CN110342569B - 一种形貌可控的CuInS2纳米材料的高压制备方法 - Google Patents

一种形貌可控的CuInS2纳米材料的高压制备方法 Download PDF

Info

Publication number
CN110342569B
CN110342569B CN201910546754.XA CN201910546754A CN110342569B CN 110342569 B CN110342569 B CN 110342569B CN 201910546754 A CN201910546754 A CN 201910546754A CN 110342569 B CN110342569 B CN 110342569B
Authority
CN
China
Prior art keywords
cuins
pressure
diamond
chalcopyrite
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910546754.XA
Other languages
English (en)
Other versions
CN110342569A (zh
Inventor
杨新一
刘豪
邹勃
邹广田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910546754.XA priority Critical patent/CN110342569B/zh
Publication of CN110342569A publication Critical patent/CN110342569A/zh
Application granted granted Critical
Publication of CN110342569B publication Critical patent/CN110342569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明的一种形貌可控的CuInS2纳米材料的高压制备方法属于纳米材料制备技术领域。以黄铜矿CuInS2纳米粒子为起始原料,在金刚石对顶砧中对起始原料加压至15~30GPa,然后将金刚石对顶砧卸压至常压,得到不同形貌的CuInS2纳米材料。本发明方法具有过程简单、合成时间短、室温合成、绿色环保、成本低、产品可重复性高等优点,得到的产物依然保持黄铜矿相结构、相纯度高、结晶性好,产品具有很好的光学吸收性质,这有利于太阳光的吸收和转换。

