CN102169725B - 存储器件和基于处理器的系统 - Google Patents
存储器件和基于处理器的系统 Download PDFInfo
- Publication number
- CN102169725B CN102169725B CN201110044307.8A CN201110044307A CN102169725B CN 102169725 B CN102169725 B CN 102169725B CN 201110044307 A CN201110044307 A CN 201110044307A CN 102169725 B CN102169725 B CN 102169725B
- Authority
- CN
- China
- Prior art keywords
- bit line
- sensor amplifier
- startup
- addressing
- wordline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0004—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/406—Management or control of the refreshing or charge-regeneration cycles
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4091—Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0009—RRAM elements whose operation depends upon chemical change
- G11C13/0011—RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/003—Cell access
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0033—Disturbance prevention or evaluation; Refreshing of disturbed memory data
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0061—Timing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
- G11C2013/0054—Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/22—Control and timing of internal memory operations
- G11C2207/2281—Timing of a read operation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/72—Array wherein the access device being a diode
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/76—Array using an access device for each cell which being not a transistor and not a diode
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/79—Array wherein the access device being a transistor
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dram (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
本发明涉及存储器件和基于处理器的系统。传感放大器读出可编程导体存储单元但不重写该单元的内容。如果可编程触点存储单元具有接入晶体管,则接入晶体管被断开以在预定时间量后把该单元从位线分离。预定时间量足够长,以使该单元的逻辑状态被传输到位线,还足够短,以在传感放大器操作之前把该单元与位线隔离。对于不使用接入晶体管的可编程触点存储单元,可在从传感放大器到隔离晶体管的位线部分和从隔离晶体管到存储单元位线的部分之间串行连接隔离晶体管。通常导通的隔离晶体管在位线开始通过可编程触点存储单元放电时间的预定时间之后被断开,从而在传感操作开始之前把可编程触点存储单元与传感放大器隔离。
Description
技术领域
本发明涉及集成存储电路。尤其涉及一种用于读出可编程导体随机存取存储器(PCRAM)单元的方法。
背景技术
动态随机存储器(DRAM)集成电路阵列已经存在三十多年并且随着半导体制造技术与电路设计技术的进展而使存储容量显著增加。这两种技术的巨大进展还实现了高水平的集成,使得存储器阵列尺寸和成本的显著降低以及生产量的增加。
图1是一个DRAM存储单元100的示意图,包括接入晶体管101和电容器102。耦合到Vcc/2电位源和晶体管101的电容器102以电荷的形式储存数据的一个比特。通常,一个极性的电荷(例如对应于跨在+Vcc/2的电容器102上电位差的电荷)被存储在电容器102中以便表示一个二进制"1",而一个相反极性的电荷(例如对应于跨在-Vcc/2的电容器102上电位差的电荷)则表示一个二进制"0",晶体管101的栅极耦合到字线103,从而使得该字线103控制该电容102是否经过该晶体管101导通耦合到位线104。每一字线103的缺省状态是地电位,该地电位使得晶体管101被断开,因此与电容器102电绝缘。
与DRAM单元100有关的缺陷之一是在该电容器102上的电荷可能随着时间而自然减少,即使该电容器102保持电绝缘。因此,DRAM单元100需要周期地刷新。另外如下面所述,在存储单元100已经接入之后,例如作为读取操作的一部分,也需要刷新。
图2示出包括多个存储器阵列150a、150b的存储装置200。(在附图中通常以相同数字表示同样类型的元件。例如,图2中的传感放大器300a和300b与图3的传感放大器300具有完全相同的电路。小写的字母后缀通常用于区别相同类型的不同单元。但是,大写前缀,例如"N"和"P"可以表示与负或正类型变化相关的不同电路。) 存储器阵列150a、150b的每一个都包括多个存储单元100a-100d、100e-100h通过铺放多个存储单元100排列在一起,使得存储单元100沿着任意给定的位线104a、104a’、104b、104b’不共享一个共用的字线103a-103d。相反,存储单元100沿着任意字线103不共享一个共同的104a、104a’、104b、104b’。每一个存储器阵列都具有其自己的位线组。例如,存储器阵列150a包括位线104a、104b,而存储器阵列150b包括位线104a’、104b’。存储器阵列150a、150b的每一个相邻对的位线被耦合到一个共用传感放大器300a、300b。例如,位线104a、104a’耦合到传感放大器300a,而位线104b 104b’耦合到传感放大器300b。如下面解释的那样,传感放大器300a、300b被用于在存储单元100a-100h被读出时导通该传感/刷新部分。
读出一个DRAM存储单元包括接入和传感/更新操作。
存取操作的目的是把存储在电容器102上的电荷传送到与存储单元100相关的位线104。通过把位线104a、104b的每一个耦合至一个电位源(没示出)存取操作开始把位线104a、104a’、104b、104b’的每一个预充电到一个预定的电位(例如Vcc/2)。位线104a、104b的每一个都被随后电断开。由于位线104a、104a’、104b、104b’的固有电容的作用,位线104a、104a’、104b、104b’将浮在该预定的电位。随后,通过把与正被读出的存储单元(例如100a)相关的字线(例如103a)的电位提高到使得晶体管101a、101e把该字线103a耦合到栅极的一个电平来启动该字线103a。应该指出,由于在位线104和字线103之间的固有寄生电容的原因,字线103的起动将使得在每一相关的位线104的电位稍有增加。但在通常的DRAM系统中,与在由于电荷共享引起的位线上的电位改变的幅值比较,这种电位变化的幅度是微不足道。因此,仅相对于DRAM系统来说,将省略该寄生电容效果的进一步的讨论。
字线103a的起动使得耦合到该字线103a的每一个存储单元100a、100e的每一电容器102a、102e与其相关的位线104a、104b共享其电荷。在另一阵列150b中的位线104a’、104b’保持在预充电的电位。这种电荷共享使得位线104a、104b的电位按照存储在电容器102a、102e中的电荷增减。由于仅一个存储器阵列的位线104a、104b改变了其电位,所以在每一传感放大器300a、300b在与该启动字线103a相关的位线104a、104b和与同一个传感放大器300a、300b相关的另一位线104a’、104b’之间生成一个差分电位。因此,该存取操作使得与正被读出的单元100a相关的位线104a、104b具有的电位大于或小于该预充电的电压。但是,在电位中的这种变化是小的,并且在其能被使用之前需要放大。
该传感/刷新操作用于两个目的。首先,该传感/刷新操作在电位中的小变化放大到耦合到被访问的该单元的位线电位。如果该位线具有比该预充电的电位低一个电位,则该位线在传感过程中将被驱动到地电位。另外,如果该位线具有比该预充电的电位高的电位,则在传感过程中该位线将被驱动到Vcc。该传感/刷新操作的第二个目的是把在被存取单元的电容器的中的电荷状态恢复到在该存取操作之前所具有的状态。由于该存取操作通过与该位线共享该电容器,所以冲淡了储存在该电容器上的电荷。
图3是传感放大器300的一个详细示意图,包括一个N-传感放大器310N和一个P-传感放大器部分310P。该N-传感放大器310N和P-传感放大器310P分别包括节点NLAT*和ACT。这些节点耦合到可控制的电位源(没示出)。节点NLAT*被最初偏置到位线104的预充电电位(例如Vcc/2),而节点ACT被最初偏置到地电位。在此初始状态中,N和P-传感放大器310N、310P的晶体管301-304被截止。该传感/刷新操作是一种两段操作,其中该N-传感放大器310N被在该P-传感放大器310P之前触发。
通过把节点NLAT*的电位从预充电电位(例如Vcc/2)带向地电位而触发N-传感放大器310N。随着节点NLAT*和位线104a、104a’、104b、104b’之间的电位差接近NMOS晶体管301、302的阈值电位,栅极耦合到高电压位线的晶体管开始导通。这将使得低电压的位线朝向NLAT*节点的电压放电。因此,当节点NLAT*达到地电位时,低电压的位线也将达到地电位。由于其栅极耦合到正在向地放电的低电压的数位驱动线,所以另一NMOS晶体管决不导通。
通过把节点ACT的电位从地电位带到Vcc,触发该P-传感放大器310P(在该N-传感放大器310N已经触发之后)。随着低电压的位线的电位接近地电位(由该N-传感放大器310N的在先触发引起),其栅极耦合到该低电位的位线的PMOS晶体管将开始导通。这将使得该最初高电位的位线被充电到Vcc的电位。在该N和P-传感放大器310N、310P都已经触发之后,该高电压位线将其电位升高到Vcc,同时该低电位的位线将其电位减小到地电位。因此,触发传感放大器310N、310P的过程把由该存取操作产生的电位差放大到适于使用在数字电路的一个电平。具体地说,如果该存储单元100a存储一个对应于一个二进制0的一个充电电荷,则与正被读出的存储单元100a相关的位线104a被从Vcc/2的预充电电位驱动到地电位;或如果该存储单元100a存储一个对应于一个二进制1的一个充电电荷,则与正被读出的存储单元100a相关的位线104a被从Vcc/2的预充电电位驱动到Vcc电位,从而使得耦合到位线104a、104a’的比较器(或差动放大器)350a根据在信号线351上的单元100a中存储的数据而输出一个二进制0或1。另外,最初存储在存取单元的电容器102a上的电荷被恢复到其预先存取状态。
继续努力识别使用在存储单元中的存储元件的其它形式。最近的研究已经集中在能够被编程来展现更高或更低稳定的欧姆状态的阻性材料。这样的材料的一种可编程的电阻元件将能够被程序(设置)到一个高阻性状态,存储例如一个二进制"1"数据比特,或编程到一个低阻性状态,存储一个二进制"0"数据比特。能够通过检测由一个接入装置切换的经过该阻性存储元件的一个读出电流的幅值来提取该存储的数据位,从而指示其先前已经被编程到的该稳定的电阻状态。
最近利用固态电解质,例如金属掺杂硫族化物制造的硫族化物玻璃已经被研究作为使用在存储装置,例如DRAM存储装置中的数据存储器的存储单元。美国专利5761115、5896312、5914893和6084796都描述了这种技术,并且在此引作参考。该存储单元被称之为可编程的导体单元(另外也称之为可编程的金属化单元)。这样的一个单元的特性是,通常包括固体金属电解物,例如金属掺杂硫族化物,和在该快离子导体的表面上的空间分离的阴极和阳极。该阴极和阳极的两端的电压的施加使其生长一个金属树枝状结晶,其改变该单元的电阻与电容,能因此被用于存储数据。
一种特定折衷的可编程双稳态的阻性材料是包括Ge:Se:Ag的一个合金体系。包括一个硫族化物材料的一个存储元件具有一个自然稳态高阻性状态,但是能够利用来自适当极性的电压的一个电流脉冲经过该单元而被编程到一个低电阻状态。这使得一个可编程的导体,也称之为一个树枝状晶体在阳极和阴极之间生长而降低该单元的电阻。利用适当的电流脉冲和电压极性简单地改写一个硫族化物存储元件(写入该单元的反相将到一个低电阻状态),来重新编程该硫族化物存储元件,并且因此不需要被擦除。而且,硫族化物材料的存储元件是近乎非易失的,为了保持其编程后的低电阻状态,其仅需要很少(例如每周一次)被连接到电源或被刷新。这样的存储单元不同于DRAM单元,将不需要刷新就能够被存取。
虽然例如与DRAM单元相关的那些传统的传感放大器电路能够读出可编程的导体随机存取存储器(PCRAM)单元,但是在一个PCRAM背景下不需要与这些传感放大器有关的自然刷新操作。实际上不希望PCRAM单元频繁重写,因为频繁重写将使得PCRAM单元变得对重写产生抵抗。因此,需要并且渴望一种电路和方法来读出PCRAM单元而不刷新它们。
发明内容
本发明涉及一种方法和设备,用于读出一个PCRAM存储单元而不刷新该存储单元。在该PCRAM单元的可编程的导体已经耦合到其位线以后的一个预定的时间,该可编程导体被从该位线电分离。该预定的时间被选择在该N和P-传感放大器已经启动之前的一个时间点。以此方式,该N和P-传感放大器能够改变在该位线上的电位而不引起该改变的电位重写该PCRAM单元。在使用具有耦合到字线的栅极的接入晶体管的PCRAM阵列中,可以通过在该字线已经启动之后的预定的时间禁动该字线而实践本发明。在不包括接入晶体管的PCRAM阵列中,可以在该PCRAM单元和该传感放大器之间的每一个位线上添加隔离晶体管,把该PCRAM单元从其相关的位线分离。
本发明的一个方面涉及一种存储器件,包括:
用于从可编程导体随机存取存储器单元读数据的装置,所述装置包括:
接入电路,用于在读操作期间把所述可编程导体随机存取存储器单元耦合在编址和启动的字线与编址和启动的位线之间;
被耦合到所述编址和启动的位线的读出放大器,用于读出所述可编程导体随机存取存储器单元的逻辑状态;以及
防止电路,用于防止所述可编程导体随机存取存储器单元响应所述读操作而被刷新,所述防止电路包括晶体管,所述晶体管被连接在所述编址和启动的字线和用于所述编址和启动的字线的驱动器或地之间或者被连接在所述编址和启动的位线和所述读出放大器之间,
其中所述防止电路在所述可编程导体随机存取存储器单元的逻辑状态被转移到所述编址和启动的位线之后并且在所述读出放大器读出所述可编程导体随机存取存储器单元的逻辑状态之前使得所述编址和启动的字线被禁动。
本发明的另一个方面涉及一种基于处理器的系统,包括:
处理器;和
存储器,所述存储器还包括:
