CN102316964A - 纳米多孔膜及其制备方法 - Google Patents

纳米多孔膜及其制备方法 Download PDF

Info

Publication number
CN102316964A
CN102316964A CN2010800080222A CN201080008022A CN102316964A CN 102316964 A CN102316964 A CN 102316964A CN 2010800080222 A CN2010800080222 A CN 2010800080222A CN 201080008022 A CN201080008022 A CN 201080008022A CN 102316964 A CN102316964 A CN 102316964A
Authority
CN
China
Prior art keywords
carbon nano
metal
nano structure
perforated membrane
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800080222A
Other languages
English (en)
Other versions
CN102316964B (zh
Inventor
朴翰浯
金在河
尹国进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioneer Corp
Original Assignee
Bioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioneer Corp filed Critical Bioneer Corp
Publication of CN102316964A publication Critical patent/CN102316964A/zh
Application granted granted Critical
Publication of CN102316964B publication Critical patent/CN102316964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00416Inorganic membrane manufacture by agglomeration of particles in the dry state by deposition by filtration through a support or base layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0086Mechanical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0221Group 4 or 5 metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02232Nickel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21811Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21813Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/58Fusion; Welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/78Possessing fully enclosed nanosized voids or physical holes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/781Possessing nonosized surface openings that extend partially into or completely through the host material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemically Coating (AREA)

Abstract

本发明涉及一种碳纳米结构体-金属复合纳米多孔膜,其是在具有微米或纳米级气孔的分离膜支撑体的一面或两面涂布碳纳米结构体-金属的复合体。本发明还涉及一种碳纳米结构体-金属复合纳米多孔膜的制备方法。该方法包括在表面活性剂存在下,将碳纳米结构体-金属的复合体进行分散后,涂布于分离膜支撑体的一面或两面的步骤;以及将上述涂布的分离膜支撑体进行热处理,从而使上述金属熔接于上述分离膜支撑体的步骤。根据本发明的碳纳米结构体-金属复合纳米多孔膜,由于上述碳纳米结构体-金属的复合体中金属为数纳米-数百纳米级,因此具有在低温下熔融的特点。