Description

一种形貌可控的CuInS2纳米材料的高压制备方法
技术领域
本发明属于纳米材料制备的技术领域,特别涉及一种制备薄膜状CuInS2纳米片的方法。
背景技术
作为一种重要的三元硫属半导体材料,黄铜矿CuInS2具有优异的性能,包括:1.45eV的直接带隙、超过105cm-1的光学吸收效率和高的光电转换效率,这使得CuInS2材料在各类太阳能电池中具有非常好的应用前景。
CuInS2半导体纳米晶的光电性能主要取决于形貌、尺寸和晶体结构。目前,通过湿化学方法制备的CuInS2半导体纳米晶形貌主要有球形粒子、纳米棒和纳米线等,关于微米级的二维CuInS2纳米片没有过报道。众所周知,二维材料具有落在量子限域效应范围内的超薄厚度及其独特的片状形貌,这对探索材料的新的物理现象和性能非常重要。因此,发展简单、方便的方法合成二维CuInS2纳米片具有重要意义。
发明内容
本发明要解决的技术问题是:克服背景技术存在的问题和缺陷,提供一种简单的、绿色的制备二维薄膜状CuInS2纳米片的方法,该方法以用溶剂热法合成的黄铜矿相CuInS2纳米晶为起始原料,采用金刚石对顶砧压机在高压下合成二维薄膜状CuInS2纳米片。并且通过控制向样品施加压力的大小合成出了准二维 CuInS2纳米片和一维多枝形CuInS2纳米线。
本发明的具体技术方案如下:
一种形貌可控的CuInS2纳米材料的高压制备方法,以黄铜矿CuInS2纳米粒子为起始原料,在金刚石对顶砧中对起始原料加压至15~30GPa,然后将金刚石对顶砧卸压至常压,得到不同形貌的CuInS2纳米材料。
本发明中,起始材料黄铜矿CuInS2纳米粒子的尺寸优选4.3nm。
本发明可以通过改变加压的压力控制产物的形貌,当对起始原料加压至30 GPa,再卸压至常压时,得到二维薄膜状CuInS2纳米片;当对起始原料加压至 25GPa,再卸压至常压时,得到准二维CuInS2纳米片;当对起始原料加压至15 GPa,再卸压至常压时,得到一维多枝状CuInS2纳米线。
本发明制备的二维薄膜状CuInS2纳米片的优点在于:本发明制备方法得到的产品,通过同步辐射XRD对样品的晶体结构进行表征,发现这些二维薄膜状 CuInS2纳米片依然保持黄铜矿相结构,并且相纯度较高、各成分分布均匀、结晶性好,这些二维薄膜状CuInS2纳米片具有1.82eV的电子能带隙,潜在地有利于太阳光的吸收和转换。此外,本发明制备方法能够通过控制对初始原料施加压力的大小来获得不同形貌的CuInS2纳米晶,具有过程简单、室温合成、合成时间短、可重复性高、清洁无污染等优点。
附图说明
图1是起始材料-黄铜矿CuInS2纳米粒子的透射电镜图片。
图2是起始材料-黄铜矿CuInS2纳米粒子的粒径分布图片。
图3是起始材料-黄铜矿CuInS2纳米粒子的高分辨电镜图片。
图4是起始材料-黄铜矿CuInS2纳米粒子的同步辐射XRD精修数据。
图5是起始材料为黄铜矿CuInS2纳米粒子,经过约30GPa压力处理后,完全卸压至环境条件下时回收的薄膜状CuInS2纳米片的透射电镜图片。
图6是起始材料为黄铜矿CuInS2纳米粒子,经过约30GPa压力处理后,完全卸压至环境条件下时回收的薄膜状CuInS2纳米片的铜(Cu)元素分布图片。
图7是起始材料为黄铜矿CuInS2纳米粒子,经过约30GPa压力处理后,完全卸压至环境条件下时回收的薄膜状CuInS2纳米片的铟(In)元素分布图片。
图8是起始材料为黄铜矿CuInS2纳米粒子,经过约30GPa压力处理后,完全卸压至环境条件下时回收的薄膜状CuInS2纳米片的硫(S)元素分布图片。
图9是起始材料为黄铜矿CuInS2纳米粒子,经过约30GPa压力处理后,完全卸压至环境条件下时回收的薄膜状CuInS2纳米片的高分辨电镜图片。
图10是起始材料为黄铜矿CuInS2纳米粒子,经过约30GPa压力处理后,完全卸压至环境条件下时回收的薄膜状CuInS2纳米片的同步辐射XRD精修数据。
图11是起始材料为黄铜矿CuInS2纳米粒子,经过约25GPa压力处理后,完全卸压至环境条件下时回收的准二维CuInS2纳米片的透射电镜图片。
图12是起始材料为黄铜矿CuInS2纳米粒子,经过约25GPa压力处理后,完全卸压至环境条件下时回收的准二维CuInS2纳米片的高分辨电镜图片。
图13是起始材料为黄铜矿CuInS2纳米粒子,经过约15GPa压力处理后,完全卸压至环境条件下时回收的一维多枝状CuInS2纳米线的透射电镜图片。
图14是起始材料为黄铜矿CuInS2纳米粒子,经过约15GPa压力处理后,完全卸压至环境条件下时回收的一维多枝状CuInS2纳米线的高分辨电镜图片。
图15是起始材料-黄铜矿CuInS2纳米粒子的吸收光谱。
图16是起始材料为黄铜矿CuInS2纳米粒子,经过30.0GPa压力处理后,完全卸压至环境条件下时回收的薄膜状CuInS2纳米片的吸收光谱。
具体实施方式
现结合下列实施例更加具体地描述本发明,如无特殊说明,所用试剂均为市售可获得的产品,并未加进一步提纯使用。
实施例1二维薄膜状CuInS2纳米片的制备
制备二维薄膜状CuInS2纳米片是在对称式金刚石对顶砧中进行的,利用对称式金刚石对顶砧进行加压,采用的金刚石砧面大小为0.4mm,T301不锈钢片作为垫片。金刚石压腔的样品组装过程如下:首先在垫片中心预压一个凹坑(厚度约为0.042mm),然后在凹坑中心打一个直径为0.13mm的孔作为装载样品的空腔。将打好的垫片按照预压时的方位安装到金刚石对顶砧下砧面上,垫片小孔与两块相对的金刚石表面组成了样品腔。将用溶剂热法合成的黄铜矿CuInS2纳米粒子(粒径4.3nm)连同一小块红宝石放入金刚石对顶砧样品腔内,压力的标定是采用标准红宝石荧光标压的技术。对样品进行加压至约30GPa,然后将金刚石对顶砧压机卸压到常压,可以得到微米级别大小的薄膜状CuInS2纳米片。运用同样的方法,当施加的压力为约25GPa时,然后将金刚石对顶砧压机卸压到常压,得到准二维CuInS2纳米片;当施加的压力为约15GPa时,然后将金刚石对顶砧压机卸压到常压,得到一维多枝状CuInS2纳米线。
本实施例中所说的溶剂热法合成黄铜矿CuInS2纳米粒子,具体方法可以参见Highly Emissive and Color-Tunable CuInS2-Based Colloidal SemiconductorNanocrystals:Off-Stoichiometry Effects and Improved ElectroluminescencePerformance,Adv.Funct.Mater.2012,22,2081-2088。
实施例2二维薄膜状CuInS2纳米片的晶体结构和形貌表征
对样品进行同步辐射X光射线衍射、透射电镜和高分辨电镜表征。
图1是起始材料-黄铜矿CuInS2纳米粒子的透射电镜照片。图2是CuInS2纳米粒子的粒径统计图,显示出起始材料CuInS2纳米粒子平均粒径是4.3纳米。图3是起始材料CuInS2纳米粒子的高分辨电镜图片,测量的0.317nm和0.195nm 分别对应黄铜矿类型CuInS2的(112)和(220)面晶格间距。图4是初始的CuInS2纳米粒子同步辐射XRD数据精修,显示初始的样品为黄铜矿相结构。图5是起始材料经过30GPa压力处理后,卸压产品的透射电镜图,产品为薄膜状CuInS2纳米片,大小约为4*6μm。图6-8是卸压产品的元素分布图,显示Cu、In和S 元素均匀分布,构成CuInS2纳米片,表明初始材料在加压处理以后形成二维薄膜状CuInS2纳米片。图9是是卸压产品的高分辨电镜图,展现出0.317nm的黄铜矿相CuInS2的(112)面晶格间距。图10是卸压产品的同步辐射XRD数据精修,显示卸压产品仍保持初始的黄铜矿相结构,并且相纯度很高。
图11是起始材料经过25GPa压力处理后,卸压产品的透射电镜图,产品为准二维CuInS2纳米片,图12是相对应的卸压产品的高分辨电镜图;图13是起始材料经过15GPa压力处理后,卸压产品的透射电镜图,产品为一维多枝状 CuInS2纳米线,图14是相对应的卸压产品的高分辨电镜图,展现出CuInS2纳米线是由初始纳米粒子经高压处理熔融而来。
实施例3二维薄膜状CuInS2纳米片的光学性质
图15是起始材料黄铜矿相CuInS2纳米粒子的吸收光谱,图中显示黄铜矿相 CuInS2纳米粒子的能带间隙为2.03eV。图16是卸压产品二维薄膜状CuInS2纳米片的吸收光谱,图中显示二维薄膜状CuInS2纳米片的能带间隙为1.82eV。这说明高压合成的二维薄膜状CuInS2纳米片可以应用于太阳能电池中。