用于从可编程导体随机存取存储器单元读数据的装置,所述装置包括:
接入电路,用于在读操作期间把所述可编程导体随机存取存储器单元耦合在编址和启动的字线与编址和启动的位线之间;
被耦合到所述编址和启动的位线的读出放大器,用于读出所述可编程导体随机存取存储器单元的逻辑状态;以及
防止电路,用于防止所述可编程导体随机存取存储器单元响应所述读取操作而被刷新,所述防止电路包括晶体管,所述晶体管被连接在所述编址和启动的字线和用于所述编址和启动的字线的驱动器或地之间或者被连接在所述编址和启动的位线和所述读出放大器之间,
其中所述防止电路在所述可编程导体随机存取存储器单元的逻辑状态被转移到所述编址和启动的位线之后并且在所述读出放大器读出所述可编程导体随机存取存储器单元的逻辑状态之前使得所述编址和启动的字线被禁动。
本发明的另一个方面涉及一种用于从可编程导体随机存取存储器单元读数据的方法,所述方法包括步骤:
将编址的位线和参考位线预充电到预定的预充电电压;
启动包含所述可编程导体随机存取存储器单元的编址的字线并且把所述可编程导体随机存取存储器单元中的逻辑值转移到相关联的编址的位线;
在所述可编程导体随机存取存储器单元的所述逻辑值被转移到所述编址的位线之后,禁动所述编址的字线;
在所述编址的字线被禁动之后读出被转移到所述编址的位线的逻辑值;以及
在读出放大器读出所述可编程导体随机存取存储器单元的逻辑值之前通过启动晶体管以防止所述可编程导体随机存取存储器单元因所述读出操作而被刷新,所述晶体管被连接在所述编址的字线和用于所述编址的字线的驱动器或地之间或者被连接在所述编址的位线和所述读出放大器之间。
本发明的另一个方面涉及一种用于从可编程导体随机存取存储器单元读数据的方法,所述方法包括步骤:
启动连接到所述可编程导体随机存取存储器单元的编址的字线并且把所述可编程导体随机存取存储器单元中的逻辑值转移到相关联的编址的位线;
断开位于相关联的编址的位线上的并且串联连接读出放大器和所述可编程导体随机存取存储器单元的隔离晶体管,其中所述断开是在编址的字线的所述启动之后的第一预定时间量进行的;以及
在所述断开之后在读出放大器处读出被转移到所述位线的所述可编程导体随机存取存储器单元的逻辑值。
本发明的另一个方面涉及一种用于从可编程导体随机存取存储器单元读数据的方法,所述方法包括步骤:
对被耦合到可编程导体随机存取存储器单元的第一位线进行预充电,所述可编程导体随机存取存储器单元包括可编程导体存储元件;
预充电第二位线;
增加在所述第一位线上的电压;
接通所述可编程导体随机存取存储器单元的接入晶体管以便把可编程导体存储元件耦合到所述第一位线;
禁动编址的字线以断开所述可编程导体随机存取存储器单元的接入晶体管,以便把可编程导体存储元件与所述第一位线分离;以及
在读出放大器处读出所述第一位线和所述第二位线上的电压,以便确定所述可编程导体存储元件的逻辑状态;
其中所述禁动是在所述读出之前的预定的时间执行的并且所述第二位线在通过读出操作被改变之前保持预充电电压。
本发明的另一个方面涉及一种用于从可编程导体随机存取存储器单元读数据的方法,所述方法包括步骤:
接通隔离晶体管,以便把第一位线耦合到读出放大器,所述第一位线还被耦合到可编程导体随机存取存储器单元的可编程导体存储元件;
预充电所述第一位线;
预充电第二位线;
增加所述第一位线上的电压;
断开所述隔离晶体管,以便把所述可编程导体存储元件与所述读出放大器分离;
读出所述第一位线和所述第二位线上的电压,以便确定所述可编程导体存储元件的逻辑状态;
其中所述断开是在所述读出之前并在编址的字线的启动之后的第一预定时间量执行的。
附图说明
从下面参考附图给出的本发明示例实施例的详细描述中将显见本发明的上述和其它优点与特征,其中:
图1是一个传统的DRAM单元的示意图;
图2是一个传统的DRAM阵列的示意图;
图3是一个传统的传感放大器的示意图;
图4是一个PCRAM单元的示意图;
图5是一个PCRAM阵列的示意图;
图6A和6B是时序图,说明当一个PCRAM单元被分别以高阻和低阻状态读出时在该字与位线上的电压;
图7是说明本发明方法的一个流程图;
图8是基于一个处理器的系统框图,包括根据本发明原理的一个PCRAM;
图9是根据本发明第二最佳实施例的一个PCRAM阵列的示意图;和
图10是供图9的PCRAM阵列利用的一个PCRAM单元的可选实施例的示意图。
具体实施方式
现在参见附图,其中相同的标号表示相同的部件,图4示出一个PCRAM单元400,而图5示出由多个PCRAM单元400a- 400h组成的一个存储装置500。如图4中示出,PCRAM单元400包括一个接入晶体管401、一个可编程的导体存储元件402和一个单元板极403。该接入晶体管401的栅极耦合到字线405而一端子耦合到一个位线406。这种单元的一个阵列小部分在图5中示出,包括位线406a、406a’、406b、406b’,和字线405a、405b、405c和405d。如图5所示,位线406a、406b耦合到各自的预充电电路501a、105b,可切换地把一个预充电电位加到位线406a、406a’、406b、406b’。该接入晶体管401的另一端耦合到可编程导体存储元件402的一个末端,同时该可编程导体存储元件402的另一末端耦合到一个单元板极403。该单元板极403可以横跨复盖与耦合到几个其它PCRAM单元。该单元板极403还耦合到一个电位源。示例的实施例中,该电位源是1.25 V( Vdd/2)。
接入晶体管401以及其它接入晶体管被描述为N型CMOS晶体管,但是应该理解,可以使用P型CMOS晶体管,只要相应地更改其它部件和电压的对应极性即可。该可编程的导体存储元件402最好由硫族化物制成,但是应该理解,任何其它对普通本专业技术人员已知的双稳定阻性材料也可被使用。在该示例的实施例中,当该可编程的导体存储元件402具有大约10 K欧姆的一个电阻时存储一个二进制0,而当其具有大于10 M欧姆的一个电阻时存储一个二进制1。通过一个+0.25V的电压理想地编程该可编程的导体以存储一个低电阻,例如二进制0,而能够通过-0.25V的一个编程电压恢复到一个高阻值,例如二进制1。该可编程导体能够通过具有小于0.25 V的一个幅值的读出电压而被非破坏地读出。在示例的实施例中,该读出电压是0.2V。但是显见的是,可以在不背离本发明精神和范围的条件下针对PCRAM单元选择可选的参数。
图5示出包括多个存储器阵列550a、550b的存储装置500。每一存储器阵列550a、550b都包括由铺放多个存储单元400在一起的多个存储单元400a-400d、400e-400h,使得沿着任意给定位线406a、406a’、406b、406b’的存储单元400不共用一个共同字线405a-405d。相反地,该存储单元400沿着任意字线405a-405d不共享一个共用位线406a、406a’、406b、406b’。每一字线可经由一个晶体管510a-510d切换到一个字线驱动器512a-512d。另外,每一个字线还可以经由晶体管520a-520d可切换地耦合到地。晶体管510a-510d、520a-520d的栅极耦合到信号线511a-511d,用于有选择地把字线405a-405d耦合到该字线驱动器512a-512b/地,以及从该字线驱动器512a-512b/地相分离。每一个存储器阵列550a、550b都具有其自己的位线设置。例如,存储器阵列550a包括位线406a、406b,而存储器阵列550b包括位线406a’、406b’。存储器阵列550a、550b的每一个相邻对的位线被耦合到一个共用传感放大器600a、600b。例如,位线406a、406a’被耦合到传感放大器600a,而位线406b、406b’被耦合到传感放大器600b。为了简化起见,图5示出仅具有两个阵列550a、550b和八个单元400a-400h的一个存储装置。但是,应该理解,实际存储装置将有很多的单元与阵列。例如,一个真实的存储装置可以包括几百万个单元400。
存储装置500还包括多个预充电电路501a-501b。一个预充电电路(例如501a)用于每一对耦合到传感放大器(例如406a、406a)的位线。每一预充电电路(例如501a)包括两个晶体管(例如501a、501b)。每一个晶体管的一端耦合到一个电位源。示例的实施例中,该电位源是2.5 V(Vdd)。每一个晶体管的另一端(例如502a、502b)耦合到其对应位线(例如分别耦合到406a、406a’)。每一个晶体管(例如502a、502b)的栅极耦合到一个预充电控制信号。如示出的那样,晶体管(例如502a、502b)是P-MOS型晶体管。因此,当该预充电信号是低值时,晶体管(例如502a、502b)导通,由此预充电该位线(例如406a、406a’)。当预充电信号是高值时,晶体管(例如502a、502b)断开。由于该位线(例如406a、406a’)的固有电容,位线将保持在近似2.5V的预充电电压电平一个预定的时间期。
在该PCRAM装置500中,读出一个PCRAM单元,例如单元400a,包括接入和传感操作。
接入操作的目的是产生在耦合到该被读出的存储单元400a的同一个传感放大器(例如300a)的位线(例如406a、406a’)之间的一个小电位差。此小电位差能够被随后由一个传感放大器300放大到随后驱动耦合到该位线的一个比较器所需求的阈值,以便输出端对应于该存储单元400a内容的一个值。现在参见图7,接入操作从经过预充电电路501a-501b的存储装置500的位线406a、406a’、406b、406b’的预充电开始(步骤S1)。可以通过暂态造成该预充电信号低值预充电该位线,使得晶体管502a-502d把该预充电电压(Vdd)导通到位线406a、406a’、406b、406b’。一旦该预充电信号返回到一个高值状态,晶体管502a-502d停止导通,但由于该位线固有的电容,位线406a、406a’、406b、406b’将保持在该预充电电位一个预定的时期。
在示例的实施例中,位线406a、406a’、406b、406b’被预充电到2.5V,单元板极403a、403b被约束到1.25 V。位线和单元板极之间的该1.25 V的电位差将使得该位线经过该接入晶体管401(当其是在一个导通状态时)和该可编程导体存储元件402对该单元板极放电。该放电速率取决于该可编程导体存储元件402的阻性状态。即一个低阻性状态将使得该位线的放电比一个高阻性状态要快。随着位线放电,其电压将从该预充电电压向这单元板极电压下降。
在存储装置500中,字线405a-405d通常是地电位。接入晶体管401a-401e是常态断开。现在参见图6A和6B,在时间T1,通过把与将要读出的单元400a相关的字线405a的电位从地带到预定的电平而启动该字线405a(步骤S2)。设计该预定的电平以产生在该可编程的触点402a的一个读出电压,如先前解释的那样,该读出电压具有小于写入电压的幅值。在该示例的实施例中,字线401a被移到2.25 V。由于晶体管401a的门限电压是0.8V,所以在晶体管401a和可编程的触点402a之间的接口的电位是1.45 V。由于在可编程的触点402a和该单元板极403a之间的接口电压被保持在1.25 V,所以这将产生0.2V的一个读出电压。
由于在字线401a和其相关的位线406a之间的固有寄生电容,与位线406a相关的电位将随着字线401a的启动而增加。在该示例的实施例中,位线406a中的电位增加了0.1V而到2.6V。应该指出,耦合到互补位线406a’、406b’的字线405c、405d被保持在地电位。因此位线406a’、406b’被保持在预充电电位,在该示例的实施例中是2.5V。
位线406a的该增加的电位与该可编程的触点402a的两个双稳态阻性状态组合使用,使得耦合到传感放大器(例如300a)的一个位线(例如406a)具有比耦合到同一个传感放大器300a的另一位线(例如406a’)更大或更小的电压。实质上,在字线和相关位线之间的这种寄生电容被用于实现一个初始状态,其中与正被读出的单元400a相关的位线(例如406a)是在比耦合到同一个传感放大器300a的另一位线406a’更高的电位。该存储器的设计和操作使得如果该可编程的触点402a具有一个高阻性状态,则位线406a缓慢放电,由此引起其保持它的相对高电位。但是,如果该可编程触点402a具有一个低值阻性状态,则位线406a以一个较快速率放电,使得位线406转变到比位线406a’低的电位状态。可以通过比较图6A(说明在高阻性状态的一个可编程触点的效果)和图6B(说明在低阻性状态的一个可编程触点的效果)而看到这两个效果。
在T1的一个预定的时间t之后的T2(步骤S3),通过把与单元400a相关的字线405a的电位返回到地电位而禁动该字线405a的读出(步骤S4)。可以通过例如把端子511a接地来实现字线的禁动,这将使得晶体管510a把字线驱动器512a串联耦合到字线405a,以便停止其导通。这将切断接入晶体管401a、401、从而防止该位线通过可编程的触点402a、402e的进一步放电。这也防止了在该随后读出操作过程中生成的放大的电位差刷新(写)该可编程的触点402a、402e。在很少的情况中,可能希望刷新该可编程触点402a、402e的内容,该字线能够被长时间地保持高电平。通过图6A和6B中的虚线轨迹示出这种操作模式。在该示例的实施例中,该预定的时间t近似为15纳秒(即T2=T1+15 ns)。
应该指出,在不背离本发明精神的条件下,t和T2的值可以改变。具体地说,本发明的目标将通过在该位线电压由传感放大器310N、310P放大到导致跨越该可编程触点的电位差达到写该可编程触点所需阈值之前的任何时候把该可编程触点从该位线电分离而实现的。所以,虽然图6A和6B示出T2出现在传感放大器310N、310P的任何一个的启动之前,但是根据存储装置500的电特性,T2可以出现在例如该N-传感放大器310N和P-传感放大器310P的启动之间。无论如何,预定的时间t必须足够的长,以便使得该可编程导体402a的逻辑状态被反映在该位线406a上;即,该位线406a电压将通过该可编程导体402a的放电从该预充电电压充分地改变,使得该可编程导体402a的两个阻性状态能够由该传感放大器300a区别和放大。
在时间周期T3,启动N-传感放大器310N(步骤S5的开始)。如前面参考DRAM系统指出的那样,启动该N-传感放大器使得具有较低电位的位线(例如406a’)被以该NLAT信号拉向地。在该示例的实施例中,T3近似为T1之后的30纳秒。但应该指出,在不背离本发明精神的条件下,T3的值可以改变。
在时间周期T4,启动传感放大器310P。如前面参考DRAM系统指出的那样,启动该P-传感放大器使得具有较高电位的位线(例如406a)被拉向Vcc。在示例的实施例中,T4近似为T1之后的35纳秒(步骤S5的结束)。但应该指出,在不背离本发明精神的条件下,T4的值可以改变。
在时间T5,与正被读出的单元400a相关的传感放大器300a将使其位线之一(例如406a)在Vcc电位而另一位线(例如406a’)在地电位。由于耦合到传感放大器300a的一个位线现在是地电位而另一位线是Vcc电位,所以比较器(或差动放大器)350可用于输出对应于在信号线351a上的单元400a的内容的一个值。
图9示出根据本发明其它实施例的存储装置900。这一可选实施例设计供不包括接入晶体管401的PCRAM单元使用。例如,图10示出一个PCRAM单元400’的实例,其使用了一对二极管1001a、1001b替代一个接入晶体管。如示出的那样,该PCRAM单元400’特征在于耦合到一个位线104的可编程导体存储元件402。该可编程导体存储元件402还经由二极管电路1002耦合到字线。二极管电路由如图所示的并列放置的两个二极管1001a、1001b组成。
存储装置900很类似于第一实施例的存储装置500。但是,存储装置900包括新的隔离晶体管901a-901d,把传感放大器300a、300d串联连接到位线406a、406a’、406b、406b’。本发明存储装置900中的操作方式很类似于存储装置500,但是不是在检测之前禁动字线405a来把存储单元400a从位线406a上的放大电压电分离,而是把通常导通的隔离晶体管901a断开,从而分路该位线406a。然后传感该晶体管901a和该传感放大器300a之间的位线部分,同时把晶体管901a和预充电电路501a之间的位线部分与传感放大器隔离。
