JP2004202439A - ナノ粒子の製造装置及びナノ粒子の製造方法 - Google Patents

ナノ粒子の製造装置及びナノ粒子の製造方法 Download PDF

Info

Publication number
JP2004202439A
JP2004202439A JP2002377046A JP2002377046A JP2004202439A JP 2004202439 A JP2004202439 A JP 2004202439A JP 2002377046 A JP2002377046 A JP 2002377046A JP 2002377046 A JP2002377046 A JP 2002377046A JP 2004202439 A JP2004202439 A JP 2004202439A
Authority
JP
Japan
Prior art keywords
liquid
target substrate
laser
nanoparticles
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377046A
Other languages
English (en)
Inventor
Katsuyoshi Shimokawa
勝義 下川
Masaaki Suzuki
正昭 鈴木
Alexander Piatenko
アレクサンダー ピアテンコ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002377046A priority Critical patent/JP2004202439A/ja
Publication of JP2004202439A publication Critical patent/JP2004202439A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】ナノ粒子の生産効率を低下させることなく、比較的に均一な粒径分布でナノ粒子を製造する。
【解決手段】ナノ粒子材料を含むターゲット基板を取り付ける基板取付部と、上記基板取付部に取り付けられたターゲット基板に対向して配設され、ターゲット基板に対してレーザーを照射するレーザー照射手段と、上記基板取付部に取り付けられたターゲット基板における、上記レーザー照射手段からのレーザーが照射される表面に対して液体を供給する液体供給手段とを備える。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、ターゲット基板にレーザーを照射することでナノ粒子を生成するナノ粒子の製造装置及びナノ粒子の製造方法に関する。
【0002】
【従来の技術】
近年バイオテクノロジーの分野では、金や銀からなるナノ粒子をタンパク質や核酸の検出等に応用することが始められている。また、ナノ粒子は、バイオテクノロジーの分野に限らず、例えば、電子デバイス、発光・表示素子材料、環境浄化材料といった様々な分野に応用されている。
【0003】
ナノ粒子を製造する技術としては、金属、セラミックスなどの物質をターゲットとして、真空中または減圧下でレーザーをターゲットに照射し、レーザーアブレーションによってナノサイズの粒子を基板上に堆積し、ナノ粒子あるいはナノ粒子堆積膜を製造する技術が一般によく知られている。
【0004】
また金や銀の金属板を水中や界面活性剤溶液中に配置して、レーザーを照射してレーザーアブレーションによりナノサイズの金属粒子、金属コロイド溶液を製造する方法が知られている(例えば非特許文献1及び2参照)。
【0005】
【非特許文献1】
Journal of Physical Chemistry B, 104巻, 35号, 2000年, ページ8333-8337
【非特許文献2】
Journal of Physical Chemistry B, 105巻, 22号, 2001年, ページ5114-5120
【0006】
【発明が解決しようとする課題】
真空中または減圧下でレーザーアブレーションを行う方法では、生成したナノ粒子が基板上に付着するかあるいはナノ粒子堆積膜を形成する。ナノ粒子は活性なため一度付着あるいは堆積膜を形成すると、再び分散させることはきわめて困難である。このため真空中または減圧下でのレーザーアブレーションでは、ナノ粒子を基板上に付着した状態あるいはナノ粒子堆積膜として得ることは出来るが、ナノ粒子を液体中に分散したコロイドとして得ることは出来ないという問題点があった。
【0007】