Claims (1)

1.一种形貌可控的CuInS2纳米材料的高压制备方法,以黄铜矿CuInS2纳米粒子为起始原料,在金刚石对顶砧中对起始原料加压至15~30GPa,然后将金刚石对顶砧卸压至常压,得到不同形貌的CuInS2纳米材料;步骤如下:利用对称式金刚石对顶砧进行加压,采用的金刚石砧面大小为0.4 mm,T301不锈钢片作为垫片;金刚石压腔的样品组装过程如下:首先在垫片中心预压一个厚度为0.042 mm的凹坑,然后在凹坑中心打一个直径为0.13 mm的孔作为装载样品的空腔,将打好的垫片按照预压时的方位安装到金刚石对顶砧下砧面上,垫片小孔与两块相对的金刚石表面组成了样品腔,将用溶剂热法合成的黄铜矿粒径4.3nm 的CuInS2纳米粒子连同一小块红宝石放入金刚石对顶砧样品腔内,压力的标定是采用标准红宝石荧光标压的技术;对样品进行加压至指定压力,然后将金刚石对顶砧压机卸压到常压,得到不同形貌的CuInS2纳米材料:当对起始原料加压至30 GPa,再卸压至常压时,得到二维薄膜状CuInS2纳米片;当对起始原料加压至25GPa,再卸压至常压时,得到准二维CuInS2纳米片;当对起始原料加压至15 GPa,再卸压至常压时,得到一维多枝状CuInS2纳米线。
CN201910546754.XA 2019-06-24 2019-06-24 一种形貌可控的CuInS2纳米材料的高压制备方法 Active CN110342569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910546754.XA CN110342569B (zh) 2019-06-24 2019-06-24 一种形貌可控的CuInS2纳米材料的高压制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910546754.XA CN110342569B (zh) 2019-06-24 2019-06-24 一种形貌可控的CuInS2纳米材料的高压制备方法