Description

纳米多孔膜及其制备方法
技术领域
本发明涉及一种在具有微米或纳米级气孔的分离膜支撑体的一面或两面涂布碳纳米结构体-金属的复合体的碳纳米结构体-金属复合纳米多孔膜及其制备方法。此外,本发明还涉及一种碳纳米结构体-金属复合纳米多孔膜及其制备方法,所述多孔膜及其制备方法用于水处理用分离膜的制备、场致发射显示器的制备、储氢装置粘结剂的制备、电极制备、超级电容器的制备、电磁屏蔽体的制备、轻量高强度应用制品的制备等。
背景技术
最近随着工业高度化,具有高纯度分离能力的分离膜技术被认为是非常重要的领域。从化学工业、食品工业、药品工业、医疗、生物化学到环境领域的广泛领域中,分离膜技术的重要性变得日趋重要,尤其是在环境领域中对于清洁用水的要求和水不足的认识加强。利用分离膜的技术作为解决该问题的方法之一,正受到高度关注。
同时,最近发现了碳纳米结构体。根据其形态可分为碳纳米管,碳纳米角,碳纳米纤维等。特别地,碳纳米管由于其优异的机械强度、导热系数、电导率及化学稳定性,从而可以能够应用于能源、环境及电子材料等多个领域。
碳纳米结构体-金属的复合体是在碳纳米管中引入官能团,将引入的官能团与金属(钴、铜、镍、银等)进行反应经化学结合而获得。因含有的金属成分,使得其在场致发射显示器的制备、储氢装置粘结剂的制备、电极制备、超级电容器的制备、电磁屏蔽体的制备、轻量高强度应用制品的制备等结构体成形制备方面具有优异的特性。
关于这些碳纳米结构体-金属的复合体的材料,韩国授权专利0558966,韩国申请专利2007-0072669及韩国申请专利2008-0049464公开了制备方法。
特别是在水处理领域,分离膜作为微滤(MF;Micro Filtration)膜、超滤(UF;Ultra Filtration)膜、纳米滤(NF;Nano Filtration)膜、反渗透(RO;Reverse Osmosis)膜、离子交换膜正在被使用,应用于工业排水处理,净水处理,污水处理,废水处理和海水淡化。水处理厂使用微过滤膜,微过滤膜还用于利用MBR(膜生物反应器)的污水处理中。超过滤膜能够去除细菌,因此应用于净水处理中,反渗透膜用于海水淡化设备。离子交换膜用于脱盐工艺。静冈(Shizuoka)技术中心开发了纳米过滤膜,在分离绿茶成分方面取得了成功,东京大学山本(Yamamoto)组织开发了用于超高度水处理的MBR,超高度废水处理技术正处于实用化阶段。
但是,这些分离膜存在的最大问题是膜污染。特别是由于微生物引起的膜污染会使得分离性能下降,对分离膜的寿命造成很大的障碍。这些由于微生物引起的膜污染存在降低分离膜性能及寿命的问题。因此,为了解决上述问题,正在对具有多种功能的分离膜进行持续性的研究。
发明内容
要解决的技术问题
本发明是为了解决上述问题而完成,发现在现有的分离膜上涂布碳纳米结构体-金属的复合体能够解决上述问题,从而提供了本发明。即、本发明涉及涂布有新的形态的碳纳米结构体-金属的复合体的纳米多孔膜。
并且,本发明涉及具有催化剂效果、微生物去除效果的新型纳米多孔膜。并且,本发明还涉及纳米多孔膜,所述纳米多孔膜具有根据碳纳米结构体-金属的复合体来调节气孔大小的微多孔性。本发明涉及一种碳纳米结构体-金属复合纳米多孔膜及其制备方法,所述多孔膜及其制备方法用于水处理的分离膜制备、场致发射显示器的制备、储氢装置粘结剂的制备、电极制备、超级电容器的制备、电磁屏蔽体的制备、轻量高强度应用制品的制备等方面。
并且,本发明提供新的碳纳米结构体-金属复合纳米多孔膜及其制备方法,所述方法使用均匀分散有数纳米-数百纳米的金属微粒的碳纳米结构体-金属的复合体。
技术方案
本发明人为了实现上述目的,不断进行了研究,结果发现使用新材料碳纳米结构体-金属的复合体能够制备碳纳米结构体-金属复合纳米多孔膜,并且制备得到的纳米多孔膜具有抗菌性。下面对本发明进行说明。
本发明涉及一种碳纳米结构体-金属复合纳米多孔膜。其在具有微米或纳米级气孔的分离膜支撑体的一面或两面涂布有碳纳米结构体-金属的复合体。
此外,本发明还提供一种碳纳米结构体-金属复合纳米多孔膜的制备方法。该方法包括将碳纳米结构体-金属的复合体分散在溶剂及表面活性剂中,然后将其涂布于分离膜支撑体的一面或两面的步骤;以及将上述涂布的分离膜支撑体进行热处理,从而使上述金属熔接于上述分离膜支撑体的步骤。
上述碳纳米结构体-金属的复合体的纳米金属或金属氧化物在低温下能够熔融或烧结,由于上述金属的熔融或烧结使碳纳米结构体呈网状结构连接,从而能够制备得到纳米多孔膜。上述碳纳米结构体及金属大小为数纳米-数百纳米,更具体地,是由1纳米-500纳米大小的球形金属微粒及碳纳米结构体组成。由于上述金属的大小单位为纳米,因此与通常大小的金属相比,金属的熔点降低。因此,即使在比较低的温度下进行热处理,也能够使得上述金属熔融或烧结,使碳纳米结构体-金属复合体呈网状结构连接,并使得碳纳米结构体-金属的复合体和分离膜支撑体能够很好地进行结合。此外,由于上述制备得到的纳米多孔膜的大小,微生物不会被过滤,因此将上述纳米多孔膜作为水处理分离膜使用时能够有效地去除微生物。
本发明的特征在于,上述碳纳米结构体-金属的复合体是将碳纳米结构体和金属或金属氧化物结合或混合。更详细地说,本发明中的上述碳纳米结构体-金属复合体包括将碳纳米结构体和金属或金属氧化物混合而得的混合物。混合碳纳米结构体和金属或金属氧化物利用加热或压缩等方法结合的混合物也能够制备碳纳米结构体-金属复合纳米多孔膜。
此外,本发明的特征在于,根据碳纳米结构体的直径大小来控制碳纳米结构体-金属复合纳米多孔膜的气孔大小。根据上述碳纳米结构体的种类的不同,碳纳米结构体的直径也有所不同,因此可以根据碳纳米结构体的种类来控制气孔的大小。本发明的特征在于,纳米多孔膜的碳纳米结构体之间具有气孔,上述气孔为0.1-500纳米。并且,本发明的纳米多孔膜能够应用于分离膜。
下面对上述碳纳米结构体-金属的复合体进行详细说明。
上述碳纳米结构体-金属的复合体的特征在于,是将分散在还原性溶剂中的碳纳米结构体的分散液和金属前体混合并进行热处理后制备得到。
上述碳纳米结构体-金属的复合体通过在上述分散液中再添加稳定剂,进行混合后进行热处理制备得到。
本发明中,上述碳纳米结构体-金属的复合体是将碳纳米结构体和金属或金属氧化物进行结合,上述碳纳米结构体可以选自单壁碳纳米管(single wall carbon nanotube)、双壁碳纳米管(double wall carbonnanotube)、多壁碳纳米管(multi wall carbon nanotube)、碳纳米角(carbon nano horn)、碳石墨烯(carbon graphene),碳纳米纤维(carbonnano fiber)或它们的混合物。更优选为使用单壁碳纳米管、双壁碳纳米管、多壁碳纳米管。根据上述碳纳米结构体种类的不同,能够控制本发明制备得到的纳米多孔膜气孔的大小。
上述金属可以选自下组中的一种或一种以上的金属,Mg、Al、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Cs、Ba、La、Ce、Nd、Sm、Eu、Gd、Tb、Hf、Ir、Pt、Tl、Pb及Bi。
上述碳纳米结构体-金属的复合体可以通过将上述碳纳米结构体分散在选自多元醇、乙二醇醚类或它们的混合物的还原性溶剂中,然后添加稳定剂和金属前体并进行热处理制备得到。
更具体地,上述碳纳米结构体-金属等复合体可以包括下述步骤制备得到。将碳纳米结构体分散在还原性溶剂中,制备分散液的步骤;在上述分散液中添加金属前体,制备混合液的步骤;以及将上述混合液进行热处理还原金属前体的步骤。并且,上述分散液中还可以添加稳定剂来制备得到。
上述多元醇选自用下列化学式1表示的如下组,乙二醇类、甘油、苏糖醇、阿糖醇、葡萄糖、甘露醇、半乳糖醇以及山梨醇;上述乙二醇醚类选自用下列化学式2表示的化合物,进而进行制备。
[化学式1]
H-(OR1)n-OH
[化学式2]
R4-(OR2)m-OR3
(上述化学式中R1及R2独立地选自C2-C10的直链或支链的亚烷基;R3为氢原子、烯丙基、C1-C10的烷基、C5-C20的芳基、C6-C30的芳烷基;R4选自烯丙基、C1-C10的烷基、C5-C20的芳基、C6-C30的芳烷基或C2-C10的烷基羰基;上述烷基羰基中的烷基的碳链上可以含有双键;n及m独立地为1-100的整数)。
上述乙二醇类例如有乙烯乙二醇(Ethylene glycol)、二甘醇(Diethylene Glycol)、三甘醇(Triethylene Glycol)、四甘醇(Tetraethylene Glycol)、聚乙二醇(Polyethylene Glycol)、丙二醇(Propylene Glycol)、二丙二醇(Dipropylene Glycol)、聚丙二醇(Polypropylene Glycol)、己二醇(Hexylene Glycol)等,优选为乙烯乙二醇,但并不限于这些。
上述乙二醇醚类例如包括乙二醇甲醚(Methyl Glycol)、二乙二醇甲醚(Methyl Diglycol)、三乙二醇甲醚(Methyl Triglycol)、聚乙二醇单甲醚(Methyl Polyglycol)、乙二醇乙醚(Ethyl Glycol)、二乙二醇乙醚(Ethyl Diglycol)、乙二醇丁醚(Butyl Glycol)、二乙二醇丁醚(Butyl Diglycol)、三乙二醇丁醚(Butyl Triglycol)、聚乙二醇丁醚(Butyl Polyglycol)、乙二醇己醚(Hexyl Glycol)、二乙二醇己醚(Hexyl Diglycol)、乙二醇乙基己醚(Ethyl Hexyl Glycol)、二乙二醇乙基己醚(Ethyl Hexyl Diglycol)、乙二醇丙烯基醚(Allyl Glycol)、乙二醇苯醚(Phenyl Glycol)、二乙二醇苯醚(Phenyl Diglycol)、乙二醇苯偶酰醚(Benzil Glycol)、二乙二醇苯偶酰醚(Benzil Diglycol)、乙二醇甲基丙烯醚(Methyl Propylene Glycol)、二乙二醇甲基丙烯醚(Methyl Propylene Diglycol)、三乙二醇甲基丙烯醚(Methyl Propylene Triglycol)、乙二醇丙基丙烯醚(Propyl Propylene Glycol)、二乙二醇丙基丙烯醚(Propyl Propylene Diglycol)、乙二醇丁基丙烯醚(Butyl Propylene Glycol)、二乙二醇丁基丙烯醚(Butyl Propylene Diglycol)、乙二醇苯基丙烯醚(Phenyl Propylene Glycol)、甲基丙烯基乙二醇酯(Methyl Propylene Glycol Acetate),聚甲基乙二醇等化合物,但并不是必须限定于这些。作为本发明的还原性溶剂优选为使用上述的乙二醇类和乙二醇醚类混合使用,具体地,更优选为乙二醇类和聚乙二醇单甲醚混合使用。