一方、非特許文献1及び2に開示されているように、金属などのターゲットを水中においてレーザーアブレーションする方法では、アブレーションで生成したナノ粒子が水中あるいは液体中に存在し、一部がレーザーと金属ターゲットの間のレーザー光路上に存在する。このため、生成したナノ粒子の一部にレーザーが再び照射される。ナノ粒子はレーザーを吸収するため、ターゲット表面に到達するレーザー強度は時間とともに減少し、結果として生成効率が低下し、生成したナノ粒子が溶液中で、ある一定以上の濃度になるとアブレーションが事実上起こらなくなるという問題点があった。
【0008】
また生成したナノ粒子に再びレーザーが照射されると、それによるナノ粒子の凝集やナノ粒子の合体が引き起こされ、結果として粒径分布が広がるという問題点があった。
【0009】
そこで、本発明は、上述したような実状に鑑み、ナノ粒子の生産効率を低下させることなく、比較的に均一な粒径分布でナノ粒子を製造することができるナノ粒子の製造装置及びナノ粒子の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上述した目的を達成した本発明は以下を包含する。
(1) ナノ粒子材料を含むターゲット基板を取り付ける基板取付部と、
上記基板取付部に取り付けられたターゲット基板に対向して配設され、ターゲット基板に対してレーザーを照射するレーザー照射手段と、
上記基板取付部に取り付けられたターゲット基板における、上記レーザー照射手段からのレーザーが照射される表面に対して液体を供給する液体供給手段と
を備えるナノ粒子の製造装置。
(2) 上記液体供給手段は、上記基板取付部に取り付けられたターゲット基板の表面に対して液体を噴霧することを特徴とする(1)記載のナノ粒子の製造装置。
(3) 上記液体供給手段は、上記基板取付部に取り付けられたターゲット基板の表面に対して液体を連続的に通液することを特徴とする(1)記載のナノ粒子の製造装置。
(4) 上記基板取付部は、上記ターゲット基板の略中心を回動中心として、上記ターゲット基板を回動させる駆動手段を更に備え、上記液体供給手段は上記ターゲット基板の略中心に液体を供給することを特徴とする(1)記載のナノ粒子の製造装置。
(5) 上記液体供給手段から供給される液体の量を制御する制御手段を更に備えることを特徴とする(1)記載のナノ粒子の製造装置。
(6) 上記レーザー照射手段から出射されるレーザーの強度及び/又は波長を制御する制御手段を更に備えることを特徴とする(1)記載のナノ粒子の製造装置。
(7) 上記液体供給手段は、上記レーザー照射手段からのレーザーが照射される位置の近傍に液体を供給することを特徴とする請求項1記載のナノ粒子の製造装置。
(8) 上記ターゲット基板にレーザーが照射されることにより生成されたナノ粒子を、液体とともに回収する回収手段を更に備えることを特徴とする(1)記載のナノ粒子の製造装置。
(9) ナノ粒子材料を含むターゲット基板に対して液体を供給した状態でレーザーを照射する工程と、
上記ターゲット基板に供給した液体を、レーザー照射によって生成されたナノ粒子とともに回収する工程と
を含むナノ粒子の製造方法。
(10) 上記液体をターゲット基板に対して噴霧することで、上記ターゲット基板に対して液体を供給することを特徴とする(9)記載のナノ粒子の製造方法。
(11) 上記液体をターゲット基板に対して連続的に通液することで、上記ターゲット基板に対して液体を供給することを特徴とする(9)記載のナノ粒子の製造方法。
(12) 上記ターゲット基板の略中心を回動中心として、上記ターゲット基板を回動させながら、基板上記ターゲット基板の略中心に液体を供給することを特徴とする(9)記載のナノ粒子の製造方法。
【0011】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明を適用したナノ粒子製造装置は、図1及び2に示すように、装置本体1内部にターゲット基板3を取り付ける取付部26と、ターゲット基板3に対向して配設され、ターゲット基板3に対してレーザーを照射するレーザー照射装置29と、ターゲット基板3における主面に液体を供給する液体供給装置14とを備えている。
【0012】
装置本体1は、下方に形成された排出口13を介して、ナノ粒子を含む溶液を回収するための回収手段(図示せず)を備えている。また、装置本体1には、遮蔽板12を備えるのぞき窓11が取り付けられている。装置本体1は装置表面に液体が付着し難く、用いる液体に溶けない材質でテフロン等のプラスチックまたは金属により構成されていることが好ましい。
【0013】
ターゲット基板3は、装置本体1の一側面を貫通したシャフト6の一端部にギアボックス7を介して取り付けられている。シャフト6の他方の端部には、基板回転用モーター4が取り付けられている。基板回転用モーター4は、上下スライド用モーター5により駆動制御された上下スライド装置8に取り付けられている。基板回転用モーター4は、シャフト6をその周方向に回転駆動することができる。ギアボックス7は、ターゲット基板3をその周方向に回転駆動することができる。上下スライドモーター5及び上下スライド装置8は、基板回転用モーター4を上下スライド装置8に沿って移動させることができる。基板回転用モーター4及び上下スライドモーター5は、制御装置27により駆動制御されている。
【0014】
レーザー照射装置29は、装置本体1の外部に配設されており、レンズ9を介してターゲット基板3に対してレーザーを照射できる位置に配設されている。レーザー照射装置29は、特に限定されないが、YAGレーザーの基本波(1.06ミクロン)、2倍波(0.532ミクロン)、3倍波(0.355ミクロン)、4倍波(0.266ミクロン)、エキシマレーザー(ArF, 0.193ミクロン, KrF, 0.248ミクロン)など通常、アブレーションで粒子生成が知られていて、かつターゲット基板3に供給される液体が吸収しない波長のレーザーを照射できるものである。また、レーザー照射装置29は、制御装置27によりレーザー照射強度等を制御されている。
【0015】
液体供給装置14は、図3に示すように、ノズル本体15と、ノズル本体15内に配設されたニードル本体16と、ノズル本体15とニードル本体16との間に配設されたノズル固定金具20とを備える。液体供給装置14においては、ニードル本体16の外周面とノズル固定金具20の内周面とが螺合するとともに、ノズル本体15上端の内周面とノズル固定金具20の外周面とが螺合することによって、ノズル本体15とニードル本体16とニードル固定金具20とが一体となっている。また、ノズル本体15とニードル16との間には、O-リング19が配設されている。
【0016】
液体供給装置14には、ノズル本体15とニードル本体16とニードル固定金具20とが一体となった状態で、ノズル本体15とニードル本体16との間に液体空間部が形成される。液体供給装置14は、液体空間部に連通する液体導入開口部17を有している。また、ニードル本体16の内部には、ニードル本体16の長手方向に沿ってガス流路が形成されている。ニードル本体16は、ガス流路にガスを導入するためのガス入口開口部25を有している。ガス入口開口部25は、ガス流路に供給するガス圧等を制御して、所望量のガス量をガス流路に供給するガス供給装置28と接続されている。なお、ガス流路は、液体供給装置14の先端側において液体空間部に連通している。
【0017】
液体供給装置14は、ノズル本体15の先端部が装置本体1内部に突出し、ガス入口開口部25が装置本体1外部に位置するように、ボールジョイント24を介して装置本体1に位置決め自在に取り付けられている。
【0018】
以上のように構成されたナノ粒子製造装置では、ナノ粒子を製造する際に先ず、ターゲット基板3を取付部26に取り付け、取り付けられたターゲット基板3の主面に対してレーザーを照射できるようにターゲット基板3を位置決めするとともに当該主面に対して液体を供給できるように液体供給装置14を位置決めする。
【0019】
ここで、ターゲット基板3の材質としては、特に限定されるわけではないが、ナノ粒子の組成に応じて適宜選択される。例えば、ターゲット基板3の材質としては、金、銀、銅などの金属、シリコン、セレン化カドミウムなどの半導体、チタン酸バリウム、酸化チタンなどのセラミックス等を挙げることができる。また、ターゲット基板3としては、如何なる形状のものを用いても良いが、例えば板状、円盤状等のものを使用することができる。
【0020】
次に、制御装置27の駆動制御のもとにレーザー照射装置29からターゲット基板3の主面に対してレーザーを照射するとともに、液体供給装置14から当該主面に対して液体を供給する。ターゲット基板3の主面に対してレーザーを照射すると、照射された部位及びその近傍でアブレーションが起こり、当該主面上でナノ粒子が生成される。
【0021】
本例のナノ粒子製造装置では、基板回転用モーター4、上下スライドモーター5及びギアボックス7を制御することによって、ターゲット基板3を装置本体1内で適宜移動させることができる。したがって、レーザー照射し、液体を供給しながらターゲット基板3を装置本体1内で移動させることによって、ターゲット基板3の表面を有効に利用することができる。
【0022】
また本例のナノ粒子製造装置では、ターゲット基板3の位置決めを行う際に、ターゲット3主面に照射されたレーザーの入射角に対する反射角の方向にのぞき窓11が位置するように設定する。これにより、ターゲット基板3主面に照射されたレーザーは、装置外部に遮蔽板12を介して外部に放出されることとなる。
【0023】
また、本例のナノ粒子製造装置では、レンズ9を介してレーザーをターゲット基板3主面に照射しているため、レーザーを最適なスポット経に集光して照射することができる。これによりアブレーションによるナノ粒子の生成効率を最適化することができる。