Publications (2)

Publication Number Publication Date
CN110342569A CN110342569A (zh) 2019-10-18
CN110342569B true CN110342569B (zh) 2021-09-21

Family

ID=68182799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910546754.XA Active CN110342569B (zh) 2019-06-24 2019-06-24 一种形貌可控的CuInS2纳米材料的高压制备方法

Country Status (1)

Country Link
CN (1) CN110342569B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781660A (zh) * 2010-02-10 2012-11-14 亿目朗美国股份有限公司 基于脉冲激光烧蚀制造纳米颗粒溶液

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133273A1 (ja) * 2012-03-07 2013-09-12 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781660A (zh) * 2010-02-10 2012-11-14 亿目朗美国股份有限公司 基于脉冲激光烧蚀制造纳米颗粒溶液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Structural Phase Transition and Electrical Transport Properties of CuInS2 Nanocrystals under High Pressure";Yan Li et al.;《J. Phys. Chem. C》;20150121;第119卷;第2964页左栏第2段至第2966页左栏第1段 *

Also Published As

Publication number Publication date
CN110342569A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
Das et al. Effect of film thickness on the energy band gap of nanocrystalline CdS thin films analyzed by spectroscopic ellipsometry
Lu et al. Shape-related optical and catalytic properties of wurtzite-type CoO nanoplates and nanorods
Eskizeybek et al. Synthesis and characterization of cadmium hydroxide nanowires by arc discharge method in de-ionized water
Dong et al. Synthesis of faceted and cubic Ag2S nanocrystals in aqueous solutions
KR101246338B1 (ko) 셀레늄화구리인듐 나노입자 및 그의 제조 방법
Mntungwa et al. Facile synthesis of cysteine and triethanolamine capped CdTe nanoparticles
Zhang et al. Design of spinous Ni/N-GN nanocomposites as novel magnetic/dielectric microwave absorbents with high-efficiency absorption performance and thin thickness
Yadav et al. Cu-doped Cd 1− x Zn x S alloy: synthesis and structural investigations
Ma et al. Direct–indirect bandgap transition in monolayer MoS2 induced by an individual Si nanoparticle
Liu et al. Pressure-induced multidimensional assembly and sintering of CuInS2 nanoparticles into lamellar nanosheets with band gap narrowing
CN110342569B (zh) 一种形貌可控的CuInS2纳米材料的高压制备方法
CN110745790A (zh) 一种硒化铋纳米粉末的水热制备方法
Mahdhi et al. Thickness dependence of properties Ga-doped ZnO thin films deposited by magnetron sputtering
Soomro et al. Growth, Structural and Optical Characterization of ZnO Nanotubes on Disposable‐Flexible Paper Substrates by Low‐Temperature Chemical Method
Thirumalai et al. Shape-selective synthesis and opto-electronic properties of Eu3+-doped gadolinium oxysulfide nanostructures
Mahdhi et al. Physical properties of metal-doped ZnO thin films prepared by RF magnetron sputtering at room temperature
Du et al. Selective synthesis and shape-dependent microwave electromagnetic properties of polymorphous ZnO complex architectures
Xing et al. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms
Wang et al. Synthesis of CuInSe2 monodisperse nanoparticles and the nanorings shape evolution via a green solution reaction route
CN105789350A (zh) 暴露{111}晶面Cu2Se/Cu2O超晶格亚微米线的制备方法
US20150075614A1 (en) Method for producing compound semiconductor thin film and solar cell including compound semiconductor thin film
Moreno et al. Properties of PbS: Ni2+ nanocrystals in thin films by chemical bath deposition
Ramezanpour et al. Metamaterial Mn-doped PbS nanoparticles: synthesis, size-strain line-broadening analysis and Kramers-Kronig study
Jiao et al. Preparation of nickel hydroxide nanorods/nanotubes and microscopic nanorings under hydrothermal conditions
Wei et al. Improved photoluminescence quantum yield and stability of CdSe-TOP, CdSe-ODA-TOPO, CdSe/CdS and CdSe/EP nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant