A1 (en) 2011-08-11
WO2011100152A1 (en) 2011-08-18
DE102010055404A1 (de) 2011-08-11
JP2013519505A (ja) 2013-05-30

Similar Documents

Publication Publication Date Title
CN102781660A (zh) 基于脉冲激光烧蚀制造纳米颗粒溶液
Sher et al. Pulsed-laser hyperdoping and surface texturing for photovoltaics
Li et al. Laser irradiation construction of nanomaterials toward electrochemical energy storage and conversion: Ongoing progresses and challenges
US20080029152A1 (en) Laser scribing apparatus, systems, and methods
EP2164107A2 (en) Apparatus and method for fabrication of silicon-based detectors having laser-microstructured sulfur-doped surface layers
Singh et al. Nanomaterials and nanopatterns based on laser processing: a brief review on current state of art
EP2613906A1 (en) Methods and apparatus for patterning photovoltaic devices and materials for use with such devices
Medvid et al. Formation mechanisms of nano and microcones by laser radiation on surfaces of Si, Ge, and SiGe crystals
CN106148902A (zh) 一种均匀较厚介孔氧化钛纳米颗粒薄膜的飞秒激光制备方法
Wen et al. Sulfur-hyperdoped silicon nanocrystalline layer prepared on polycrystalline silicon solar cell substrate by thin film deposition and nanosecond-pulsed laser irradiation
Zhang et al. In situ localized formation of cesium lead bromide nanocomposites for fluorescence micro-patterning technology achieved by organic solvent polymerization
Sun et al. High‐Order Nonlinear Optical Properties Generated by Different Electron Transition Processes of NiO Nanosheets and Applications to Ultrafast Lasers
Chang et al. Precise ultrafast laser micromachining in thin-film CIGS photovoltaic modules
Gečys et al. Laser structuring of thin-film solar cells on polymers
JP4129528B2 (ja) β−FeSi2結晶粒子を含む薄膜及びこれを用いた発光材料
Račiukaitis et al. Picosecond-laser structuring of thin films for CIGS solar cells
WO2019078100A1 (ja) 固体微粒子で被覆された金属を含む複合体の製造方法
Tull Femtosecond laser ablation of silicon: nanoparticles, doping and photovoltaics
Agool et al. Preparation and Study of colloidal CdO nanoparticles by laser ablation in polyvinylpyrrolidone
Vidhya Y et al. Nanosecond Laser Treatment of a-Si Thin Films for Enhanced Light Trapping and Minority Carrier Lifetime in Photovoltaic Cells.
Ehrhardt et al. Laser patterning of CIGS thin films with 1550 nm nanosecond laser pulses
Giovanardi et al. Ultrashort pulse laser scribing of CIGS-based thin film solar cells
CN105679653B (zh) 硫硅半导体合金叠层太阳能电池的制作方法
Cao et al. Effect of thermal annealing on sub-band-gap absorptance of microstructured silicon in air
Sumiyoshi et al. Selective ablation of the amorphous silicon layer by the second-harmonic wave of the TEA CO2 laser

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121114