上述稳定剂可以从表面活性剂、水溶性高分子、胺类以及它们的混合物中选择使用。上述水溶性高分子的具体例有聚乙烯基吡咯烷酮(polyvinyl pyrrolidone),胺类可以选自伯胺、仲胺、叔胺、芳香胺及它们的混合物,更具体的例子有油酰胺(Oleylamine)。
上述金属的前体可以从硝酸银(Silver Nitrate)、乙酰丙酮酸银(Silver Acetylacetonate)、醋酸银(Silver Acetate)、碳酸银(SilverCarbonate)、氯化银(Silver Chloride)、氢氧化铝(Aluminumhydroxide)、氯化铝(Aluminum Chloride)、乙酰丙酮铝(AluminumAcetylacetonate)、醋酸铝(Aluminum Acetate)、硝酸铝(AluminumNitrate)、碳酸锰(Manganese Carbonate)、氯化锰(ManganeseChloride)、硝酸锰(Manganese Nitrate)、乙酰丙酮锰(ManganeseAcetylacetonate)、醋酸锰(Manganese Acetate)、氯化锌(ZincChloride)、硝酸锌(Zinc Nitrate)、醋酸锌(Zinc Acetate)、乙酰丙酮锌(Zinc Acetylacetonate)、乙酰丙酮钴(Cobalt Acetylacetonate)、醋酸钴(Cobalt Acetate)、乙酰丙酮铜(Copper Acetylacetonate)、醋酸铜(Copper Acetate)、乙酰丙酮镍(Nickel Acetylacetonate)、醋酸镍(Nickel Acetate)、乙酰丙酮铁(Iron Acetylacetonate)、醋酸铁(IronAcetate)、醋酸钛(Titanium Acetate)、乙酰丙酮钛(TitaniumAcetylacetonate)及它们的水合物中选择使用。
如上所述,本发明的碳结构体-金属复合体可以使用由1-500纳米的球形金属微粒及碳纳米管组成的碳纳米结构体-金属复合体。
下面,对本发明的碳纳米结构体-金属复合纳米多孔膜更加详细地进行说明。
本发明是将上述碳纳米结构体-金属复合体涂布于上述分离膜支撑体上,通过压缩、加热或烧结制备,提供一种碳纳米结构体之间具有纳米气孔结构构成的碳纳米结构体-金属复合纳米多孔膜。上述纳米气孔为1纳米-500纳米,由于微生物不能够通过上述纳米多孔膜,因此能够具有去除微生物的效果。更具体地,本发明的纳米多孔膜可以作为抗菌水处理的分离膜使用。
本发明提供一种碳纳米结构体-金属复合纳米多孔膜的制备方法。包括将碳纳米结构体-金属的复合体分散在溶剂及表面活性剂中,然后将其涂布于分离膜支撑体的一面或两面的步骤;以及将上述涂布的分离膜支撑体进行热处理,从而使上述金属熔接于上述分离膜支撑体的步骤。
上述分离膜支撑体可以使用HEPA过滤器、ULPA过滤器、玻璃纤维过滤器、玻璃粉末烧结过滤器、高分子无纺布过滤器、聚四氟乙烯薄膜过滤器、金属粉末烧结过滤器及金属丝编织过滤器等,但并不是一定限于这些。
本发明中上述涂布的特征在于,将上述碳纳米结构体-金属的复合体用分离膜支撑体过滤,然后将上述分离膜支撑体上残留的碳纳米结构体-金属的复合体进行压缩。
本发明中上述金属为1-500纳米,上述金属微粒大小为纳米级时,具有在低温下熔融的特点。因此,本发明将热处理在100-700℃下进行,更优选为100-500℃下进行,当上述金属为银时,能够在100-300℃下进行热处理。将上述金属微粒熔融,使碳纳米结构体-金属的复合体相互连接,从而能够制备呈网状结构的碳纳米结构体-金属复合纳米多孔膜。并且,本发明是在上述温度下进行热处理,具有分离膜支撑体不会熔化的同时、还能够使碳纳米结构体-金属的复合体熔接于上述分离膜支撑体上的优点。
下面更加具体地进行说明。将碳纳米结构体-金属的复合体结合在分离膜支撑体上的原理如下。碳纳米结构体本身不具有相互间的结合力。但对于碳纳米结构体-金属的复合体,由于结合有金属,当金属微粒为纳米级时,具有在低温下熔融的特点。利用这种金属成分能够使碳纳米结构体-金属的复合体通过热处理而相互连接,并熔接于上述分离膜支撑体上,从而能够制备得到呈网状结构的碳纳米结构体-金属复合纳米多孔膜。
更具体地,本发明中的上述金属可以使用银,含有银的纳米多孔膜能够用于抗菌水处理的分离膜中。相对于碳纳米结构体上述银含量为5-70重量%时能够有效显现抗菌性。如果低于5重量%会很难使碳纳米管形成网状结构,如果高于70重量%银会将分离膜堵塞,会有液体流动不畅的问题。
下列图3、图4及图5的照片是能够确认碳纳米管-银复合纳米多孔膜具有抗菌效果的照片,对于图的说明将在下述实施例及试验例中更加具体地进行说明。将根据本发明制备得到的碳纳米管-银复合纳米多孔膜用作分离膜使用时,不会产生由于细菌引起的分离膜堵塞现象,能够提供一种延长分离膜更换周期的纳米分离膜。
相对于100重量份的表面活性剂可以混合10-50重量份的碳纳米结构体-金属的复合体进行分散,在上述范围内,碳纳米结构体-金属的复合体能够防止复合体缠结,能够有效地进行分散。
上述溶剂可选自水、一元醇、多元醇、乙二醇醚类及它们的混合物组成的组中选择使用。上述一元醇的具体例为可从甲醇、乙醇、丙醇、丁醇、戊醇、己醇、辛醇组成的组中选择使用,更优选为丙醇。
对于上述多元醇、乙二醇醚类的详细说明记载于上述有关碳纳米结构体-金属的复合体制备方法中,因此在这里进行省略。
本发明使用的表面活性剂可以选自非离子型表面活性剂、阳离子型表面活性剂、阴离子型表面活性剂及它们的混合物。更具体地说,上述表面活性剂例如包括十六烷基三甲基溴化铵(Cetyltrimethylammonium bromide)、十六烷基三甲基氯化铵(Cetyltrimethylammonium chloride)、硬脂酸(Stearic Acid)、甲基葡萄糖苷(Methyl glucoside)、辛基葡萄糖苷(Octyl glucoside)、聚氧乙烯失水山梨醇单月桂酸酯(Polyoxyethylene sorbitan monolaurate)、聚氧乙烯失水山梨醇棕榈酸酯(Polyoxyethylene sorbitanmonopalmitate)、聚氧乙烯失水山梨醇单硬脂酸酯(Polyoxyethylenesorbitan monostearate)、聚氧乙烯失水山梨醇单油酸酯(Polyoxyethylene sorbitan monooleate)、失水山梨醇单月桂酸酯(Sorbitan monolaurate)、乙二醇单月桂酸酯(Ethylene glycolmonolaurate)、丙二醇单月桂酸酯(Propylene glycol monolaurate)、三甘油单月桂酸酯(Triglycerol monostearate)或它们的混合物,更优选为,十六烷基三甲基溴化铵或十六烷基三甲基氯化铵,但并不一定是限于这些。
本发明的制备方法中,可以采用任何公知的方法将碳纳米结构体-金属的复合体分散于溶剂中,但优选超声波处理分散的方法,这是因为该制备方法容易且分散性优异。碳纳米结构体-金属的复合体一般可以通过电子显微镜确认其缠结。在上述分离膜支撑体上进行涂布时,由于这种碳纳米结构体-金属的复合体的缠结会妨碍碳纳米结构体-金属的复合体均匀地分散,因此用制备碳纳米结构体-金属的复合体制备纳米分离膜时超声波处理是必须进行的工序。
本发明的制备方法中,在分离膜支撑体的一面或两面上进行涂布时,作为上述涂布的方法有旋涂(spin coating)、浸涂(dip coating),喷涂(spray coating)、棒涂(bar coating)及丝网印刷(screen printing)、经上述支撑体过滤来涂布的方法等,但并不是一定限于这些。通过将上述涂布的分离膜支撑体在100-700℃下进行3-10小时热处理,使金属熔融或烧结,从而能够制成网状结构。上述热处理有例如可以在一般的低温烤箱中进行热处理或采用通过热轧辊的方法、或在高温的电炉中进行热处理的方法等,但并不是一定限于这些。
下列图1及图2为本发明制备的碳纳米管-金属复合纳米多孔膜在扫描式电子显微镜下的照片,能够确认上述纳米多孔膜为金属微粒熔融形成网状结构、并且形成纳米级的气孔。
有益效果
本发明的碳纳米结构体-金属复合纳米多孔膜具有根据上述碳纳米结构体的大小来控制纳米多孔膜气孔大小的优点。
本发明的碳纳米结构体-金属复合纳米多孔膜的上述碳纳米结构体-金属的复合体的金属大小为数纳米-数百纳米,因此具有在低温下熔融的特点。并且,在低温下进行热处理使得上述金属和碳纳米结构体呈网状连接,从而提供一种将上述金属熔接于分离膜支撑体上制备得到的新的形态的纳米多孔膜及其制备方法。即使在较低的温度下进行热处理,也能够使上述金属熔融或烧结,使得碳纳米结构体-金属复合体呈网状连接,并使得上述碳纳米结构体很好地附着于分离膜支撑体上。并且上述制备得到的纳米多孔膜由于气孔的大小,不会使微生物滤过,因此将上述纳米多孔膜用作水处理分离膜时,能够有效地去除微生物。
并且,本发明的纳米多孔膜用作水处理分离膜时,能够解决由细菌引起的有关分离膜堵塞现象的分离膜寿命问题。并且,能够有效地去除引起水质污染及大气污染的物质,因此能够用作水质及大气净化的过滤器。
附图说明
图1为实施例1制备得到的碳纳米结构体-银复合纳米多孔膜在扫描式电子显微镜(SEM)下观察到的照片。
图2为实施例2制备得到的碳纳米结构体-钴复合纳米多孔膜在扫描式电子显微镜下观察到的照片。
图3为根据试验例1的a),对碳纳米管-银复合纳米多孔膜进行金黄色葡萄球菌(S.aureus)的抗菌试验结果照片。
图4为根据试验例1的b),对碳纳米管-银复合纳米多孔膜进行大肠杆菌(E.Coli)的抗菌试验结果照片。
图5为根据试验例2,用碳纳米管-银复合纳米多孔膜对金黄色葡萄球菌(S.aureus)进行过滤后的滤液的菌培养照片。
图6为根据试验例4的对照组(control)的实时PCR反应结果。
图7为根据试验例4,用碳纳米管-银复合纳米多孔膜对克沙奇病毒进行过滤后的滤液的实时PCR反应结果。
具体实施方式
下面,为了具体说明本发明,将举出一些实施例进行说明,但本发明并不被这些实施例所限定。
制备例1制备碳纳米管-银复合体
在500ml的圆底烧瓶中放入0.3g薄的多壁碳纳米管(纳米科技,薄的多壁碳纳米管CNT管级),然后将280ml乙烯乙二醇(EG)加入到圆底烧瓶反应器中。安装搅拌器搅拌30分钟,然后将反应器放入超声波清洗机中,利用超声波进行3小时超声波处理,使得碳纳米管分散在乙烯乙二醇中。此时,控制反应器的温度不超过50℃。超声波处理结束后重新安装搅拌器,并连接温度计和冷却用冷凝器。反应器进行搅拌的同时加入1.68g的PVP(聚乙烯吡咯烷酮,制造公司:Fluka,平均分子量(Mw):40,000)和5.6ml的油酰胺(Oleylamine),然后加入1.102g的硝酸银(Silver Nitrate;AgNO3)。将真空泵与反应器连接,去除反应器内部的空气,并置换成氮气。然后继续通入氮气,使氮气通过反应器内部向外部流动,阻碍了氧气的流入。在烧瓶底部设置覆盖物,将反应器内部温度经过40分钟升至200℃后,反应1小时。还原反应结束后,将反应器温度经过3个小时慢慢降至常温。将合成的碳纳米管-银复合体用滤纸过滤后,用乙酸乙酯(Ethylacetate)和己烷清洗数次,从而得到碳纳米管-银复合体。用扫描式电子显微镜(SEM)分析碳纳米管-银复合体的结果,确认银(Silver)微粒为球形,并以一定的大小均匀分散。
制备例2 制备碳纳米管-钴复合体
在500ml的圆底烧瓶中放入0.3g碳纳米管(韩华纳米科技,CM-95),然后将128ml三甘醇(TEG)加入到反应器中。安装搅拌器搅拌30分钟,然后将反应器放入超声波清洗机中,利用超声波进行3小时超声波处理,使得碳纳米管分散。此时,控制反应器的温度不超过50℃。超声波处理结束后重新安装搅拌器,并连接温度计和冷却用冷凝器。搅拌反应器溶液的同时将4.26ml聚乙二醇单甲醚(MPG,CH3(OCH2CH2)nOH,n=4-5,韩农化成,商品名:MPG)加入到烧瓶反应器中,然后再加入3.48g乙酰丙酮钴。将真空泵与反应器连接,去除反应器内部的空气,并置换成氮气。然后继续通入氮气,使氮气通过反应器内部向外部流动,阻碍了氧气流入。在烧瓶底部设置覆盖物,将反应器内部温度经过1个小时升至280℃后,并保持30分钟。还原反应结束后,将反应器温度经过3个小时慢慢降至常温。将合成的复合体用滤纸过滤后,用乙醇清洗数次,从而得到碳纳米管-钴复合体。用扫描式电子显微镜(SEM)分析碳纳米管-钴复合体的结果,确认钴微粒为球形,并以一定的大小均匀分散。
制备例3 制备碳纳米管-钴复合体
除了将金属盐替换为4.04g乙酰丙酮铜外,其余条件采用和实施例2相同的条件进行,从而得到碳纳米管-铜复合体。用扫描式电子显微镜(SEM)分析碳纳米管-铜复合体的结果,确认铜微粒接近于球形,并以一定的大小均匀分散。
制备例4制备碳纳米管-镍复合体
除了将金属盐替换为3.48g乙酰丙酮镍外,其余条件采用和实施例2相同的条件进行,从而得到碳纳米管-镍复合体。用扫描式电子显微镜(SEM)分析碳纳米管-镍复合体的结果,确认镍微粒接近于球形,并以一定的大小均匀分散。
实施例1 制备碳纳米管-银复合纳米多孔膜
在250ml的圆底烧瓶中加入上述制备例1制得的0.5g的碳纳米管-银复合体、100ml的超纯水、3ml十六烷基三甲基氯化铵(cetyltrimethylammonium chloride,28wt%),然后在25-30℃下,利用超声波分散处理2小时。将气孔大小为0.3μm的HERA滤纸剪成直径为6.2cm的圆形滤纸,并安装在过滤器上,然后加入30ml的利用上述超声波进行分散处理后得到的分散液,进行过滤。当没有通过滤纸的固体成份涂布在上述滤纸上后,将其放入均一的玻璃板之间进行压缩,然后在烤箱中,于150℃下进行8小时热处理,使上述银熔接在滤纸上。冷却至常温后,剪成直径为5cm的大小,并安装在过滤装置(宏宜仪器股份有限公司KR-47H)上后,用50ml乙醇、50ml超纯水,洗去表面活性剂(十六烷基三甲基氯化铵)和微细残余物。然后再次在烤箱中于150℃下进行两次热处理,从而制备得到碳纳米管-银复合纳米多孔膜。将制备得到的碳纳米管-银复合纳米多孔膜用扫描式电子显微镜(SEM)拍摄并显示在下图1中,能够确认银微粒分散在碳纳米管上。
实施例2 制备碳纳米管-钴复合纳米多孔膜
在250ml的圆底烧瓶中加入上述制备例2制得的0.5g的碳纳米管-钴复合体、100ml的超纯水、3ml十六烷基三甲基氯化铵(cetyltrimethylammonium chloride,28wt%),然后在25-30℃下,利用超声波分散处理2小时。将气孔大小为0.3μm的HERA滤纸剪成直径为6.2cm的圆形滤纸,并安装在过滤器上,然后加入30ml的利用上述超声波进行分散处理后得到的分散液,进行过滤。当没有通过滤纸的固形份涂布在上述滤纸上后,将其放入均一的玻璃板之间进行压缩,然后在烤箱中,于450℃下进行8小时热处理,使上述钴熔接在滤纸上。冷却至常温后,剪成直径为5cm的大小,并安装在过滤装置(宏宜仪器股份有限公司KR-47H)上后,用50ml乙醇、50ml超纯水,洗去表面活性剂(十六烷基三甲基氯化铵)和微量残余物。将制备得到的碳纳米管-钴复合纳米多孔膜用扫描式电子显微镜(SEM)拍摄并显示在下图2中,能够确认钴微粒分散在碳纳米管上。
实施例3 制备碳纳米管-铜复合纳米多孔膜
除了使用制备例3中合成的碳纳米管-铜复合体外,其余采用与实施例2相同的条件,制备得到碳纳米管-铜复合体纳米多孔膜。将制备得到的碳纳米管-铜复合纳米多孔膜用扫描式电子显微镜(SEM)进行分析的结果为:能够确认铜微粒分散在碳纳米管上。
实施例4 制备碳纳米管-镍复合纳米多孔膜
除了使用制备例4中合成的碳纳米管-镍复合体外,其余采用与实施例2相同的条件,制备得到碳纳米管-镍复合体纳米多孔膜。将制备得到的碳纳米管-镍复合纳米多孔膜用扫描式电子显微镜(SEM)进行分析的结果为:能够确认镍微粒分散在碳纳米管上。
试验例1 碳纳米管-银复合纳米多孔膜的抗菌试验
a)金黄色葡萄球菌抗菌性试验
利用BHI(脑心浸液,Brain Heart Infusion)液体培养基,在37℃下培养金黄色酿脓葡萄球菌(S.aureus,金黄色葡萄球菌)12小时。将得到的培养液稀释至菌数为103CFU/ml后,取其中的100μl涂布(smear)于BHI平板培养基上,然后将其放在实施例1制备得到的纳米分离膜上,于37℃下培养24小时。培养结束后观察放着分离膜的部分的菌落有没有增殖,从而来判断有无抗菌能力。下列图3是经过24小时培养后观察到的照片。
如下图3所示,对于实验的菌株,放上碳纳米管-银分离膜的板(plate)上没有菌落(colony)生长,从而能够确认碳纳米管-银纳米分离膜具有抗菌能力。
b)大肠杆菌抗菌性试验
除了用大肠杆菌(Escherichia coli;E.coli)代替金黄色酿脓葡萄球菌(S.aureus,金黄色葡萄球菌)外,其余均与上述试验1的a)相同。下图4是在试验例1的b)中经过24小时培养后观察到的照片。放上碳纳米管-银分离膜的板(plate)上没有菌落(colony)生长,从而能够确认碳纳米管-银纳米分离膜具有抗菌能力。
试验例2 碳纳米管-银复合纳米多孔膜细菌过滤试验
利用BHI(脑心浸液,Brain Heart Infusion)液体培养基,在37℃下培养金黄色酿脓葡萄球菌(S.aureus,金黄色葡萄球菌)12小时。
利用上述实施例1制备得到的碳纳米管-银复合纳米多孔膜进行过滤后,将过滤得到的液体涂布在BHI平板培养基上,于37℃下培养12小时后观察到的照片如图5所示。
采用如果菌生长,说明没有被过滤掉,如果没有菌生长,说明被过滤掉的方法进行判断。试验结果如下图5中所示,过滤金黄色酿脓葡萄球菌(S.aureus,金黄色葡萄球菌)得到的液体在平板培养基上没有检测出菌,因此显示为金黄色酿脓葡萄球菌(S.aureus,金黄色葡萄球菌)已经被过滤掉。
试验例3 碳纳米管-银复合纳米多孔膜细菌过滤试验
利用BHI(脑心浸液,Brain Heart Infusion)液体培养基,在37℃下培养大肠杆菌(Escherichia coli;E.colius)12小时。除了用大肠杆菌(Escherichia coli;E.coli)代替金黄色酿脓葡萄球菌(S.aureus,金黄色葡萄球菌)外,其余同上述试验例2。
利用上述实施例1制备得到的碳纳米管-银复合纳米多孔膜进行过滤后,将过滤得到的液体涂布在BHI平板培养基上,于37℃下培养12小时后进行观察。试验结果为过滤大肠杆菌(E.coli,大肠杆菌)液得到的液体在平板培养基上没有检测出菌,因此显示为大肠杆菌(E.coli,大肠杆菌)已经被过滤掉。
试验例4 碳纳米管-银复合纳米多孔膜病毒过滤试验
利用肠病毒进行了碳纳米管-银复合纳米多孔膜的病毒过滤试验。肠病毒为由28-30纳米大小的单链RNA基因组构成的无包膜病毒。克沙奇病毒(coxsackievirus)为肠病毒(enterovirus;EV)的一种,已知的血清型为29种,分为A组和B组。本实验采用克沙奇病毒A9型(ATCC-VR186)进行了过滤实验。
先将克沙奇病毒A9在100℃下加热20分钟,使其灭活后用于下述实验。使1000μl病毒液通过碳纳米管-银复合纳米多孔膜1个小时左右,然后取过滤得到的病毒液250μl,使用AccuPrep病毒RNA提取试剂盒(提取试剂盒;百奥尼(Bioneer),韩国)提取RNA的同时另取没有进行过滤的250μl病毒液作为对照组(control)使用。使RNA提取液的最后体积为50μl,将45μl用于实时PCR实验。在实时PCR实验中使用Accupower
Figure BPA00001422654100172
肠病毒实时RT-PCR试剂盒(增殖试剂盒;Bioneer,韩国)使沙克奇病毒RNA增殖,由此确认沙克奇病毒是否存在。
实验结果及对照组(control)的增殖结果如图6所示,纳米多孔膜过滤实验组结果如图7所示:沙克奇病毒A9没有增殖,IPC(Internalpositive control)进行了增殖,由此可知不存在沙克奇病毒。并且可确认结果为将沙克奇病毒液进行过滤后,病毒不能够通过过滤器。

Claims (23)

1.一种碳纳米结构体-金属复合纳米多孔膜,其特征在于,其是在具有微米或纳米级气孔的分离膜支撑体的一面或两面涂布碳纳米结构体-金属的复合体。
2.根据权利要求1所述的碳纳米结构体-金属复合纳米多孔膜,其特征在于,所述碳纳米结构体-金属的复合体为碳纳米结构体和金属或金属氧化物结合或混合。
3.根据权利要求2所述的碳纳米结构体-金属复合体纳米多孔膜,其特征在于,根据所述碳纳米结构体的直径大小来控制所述碳纳米结构体-金属复合纳米多孔膜的气孔大小。
4.根据权利要求3所述的碳纳米结构体-金属复合纳米多孔膜,其特征在于,所述气孔为0.1-500纳米。
5.根据权利要求2所述的碳纳米结构体-金属复合纳米多孔膜,其特征在于,所述碳纳米结构体-金属的复合体是将分散在还原性溶剂中的碳纳米结构体的分散液和金属前体混合并进行热处理后制备而得。
6.根据权利要求2所述的碳纳米结构体-金属复合纳米多孔膜,其特征在于,所述碳纳米结构体-金属的复合体通过在所述分散液中再加入稳定剂混合后,进行热处理制备得到。
7.根据权利要求5或6所述的碳纳米结构体-金属复合纳米多孔膜,其特征在于,所述还原性溶剂选自多元醇、乙二醇醚类或它们的混合物;所述多元醇选自用下列化学式1表示的乙二醇类、甘油、苏糖醇、阿糖醇、葡萄糖、甘露醇、半乳糖醇以及山梨醇构成的组;所述乙二醇醚类选自用下列化学式2表示的化合物;
[化学式1]
H-(OR1)n-OH
[化学式2]
R4-(OR2)m-OR3
(上述化学式中R1及R2独立地选自C2-C10的直链或支链的亚烷基;R3为氢原子、烯丙基、C1-C10的烷基、C5-C20的芳基、C6-C30的芳烷基;R4选自烯丙基、C1-C10的烷基、C5-C20的芳基、C6-C30的芳烷基或C2-C10的烷基羰基;上述烷基羰基中的烷基的碳链上可以含有双键;n及m独立地为1-100的整数)。
8.根据权利要求2所述的碳纳米结构体-金属复合纳米多孔膜,其特征在于,所述碳纳米结构体选自单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、碳纳米角、碳石墨烯、碳纳米纤维或它们的混合物。
9.根据权利要求2所述的碳纳米结构体-金属复合纳米多孔膜,其特征在于,所述金属选自下组中的一种或一种以上:Mg、Al、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Cs、Ba、La、Ce、Nd、Sm、Eu、Gd、Tb、Hf、Ir、Pt、Tl、Pb及Bi。
10.根据权利要求1所述碳纳米结构体-金属复合纳米多孔膜,其特征在于,将碳纳米结构体-金属的复合体涂布于所述分离膜支撑体上,通过压缩、加热或烧结制备而得。
11.根据权利要求1所述的碳纳米结构体-金属复合纳米多孔膜,其特征在于,所述碳纳米结构体-金属复合纳米多孔膜用于抗菌水处理。
12.一种碳纳米结构体-金属复合纳米多孔膜的制备方法,其包括:在表面活性剂存在下,将碳纳米结构体-金属的复合体分散于溶剂中后,涂布于分离膜支撑体的一面或两面的步骤;以及将上述涂布的分离膜支撑体进行热处理,从而使上述金属熔接于上述分离膜支撑体的步骤。
13.根据权利要求12所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,所述金属为1-500纳米。
14.根据权利要求13所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,所述热处理是在100-700℃下进行。
15.根据权利要求13所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,所述金属为银。
16.根据权利要求15所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,所述热处理在100-300℃下进行。
17.根据权利要求15所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,所述银相对于碳纳米结构体为5-70重量%。
18.根据权利要求14所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,所述涂布为将上述碳纳米结构体-金属的复合体用分离膜支撑体过滤,然后对残留在上述分离膜支撑体上的碳纳米结构体-金属的复合体进行压缩。
19.根据权利要求12所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,所述碳纳米结构体-金属的复合体是将分散在还原性溶剂中的碳纳米结构体的分散液和金属前体混合并进行热处理后制备得到。
20.根据权利要求12所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,所述碳纳米结构体-金属的复合体通过在所述分散液中再添加稳定剂混合后,进行热处理制备得到。
21.根据权利要求12所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,相对于100重量份的表面活性剂混合10-50重量份的所述碳纳米结构体-金属的复合体进行分散。
22.根据权利要求12所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,所述溶剂选自水、酒精、多元醇、乙二醇醚类及它们混合物的组。
23.根据权利要求12所述的碳纳米结构体-金属复合纳米多孔膜的制备方法,其特征在于,所述表面活性剂选自非离子型表面活性剂、阳离子型表面活性剂、阴离子型表面活性剂及它们的混合物。
CN201080008022.2A 2009-03-27 2010-03-26 纳米多孔膜及其制备方法 Active CN102316964B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020090026356A KR101118473B1 (ko) 2009-03-27 2009-03-27 나노다공막 및 이의 제조방법
KR10-2009-0026356 2009-03-27
PCT/KR2010/001869 WO2010110624A2 (en) 2009-03-27 2010-03-26 Nanoporous films and method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN102316964A true CN102316964A (zh) 2012-01-11
CN102316964B CN102316964B (zh) 2015-08-05

Family

ID=42781691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080008022.2A Active CN102316964B (zh) 2009-03-27 2010-03-26 纳米多孔膜及其制备方法

Country Status (8)

Country Link
US (1) US8887926B2 (zh)
EP (1) EP2411128B1 (zh)
JP (1) JP5393809B2 (zh)
KR (1) KR101118473B1 (zh)
CN (1) CN102316964B (zh)
BR (1) BRPI1008710A2 (zh)
RU (1) RU2470699C1 (zh)
WO (1) WO2010110624A2 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677031A (zh) * 2012-05-18 2012-09-19 中国科学院上海硅酸盐研究所 制备金属/碳纳米复合的多孔膜的方法及由其制得的多孔膜
CN102877048A (zh) * 2012-09-12 2013-01-16 西北工业大学 碳纳米管化学镀镍-钴-镧三元合金镀液及化学镀方法
CN102908906A (zh) * 2012-10-25 2013-02-06 贵阳时代沃顿科技有限公司 一种具有纳米复合皮层的分离膜的制备方法及应用
CN103466611A (zh) * 2013-09-29 2013-12-25 黑龙江大学 石墨烯负载纳米银镍合金复合粉体材料的制备方法
CN104204796A (zh) * 2012-01-26 2014-12-10 英派尔科技开发有限公司 具有规则埃级孔的石墨烯膜
US9156702B2 (en) 2012-07-25 2015-10-13 Empire Technology Development Llc Graphene membrane repair
CN105080366A (zh) * 2014-04-22 2015-11-25 中国石油化工股份有限公司 一种反渗透膜及其制备方法
CN105214511A (zh) * 2015-09-18 2016-01-06 浙江工商大学 一种纳米银/石墨烯/聚偏氟乙烯杂化超滤膜及其制备方法
CN106457159A (zh) * 2014-05-08 2017-02-22 洛克希德马丁公司 堆叠的二维材料以及生产包含该材料的结构的方法
CN108834389A (zh) * 2018-07-09 2018-11-16 安徽理工大学 一种双金属有机框架衍生多孔碳/多壁碳纳米管纳米复合吸波材料的制备方法
CN111249921A (zh) * 2014-08-11 2020-06-09 国立大学法人信州大学 过滤器成形体的制造方法
CN113291620A (zh) * 2021-05-25 2021-08-24 成都宏明双新科技股份有限公司 一种镀镍金属片包装方法
CN114797284A (zh) * 2022-04-20 2022-07-29 核建高温堆控股有限公司 纳米多孔镍复合膜的制备方法及纳米多孔镍复合膜