图8是基于一个处理器的系统800,例如一个计算机系统的框图,包括与另一图结合描述的一个PCRAM半导体存储器802。存储器802可以构成作为安装在一个存储器模块,例如象SIMM、DIMM的加载存储器模块或者其它加载存储器模块上的一个或者多个存储器芯片或存储器集成电路。该基于处理器的系统800包括处理器801、存储器802、大容量存储器803、和I/O装置804,每一都耦合到总线805。虽然示出的是单个处理器801,但是应该理解该处理器801可以是任意类型的处理器,并且可以包括多重处理器和/或几个处理器以及协处理器。图9示出的存储器802具有多个PCRAM码段500。但是,存储器802可以只包括单一PCRAM装置500,或比示出的情况更大的多个PCRAM装置500,和/或可以包括另外的存储器形式,例如非易失存储器或高速缓存存储器。虽然示出的是一个大容量存储器803,但该基于处理器的系统800可以包括多个大容量存储装置,可能的不同类型不局限地包括例如软盘、CDROM、CD-R、CD-RW、DVD、硬盘和盘阵列。I/O装置804可同样地包括多个不同类型的I/O装置,不局限地包括键盘、鼠标、图形卡、监视器、和网络接口。总线805虽然以单一总线示出,但是可以包括多个总线和/或桥接器,它们可以彼此耦合或通过其它部件桥接。装置801- 804的某些可能仅耦合到总线805,而其它可以耦合到多个总线805。
本发明提供了一种PCRAM单元400以及使用传感放大器读出该单元400的内容但不重写该单元内容的方法。通过在该可编程的导体402已经电耦合到该位线406之后的一预定时间量而把该单元400的可编程导体402与位线406隔离来实现防止重写。该预定的时间量对应于N和P-传感放大器310N、310P的启动时间之前的一个时间。在示例的实施例中,该PCRAM单元400一个接入晶体管401,用于该单元到位线的电耦合和去耦合。该接入晶体管401具有耦合到一个字线的一个栅极。所以,在示例的实施例中,该字线在其已经启动之后被禁动预定的时间量,从而保证该N和P-传感放大器310N、310P的启动不重写该单元400。在另一个实施例中,该PCRAM单元400不包括接入晶体管。例如该PCRAM单元改为使用二极管。在任何不用接入晶体管的实施例中,隔离晶体管可被插入在该可编程序的触点存储单元和与该可编程的触点存储单元相关的位线之间。该通常导通的隔离晶体管可在该字线已经启动之后的与最佳实施例相同的预定的时间被断开,从而实现把该可编程的触点存储单元与在读出过程中产生的升高的电压隔离的同样结果。
虽然已经结合最佳实施例详细描述了本发明,但是应该理解,本发明并不局限于上述公开的实施例。相反,本发明能够结合至今没有所述但是与本发明的精神和范围相称的数目变化、更改、替代或等效设计上改进。因此,本发明将不由上述说明或附图所限制,而是仅由所附的权利要求书的范围所限定。
Claims (26)
1.一种用于从可变电阻存储器单元读数据的装置,所述装置包括:
接入电路,用于在读操作期间把所述存储器单元耦合在编址和启动的字线和编址和启动的位线之间;
耦合到所述编址和启动的位线的读出放大器,用于读出所述存储器单元的逻辑状态;以及
防止电路,用于防止所述存储器单元响应所述读操作而被刷新;
其中所述接入电路是晶体管电路,并且所述防止电路使得所述启动的字线在所述存储器单元的逻辑状态被转移到所述启动的位线之后并在所述读出放大器读出所述存储器单元的逻辑状态之前使得所述启动的字线被禁动,
其中所述防止电路包括晶体管,所述晶体管使得所述启动的字线被禁动,
所述装置进一步包括:预充电电路,用于对该编址和启动的位线和另一位线进行预充电,其中所述编址和接入的位线以及所述另一位线被耦合到该读出放大器。
2.如权利要求1所述的装置,其中所述晶体管被串联连接在所述字线和用于所述字线的驱动器之间,并且在所述读操作期间被导通并被断开以便禁动所述字线。
3.如权利要求1所述的装置,其中所述晶体管被连接在所述字线和地之间,并且在所述读操作期间被断开并被导通以便禁动所述字线。
4.如权利要求3所述的装置,其中所述预充电电路在该读出放大器读出所述编址和启动的位线之前对该编址和启动的位线和另一位线进行预充电。
5.一种用于从可变电阻存储器单元读数据的装置,所述装置包括:
接入电路,用于在读操作期间把所述存储器单元耦合在编址和启动的字线和编址和启动的位线之间;
耦合到所述编址和启动的位线的读出放大器,用于读出所述存储器单元的逻辑状态;以及
防止电路,用于防止所述存储器单元响应所述读操作而被刷新;
其中所述防止电路包括串联连接在启动的位线和与该启动的位线相关联的读出放大器之间的晶体管,所述串联连接的晶体管在读操作期间被导通并且在所述存储器单元能够被刷新之前被断开,
所述装置进一步包括:预充电电路,用于对该编址和启动的位线和另一位线进行预充电,其中所述编址和接入的位线以及所述另一位线被耦合到该读出放大器;以及其中当串联连接在所述启动的位线和所述读出放大器之间的所述晶体管断开时所述预充电电路电耦合到所述启动的位线并且与所述读出放大器隔离。
6.一种用于从可变电阻存储器单元读数据的装置,所述装置包括:
接入电路,用于在读操作期间把所述存储器单元耦合在编址和启动的字线和编址和启动的位线之间;
耦合到所述编址和启动的位线的读出放大器,用于读出所述存储器单元的逻辑状态;以及
防止电路,用于防止所述存储器单元响应所述读操作而被刷新;
其中所述防止电路在所述存储器单元开始把逻辑状态转移到所述启动的位线之后使得所述启动的字线被禁动预定的时间量,
所述装置进一步包括:预充电电路,用于对该编址和启动的位线和另一位线进行预充电,其中所述编址和接入的位线以及所述另一位线被耦合到该读出放大器。
7.如权利要求6所述的装置,其中所述读出放大器还包括第一读出放大器部分和第二读出放大器部分。
8.如权利要求7所述的装置,其中所述预定的时间量是在所述第一读出放大器部分被启动之后并且在所述第二读出放大器部分被启动之前。
9.如权利要求7所述的装置,其中所述第一读出放大器部分是N-读出放大器,而所述第二读出放大器部分是P-读出放大器。
10.一种基于处理器的系统,包括:
处理器;和
存储器,所述存储器包括用于从可变电阻存储器单元读数据的装置,所述装置包括:
接入电路,用于在读操作期间把所述存储器单元耦合在编址和启动的字线和编址和启动的位线之间;
耦合到所述编址和启动的位线的读出放大器,用于读出所述存储器单元的逻辑状态;以及
防止电路,用于防止所述存储器单元响应所述读操作而被刷新;
其中所述接入电路是晶体管电路,并且所述防止电路使得所述启动的字线在所述存储器单元的逻辑状态被转移到所述启动的位线之后并在所述读出放大器读出所述存储器单元的逻辑状态之前使得所述启动的字线被禁动,
其中所述防止电路包括晶体管,所述晶体管使得所述启动的字线被禁动,
所述系统进一步包括:预充电电路,用于对该编址和启动的位线和另一位线进行预充电,其中所述编址和接入的位线以及所述另一位线被耦合到该读出放大器。
11.如权利要求10所述的系统,其中所述晶体管被串联连接在所述字线和用于所述字线的驱动器之间,并且在所述读操作期间被导通并被断开以便禁动所述字线。
12.如权利要求10所述的系统,其中所述晶体管被连接在所述字线和地之间,并且在所述读操作期间被断开并被导通以便禁动所述字线。
13.如权利要求12所述的系统,其中所述预充电电路在该读出放大器读出所述编址和启动的位线之前对该编址和启动的位线和另一位线进行预充电。
14.一种基于处理器的系统,包括:
处理器;和
存储器,所述存储器包括用于从可变电阻存储器单元读数据的装置,所述装置包括:
接入电路,用于在读操作期间把所述存储器单元耦合在编址和启动的字线和编址和启动的位线之间;
耦合到所述编址和启动的位线的读出放大器,用于读出所述存储器单元的逻辑状态;以及
防止电路,用于防止所述存储器单元响应所述读操作而被刷新;
其中所述防止电路包括串联连接在启动的位线和与该启动的位线相关联的读出放大器之间的晶体管,所述串联连接的晶体管在读操作期间被导通并且在所述存储器单元能够被刷新之前被断开,
所述系统进一步包括:预充电电路,用于对该编址和启动的位线和另一位线进行预充电,其中所述编址和接入的位线以及所述另一位线被耦合到该读出放大器;以及其中当串联连接在所述启动的位线和所述读出放大器之间的所述晶体管断开时所述预充电电路电耦合到所述启动的位线并且与所述读出放大器隔离。
15.一种基于处理器的系统,包括:
处理器;和
存储器,所述存储器包括用于从可变电阻存储器单元读数据的装置,所述装置包括:
接入电路,用于在读操作期间把所述存储器单元耦合在编址和启动的字线和编址和启动的位线之间;
耦合到所述编址和启动的位线的读出放大器,用于读出所述存储器单元的逻辑状态;以及
防止电路,用于防止所述存储器单元响应所述读操作而被刷新;
其中所述防止电路在所述存储器单元开始把逻辑状态转移到所述启动的位线之后使得所述启动的字线被禁动预定的时间量,
所述系统进一步包括:预充电电路,用于对该编址和启动的位线和另一位线进行预充电,其中所述编址和接入的位线以及所述另一位线被耦合到该读出放大器。
16.如权利要求15所述的系统,其中所述读出放大器还包括第一读出放大器部分和第二读出放大器部分。
17.如权利要求16所述的系统,其中所述预定的时间量是在所述第一读出放大器部分被启动之后并且在所述第二读出放大器部分被启动之前。
18.如权利要求16所述的系统,其中所述第一读出放大器部分是N-读出放大器,而所述第二读出放大器部分是P-读出放大器。
19.一种用于从可变电阻存储器单元读数据的方法,所述方法包括步骤:
启动包含所述存储器单元的编址的字线并且把在所述单元中的逻辑值转移到相关联的编址的位线;
禁动所述编址的字线;并且
在所述字线被禁动之后读出被转移到所述位线的逻辑值,
所述禁动是在所述编址的字线启动之后的第一预定的时间量进行的,所述第一预定的时间量是在第一读出放大器单元的启动之后并且在第二读出放大器单元的启动之前。
20.如权利要求19的方法,其中所述读出还包括,启动第一读出放大器单元;以及
在所述第一读出放大器单元启动之后的第二预定的时间启动第二读出放大器单元。
21.一种用于从可编程的导体随机存取存储器单元读数据的方法,所述方法包括步骤:
启动包含所述存储器单元的编址的字线并且把在所述单元中的逻辑值转移到相关联的编址的位线;
断开处在该相关联的编址的位线上的并且串联连接读出放大器和所述单元的隔离晶体管,其中所述断开是在编址的字线的所述启动之后的第一预定的时间量进行的;
在所述字线被禁动之后读出被转移到所述位线的逻辑值。
22.如权利要求21的方法,其中所述断开是在所述启动之后的预定的时间量进行的。
23.如权利要求21的方法,其中所述读出还包括,启动第一读出放大器单元;以及
在所述第一读出放大器单元启动之后的第二预定的时间启动第二读出放大器单元。
24.如权利要求21的方法,其中所述第一预定的时间量是在第一读出放大器单元的启动之后并且在第二读出放大器单元的启动之前。
25.如权利要求21的方法,其中所述第一预定的时间量是在第一读出放大器单元的启动之前并且在第二读出放大器单元的启动之前。
26.一种用于从可变电阻存储器单元读数据的方法,所述方法包括步骤:
对耦合到该存储器单元的第一位线进行预充电,所述存储器单元包括可变电阻元件;
预充电第二位线;
增加在所述第一位线上的电压;
接通所述单元的接入晶体管以便把该可变电阻元件耦合到所述第一位线;
禁动编址的字线以断开所述单元的接入晶体管,以便把该可变电阻元件与所述第一位线分离;
读出在所述第一位线和所述第二位线上的电压,以便确定所述可变电阻元件的逻辑状态;
其中所述禁动是在所述读出之前预定的时间执行的。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/035197 | 2002-01-04 | ||
US10/035,197 US6909656B2 (en) | 2002-01-04 | 2002-01-04 | PCRAM rewrite prevention |
CN038052393A CN1679116B (zh) | 2002-01-04 | 2003-01-06 | 存储器件和基于处理器的系统 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN038052393A Division CN1679116B (zh) | 2002-01-04 | 2003-01-06 | 存储器件和基于处理器的系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102169725A CN102169725A (zh) | 2011-08-31 |
CN102169725B true CN102169725B (zh) | 2015-10-28 |
Family
ID=21881234
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110044307.8A Expired - Lifetime CN102169725B (zh) | 2002-01-04 | 2003-01-06 | 存储器件和基于处理器的系统 |
CN038052393A Expired - Lifetime CN1679116B (zh) | 2002-01-04 | 2003-01-06 | 存储器件和基于处理器的系统 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN038052393A Expired - Lifetime CN1679116B (zh) | 2002-01-04 | 2003-01-06 | 存储器件和基于处理器的系统 |
Country Status (8)
Country | Link |
---|---|
US (3) | US6909656B2 (zh) |
EP (1) | EP1468422B1 (zh) |
JP (1) | JP4277102B2 (zh) |
KR (1) | KR100616208B1 (zh) |
CN (2) | CN102169725B (zh) |
AT (1) | ATE548734T1 (zh) |
AU (1) | AU2003235728A1 (zh) |
WO (1) | WO2003058634A1 (zh) |
Families Citing this family (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7102150B2 (en) * | 2001-05-11 | 2006-09-05 | Harshfield Steven T | PCRAM memory cell and method of making same |
US6951805B2 (en) * | 2001-08-01 | 2005-10-04 | Micron Technology, Inc. | Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry |
US6955940B2 (en) * | 2001-08-29 | 2005-10-18 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices |
US6881623B2 (en) * | 2001-08-29 | 2005-04-19 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device |
US6646902B2 (en) | 2001-08-30 | 2003-11-11 | Micron Technology, Inc. | Method of retaining memory state in a programmable conductor RAM |
US6560155B1 (en) * | 2001-10-24 | 2003-05-06 | Micron Technology, Inc. | System and method for power saving memory refresh for dynamic random access memory devices after an extended interval |
US6791859B2 (en) | 2001-11-20 | 2004-09-14 | Micron Technology, Inc. | Complementary bit PCRAM sense amplifier and method of operation |
US6909656B2 (en) * | 2002-01-04 | 2005-06-21 | Micron Technology, Inc. | PCRAM rewrite prevention |
US6867064B2 (en) * | 2002-02-15 | 2005-03-15 | Micron Technology, Inc. | Method to alter chalcogenide glass for improved switching characteristics |
US6791885B2 (en) | 2002-02-19 | 2004-09-14 | Micron Technology, Inc. | Programmable conductor random access memory and method for sensing same |
US6847535B2 (en) | 2002-02-20 | 2005-01-25 | Micron Technology, Inc. | Removable programmable conductor memory card and associated read/write device and method of operation |
US7151273B2 (en) | 2002-02-20 | 2006-12-19 | Micron Technology, Inc. | Silver-selenide/chalcogenide glass stack for resistance variable memory |
US6864500B2 (en) * | 2002-04-10 | 2005-03-08 | Micron Technology, Inc. | Programmable conductor memory cell structure |
US6858482B2 (en) * | 2002-04-10 | 2005-02-22 | Micron Technology, Inc. | Method of manufacture of programmable switching circuits and memory cells employing a glass layer |
US6731528B2 (en) * | 2002-05-03 | 2004-05-04 | Micron Technology, Inc. | Dual write cycle programmable conductor memory system and method of operation |
US6890790B2 (en) * | 2002-06-06 | 2005-05-10 | Micron Technology, Inc. | Co-sputter deposition of metal-doped chalcogenides |
US6825135B2 (en) | 2002-06-06 | 2004-11-30 | Micron Technology, Inc. | Elimination of dendrite formation during metal/chalcogenide glass deposition |
US7010644B2 (en) * | 2002-08-29 | 2006-03-07 | Micron Technology, Inc. | Software refreshed memory device and method |
US7364644B2 (en) | 2002-08-29 | 2008-04-29 | Micron Technology, Inc. | Silver selenide film stoichiometry and morphology control in sputter deposition |
US6864521B2 (en) | 2002-08-29 | 2005-03-08 | Micron Technology, Inc. | Method to control silver concentration in a resistance variable memory element |
US7800932B2 (en) * | 2005-09-28 | 2010-09-21 | Sandisk 3D Llc | Memory cell comprising switchable semiconductor memory element with trimmable resistance |
US7022579B2 (en) | 2003-03-14 | 2006-04-04 | Micron Technology, Inc. | Method for filling via with metal |
US7606059B2 (en) * | 2003-03-18 | 2009-10-20 | Kabushiki Kaisha Toshiba | Three-dimensional programmable resistance memory device with a read/write circuit stacked under a memory cell array |
US6961277B2 (en) * | 2003-07-08 | 2005-11-01 | Micron Technology, Inc. | Method of refreshing a PCRAM memory device |
US6903361B2 (en) * | 2003-09-17 | 2005-06-07 | Micron Technology, Inc. | Non-volatile memory structure |
US7583551B2 (en) | 2004-03-10 | 2009-09-01 | Micron Technology, Inc. | Power management control and controlling memory refresh operations |
US7099221B2 (en) * | 2004-05-06 | 2006-08-29 | Micron Technology, Inc. | Memory controller method and system compensating for memory cell data losses |
US7116602B2 (en) * | 2004-07-15 | 2006-10-03 | Micron Technology, Inc. | Method and system for controlling refresh to avoid memory cell data losses |
US7326950B2 (en) | 2004-07-19 | 2008-02-05 | Micron Technology, Inc. | Memory device with switching glass layer |
US7354793B2 (en) | 2004-08-12 | 2008-04-08 | Micron Technology, Inc. | Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element |
KR100610008B1 (ko) * | 2004-07-19 | 2006-08-08 | 삼성전자주식회사 | 버스트 리드동작에 적합한 상변화 메모리 장치 및 그에따른 데이터 리딩방법 |
US7365411B2 (en) | 2004-08-12 | 2008-04-29 | Micron Technology, Inc. | Resistance variable memory with temperature tolerant materials |
DE102004041907B3 (de) * | 2004-08-30 | 2006-03-23 | Infineon Technologies Ag | Resistive Speicheranordnung, insbesondere CBRAM-Speicher |
US7151688B2 (en) * | 2004-09-01 | 2006-12-19 | Micron Technology, Inc. | Sensing of resistance variable memory devices |
DE102004045219B4 (de) * | 2004-09-17 | 2011-07-28 | Qimonda AG, 81739 | Anordnung und Verfahren zum Auslesen von Widerstandsspeicherzellen |
DE102004047666B4 (de) * | 2004-09-30 | 2015-04-02 | Qimonda Ag | Speicher mit Widerstandsspeicherzelle und Bewertungsschaltung |
US7035141B1 (en) * | 2004-11-17 | 2006-04-25 | Spansion Llc | Diode array architecture for addressing nanoscale resistive memory arrays |
US7374174B2 (en) | 2004-12-22 | 2008-05-20 | Micron Technology, Inc. | Small electrode for resistance variable devices |
US20060131555A1 (en) * | 2004-12-22 | 2006-06-22 | Micron Technology, Inc. | Resistance variable devices with controllable channels |
US7317200B2 (en) | 2005-02-23 | 2008-01-08 | Micron Technology, Inc. | SnSe-based limited reprogrammable cell |
US7427770B2 (en) | 2005-04-22 | 2008-09-23 | Micron Technology, Inc. | Memory array for increased bit density |
US7709289B2 (en) | 2005-04-22 | 2010-05-04 | Micron Technology, Inc. | Memory elements having patterned electrodes and method of forming the same |
US7274034B2 (en) | 2005-08-01 | 2007-09-25 | Micron Technology, Inc. | Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication |
US7332735B2 (en) | 2005-08-02 | 2008-02-19 | Micron Technology, Inc. | Phase change memory cell and method of formation |
US7579615B2 (en) | 2005-08-09 | 2009-08-25 | Micron Technology, Inc. | Access transistor for memory device |
US7251154B2 (en) | 2005-08-15 | 2007-07-31 | Micron Technology, Inc. | Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance |
US7257013B2 (en) * | 2005-09-08 | 2007-08-14 | Infineon Technologies Ag | Method for writing data into a memory cell of a conductive bridging random access memory, memory circuit and CBRAM memory circuit |
US7254073B2 (en) * | 2005-09-29 | 2007-08-07 | Infineon Technologies Ag | Memory device having an array of resistive memory cells |
EP1770709B1 (en) * | 2005-09-29 | 2010-07-07 | Qimonda AG | Memory device comprising an array of resistive memory cells with bit lines precharging |
US7680041B2 (en) * | 2006-01-31 | 2010-03-16 | Zensys A/S | Node repair in a mesh network |
DE102006006792B3 (de) * | 2006-02-14 | 2007-05-16 | Infineon Technologies Ag | Speicher und Verfahren zum Auslesen von Daten |
US7391639B2 (en) * | 2006-02-14 | 2008-06-24 | Infineon Technologies Ag | Memory device and method for reading data |
US7362608B2 (en) | 2006-03-02 | 2008-04-22 | Infineon Technologies Ag | Phase change memory fabricated using self-aligned processing |
US7342819B2 (en) * | 2006-03-03 | 2008-03-11 | Infineon Technologies Ag | Methods for generating a reference voltage and for reading a memory cell and circuit configurations implementing the methods |
US8067948B2 (en) | 2006-03-27 | 2011-11-29 | Cypress Semiconductor Corporation | Input/output multiplexer bus |
US7324366B2 (en) * | 2006-04-21 | 2008-01-29 | International Business Machines Corporation | Non-volatile memory architecture employing bipolar programmable resistance storage elements |
US7495951B1 (en) * | 2006-04-27 | 2009-02-24 | Spansion Llc | Resistive memory cell array with common plate |
JP2008010035A (ja) * | 2006-06-27 | 2008-01-17 | Sony Corp | 記憶装置 |
US7486537B2 (en) * | 2006-07-31 | 2009-02-03 | Sandisk 3D Llc | Method for using a mixed-use memory array with different data states |
US7450414B2 (en) * | 2006-07-31 | 2008-11-11 | Sandisk 3D Llc | Method for using a mixed-use memory array |
US20080025069A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Mixed-use memory array with different data states |
US7869253B2 (en) * | 2006-08-21 | 2011-01-11 | Qimonda Ag | Method of determining a memory state of a resistive memory cell and device measuring the memory state of a resistive memory cell |
US7560723B2 (en) | 2006-08-29 | 2009-07-14 | Micron Technology, Inc. | Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication |
US7894289B2 (en) | 2006-10-11 | 2011-02-22 | Micron Technology, Inc. | Memory system and method using partial ECC to achieve low power refresh and fast access to data |
US7900120B2 (en) | 2006-10-18 | 2011-03-01 | Micron Technology, Inc. | Memory system and method using ECC with flag bit to identify modified data |
US7376027B1 (en) * | 2006-11-07 | 2008-05-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | DRAM concurrent writing and sensing scheme |
KR100887069B1 (ko) * | 2007-07-24 | 2009-03-04 | 주식회사 하이닉스반도체 | 상 변화 메모리 장치 |
JP2010541314A (ja) * | 2007-09-20 | 2010-12-24 | ガルトロニクス コーポレイション リミティド | 多層導電管アンテナ |
KR101317754B1 (ko) * | 2007-10-12 | 2013-10-11 | 삼성전자주식회사 | 상 변화 메모리 장치 |
US20100001252A1 (en) * | 2008-07-01 | 2010-01-07 | Ralf Symanczyk | Resistance Changing Memory Cell |
US8467236B2 (en) | 2008-08-01 | 2013-06-18 | Boise State University | Continuously variable resistor |
US7825479B2 (en) * | 2008-08-06 | 2010-11-02 | International Business Machines Corporation | Electrical antifuse having a multi-thickness dielectric layer |
US8120941B2 (en) * | 2008-11-07 | 2012-02-21 | Seagate Technology Llc | Bidirectional non-volatile memory array architecture |
US8154936B2 (en) * | 2008-12-30 | 2012-04-10 | Stmicroelectronics Pvt. Ltd. | Single-ended bit line based storage system |
US8626997B2 (en) * | 2009-07-16 | 2014-01-07 | Micron Technology, Inc. | Phase change memory in a dual inline memory module |
KR101736383B1 (ko) * | 2010-08-03 | 2017-05-30 | 삼성전자주식회사 | 메모리 장치, 이의 프리차지 제어 방법, 및 이를 포함하는 장치들 |
KR101201857B1 (ko) | 2010-08-27 | 2012-11-15 | 에스케이하이닉스 주식회사 | 반도체 메모리 장치 및 반도체 메모리 장치의 데이터 읽기방법 |
US9123412B2 (en) | 2013-03-22 | 2015-09-01 | Masahiro Takahashi | Resistance change memory |
US9621161B1 (en) * | 2015-12-28 | 2017-04-11 | Arm Ltd. | Method and circuit for detection of a fault event |
US9576652B1 (en) * | 2016-01-11 | 2017-02-21 | Winbond Electronics Corp. | Resistive random access memory apparatus with forward and reverse reading modes |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5883827A (en) * | 1996-08-26 | 1999-03-16 | Micron Technology, Inc. | Method and apparatus for reading/writing data in a memory system including programmable resistors |
US6314014B1 (en) * | 1999-12-16 | 2001-11-06 | Ovonyx, Inc. | Programmable resistance memory arrays with reference cells |
US6462981B2 (en) * | 2000-06-19 | 2002-10-08 | Nec Corporation | Magnetic random access memory |
Family Cites Families (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3271591A (en) | 1963-09-20 | 1966-09-06 | Energy Conversion Devices Inc | Symmetrical current controlling device |
US3622319A (en) | 1966-10-20 | 1971-11-23 | Western Electric Co | Nonreflecting photomasks and methods of making same |
US3868651A (en) | 1970-08-13 | 1975-02-25 | Energy Conversion Devices Inc | Method and apparatus for storing and reading data in a memory having catalytic material to initiate amorphous to crystalline change in memory structure |
US3743847A (en) * | 1971-06-01 | 1973-07-03 | Motorola Inc | Amorphous silicon film as a uv filter |
US4267261A (en) * | 1971-07-15 | 1981-05-12 | Energy Conversion Devices, Inc. | Method for full format imaging |
US3961314A (en) * | 1974-03-05 | 1976-06-01 | Energy Conversion Devices, Inc. | Structure and method for producing an image |
US3966317A (en) * | 1974-04-08 | 1976-06-29 | Energy Conversion Devices, Inc. | Dry process production of archival microform records from hard copy |
US4177474A (en) | 1977-05-18 | 1979-12-04 | Energy Conversion Devices, Inc. | High temperature amorphous semiconductor member and method of making the same |
JPS5565365A (en) * | 1978-11-07 | 1980-05-16 | Nippon Telegr & Teleph Corp <Ntt> | Pattern forming method |
DE2901303C2 (de) | 1979-01-15 | 1984-04-19 | Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen | Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung |
US4312938A (en) * | 1979-07-06 | 1982-01-26 | Drexler Technology Corporation | Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer |
US4269935A (en) * | 1979-07-13 | 1981-05-26 | Ionomet Company, Inc. | Process of doping silver image in chalcogenide layer |
US4316946A (en) * | 1979-12-03 | 1982-02-23 | Ionomet Company, Inc. | Surface sensitized chalcogenide product and process for making and using the same |
US4499557A (en) * | 1980-10-28 | 1985-02-12 | Energy Conversion Devices, Inc. | Programmable cell for use in programmable electronic arrays |
US4405710A (en) | 1981-06-22 | 1983-09-20 | Cornell Research Foundation, Inc. | Ion beam exposure of (g-Gex -Se1-x) inorganic resists |
US4737379A (en) * | 1982-09-24 | 1988-04-12 | Energy Conversion Devices, Inc. | Plasma deposited coatings, and low temperature plasma method of making same |
US4545111A (en) * | 1983-01-18 | 1985-10-08 | Energy Conversion Devices, Inc. | Method for making, parallel preprogramming or field programming of electronic matrix arrays |
US4608296A (en) | 1983-12-06 | 1986-08-26 | Energy Conversion Devices, Inc. | Superconducting films and devices exhibiting AC to DC conversion |
US4795657A (en) * | 1984-04-13 | 1989-01-03 | Energy Conversion Devices, Inc. | Method of fabricating a programmable array |
US4668968A (en) * | 1984-05-14 | 1987-05-26 | Energy Conversion Devices, Inc. | Integrated circuit compatible thin film field effect transistor and method of making same |
US4673957A (en) * | 1984-05-14 | 1987-06-16 | Energy Conversion Devices, Inc. | Integrated circuit compatible thin film field effect transistor and method of making same |
US4769338A (en) | 1984-05-14 | 1988-09-06 | Energy Conversion Devices, Inc. | Thin film field effect transistor and method of making same |
US4670763A (en) * | 1984-05-14 | 1987-06-02 | Energy Conversion Devices, Inc. | Thin film field effect transistor |
US4843443A (en) * | 1984-05-14 | 1989-06-27 | Energy Conversion Devices, Inc. | Thin film field effect transistor and method of making same |
US4678679A (en) * | 1984-06-25 | 1987-07-07 | Energy Conversion Devices, Inc. | Continuous deposition of activated process gases |
US4646266A (en) * | 1984-09-28 | 1987-02-24 | Energy Conversion Devices, Inc. | Programmable semiconductor structures and methods for using the same |
US4637895A (en) | 1985-04-01 | 1987-01-20 | Energy Conversion Devices, Inc. | Gas mixtures for the vapor deposition of semiconductor material |
US4664939A (en) * | 1985-04-01 | 1987-05-12 | Energy Conversion Devices, Inc. | Vertical semiconductor processor |
US4710899A (en) | 1985-06-10 | 1987-12-01 | Energy Conversion Devices, Inc. | Data storage medium incorporating a transition metal for increased switching speed |
US4671618A (en) * | 1986-05-22 | 1987-06-09 | Wu Bao Gang | Liquid crystalline-plastic material having submillisecond switch times and extended memory |
US4766471A (en) | 1986-01-23 | 1988-08-23 | Energy Conversion Devices, Inc. | Thin film electro-optical devices |
US4818717A (en) * | 1986-06-27 | 1989-04-04 | Energy Conversion Devices, Inc. | Method for making electronic matrix arrays |
US4728406A (en) * | 1986-08-18 | 1988-03-01 | Energy Conversion Devices, Inc. | Method for plasma - coating a semiconductor body |
US4845533A (en) * | 1986-08-22 | 1989-07-04 | Energy Conversion Devices, Inc. | Thin film electrical devices with amorphous carbon electrodes and method of making same |
US4809044A (en) * | 1986-08-22 | 1989-02-28 | Energy Conversion Devices, Inc. | Thin film overvoltage protection devices |
US4853785A (en) | 1986-10-15 | 1989-08-01 | Energy Conversion Devices, Inc. | Electronic camera including electronic signal storage cartridge |
US4788594A (en) | 1986-10-15 | 1988-11-29 | Energy Conversion Devices, Inc. | Solid state electronic camera including thin film matrix of photosensors |
US4847674A (en) * | 1987-03-10 | 1989-07-11 | Advanced Micro Devices, Inc. | High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism |
US4800526A (en) * | 1987-05-08 | 1989-01-24 | Gaf Corporation | Memory element for information storage and retrieval system and associated process |
US4891330A (en) * | 1987-07-27 | 1990-01-02 | Energy Conversion Devices, Inc. | Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements |
US4775425A (en) | 1987-07-27 | 1988-10-04 | Energy Conversion Devices, Inc. | P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same |
US5272359A (en) | 1988-04-07 | 1993-12-21 | California Institute Of Technology | Reversible non-volatile switch based on a TCNQ charge transfer complex |
US4898234A (en) * | 1988-08-19 | 1990-02-06 | Mcdonnell Douglas Corporation | Air heat exchanger |
GB8910854D0 (en) | 1989-05-11 | 1989-06-28 | British Petroleum Co Plc | Semiconductor device |
US5159661A (en) | 1990-10-05 | 1992-10-27 | Energy Conversion Devices, Inc. | Vertically interconnected parallel distributed processor |
US5314772A (en) * | 1990-10-09 | 1994-05-24 | Arizona Board Of Regents | High resolution, multi-layer resist for microlithography and method therefor |
JPH0770731B2 (ja) * | 1990-11-22 | 1995-07-31 | 松下電器産業株式会社 | 電気可塑性素子 |
US5335219A (en) | 1991-01-18 | 1994-08-02 | Ovshinsky Stanford R | Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements |
US5341328A (en) | 1991-01-18 | 1994-08-23 | Energy Conversion Devices, Inc. | Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life |
US5534711A (en) * | 1991-01-18 | 1996-07-09 | Energy Conversion Devices, Inc. | Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom |
US5596522A (en) * | 1991-01-18 | 1997-01-21 | Energy Conversion Devices, Inc. | Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements |
US5536947A (en) * | 1991-01-18 | 1996-07-16 | Energy Conversion Devices, Inc. | Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom |
US5414271A (en) * | 1991-01-18 | 1995-05-09 | Energy Conversion Devices, Inc. | Electrically erasable memory elements having improved set resistance stability |
US5296716A (en) * | 1991-01-18 | 1994-03-22 | Energy Conversion Devices, Inc. | Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom |
US5534712A (en) * | 1991-01-18 | 1996-07-09 | Energy Conversion Devices, Inc. | Electrically erasable memory elements characterized by reduced current and improved thermal stability |
US5166758A (en) | 1991-01-18 | 1992-11-24 | Energy Conversion Devices, Inc. | Electrically erasable phase change memory |
US5406509A (en) * | 1991-01-18 | 1995-04-11 | Energy Conversion Devices, Inc. | Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom |
US5128099A (en) * | 1991-02-15 | 1992-07-07 | Energy Conversion Devices, Inc. | Congruent state changeable optical memory material and device |
US5219788A (en) * | 1991-02-25 | 1993-06-15 | Ibm Corporation | Bilayer metallization cap for photolithography |
US5177567A (en) * | 1991-07-19 | 1993-01-05 | Energy Conversion Devices, Inc. | Thin-film structure for chalcogenide electrical switching devices and process therefor |
US5359205A (en) | 1991-11-07 | 1994-10-25 | Energy Conversion Devices, Inc. | Electrically erasable memory elements characterized by reduced current and improved thermal stability |
JP3082392B2 (ja) * | 1992-02-05 | 2000-08-28 | タカタ株式会社 | 車両乗員の保護装置 |
US5238862A (en) | 1992-03-18 | 1993-08-24 | Micron Technology, Inc. | Method of forming a stacked capacitor with striated electrode |
US5512328A (en) * | 1992-08-07 | 1996-04-30 | Hitachi, Ltd. | Method for forming a pattern and forming a thin film used in pattern formation |
US5350484A (en) | 1992-09-08 | 1994-09-27 | Intel Corporation | Method for the anisotropic etching of metal films in the fabrication of interconnects |
JP3026474B2 (ja) * | 1993-04-07 | 2000-03-27 | 株式会社東芝 | 半導体集積回路 |
BE1007902A3 (nl) * | 1993-12-23 | 1995-11-14 | Philips Electronics Nv | Schakelelement met geheugen voorzien van schottky tunnelbarriere. |
US5500532A (en) | 1994-08-18 | 1996-03-19 | Arizona Board Of Regents | Personal electronic dosimeter |
JP2643870B2 (ja) * | 1994-11-29 | 1997-08-20 | 日本電気株式会社 | 半導体記憶装置の製造方法 |
US5543737A (en) | 1995-02-10 | 1996-08-06 | Energy Conversion Devices, Inc. | Logical operation circuit employing two-terminal chalcogenide switches |
US5869843A (en) * | 1995-06-07 | 1999-02-09 | Micron Technology, Inc. | Memory array having a multi-state element and method for forming such array or cells thereof |
AU6048896A (en) | 1995-06-07 | 1996-12-30 | Micron Technology, Inc. | A stack/trench diode for use with a multi-state material in a non-volatile memory cell |
US5751012A (en) | 1995-06-07 | 1998-05-12 | Micron Technology, Inc. | Polysilicon pillar diode for use in a non-volatile memory cell |
US6420725B1 (en) | 1995-06-07 | 2002-07-16 | Micron Technology, Inc. | Method and apparatus for forming an integrated circuit electrode having a reduced contact area |
US5789758A (en) * | 1995-06-07 | 1998-08-04 | Micron Technology, Inc. | Chalcogenide memory cell with a plurality of chalcogenide electrodes |
US5879955A (en) * | 1995-06-07 | 1999-03-09 | Micron Technology, Inc. | Method for fabricating an array of ultra-small pores for chalcogenide memory cells |
US5714768A (en) * | 1995-10-24 | 1998-02-03 | Energy Conversion Devices, Inc. | Second-layer phase change memory array on top of a logic device |
US5694054A (en) | 1995-11-28 | 1997-12-02 | Energy Conversion Devices, Inc. | Integrated drivers for flat panel displays employing chalcogenide logic elements |
US5591501A (en) * | 1995-12-20 | 1997-01-07 | Energy Conversion Devices, Inc. | Optical recording medium having a plurality of discrete phase change data recording points |
US6653733B1 (en) * | 1996-02-23 | 2003-11-25 | Micron Technology, Inc. | Conductors in semiconductor devices |
US5687112A (en) | 1996-04-19 | 1997-11-11 | Energy Conversion Devices, Inc. | Multibit single cell memory element having tapered contact |
US5761115A (en) | 1996-05-30 | 1998-06-02 | Axon Technologies Corporation | Programmable metallization cell structure and method of making same |
US5789277A (en) | 1996-07-22 | 1998-08-04 | Micron Technology, Inc. | Method of making chalogenide memory device |
US5998244A (en) * | 1996-08-22 | 1999-12-07 | Micron Technology, Inc. | Memory cell incorporating a chalcogenide element and method of making same |
US5825046A (en) | 1996-10-28 | 1998-10-20 | Energy Conversion Devices, Inc. | Composite memory material comprising a mixture of phase-change memory material and dielectric material |
US6087674A (en) * | 1996-10-28 | 2000-07-11 | Energy Conversion Devices, Inc. | Memory element with memory material comprising phase-change material and dielectric material |
US5846889A (en) | 1997-03-14 | 1998-12-08 | The United States Of America As Represented By The Secretary Of The Navy | Infrared transparent selenide glasses |
US5998066A (en) | 1997-05-16 | 1999-12-07 | Aerial Imaging Corporation | Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass |
US5933365A (en) | 1997-06-19 | 1999-08-03 | Energy Conversion Devices, Inc. | Memory element with energy control mechanism |
US6051511A (en) * | 1997-07-31 | 2000-04-18 | Micron Technology, Inc. | Method and apparatus for reducing isolation stress in integrated circuits |
US6005818A (en) * | 1998-01-20 | 1999-12-21 | Stmicroelectronics, Inc. | Dynamic random access memory device with a latching mechanism that permits hidden refresh operations |
US6011757A (en) * | 1998-01-27 | 2000-01-04 | Ovshinsky; Stanford R. | Optical recording media having increased erasability |
US6297170B1 (en) | 1998-06-23 | 2001-10-02 | Vlsi Technology, Inc. | Sacrificial multilayer anti-reflective coating for mos gate formation |
US5912839A (en) * | 1998-06-23 | 1999-06-15 | Energy Conversion Devices, Inc. | Universal memory element and method of programming same |
US6141241A (en) | 1998-06-23 | 2000-10-31 | Energy Conversion Devices, Inc. | Universal memory element with systems employing same and apparatus and method for reading, writing and programming same |
US6388324B2 (en) * | 1998-08-31 | 2002-05-14 | Arizona Board Of Regents | Self-repairing interconnections for electrical circuits |
US6034909A (en) * | 1998-10-30 | 2000-03-07 | Stmicroelectronics, Inc. | Method and apparatus for bit line isolation for random access memory devices |
US6825489B2 (en) * | 2001-04-06 | 2004-11-30 | Axon Technologies Corporation | Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same |
US6487106B1 (en) * | 1999-01-12 | 2002-11-26 | Arizona Board Of Regents | Programmable microelectronic devices and method of forming and programming same |
US6177338B1 (en) * | 1999-02-08 | 2001-01-23 | Taiwan Semiconductor Manufacturing Company | Two step barrier process |
US6072716A (en) * | 1999-04-14 | 2000-06-06 | Massachusetts Institute Of Technology | Memory structures and methods of making same |
US6143604A (en) | 1999-06-04 | 2000-11-07 | Taiwan Semiconductor Manufacturing Company | Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM) |
US6350679B1 (en) * | 1999-08-03 | 2002-02-26 | Micron Technology, Inc. | Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry |
US20030107105A1 (en) * | 1999-08-31 | 2003-06-12 | Kozicki Michael N. | Programmable chip-to-substrate interconnect structure and device and method of forming same |
US6423628B1 (en) * | 1999-10-22 | 2002-07-23 | Lsi Logic Corporation | Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines |
US6914802B2 (en) * | 2000-02-11 | 2005-07-05 | Axon Technologies Corporation | Microelectronic photonic structure and device and method of forming the same |
US6865117B2 (en) * | 2000-02-11 | 2005-03-08 | Axon Technologies Corporation | Programming circuit for a programmable microelectronic device, system including the circuit, and method of forming the same |
US6391668B1 (en) * | 2000-05-01 | 2002-05-21 | Agere Systems Guardian Corp. | Method of determining a trap density of a semiconductor/oxide interface by a contactless charge technique |
JP2002093165A (ja) * | 2000-09-18 | 2002-03-29 | Mitsubishi Electric Corp | 半導体記憶装置 |
US6404665B1 (en) * | 2000-09-29 | 2002-06-11 | Intel Corporation | Compositionally modified resistive electrode |
US6339544B1 (en) * | 2000-09-29 | 2002-01-15 | Intel Corporation | Method to enhance performance of thermal resistor device |
US6563164B2 (en) * | 2000-09-29 | 2003-05-13 | Ovonyx, Inc. | Compositionally modified resistive electrode |
US6555860B2 (en) * | 2000-09-29 | 2003-04-29 | Intel Corporation | Compositionally modified resistive electrode |
US6567293B1 (en) * | 2000-09-29 | 2003-05-20 | Ovonyx, Inc. | Single level metal memory cell using chalcogenide cladding |
US6653193B2 (en) * | 2000-12-08 | 2003-11-25 | Micron Technology, Inc. | Resistance variable device |
US6696355B2 (en) * | 2000-12-14 | 2004-02-24 | Ovonyx, Inc. | Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory |
US6569705B2 (en) * | 2000-12-21 | 2003-05-27 | Intel Corporation | Metal structure for a phase-change memory device |
US6534781B2 (en) * | 2000-12-26 | 2003-03-18 | Ovonyx, Inc. | Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact |
US6531373B2 (en) * | 2000-12-27 | 2003-03-11 | Ovonyx, Inc. | Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements |
US6687427B2 (en) * | 2000-12-29 | 2004-02-03 | Intel Corporation | Optic switch |
US6452834B1 (en) * | 2001-02-13 | 2002-09-17 | Silicon Access Networks | 2T dual-port DRAM in a pure logic process with non-destructive read capability |
US6727192B2 (en) * | 2001-03-01 | 2004-04-27 | Micron Technology, Inc. | Methods of metal doping a chalcogenide material |
US6348365B1 (en) * | 2001-03-02 | 2002-02-19 | Micron Technology, Inc. | PCRAM cell manufacturing |
US6734455B2 (en) * | 2001-03-15 | 2004-05-11 | Micron Technology, Inc. | Agglomeration elimination for metal sputter deposition of chalcogenides |
US7102150B2 (en) * | 2001-05-11 | 2006-09-05 | Harshfield Steven T | PCRAM memory cell and method of making same |
US6589714B2 (en) * | 2001-06-26 | 2003-07-08 | Ovonyx, Inc. | Method for making programmable resistance memory element using silylated photoresist |
US6570784B2 (en) * | 2001-06-29 | 2003-05-27 | Ovonyx, Inc. | Programming a phase-change material memory |
US6511867B2 (en) * | 2001-06-30 | 2003-01-28 | Ovonyx, Inc. | Utilizing atomic layer deposition for programmable device |
US6514805B2 (en) * | 2001-06-30 | 2003-02-04 | Intel Corporation | Trench sidewall profile for device isolation |
US6511862B2 (en) * | 2001-06-30 | 2003-01-28 | Ovonyx, Inc. | Modified contact for programmable devices |
US6673700B2 (en) * | 2001-06-30 | 2004-01-06 | Ovonyx, Inc. | Reduced area intersection between electrode and programming element |
US6951805B2 (en) * | 2001-08-01 | 2005-10-04 | Micron Technology, Inc. | Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry |
US6590807B2 (en) * | 2001-08-02 | 2003-07-08 | Intel Corporation | Method for reading a structural phase-change memory |
US6737312B2 (en) * | 2001-08-27 | 2004-05-18 | Micron Technology, Inc. | Method of fabricating dual PCRAM cells sharing a common electrode |
US6881623B2 (en) * | 2001-08-29 | 2005-04-19 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device |
US6784018B2 (en) * | 2001-08-29 | 2004-08-31 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry |
US6955940B2 (en) * | 2001-08-29 | 2005-10-18 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices |
US6709958B2 (en) * | 2001-08-30 | 2004-03-23 | Micron Technology, Inc. | Integrated circuit device and fabrication using metal-doped chalcogenide materials |
US6646902B2 (en) * | 2001-08-30 | 2003-11-11 | Micron Technology, Inc. | Method of retaining memory state in a programmable conductor RAM |
US20030047765A1 (en) * | 2001-08-30 | 2003-03-13 | Campbell Kristy A. | Stoichiometry for chalcogenide glasses useful for memory devices and method of formation |
US6507061B1 (en) * | 2001-08-31 | 2003-01-14 | Intel Corporation | Multiple layer phase-change memory |
US7113474B2 (en) * | 2001-09-01 | 2006-09-26 | Energy Conversion Devices, Inc. | Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses |
US6586761B2 (en) * | 2001-09-07 | 2003-07-01 | Intel Corporation | Phase change material memory device |
US6545287B2 (en) * | 2001-09-07 | 2003-04-08 | Intel Corporation | Using selective deposition to form phase-change memory cells |
US6690026B2 (en) * | 2001-09-28 | 2004-02-10 | Intel Corporation | Method of fabricating a three-dimensional array of active media |
AU2002362662A1 (en) * | 2001-10-09 | 2003-04-22 | Axon Technologies Corporation | Programmable microelectronic device, structure, and system, and method of forming the same |
US6566700B2 (en) * | 2001-10-11 | 2003-05-20 | Ovonyx, Inc. | Carbon-containing interfacial layer for phase-change memory |
US6545907B1 (en) * | 2001-10-30 | 2003-04-08 | Ovonyx, Inc. | Technique and apparatus for performing write operations to a phase change material memory device |
US6576921B2 (en) * | 2001-11-08 | 2003-06-10 | Intel Corporation | Isolating phase change material memory cells |
US6815818B2 (en) * | 2001-11-19 | 2004-11-09 | Micron Technology, Inc. | Electrode structure for use in an integrated circuit |
US6791859B2 (en) * | 2001-11-20 | 2004-09-14 | Micron Technology, Inc. | Complementary bit PCRAM sense amplifier and method of operation |
US6873538B2 (en) * | 2001-12-20 | 2005-03-29 | Micron Technology, Inc. | Programmable conductor random access memory and a method for writing thereto |
US6512241B1 (en) * | 2001-12-31 | 2003-01-28 | Intel Corporation | Phase change material memory device |
US6909656B2 (en) * | 2002-01-04 | 2005-06-21 | Micron Technology, Inc. | PCRAM rewrite prevention |
US20030143782A1 (en) * | 2002-01-31 | 2003-07-31 | Gilton Terry L. | Methods of forming germanium selenide comprising devices and methods of forming silver selenide comprising structures |
US6867064B2 (en) * | 2002-02-15 | 2005-03-15 | Micron Technology, Inc. | Method to alter chalcogenide glass for improved switching characteristics |
US6791885B2 (en) * | 2002-02-19 | 2004-09-14 | Micron Technology, Inc. | Programmable conductor random access memory and method for sensing same |
US6671710B2 (en) * | 2002-05-10 | 2003-12-30 | Energy Conversion Devices, Inc. | Methods of computing with digital multistate phase change materials |
US6918382B2 (en) * | 2002-08-26 | 2005-07-19 | Energy Conversion Devices, Inc. | Hydrogen powered scooter |
-
2002
- 2002-01-04 US US10/035,197 patent/US6909656B2/en not_active Expired - Lifetime
-
2003
- 2003-01-06 CN CN201110044307.8A patent/CN102169725B/zh not_active Expired - Lifetime
- 2003-01-06 KR KR1020047010536A patent/KR100616208B1/ko active IP Right Grant
- 2003-01-06 AT AT03729340T patent/ATE548734T1/de active
- 2003-01-06 EP EP03729340A patent/EP1468422B1/en not_active Expired - Lifetime
- 2003-01-06 WO PCT/US2003/000239 patent/WO2003058634A1/en active Application Filing
- 2003-01-06 AU AU2003235728A patent/AU2003235728A1/en not_active Abandoned
- 2003-01-06 CN CN038052393A patent/CN1679116B/zh not_active Expired - Lifetime
- 2003-01-06 JP JP2003558859A patent/JP4277102B2/ja not_active Expired - Lifetime
- 2003-10-08 US US10/680,161 patent/US6882578B2/en not_active Expired - Lifetime
-
2005
- 2005-03-03 US US11/070,213 patent/US7224632B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5883827A (en) * | 1996-08-26 | 1999-03-16 | Micron Technology, Inc. | Method and apparatus for reading/writing data in a memory system including programmable resistors |
US6314014B1 (en) * | 1999-12-16 | 2001-11-06 | Ovonyx, Inc. | Programmable resistance memory arrays with reference cells |
US6462981B2 (en) * | 2000-06-19 | 2002-10-08 | Nec Corporation | Magnetic random access memory |
Also Published As
Publication number | Publication date |
---|---|
US20030128612A1 (en) | 2003-07-10 |
AU2003235728A1 (en) | 2003-07-24 |
EP1468422B1 (en) | 2012-03-07 |
JP2005515577A (ja) | 2005-05-26 |
CN1679116A (zh) | 2005-10-05 |
WO2003058634A1 (en) | 2003-07-17 |
US6909656B2 (en) | 2005-06-21 |
KR100616208B1 (ko) | 2006-08-25 |
US6882578B2 (en) | 2005-04-19 |
US20050146958A1 (en) | 2005-07-07 |
EP1468422A1 (en) | 2004-10-20 |
ATE548734T1 (de) | 2012-03-15 |
CN102169725A (zh) | 2011-08-31 |
KR20040075053A (ko) | 2004-08-26 |
US20040071042A1 (en) | 2004-04-15 |
US7224632B2 (en) | 2007-05-29 |
JP4277102B2 (ja) | 2009-06-10 |
CN1679116B (zh) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102169725B (zh) | 存储器件和基于处理器的系统 | |
CN100483545C (zh) | 用于检测存储值的方法、存储器结构和处理器系统 | |
CN101615426B (zh) | 可编程导体随机存取存储器以及向其中写入的方法 | |
US6731528B2 (en) | Dual write cycle programmable conductor memory system and method of operation | |
US6788603B2 (en) | ROM embedded DRAM with bias sensing | |
JP2004342291A (ja) | 相変化メモリデバイス | |
CN102054530A (zh) | 存储器件和读取存储器件的方法 | |
CN102163451A (zh) | 非易失性半导体存储器件 | |
JP2008198304A (ja) | 不揮発性半導体記憶装置 | |
KR20020019421A (ko) | 반도체기억장치의 구동방법 | |
CN101178927B (zh) | 应用于存储器的多稳态感测放大器 | |
KR100445293B1 (ko) | 자기 저항성 메모리 효과를 갖는 메모리 셀을 포함하는집적 메모리 | |
US20090257264A1 (en) | Memory and method of evaluating a memory state of a resistive memory cell | |
JP2006147666A (ja) | 記憶装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20151028 |
|
CX01 | Expiry of patent term |