【0024】
ここで照射するレーザーは、ターゲット基板3をアブレーションするのに必要な閾値以上のエネルギー値を必要とする。例えば、レーザー照射装置29としてYAG2倍波(0.532ミクロン)を用い、ターゲット3として銀を用いた場合、レーザーのエネルギーは、例えば1mJ/cm2pulseから50 J/cm2pulseとし、好ましくは10mJ/cm2pulseから5 J/cm2pulseとする。
【0025】
また、本例のナノ粒子製造装置においては、ターゲット基板3の主面に対して液体を供給しているため、生成されたナノ粒子が液体中に取り込まれることとなる。特に、本例のナノ粒子製造装置では、ボールジョイント24によって液体供給装置14を所望の位置に位置決めできるため、ターゲット基板3主面の所望の位置に液体を供給することができる。ここで、供給する液体としては、特に限定されないが、水、トルエン、アルコールのようなコロイドの溶媒として通常よく使われる有機溶媒でもよく、またそれらに界面活性剤や高分子を溶かした溶液でもよい。
【0026】
液体供給装置14から液体を供給する際には、不活性ガス(アルゴン、ヘリウム、窒素)や空気等の気体をガス供給装置28によりガス入口開口部25からガス流路に導入するとともに、水や各種液体を液体導入開口部17より液体空間部に導入する。液体導入開口部17から導入された液体は毛管現象により、ニードル本体16の先端部23の近傍へと進入する。ニードル本体16の先端部23の近傍へと進入した液体は、ニードル本体16の先端部23から吹き出されたガス圧によって、ノズル本体15の先端部18に引き込まれノズル先端18より霧状となって噴出される。なお、液体は毛管現象及びガス圧で引き込まれた後に噴出するため、液体空間部内に特に加圧して送り込む必要はない。
【0027】
また、ニードル本体16の上部に取り付けたニードル調整つまみ21を回転させることによって、ニードル本体16の先端部23近傍の容積を調節し、ターゲット基板3に対する液体の噴霧量を調節することができる。また、ガス流路に導入するガスの圧力をガス供給装置28によって調節し、ターゲット基板3に対する液体の噴霧量を調節することもできる。
【0028】
さらに、液体の噴霧量は、ノズル本体15の先端部18の開口径、ガス流路の細管経、ニードル本体16の先端部23の肉厚及び開口径、ノズル本体15とニードル本体16の間隙、ガス圧によって調節することができる。ノズル先端部18の開口径は、例えば0.5〜3.0mmとし、好ましくは1.0〜2.0mmとする。また、ガス流路の細管径は、例えば0.3〜3.0mmとし、好ましくは0.5〜1.5mmとする。さらに、ニードル本体16の先端部23の肉厚は、例えば0.05〜3.0mmとし、好ましくは0.1〜2.0mmとする。ニードル本体16の先端部23の開口径は、例えば0.1〜3.0mmとし、好ましくは0.5〜2.0mmとする。ガス流路に供給するガス圧は、例えば98Kpa〜1960Kpa(1〜20Kg/cm2)が良く、好ましくは196Kpa〜980KPa(2〜10Kg/cm2)が望ましい。
【0029】
ナノ粒子の製造に最適な噴霧量は、ターゲット基板の材質、レーザー強度、レーザー照射スポット面積、レーザー照射の繰り返し周波数によって異なるため、一般的に規定することはできないが、これらのパラメーターを固定した個別具体的な条件下においては規定することができる。また、ターゲット基板3に対する噴霧量は、レーザー照射部分を液体が常に覆っている量とすることが好ましい。このとき、レーザー照射部分を覆う液体量が多すぎると、得られるナノ粒子の濃度が低くなってしまう。
【0030】
例えば、ターゲット基板3として銀を用い、液体として水を用い、YAG2倍波(532nm)を繰り返し周波数10Hz、レーザーのスポット経を3mmφ、レーザー光強度4J/cm2pulseとした場合、噴霧量としては、例えば1g/hrから500g/hrとし、好ましくは5g/hrから50g/hrとする。
【0031】
このように、ナノ粒子製造装置においては、レーザーアブレーションによるナノ粒子の生成時に液体を供給することによって、生成したナノ粒子が液体中に取り込まれることとなる。ナノ粒子を含む液体は、自重により装置本体1の下方に滴下することとなる。そして当該液体は、排出口13を介して回収手段(図示せず)において回収される。なお、回収した液体を、例えばオーブン等で加熱することによって、液体成分のみを蒸発させ、ナノ粒子を得ることができる。具体的には、ターゲット基板3として銀を用い、液体として水を40g/hrで噴霧し、YAG2倍波(532nm)を繰り返し周波数10Hz、レーザーのスポット径を3mmφ、レーザー光強度1.6J/cm2pulseとして1時間照射することによって、0.38重量%の銀コロイド溶液を得ることができた。さらに、得られた銀コロイド溶液をオーブン中で加熱することによって液体成分を蒸発させ、0.15gの銀ナノ粒子を得ることができた。
【0032】
すなわち、本例のナノ粒子製造装置によれば、液体中に分散した状態のナノ粒子を製造することができる。換言すれば、活性の高いナノ粒子が基板に付着した状態や堆積膜として生成されるのではなく、液体中に分散した状態で生成される。したがって、本例のナノ粒子製造装置によれば、活性の高いナノ粒子を様々な分野で使用可能な状態で得ることができる。
【0033】
また、本例のナノ粒子製造装置においては、ターゲット基板3におけるレーザーアブレーションが生じている部分に液体を順次供給している。すなわち、本例のナノ粒子製造装置によれば、ターゲット基板3主面に対して、常にナノ粒子を含まない液体を供給することができる。したがって、本例のナノ粒子製造装置では、液体中においてレーザーアブレーションする方法と異なり、生成したナノ粒子がレーザーを吸収するために生ずるレーザー強度の低下を防止することができる。これにより、本例のナノ粒子製造装置によれば、常に一定強度のレーザーをターゲット基板3に照射することができ、ナノ粒子の生成効率を常に高いレベルで維持することができ、更には高濃度でナノ粒子を含む溶液を得ることができる。
【0034】
さらに、本例のナノ粒子製造装置においては、生成したナノ粒子を含む液体が装置本体1の下方に順次滴下し、回収される。この場合、生成したナノ粒子に対するレーザーの再照射を防止することができる。したがって、本例のナノ粒子製造装置では、液体中においてレーザーアブレーションする方法と異なり、ナノ粒子に対するレーザーの再照射によるナノ粒子の合体や凝集を防止することができる。このため、本例のナノ粒子製造装置によれば、均一な粒度分布でナノ粒子を製造することができる。
【0035】
ところで、本例のナノ粒子製造装置は、図4に示すように、ターゲット基板3を水平方向に取り付け、ターゲット基板3の主面に対してレーザーの照射方向及び液体の供給方向を傾斜させた構成であってもよい。この場合、ターゲット基板3は、回転モーター30により回転駆動する取付部26に取り付けられる。そして、上述した場合と同様に、ターゲット基板3主面に液体を供給しながらレーザーを照射してレーザーアブレーションを生じさせ、ナノ粒子を生成する。この場合においては、液体供給装置14からの液体の噴射によって、ナノ粒子を含む液体をターゲット基板3上から強制的に除去することでナノ粒子を含む液体を回収することができる。この場合でも、液体中に分散したナノ粒子を、高い生成効率で得ることができ、且つ、均一な粒度分布でナノ粒子を製造することができる。
【0036】
一方、本例のナノ粒子製造装置においては、平板状のターゲット基板3を取付部26に取り付けるものであるが、図5及び6に示すように、円柱状のターゲット基板3を取り付けるものであっても良い。この場合、取付部26は、円柱状のターゲット基板3を吊り下げるように固定している。円柱状のターゲット基板3を用いるナノ粒子製造装置においても、図1乃至3に示したナノ粒子製造装置と同様に、溶液中に分散した状態でナノ粒子を得ることができる。
【0037】
ところで、本発明に係るナノ粒子製造装置は、ターゲット基板3に対して液体を供給しながらレーザーアブレーションによりナノ粒子を製造するものであれば、上述したような液体供給装置14を備える構成に限定されるものではない。すなわち、本発明に係るナノ粒子製造装置は、例えば、図7に示すように、中心部にニードルピン31を突設した取付部26と、ニードルピン31を挿入した液体タンク32とを備え、取付部26に水平方向に取り付けられたターゲット基板3に対して液体タンク32内の液体を供給するような構成であってもよい。図7に示したナノ粒子製造装置において、取付部26は、制御装置33により駆動制御された回転モーター34を備える。液体タンク32は、内部の圧力を調節するための圧力調節弁35と、制御装置33により駆動制御された定量ポンプ36とを備える。なお、図7に示すナノ粒子製造装置においては、ターゲット基板3主面に対して傾斜した方向からレーザーを照射するようにレーザー照射装置29を配置している。
【0038】
図7に示すナノ粒子製造装置では、液体タンク32から定量ポンプ36によりターゲット基板3の略中心に液体が供給されるとともに、回転モーター34により取付部26に連動してターゲット基板3を回転させる。これにより、ターゲット基板3の略中心に供給された液体は、遠心力によってターゲット基板3の外周に向かって流動し、最終的にはターゲット基板3主面から流れ落ちることとなる。このように液体を供給しながらターゲット基板3を回転させた状態で、レーザー照射装置29よりターゲット基板3主面にレーザーを照射させることによって、レーザーアブレーションを生じさせる。レーザーアブレーションにより生成したナノ粒子は、ターゲット基板3主面に供給された液体内に分散する。ナノ粒子を含む液体は、遠心力によってターゲット基板3主面から流れ落ちることとなる。
【0039】
図7に示したナノ粒子製造装置においても、液体中に分散した状態でナノ粒子を製造することができる。更に、生成したナノ粒子は、液体とともにターゲット基板3主面から順次流れ落ちるため、レーザーはナノ粒子により吸収されることなく、所定の強度でターゲット基板3主面に照射される。したがって、図7に示したナノ粒子製造装置においても、ナノ粒子の生成効率を常に高いレベルで維持することができる。さらにまた、生成したナノ粒子が液体とともにターゲット基板3主面から順次流れ落ちるため、生成したナノ粒子に対するレーザーの再照射を防止することができる。このため、図7に示したナノ粒子製造装置においても、ナノ粒子の合体や凝集を防止することができ、均一な粒度分布でナノ粒子を製造することができる。
【0040】
以上説明したように、図1乃至6に示したナノ粒子製造装置或いは図7に示したナノ粒子製造装置によれば、液体中に分散した状態でナノ粒子を製造することができるため、当該液体に高分子などの第3成分を加えることも可能である。このため、本発明に係るナノ粒子製造装置により製造されるナノ粒子は、真空中で得られる粒子に較べ、ナノ粒子表面に修飾を施したり、タンパク質や核酸等の生体物質を結合させるといった各種処理を施しやすいといった有利な点を有するといえる。
【0041】
特に、近年バイオテクノロジーの分野では、金や銀からなるナノ粒子をタンパク質、核酸の検出等に応用することが始められている。通常、これらのナノ粒子は金属塩の還元反応で作られるが、必然的に他のイオンや副生物が存在し、場合によってはこれら副生物が好ましくない働きをするため、除去が必要になる。しかしながら、本発明に係るナノ粒子製造装置によれば、ナノ粒子以外の他の物質が存在しない純水、あるいは純溶媒中で合成できるため、ナノ粒子以外の物質を含まない純粋なコロイド溶液を提供できる。
【0042】
また、真空中あるいは減圧下でのレーザーアブレーションでは真空を得るための排気装置(真空ポンプ)と真空チャンバーが不可欠で、どちらも通常は高価で、かつ面倒な排気操作が必要である。しかしながら、本発明に係るナノ粒子製造装置では、真空を使う必要がなく通常の雰囲気でレーザーアブレーションを行うため、高価な真空排気装置、真空チャンバーを必要としない。したがって、本発明に係るナノ粒子製造装置は、簡便かつ安価な装置構成であるといった有利な点を有するといえる。
【0043】
さらに、本発明に係るナノ粒子製造装置によれば、ターゲット基板3を構成する材料に限定されないため、様々なナノ粒子を得ることができる。例えば、ターゲット基板3を構成する材料として、CdSeやCdSのような蛍光を発する半導体を用いると蛍光性のナノ粒子を得ることができるし、鉄、ニッケルやスーパーマロイなどのような磁性物質を用いると磁性を有するナノ粒子を得ることができる。
【0044】
さらにまた、本発明に係るナノ粒子製造装置によれば、ターゲット基板3の主面に供給する液体には限定されず、例えば、高分子溶液を用いることができる。液体に高分子溶液を用いた場合には、ナノ粒子を含むコロイド溶液が得られる。このコロイド溶液を加熱蒸発等で溶媒を除去することにより金属のナノ粒子が分散した高分子が得られ、導電性の高分子物質を提供することができる。また光学的に透明な高分子を用い、金属、半導体のナノ粒子を分散することにより非線形光学材料を提供することができる。
【0045】
【発明の効果】
以上、詳細に説明したように、本発明に係るナノ粒子製造装置では、液体供給手段によりターゲット基板の表面に対して液体を供給しながら、レーザーを照射することによってナノ粒子を製造する。したがって、本発明に係るナノ粒子製造装置によれば、液体に分散した状態で、均一な粒度分布を有するナノ粒子を、高い生成効率を維持したまま製造することができる。
【図面の簡単な説明】
【図1】本発明を適用したナノ粒子製造装置の要部縦面図である。
【図2】本発明を適用したナノ粒子製造装置の要部横断面図である。
【図3】ナノ粒子製造装置における液体供給装置の要部断面図である。
【図4】ターゲット基板を水平方向に取り付けたナノ粒子製造装置における、ターゲット基板付近を示す概略構成図である。
【図5】円柱状のターゲット基板を取り付けたナノ粒子製造装置の要部縦断面図である。
【図6】円柱状のターゲット基板を取り付けたナノ粒子製造装置の要部横断面図である。
【図7】本発明を適用した他のナノ粒子製造装置における、ターゲット基板付近を示す概略構成図である。
【符号の説明】
1…装置本体、3…ターゲット基板、14…液体供給装置、26…取付部、29…レーザー照射装置

Claims (12)

  1. ナノ粒子材料を含むターゲット基板を取り付ける基板取付部と、
    上記基板取付部に取り付けられたターゲット基板に対向して配設され、ターゲット基板に対してレーザーを照射するレーザー照射手段と、
    上記基板取付部に取り付けられたターゲット基板における、上記レーザー照射手段からのレーザーが照射される表面に対して液体を供給する液体供給手段と
    を備えるナノ粒子の製造装置。
  2. 上記液体供給手段は、上記基板取付部に取り付けられたターゲット基板の表面に対して液体を噴霧することを特徴とする請求項1記載のナノ粒子の製造装置。
  3. 上記液体供給手段は、上記基板取付部に取り付けられたターゲット基板の表面に対して液体を連続的に通液することを特徴とする請求項1記載のナノ粒子の製造装置。
  4. 上記基板取付部は、上記ターゲット基板の略中心を回動中心として、上記ターゲット基板を回動させる駆動手段を更に備え、上記液体供給手段は上記ターゲット基板の略中心に液体を供給することを特徴とする請求項1記載のナノ粒子の製造装置。
  5. 上記液体供給手段から供給される液体の量を制御する制御手段を更に備えることを特徴とする請求項1記載のナノ粒子の製造装置。
  6. 上記レーザー照射手段から出射されるレーザーの強度及び/又は波長を制御する制御手段を更に備えることを特徴とする請求項1記載のナノ粒子の製造装置。
  7. 上記液体供給手段は、上記レーザー照射手段からのレーザーが照射される位置の近傍に液体を供給することを特徴とする請求項1記載のナノ粒子の製造装置。
  8. 上記ターゲット基板にレーザーが照射されることにより生成されたナノ粒子を、液体とともに回収する回収手段を更に備えることを特徴とする請求項1記載のナノ粒子の製造装置。
  9. ナノ粒子材料を含むターゲット基板に対して液体を供給した状態でレーザーを照射する工程と、
    上記ターゲット基板に供給した液体を、レーザー照射によって生成されたナノ粒子とともに回収する工程と
    を含むナノ粒子の製造方法。
  10. 上記液体をターゲット基板に対して噴霧することで、上記ターゲット基板に対して液体を供給することを特徴とする請求項9記載のナノ粒子の製造方法。
  11. 上記液体をターゲット基板に対して連続的に通液することで、上記ターゲット基板に対して液体を供給することを特徴とする請求項9記載のナノ粒子の製造方法。
  12. 上記ターゲット基板の略中心を回動中心として、上記ターゲット基板を回動させながら、基板上記ターゲット基板の略中心に液体を供給することを特徴とする請求項9記載のナノ粒子の製造方法。
JP2002377046A 2002-12-26 2002-12-26 ナノ粒子の製造装置及びナノ粒子の製造方法 Pending JP2004202439A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377046A JP2004202439A (ja) 2002-12-26 2002-12-26 ナノ粒子の製造装置及びナノ粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377046A JP2004202439A (ja) 2002-12-26 2002-12-26 ナノ粒子の製造装置及びナノ粒子の製造方法

Publications (1)

Publication Number Publication Date
JP2004202439A true JP2004202439A (ja) 2004-07-22

Family

ID=32814340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377046A Pending JP2004202439A (ja) 2002-12-26 2002-12-26 ナノ粒子の製造装置及びナノ粒子の製造方法

Country Status (1)

Country Link
JP (1) JP2004202439A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045639A (ja) * 2005-08-05 2007-02-22 Bando Chem Ind Ltd 無機微粒子およびその製造方法
JP2012516391A (ja) * 2009-01-30 2012-07-19 イムラ アメリカ インコーポレイテッド 液体中における高繰返率の超短パルスレーザアブレーションによるナノ粒子の生成
JP2013519505A (ja) * 2010-02-10 2013-05-30 イムラ アメリカ インコーポレイテッド パルスレーザ溶発によるナノ粒子溶液の製造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045639A (ja) * 2005-08-05 2007-02-22 Bando Chem Ind Ltd 無機微粒子およびその製造方法
JP2012516391A (ja) * 2009-01-30 2012-07-19 イムラ アメリカ インコーポレイテッド 液体中における高繰返率の超短パルスレーザアブレーションによるナノ粒子の生成
JP2014129608A (ja) * 2009-01-30 2014-07-10 Imra America Inc 液体中における高繰返率の超短パルスレーザアブレーションによるナノ粒子の生成
JP2016188428A (ja) * 2009-01-30 2016-11-04 イムラ アメリカ インコーポレイテッド 液体中における高繰返率の超短パルスレーザアブレーションによるナノ粒子の生成
JP2013519505A (ja) * 2010-02-10 2013-05-30 イムラ アメリカ インコーポレイテッド パルスレーザ溶発によるナノ粒子溶液の製造

Similar Documents

Publication Publication Date Title
US7449703B2 (en) Method and apparatus for EUV plasma source target delivery target material handling
Naser et al. The role of laser ablation technique parameters in synthesis of nanoparticles from different target types
US6377651B1 (en) Laser plasma source for extreme ultraviolet lithography using a water droplet target
JP5455308B2 (ja) Euvプラズマ源ターゲット供給方法及び装置
CN102292159B (zh) 在液体中用高重复频率超短脉冲激光烧蚀产生纳米颗粒
US20150258631A1 (en) Production Of Organic Compound Nanoparticles With High Repetition Rate Ultrafast Pulsed Laser Ablation In Liquids
JP2003246638A (ja) ガラス構造物およびその製造方法
JP2009115056A (ja) フロー系レーザーアブレーション用ポンプ及びレーザーアブレーションシステム
JP2012516391A5 (ja)
JP2006244837A (ja) レーザープラズマから輻射光を発生させる方法、該方法を用いたレーザープラズマ輻射光発生装置
WO2008008750A2 (en) Resonant infrared laser-assisted nanoparticle transfer and applications of same
JP2003047923A (ja) レーザクリーニング装置および方法
JP2006314900A (ja) 微粒子発生方法及び装置
JP2004202439A (ja) ナノ粒子の製造装置及びナノ粒子の製造方法
Uwada et al. Preparation and micropatterning of gold nanoparticles by femtosecond laser-induced optical breakdown
RU2426484C1 (ru) Способ изготовления медицинской маски
Kawai et al. Bimetallic nanoparticle generation from Au− TiO2 film by pulsed laser ablation in an aqueous medium
JP2005125258A (ja) 微粒子、微粒子の製造方法、及び製造装置
Karpuhin et al. Investigation of the characteristics of a colloidal solution and its solid phase obtained through ablation of zinc in water by high-power radiation from a copper vapor laser
KR100759286B1 (ko) 레이저 애블레이션을 이용한 지르코늄-철-바나듐 합금 나노분말 제조 방법
Mohammed et al. Effect of Laser Energy on Optical and Morphological Properties of Gold Nanoparticles
JP4287727B2 (ja) 微粒子の製造方法、及び製造装置
JP2020189263A (ja) ナノ粒子生成装置および生成方法
JP2002318193A (ja) ネブライザ及び高周波誘導結合プラズマ発光分析装置
Ghalot et al. Obtaining Nanoparticles by Underwater Laser Ablation–A Brief Review

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040818

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070717

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080115

Free format text: JAPANESE INTERMEDIATE CODE: A02