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266070B2 (en) 2009-03-27 2016-02-23 Bioneer Corporation Oil purification method and apparatus with porous membrane
KR101118475B1 (ko) * 2010-01-22 2012-03-12 (주)바이오니아 친수화 표면개질된 복합 다공막 및 이의 제조방법
WO2012067394A2 (en) * 2010-11-15 2012-05-24 Hannam University Institute For Industry-Academia Cooperation. Nanocarbon membrane virus filter with high strength and method for manufacturing the same
KR101276556B1 (ko) * 2010-11-15 2013-06-24 한남대학교 산학협력단 고강도 탄소 나노 기공막 바이러스 필터 및 이의 제조방법
KR101813170B1 (ko) * 2011-04-11 2017-12-28 삼성전자주식회사 그래핀 함유 분리막
WO2012157816A1 (en) * 2011-05-16 2012-11-22 Bioneer Corporation. Oil filter with nanoporous film
KR101371205B1 (ko) * 2011-05-16 2014-03-10 (주)바이오니아 다공막을 이용한 오일 정제방법 및 장치
WO2012177223A1 (en) * 2011-06-24 2012-12-27 Nanyang Technological University A nanocomposite, a filtration membrane comprising the nanocomposite, and methods to form the nanocomposite and the filtration membrane
KR101331112B1 (ko) 2011-09-28 2013-11-19 (주)바이오니아 탄소나노튜브 및 금속산화물으로 이루어진 나노복합체 및 이의 제조방법
CN102507693A (zh) * 2011-11-03 2012-06-20 桂林医学院 基于功能化材料的葡萄糖生物传感器及其制备方法
AU2013231930B2 (en) 2012-03-15 2017-05-25 King Fahd University Of Petroleum & Minerals Graphene based filter
KR101583593B1 (ko) * 2012-04-20 2016-01-08 (주)바이오니아 탄소나노구조체-금속 복합체 또는 탄소나노구조체-금속산화물 복합체로 구성된 나노 다공막 및 이의 제조방법
US10418143B2 (en) 2015-08-05 2019-09-17 Lockheed Martin Corporation Perforatable sheets of graphene-based material
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US10376845B2 (en) 2016-04-14 2019-08-13 Lockheed Martin Corporation Membranes with tunable selectivity
US10980919B2 (en) 2016-04-14 2021-04-20 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
CN102671550B (zh) * 2012-06-01 2014-09-24 清华大学 一种陶瓷膜管支撑体及其制备方法
US9656214B2 (en) * 2012-11-30 2017-05-23 Empire Technology Development Llc Graphene membrane laminated to porous woven or nonwoven support
KR102059130B1 (ko) * 2013-02-14 2019-12-24 삼성전자주식회사 나노구조체와 이를 포함하는 광학소자 및 이들의 제조방법
WO2014164621A1 (en) 2013-03-12 2014-10-09 Lockheed Martin Corporation Method for forming filter with uniform aperture size
US10520623B2 (en) * 2013-05-31 2019-12-31 Westerngeco L.L.C. Methods and systems for marine survey acquisition
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
CN103301465B (zh) * 2013-06-26 2014-10-22 郑州大学 以银/氧化石墨烯复合纳米粒为载体的近红外光药物控释系统的制备及其应用
CN106413859B (zh) 2013-11-01 2019-07-05 麻省理工学院 减轻膜中的渗漏
CA2938305A1 (en) 2014-01-31 2015-08-06 Lockheed Martin Corporation Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
CN106068166B (zh) 2014-03-07 2018-10-09 同和控股(集团)有限公司 银纳米线的制造方法和银纳米线及使用该银纳米线的油墨
US9902141B2 (en) 2014-03-14 2018-02-27 University Of Maryland Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
US20150280207A1 (en) * 2014-03-26 2015-10-01 NANO CAST TECH Co., Ltd. Method of preparing graphene-graphene fused material and method of preparing graphene-substrate composite using the same
US10072196B2 (en) 2014-03-26 2018-09-11 Amogreentech Co., Ltd. Method of preparing graphene-graphene fused material and method of preparing graphene-substrate composite using the same
EA201790508A1 (ru) 2014-09-02 2017-08-31 Локхид Мартин Корпорейшн Мембраны гемодиализа и гемофильтрации на основе двумерного мембранного материала и способы их применения
KR101630533B1 (ko) * 2014-11-03 2016-06-15 충남대학교산학협력단 고분산성의 환원된 그래핀 옥사이드 기반 금속 나노입자 분산액의 제조방법 및 이를 이용한 환원된 그래핀 옥사이드 기반 금속 나노입자 필름
CN104353366B (zh) * 2014-11-10 2016-08-17 东华大学 一种具有防污抗菌功能的聚合物膜及其制备方法
KR101726039B1 (ko) * 2015-04-08 2017-04-12 한양대학교 산학협력단 하폐수 처리용 촉매, 그 제조방법 및 이를 포함하는 하폐수 처리장치
JP2018530499A (ja) 2015-08-06 2018-10-18 ロッキード・マーチン・コーポレーション グラフェンのナノ粒子変性及び穿孔
EP3341769A1 (en) * 2015-08-27 2018-07-04 Surrey Nanosystems Ltd Low reflectivity coating and method and system for coating a substrate
WO2017063434A1 (zh) * 2015-10-15 2017-04-20 济南圣泉集团股份有限公司 一种含碳纳米结构的复合物、使用其的高分子材料及制备方法
WO2017084507A1 (zh) 2015-11-20 2017-05-26 济南圣泉集团股份有限公司 含有石墨烯的改性胶乳及其制备方法和应用
CN105525377B (zh) 2015-11-26 2018-08-17 济南圣泉集团股份有限公司 一种功能性再生纤维素纤维及其制备方法和应用
KR102038543B1 (ko) 2016-01-28 2019-10-30 주식회사 엘지화학 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
CN105642135B (zh) * 2016-03-23 2018-05-01 天津大学 一种基于纳米银颗粒功能化石墨烯杂化复合膜及制备和应用
CN105771708B (zh) * 2016-04-13 2018-06-15 天津大学 一种锌离子功能化石墨烯填充杂化膜及其制备方法和应用
WO2017180139A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Two-dimensional membrane structures having flow passages
SG11201808961QA (en) 2016-04-14 2018-11-29 Lockheed Corp Methods for in situ monitoring and control of defect formation or healing
WO2017180141A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
JP2019511451A (ja) 2016-04-14 2019-04-25 ロッキード・マーチン・コーポレーション 浮遊法を用いてグラフェンシートを大判転写用に処理する方法
EP3454979A4 (en) 2016-05-11 2020-01-01 Massachusetts Institute of Technology GRAPHENOXIDE MEMBRANE AND RELATED METHODS
CN106345309A (zh) * 2016-10-20 2017-01-25 合肥创想能源环境科技有限公司 一种pvdf有机膜改性方法
CN107983158B (zh) * 2016-10-26 2021-02-05 中国石油化工股份有限公司 一种抗菌复合纳滤膜及其制备方法
KR101931663B1 (ko) * 2017-09-07 2019-03-15 미프테크 씨오., 엘티디. 미생물 여과막 제조방법
WO2019155946A1 (ja) 2018-02-07 2019-08-15 国立大学法人神戸大学 複合分離膜
US10874968B2 (en) * 2018-06-06 2020-12-29 Fanno Technologies Co., Ltd. Multilayer filter screen and manufacturing method thereof
WO2020006484A1 (en) 2018-06-28 2020-01-02 Massachusetts Institute Of Technology Coatings to improve the selectivity of atomically thin membranes
EP3969157A1 (en) 2019-05-15 2022-03-23 Via Separations, Inc. Durable graphene oxide membranes
EP3969158A1 (en) 2019-05-15 2022-03-23 Via Separations, Inc. Filtration apparatus containing graphene oxide membrane
CN112044280B (zh) * 2019-06-05 2022-08-16 广州中国科学院先进技术研究所 一种抗膜生物污染涂层及其制备方法
CN111467878B (zh) * 2020-03-17 2021-11-12 南京玻璃纤维研究设计院有限公司 一种纳米纤维/玻璃纤维复合滤料、制备方法及其应用
RU2748974C1 (ru) * 2020-07-28 2021-06-02 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской Академии наук (ФГБУН ИПХФ РАН) Никельсодержащий углерод-графеновый катализатор гидрирования и способ его получения
CN112242530B (zh) * 2020-09-30 2021-10-26 复旦大学 一种高稳定性低载量碳包覆铂催化剂的制备方法
CN112877032B (zh) * 2021-03-02 2023-09-08 陕西煤基特种燃料研究院有限公司 一种二维CoNi@多孔碳材料及其制备方法和应用
EP4440717A1 (en) 2021-11-29 2024-10-09 Via Separations, Inc. Heat exchanger integration with membrane system for evaporator pre-concentration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448216A (zh) * 2002-04-03 2003-10-15 中国科学院大连化学物理研究所 一种高担载量双组元多组元贵金属催化剂的制备方法
CN1867392A (zh) * 2003-03-07 2006-11-22 塞尔顿技术公司 使用纳米材料纯化流体
CN101137427A (zh) * 2005-03-09 2008-03-05 加利福尼亚大学校务委员会 纳米复合材料膜及其制备和使用方法
CN101139742A (zh) * 2006-09-04 2008-03-12 中国科学院化学研究所 碳纳米管/纳米氧化物的纳米复合材料的纤维结构及其制备方法和用途
CN101200290A (zh) * 2007-07-10 2008-06-18 桂林电子科技大学 碳纳米管负载磁性四氧化三铁纳米粒子的制备方法
US7445799B1 (en) * 2000-06-21 2008-11-04 Icet, Inc. Compositions for microbial and chemical protection
KR20080098115A (ko) * 2007-05-04 2008-11-07 (주) 아모센스 나노섬유 웹을 포함하는 방진, 방취 및 항균용 필터

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676007B1 (fr) * 1991-04-30 1994-04-08 Tech Sep Membrane composite de nanofiltration.
DE10051910A1 (de) * 2000-10-19 2002-05-02 Membrana Mundi Gmbh Flexible, poröse Membranen und Adsorbentien, und Verfahren zu deren Herstellung
US6713519B2 (en) * 2001-12-21 2004-03-30 Battelle Memorial Institute Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts
US20040028901A1 (en) * 2002-02-25 2004-02-12 Rumpf Frederick H. Compositions comprising continuous networks and monoliths
US7294248B2 (en) * 2002-07-03 2007-11-13 Xintek, Inc. Fabrication and activation processes for nanostructure composite field emission cathodes
EP1852176B1 (en) * 2003-03-07 2010-07-21 Seldon Technologies, LLC Purification of fluids with nanomaterials
US7419601B2 (en) * 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
CN1802762A (zh) * 2003-07-16 2006-07-12 景垣实业株式会社 用于燃料电池电极催化剂的纳米结构金属-碳复合物及其制备方法
KR100558966B1 (ko) 2003-07-25 2006-03-10 한국과학기술원 탄소나노튜브가 강화된 금속 나노복합분말 및 그 제조방법
JP4593473B2 (ja) * 2003-10-29 2010-12-08 住友精密工業株式会社 カーボンナノチューブ分散複合材料の製造方法
JP4450602B2 (ja) * 2003-11-06 2010-04-14 財団法人ファインセラミックスセンター カーボンナノチューブを用いたガス分離材及びその製造方法
JP2005149974A (ja) * 2003-11-18 2005-06-09 Shinano Kenshi Co Ltd 燃料電池システム
RU2280498C2 (ru) * 2004-05-31 2006-07-27 Александр Ефимович Кравчик Способ изготовления мембраны с нанопористым углеродом
KR100656985B1 (ko) * 2004-11-02 2006-12-13 한국에너지기술연구원 나노필터 여재 제조 방법과 제조 장치
US20070065638A1 (en) 2005-09-20 2007-03-22 Eastman Kodak Company Nano-structured thin film with reduced light reflection
RU2308375C2 (ru) * 2005-11-11 2007-10-20 МГУ им. М.В. Ломоносова, Химический факультет Способ получения нанопористой полимерной пленки с открытыми порами
KR20070072669A (ko) 2006-01-02 2007-07-05 삼성에스디아이 주식회사 플라즈마 디스플레이 장치
BRPI0714608A2 (pt) * 2006-08-03 2013-06-18 Basf Se processo para aplicaÇço de uma camada metÁlica em um substrato, uso de nanotubos de carbono, superfÍcie de substrato, e, uso de uma superfÍcie de substrato
CA2667579A1 (en) * 2006-10-27 2008-05-15 The Regents Of The University Of California Micro-and nanocomposite support structures for reverse osmosis thin film membranes
KR20080049464A (ko) 2006-11-30 2008-06-04 엘지디스플레이 주식회사 액정 표시장치 및 그 구동 방법
KR101095840B1 (ko) 2007-07-20 2011-12-21 한국과학기술원 탄소나노구조체 및 금속으로 이루어진 나노복합체의제조방법
AU2008302086A1 (en) * 2007-09-21 2009-03-26 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
KR101202405B1 (ko) 2008-05-28 2012-11-23 (주)바이오니아 탄소나노튜브 및 금속으로 이루어진 나노복합체 및 이의제조방법
KR101118475B1 (ko) * 2010-01-22 2012-03-12 (주)바이오니아 친수화 표면개질된 복합 다공막 및 이의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445799B1 (en) * 2000-06-21 2008-11-04 Icet, Inc. Compositions for microbial and chemical protection
CN1448216A (zh) * 2002-04-03 2003-10-15 中国科学院大连化学物理研究所 一种高担载量双组元多组元贵金属催化剂的制备方法
CN1867392A (zh) * 2003-03-07 2006-11-22 塞尔顿技术公司 使用纳米材料纯化流体
CN101137427A (zh) * 2005-03-09 2008-03-05 加利福尼亚大学校务委员会 纳米复合材料膜及其制备和使用方法
CN101139742A (zh) * 2006-09-04 2008-03-12 中国科学院化学研究所 碳纳米管/纳米氧化物的纳米复合材料的纤维结构及其制备方法和用途
KR20080098115A (ko) * 2007-05-04 2008-11-07 (주) 아모센스 나노섬유 웹을 포함하는 방진, 방취 및 항균용 필터
CN101200290A (zh) * 2007-07-10 2008-06-18 桂林电子科技大学 碳纳米管负载磁性四氧化三铁纳米粒子的制备方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204796B (zh) * 2012-01-26 2016-05-25 英派尔科技开发有限公司 具有规则埃级孔的石墨烯膜
CN104204796A (zh) * 2012-01-26 2014-12-10 英派尔科技开发有限公司 具有规则埃级孔的石墨烯膜
CN102677031B (zh) * 2012-05-18 2014-09-10 中国科学院上海硅酸盐研究所 制备金属/碳纳米复合的多孔膜的方法及由其制得的多孔膜
CN102677031A (zh) * 2012-05-18 2012-09-19 中国科学院上海硅酸盐研究所 制备金属/碳纳米复合的多孔膜的方法及由其制得的多孔膜
US9156702B2 (en) 2012-07-25 2015-10-13 Empire Technology Development Llc Graphene membrane repair
CN102877048A (zh) * 2012-09-12 2013-01-16 西北工业大学 碳纳米管化学镀镍-钴-镧三元合金镀液及化学镀方法
CN102908906A (zh) * 2012-10-25 2013-02-06 贵阳时代沃顿科技有限公司 一种具有纳米复合皮层的分离膜的制备方法及应用
CN103466611A (zh) * 2013-09-29 2013-12-25 黑龙江大学 石墨烯负载纳米银镍合金复合粉体材料的制备方法
CN105080366A (zh) * 2014-04-22 2015-11-25 中国石油化工股份有限公司 一种反渗透膜及其制备方法
CN105080366B (zh) * 2014-04-22 2017-05-31 中国石油化工股份有限公司 一种反渗透膜及其制备方法
CN106457159A (zh) * 2014-05-08 2017-02-22 洛克希德马丁公司 堆叠的二维材料以及生产包含该材料的结构的方法
CN111249921A (zh) * 2014-08-11 2020-06-09 国立大学法人信州大学 过滤器成形体的制造方法
CN111249921B (zh) * 2014-08-11 2022-01-18 国立大学法人信州大学 过滤器成形体的制造方法
CN105214511A (zh) * 2015-09-18 2016-01-06 浙江工商大学 一种纳米银/石墨烯/聚偏氟乙烯杂化超滤膜及其制备方法
CN108834389A (zh) * 2018-07-09 2018-11-16 安徽理工大学 一种双金属有机框架衍生多孔碳/多壁碳纳米管纳米复合吸波材料的制备方法
CN113291620A (zh) * 2021-05-25 2021-08-24 成都宏明双新科技股份有限公司 一种镀镍金属片包装方法
CN113291620B (zh) * 2021-05-25 2022-11-15 成都宏明双新科技股份有限公司 一种镀镍金属片包装方法
CN114797284A (zh) * 2022-04-20 2022-07-29 核建高温堆控股有限公司 纳米多孔镍复合膜的制备方法及纳米多孔镍复合膜
CN114797284B (zh) * 2022-04-20 2023-12-15 核建高温堆控股有限公司 纳米多孔镍复合膜的制备方法及纳米多孔镍复合膜

Also Published As

Publication number Publication date
JP2012517894A (ja) 2012-08-09
JP5393809B2 (ja) 2014-01-22
KR101118473B1 (ko) 2012-03-12
EP2411128A4 (en) 2013-11-20
US8887926B2 (en) 2014-11-18
EP2411128A2 (en) 2012-02-01
CN102316964B (zh) 2015-08-05
BRPI1008710A2 (pt) 2016-03-08
KR20100107960A (ko) 2010-10-06
RU2470699C1 (ru) 2012-12-27
WO2010110624A2 (en) 2010-09-30
WO2010110624A3 (en) 2011-01-06
US20120000845A1 (en) 2012-01-05
EP2411128B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
CN102316964B (zh) 纳米多孔膜及其制备方法
KR101118475B1 (ko) 친수화 표면개질된 복합 다공막 및 이의 제조방법
Vatanpour et al. Enhancing the permeability and antifouling properties of cellulose acetate ultrafiltration membrane by incorporation of ZnO@ graphitic carbon nitride nanocomposite
Basri et al. Silver-filled polyethersulfone membranes for antibacterial applications—Effect of PVP and TAP addition on silver dispersion
Bhattacharya et al. Development and performance evaluation of a novel CuO/TiO2 ceramic ultrafiltration membrane for ciprofloxacin removal
US8951543B2 (en) Nano silver—zinc oxide composition
CN109019745B (zh) 一种提高多功能杂化膜颗粒负载量的制备方法
Ji et al. ZnO/Ag nanoparticles incorporated multifunctional parallel side by side nanofibers for air filtration with enhanced removing organic contaminants and antibacterial properties
CN112403268B (zh) 一种自清洁Ti3C2Tx亲水柔性纳滤膜的制备方法及其制备的滤膜和应用
KR101583593B1 (ko) 탄소나노구조체-금속 복합체 또는 탄소나노구조체-금속산화물 복합체로 구성된 나노 다공막 및 이의 제조방법
CN112028180B (zh) 一种催化功能性陶瓷膜及其制备方法和应用
CN104474920A (zh) 一种高性能平板式醋酸纤维素/纳米二氧化钛共混正渗透膜
CN104258738A (zh) 正渗透有机-无机复合膜及其制备方法
Balcik et al. Fabrication of PSf nanocomposite membranes incorporated with ZnFe layered double hydroxide for separation and antifouling aspects
Vatanpour et al. Defected Ag/Cu-MOF as a modifier of polyethersulfone membranes for enhancing permeability, antifouling properties and heavy metal and dye pollutant removal
KR101313149B1 (ko) 탄소나노튜브―금속 복합체의 제조방법 및 이를 이용한 전도성 페이스트의 제조방법
EP3235559A1 (en) Binder-coupled carbon nanostructure nano-porous membrane and manufacturing method therefor
CN113491961B (zh) 一种正渗透膜及其制备方法
Arakawa et al. Development of a new vacuum impregnation method at room atmosphere to produce silver–copper oxide nanoparticles on activated carbon for antibacterial applications
Le et al. Melamine sponge-based copper-organic framework (Cu-CPP) as a multi-functional filter for air purifiers
Xiong et al. Fabrication and characterization of polyvinylidene fluoride/zinc oxide membranes with antibacterial property
WO2013188521A1 (en) Graphene oxide filters and methods of use
Kleyi et al. Fabrication and antibacterial activity of electrospun nylon 6 nanofibers grafted with 2-substituted vinylimidazoles
CN111531174A (zh) 一种微滤膜及其制备方法、应用
KR101173989B1 (ko) 금속 나노 입자를 함유하는 분리막의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant