CN102531039A - 一种ZnO纳米粒子的制备方法 - Google Patents

一种ZnO纳米粒子的制备方法 Download PDF

Info

Publication number
CN102531039A
CN102531039A CN2012100656505A CN201210065650A CN102531039A CN 102531039 A CN102531039 A CN 102531039A CN 2012100656505 A CN2012100656505 A CN 2012100656505A CN 201210065650 A CN201210065650 A CN 201210065650A CN 102531039 A CN102531039 A CN 102531039A
Authority
CN
China
Prior art keywords
laser
zinc target
zinc
target
ablation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100656505A
Other languages
English (en)
Inventor
王顺利
李培刚
唐为华
方合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Zhejiang University of Science and Technology ZUST
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN2012100656505A priority Critical patent/CN102531039A/zh
Publication of CN102531039A publication Critical patent/CN102531039A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种无机纳米材料的制备方法,具体是指一种ZnO纳米粒子的制备方法,本发明采用液相激光烧蚀法,步骤是将锌靶分别用去离子水与无水乙醇超声各清洗1h,再把一定浓度的CTAB水溶液倒入石英容器中,控制激光照射位置,控制激光焦点在锌靶表面,同时调整锌靶放置位置,使得焦点距离石英容器侧壁距离1.5cm,进行烧蚀反应。烧蚀过程中每隔一定时间改变一次照射点位置,最后将胶体溶液离心干燥得到粉体产物。本发明方法工艺简单易操作,可以通过改变靶材与溶剂种类、激光能量密度、烧蚀时间等条件制备各种尺寸和形貌的纳米粒子,制得的产物纯度高。

Description

一种ZnO纳米粒子的制备方法
技术领域
本发明涉及无机纳米材料的制备方法,尤其是氧化锌纳米粒子的制备方法。
背景技术
ZnO是一种宽禁带金属氧化物半导体材料,其禁带宽度为3.37eV,激子束缚能为60meV,在光电应用方面有巨大的潜力。以氧化锌为基的发光二极管、光催化剂、传感器和太阳能电池已经成功地在实验室制备甚至已经应用到工业生产中。目前制备ZnO纳米粒子的方法主要有气相法和液相法。其中气相法包括:高温溅射沉积法(SPD)、等离子体法、分子束取向生长法、高频无线电溅射法等。液相法包括:水热法、溶胶-凝胶法、微乳液法等。这些传统方法中,大部分方法所需的实验装备复杂且条件苛刻,而液相激光烧蚀法(PLA)的特点是制备的周期短,实验装置简单,形貌可控,尺寸和性质具有良好的重复性,且产物纯度高,通过加入不同表面活性剂还可以控制纳米粒子的粒径和生长,是近来新兴发展起来的一种制备纳米粒子的方法。目前,利用新颖的液相激光烧蚀法制备ZnO纳米粒子的方法还没有报道。
发明内容
本发明的目的是提供一种工艺简单,绿色环保,可控的制备ZnO纳米粒子的方法。
本发明制备ZnO纳米粒子的方法,采用了液相激光烧蚀法,步骤如下:
(1)先将锌靶表面用砂纸打磨,分别在去离子水和无水乙醇中用超声各清洗1h,然后将Zn靶沉浸在装有浓度为0.01mol/L的十六烷基三甲基溴化铵(CTAB)水溶液的石英容器中,本发明中的锌靶的纯度为99.9%以上;在本发明中所使用的石英容器具有明显的技术效果,尤其是在透光性等方面;
(2)打开激光器,调节反射镜,使得激光光线垂直通过透镜和石英容器的侧壁,然后照射到锌靶表面;本发明为了避免激光直接通过反应溶液垂直照射导致的液体飞溅,实验中调整激光光束通过石英容器的侧壁再照射到靶材表面,锌靶竖直放置或者垂直放置于石英容器中;实验中所用激光波长为532nm,频率10Hz,激光单脉冲能量100mJ,脉冲持续时间为10ns。
(3)调整石英容器和锌靶位置,使得激光在锌靶表面的照射点刚好位于激光光线的焦点处;
(4)开启磁力搅拌器,在搅拌条件下进行烧蚀反应2-3小时,即可制得ZnO纳米粒子。
作为优选,上述制备方法步骤(3)中调整激光在靶材上的照射点刚好在激光焦点处,而且此位置距离石英器壁的距离为1-2.5cm。
作为优选,上述制备方法步骤(3)中烧蚀时间为2-2.5小时。
有益效果:本发明制备过程中,所用试剂均为商业产品,无需繁琐制备;工艺可控性强,易操作,成本低,制得的产物纯度高。
附图说明
图1是本发明中使用的装置结构示意图;
图2是用本发明方法制得的ZnO纳米粒子的X射线衍射(XRD)图谱;
图3是用本发明方法制得的ZnO纳米粒子的透射电镜(TEM)照片;
图4是用本发明方法制得的ZnO纳米粒子的高分辨透射电镜(HRTEM)照片;
图5是用本发明方法制得的ZnO纳米粒子的紫外-可见光吸收谱图;
图6是用本发明方法制得的ZnO纳米粒子的荧光光谱图。
具体实施方式
以下结合实例进一步说明本发明。
实施例1
反应容器使用石英玻璃制造,尺寸为:50mm*48mm*29mm,器壁厚度2mm。调整激光光路使其照射到Zn靶材(纯度为99.99%)表面。将锌靶分别用去离子水与无水乙醇用超声各清洗1h,将20mL浓度为0.01mol/L的CTAB水溶液倒入石英容器中,装置如图1所示。打开激光器532nm光源,调整激光照射点位置,控制激光焦点在锌靶表面,同时调整锌靶放置位置,使得焦点距离石英容器侧壁距离1.5cm,烧蚀2h。烧蚀过程中每隔半小时改变一次照射点位置。最后将胶体溶液离心干燥得到粉体产物。图2所示为所得产物的XRD图谱,分析结果表明产物为六方晶系ZnO,无任何杂质相发现。图3所示为所得产物的TEM照片,从图中可以看出ZnO纳米粒子呈现不规则的椭球形,其平均粒径大约为35nm。图4所示为所得产物的HRTEM照片,从图中可以看出明显的晶格条纹,说明纳米粒子结晶良好。其中右图为左图中方框区域放大图,晶面间距为0.28nm对应的晶面为(100),晶面间距为0.26nm对应的晶面为(002),与XRD分析结果一致。图5所示为所得纳米胶体溶液的紫外-可见光吸收谱图。从图中可以看出,纳米胶体溶液的吸收峰在345nm左右。图6为所得纳米胶体溶液的荧光光谱图,其中激发波长Ex为334nm。从图中可以看出,所得纳米胶体溶液在紫光区411nm(3.02eV)蓝光区436nm(2.84eV)处有较强的发光峰,在绿光区556nm(2.23eV)有较弱的发光峰。
实施例2
如同实施例1,将锌靶分别用去离子水与无水乙醇超声各清洗1h,将25mL浓度为0.01mol/L的CTAB水溶液倒入石英容器中。打开激光器532nm光源,调整激光照射点位置,控制激光焦点在锌靶表面,同时调整锌靶放置位置,使得焦点距离石英容器侧壁距离1.5cm,烧蚀2h。烧蚀过程中每隔15分钟改变一次照射点位置。最后将胶体溶液离心干燥得到粉体产物。所得产物的结构、形貌、光学性质均与实例1相同。
实施例3
如同实施例1,将锌靶分别用去离子水与无水乙醇超声各清洗1h,将20mL浓度为0.01mol/L的CTAB水溶液倒入石英容器中。打开激光器532nm光源,调整激光照射点位置,控制激光焦点在锌靶表面,同时调整锌靶放置位置,使得焦点距离石英容器侧壁距离1.5cm,烧蚀2.5h。烧蚀过程中每隔半小时改变一次照射点位置。最后将胶体溶液离心干燥得到粉体产物。所得产物的结构、形貌、光学性质均与实例1相同。
实施例4
如同实施例1,将锌靶分别用去离子水与无水乙醇超声清洗1h,将25mL浓度为0.01mol/L的CTAB水溶液倒入石英容器中。打开激光器532nm光源,调整激光照射点位置,控制激光焦点在锌靶表面,同时调整锌靶放置位置,使得焦点距离石英容器侧壁距离1.5cm,烧蚀2.5h。烧蚀过程中每隔15分钟改变一次照射点位置。最后将胶体溶液离心干燥得到粉体产物。所得产物的结构、形貌、光学性质均与实例1相同。

Claims (3)

1.一种ZnO纳米粒子的制备方法,其特征在于步骤如下:
(1)先将锌靶表面用砂纸打磨,然后分别在去离子水和无水乙醇中超声各清洗1h,再将Zn靶沉浸在装有浓度为0.01mol/L的十六烷基三甲基溴化铵水溶液的石英容器中,其中锌靶的纯度为99.9%以上;
(2)使激光光线垂直通过透镜和石英容器的侧壁,照射到锌靶表面;其中的锌靶竖直放置或者垂直放置于石英容器中;其中的激光波长为532nm,频率10Hz,激光单脉冲能量100mJ,脉冲持续时间为10ns;
(3)调整石英容器和锌靶位置,使得激光在锌靶表面的照射点刚好位于激光光线的焦点处;
(4)开启磁力搅拌器,在搅拌条件下进行烧蚀反应2-3小时,即可制得ZnO纳米粒子。
2.根据权利要求1所述的制备方法,其特征在于所述的步骤(3)中调整激光在靶材上的照射点刚好在激光焦点处,而且此位置距离石英器壁的距离为1-2.5cm。
3.根据权利要求1所述的制备方法,其特征在于所述的步骤中烧蚀时间为2-2.5小时。
CN2012100656505A 2012-03-13 2012-03-13 一种ZnO纳米粒子的制备方法 Pending CN102531039A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100656505A CN102531039A (zh) 2012-03-13 2012-03-13 一种ZnO纳米粒子的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100656505A CN102531039A (zh) 2012-03-13 2012-03-13 一种ZnO纳米粒子的制备方法

Publications (1)

Publication Number Publication Date
CN102531039A true CN102531039A (zh) 2012-07-04

Family

ID=46339260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100656505A Pending CN102531039A (zh) 2012-03-13 2012-03-13 一种ZnO纳米粒子的制备方法

Country Status (1)

Country Link
CN (1) CN102531039A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105366954A (zh) * 2015-12-04 2016-03-02 南京理工大学 一种纳米氧化钨电致变色薄膜的制备方法
CN113083277A (zh) * 2021-03-30 2021-07-09 西南科技大学 用于光催化还原六价铀的富含氧空位的纳米ZnO的制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192450A1 (en) * 2010-02-10 2011-08-11 Bing Liu Method for producing nanoparticle solutions based on pulsed laser ablation for fabrication of thin film solar cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192450A1 (en) * 2010-02-10 2011-08-11 Bing Liu Method for producing nanoparticle solutions based on pulsed laser ablation for fabrication of thin film solar cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUN HE, ET AL.: "Synthesis of ZnO nanoparticles using nanosecond pulsed laser ablation in aqueous media and their self-assembly towards spindle-like ZnO aggregates", 《APPLIED SURFACE SCIENCE》 *
YOSHIE ISHIKAWA, ET AL.: "Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
方合等: "液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能", 《物理学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105366954A (zh) * 2015-12-04 2016-03-02 南京理工大学 一种纳米氧化钨电致变色薄膜的制备方法
CN105366954B (zh) * 2015-12-04 2017-12-12 南京理工大学 一种纳米氧化钨电致变色薄膜的制备方法
CN113083277A (zh) * 2021-03-30 2021-07-09 西南科技大学 用于光催化还原六价铀的富含氧空位的纳米ZnO的制备方法及应用
CN113083277B (zh) * 2021-03-30 2022-04-22 西南科技大学 用于光催化还原六价铀的富含氧空位的纳米ZnO的制备方法及应用

Similar Documents

Publication Publication Date Title
Amans et al. Status and demand of research to bring laser generation of nanoparticles in liquids to maturity
Abbas et al. Morphological driven photocatalytic activity of ZnO nanostructures
Zhu et al. Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances
Thareja et al. Synthesis and characterization of zinc oxide nanoparticles by laser ablation of zinc in liquid
Acharya et al. Ethylenediamine-mediated wurtzite phase formation in ZnS
Liang et al. ZnMoO4 micro-and nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties
Wang et al. Shape-controlled synthesis of CdS nanostructures via a solvothermal method
Fang et al. Optical properties and photocatalytic activities of spherical ZnO and flower-like ZnO structures synthesized by facile hydrothermal method
Kuzmin et al. Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties
Huang et al. Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide
Tian et al. Zinc stannate nanocubes and nanourchins with high photocatalytic activity for methyl orange and 2, 5-DCP degradation
CN103769609B (zh) 一种贵金属-半导体复合结构微纳颗粒、制备方法、应用
Liu et al. Fabrication of Si/Au core/shell nanoplasmonic structures with ultrasensitive surface-enhanced Raman scattering for monolayer molecule detection
Singh et al. Nanoarchitectural evolution from laser-produced colloidal solution: growth of various complex cadmium hydroxide architectures from simple particles
Abbasi et al. Effect of laser fluence on the characteristics of Al nanoparticles produced by laser ablation in deionized water
Zeng et al. Aging-induced self-assembly of Zn/ZnO treelike nanostructures from nanoparticles and enhanced visible emission
Ren et al. Large-scale synthesis of hexagonal cone-shaped ZnO nanoparticles with a simple route and their application to photocatalytic degradation
Aazadfar et al. Properties of Au/Copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions
Yang et al. 532 nm nanosecond pulse laser triggered synthesis of ZnO2 nanoparticles via a fast ablation technique in liquid and their photocatalytic performance
Wang et al. Synthesis of hierarchical flower-like SnO2 nanostructures and their photocatalytic properties
Shi et al. Sonoelectrochemical synthesis of water-soluble CdTe quantum dots
Rawat et al. Synthesis of Si/SiO2 nanoparticles using nanosecond laser ablation of silicate-rich garnet in water
CN102531039A (zh) 一种ZnO纳米粒子的制备方法
Honda et al. Nanostructures prepared via laser ablation of tin in water
El Hamzaoui et al. Room temperature direct space-selective growth of gold nanoparticles inside a silica matrix based on a femtosecond laser irradiation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120704