CN102007173A - 涂敷的和平面化的聚合物膜 - Google Patents

涂敷的和平面化的聚合物膜 Download PDF

Info

Publication number
CN102007173A
CN102007173A CN2009801135802A CN200980113580A CN102007173A CN 102007173 A CN102007173 A CN 102007173A CN 2009801135802 A CN2009801135802 A CN 2009801135802A CN 200980113580 A CN200980113580 A CN 200980113580A CN 102007173 A CN102007173 A CN 102007173A
Authority
CN
China
Prior art keywords
composite membrane
substrate
complanation
arbitrary aforementioned
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801135802A
Other languages
English (en)
Inventor
雷蒙德·阿达姆
罗伯特·W·伊夫森
威廉·A·麦克唐纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Teijin Films US LP
Original Assignee
DuPont Teijin Films US LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DuPont Teijin Films US LP filed Critical DuPont Teijin Films US LP
Publication of CN102007173A publication Critical patent/CN102007173A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31616Next to polyester [e.g., alkyd]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers

Abstract

一种复合膜,包括聚合物衬底和平面化涂敷层,其中所述平面化衬底的表面呈现出小于0.7nm的Ra值和/或小于0.9nm的Rq值,并且其中所述复合膜进一步包括通过原子层沉积在衬底的平面化表面上沉积的气体透过阻挡层;包括所述复合膜的电子器件;以及用于生产该复合膜的方法。

Description

涂敷的和平面化的聚合物膜
本申请涉及适合于用作电子或光电子器件中的衬底(基板)和/或密封剂层的聚合物膜。
电子和光电子器件包括电致发光(EL)显示器件(尤其是有机发光显示(OLED)器件)、电泳显示器(电-纸)、光伏电池和半导体器件(通常如有机场效应晶体管、薄膜晶体管和集成电路)。本发明涉及用于这些器件中的柔性聚合物膜,其作为绝缘和支撑衬底(基板)、和/或密封剂层。对驱动所述器件的电子操作的电子电路进行制造和/或安装在所述衬底上。包括所述衬底和电路的部件经常被描述为底板。密封剂层可以设置在所述器件的外部,部分或完全地包围所述电路和衬底。
所述衬底和密封剂层可以是透明的、半透明的或不透明的,但是通常是透明的,并且它们可能需要满足对于光学透明度、平面性(平面度)和最小双折射的严格规格(标准)。通常,对于显示器应用,在400-800nm范围的85%的总光透射(TLT)与小于0.7%的浊度(雾度,光雾,haze)的结合是期望的。表面平滑度和平面性对于确保随后施加的涂层如电极导电涂层的完整性是必要的。所述衬底和密封剂层还应当具有良好的屏障性能,即,对气体和溶剂渗透的高阻力。机械性能如柔性、耐冲击性、重量、硬度和耐擦伤性也是重要的考虑因素。柔性聚合物衬底和密封剂层允许在盘到盘(卷到卷)过程中制造电子和光电子器件,由此降低成本。
在该技术领域中,相对于光学性能玻璃或石英,聚合物材料作为衬底和/或密封剂层的缺点包括低耐化学性、不良的屏障性能和不良的尺寸稳定性。已经开发了无机以及有机阻挡涂层以使该问题最小化,并且通常这些涂层在升高的温度下被应用于溅射工艺中。US-6,198,217披露了适于作为阻挡层的材料。WO-03/022575-A披露了在底板和显示器件的制造过程中经历的高温加工条件(处理条件)期间(包括使阻挡层沉积在聚合物衬底上)呈现出良好的高温尺寸稳定性的柔性聚合物膜。
为了确保阻挡层以及随后施加的导电层的完整性,并且防止其中的“针孔”,聚合物膜的表面必须呈现出良好的平滑度和平面性。WO-03/087247-A教导了实现该目的的平面化涂料组合物。用于防止屏障层中的针孔,并且确保随后施加的层的完整性的备选方法使用如本领域中已知的原子层沉积(ALD)技术。在该ALD技术中,反应物和它们的单层自限制表面吸附的顺序引入迫使分层(逐层,layer-by-layer)膜生长,其在纹理化的表面上是高度适合的,并且由此防止阻挡层的针孔形成。Carcia et al.(Appl.Phys.Lett.89,031915(2006);和WO-2004/105149-A)教导了ALD能够产生消除针孔的高性能气体扩散阻挡涂层。
本发明的一个目的是提供一种聚合物膜,该聚合物膜呈现出良好的气体阻挡(屏蔽)性能,并且适于在电子器件,尤其是柔性电子器件,优选电子显示器、光伏电池或半导体器件的制造中用作衬底和/或密封剂层。
根据本发明,提供了一种包括聚合物衬底和平面化涂敷层的复合膜(复合薄膜),其中所述平面化衬底的表面呈现出小于0.7nm的Ra值和/或小于0.9nm的Rq值,并且其中所述复合膜进一步包括通过原子层沉积在所述衬底的平面化表面上沉积的气体透过阻挡层(barrier)。
衬底的聚合物材料优选为聚酯。如本文所使用的,术语聚酯包括以其最简单的形式或化学和/或物理改性的聚酯均聚物。尤其是,所述聚酯来自:
(i)一种或多种二醇;
(ii)一种或多种芳香族二羧酸;以及
(iii)可选地,通式为CnH2n(COOH)2的一种或多种脂肪族二羧酸,其中n为2至8,
其中,基于(共)聚酯中的二羧酸成分的总量,所述芳香族二羧酸以约80到约100mol%的量存在于(共)聚酯中。共聚酯可以是无规、交替或嵌段共聚多酯。
所述聚酯可以通过缩合所述二羧酸或它们的低级烷基(多达6个碳原子)二酯与一种或多种二醇而获得。所述芳香族二羧酸优先选自对苯二酸,间苯二酸,苯二甲酸,2,5-、2,6-或2,7-萘二羧酸(萘二甲酸),并且优选为对苯二酸或2,6-萘二羧酸,优选2,6-萘二羧酸。二醇优先选自脂族和脂环族二醇(二元醇,glycol),例如乙二醇、1,3-丙二醇、1,4-丁二醇、新戊二醇以及1,4-环己烷二甲醇,优先选自脂族二元醇。优选地,共聚多酯仅包含一种二醇,优选乙二醇。脂族二羧酸可以是琥珀酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸(azeleic acid)或癸二酸。优选的均聚酯是2,6-萘二羧酸或对苯二酸与乙二醇的聚酯。特别优选的均聚酯是聚(萘二甲酸乙二醇酯),并且特别是2,6-萘二羧酸与乙二醇的聚酯。
可以以已知的方式通过缩合或酯交换,并通常在可高达约295℃的温度下方便地实现聚酯的形成。例如,优选的PEN聚酯可以通过缩合2,5-、2,6-或2,7-萘二羧酸,优选2,6-萘二羧酸、或其低级烷基(多达6个碳原子)二酯与乙二醇来合成。通常,缩聚包括固相聚合阶段。可以在流化床上,例如用氮流化的,或在真空流化床上利用旋转式真空干燥器来进行固相聚合。合适的固相聚合技术披露在例如EP-A-0419400中,将其披露内容以引用方式结合于本文。在一种实施方式中,利用锗催化剂来制备PEN,其可以提供具有降低水平的污染物的聚合物材料,如催化剂残留物、不期望的无机沉淀物以及聚合物制造中的其它副产物。“更清洁的”聚合物组合物可促进改善的光学透明度和表面光滑度。优选地,PEN具有0.5~1.5的PET当量特性粘度(固有粘度,本征粘度)(IV),优选0.7~1.5,并且尤其是0.79~1.0。少于0.5的IV导致聚合物膜缺少期望的性能如机械性能,而大于1.5的IV难以实现并可能导致原材料的加工困难。
优选的均聚酯,PEN的Tg一般确认为120℃,虽然其它优选的均聚酯,PET的Tg一般确认为80℃。共聚多酯可以呈现出低于或高于母体均聚物的Tg值,其取决于加入的共聚单体的特性。由聚酯制备的膜可以呈现出高于聚酯原材料的Tg值,其取决于膜的结晶度。因此,随着膜结晶度的增加,在膜的无定形区中的聚酯链的移动会受到更多限制,这意味着在更高的温度下观察到玻璃化转变。
衬底是自支撑的,这意味着在缺乏支撑底座(支撑基底,supporting base)的情况下能够独立的存在。衬底层的厚度优选为约12到约250μm,更优选地约12到约150μm,并且通常厚度为约25-125μm。
可以通过本领域中熟知的常规技术来实现衬底层的形成。方便地,按照以下描述的程序,通过挤压来实现衬底的形成。一般地说,该方法包括以下步骤:挤压熔融聚合物层、骤冷挤出物(extrudate)以及使骤冷的挤出物定向在至少一个方向上。
衬底优选被双轴定向。可以通过本领域中已知的用于生产定向膜的任何方法来实现定向,例如管状或平坦膜(flat film)方法。通过在膜平面中的两个相互垂直的方向进行拉伸来实施双轴定向,以实现机械和物理性能的满意组合。
在管状方法中,可以通过以下来实现同时双轴定向:挤压热塑性聚酯管,其随后被骤冷、再加热并且然后通过内部气压加以膨胀以诱导横向定向,并以一定速率拉动(移开),其将诱导纵向定向。
在优选的扁平膜方法中,成膜聚酯被挤压通过狭缝模具(冲模)并在激冷的浇铸转筒(casting drum)上快速骤冷,以确保聚酯被骤冷成无定形状态。然后在高于聚酯的玻璃化转变温度的温度下通过在至少一个方向上拉伸骤冷的挤出物来进行定向。可以通过首先在一个方向,通常为纵向,即通过膜拉伸机的向前方向,然后在横向,拉伸扁平的、骤冷的挤出物来进行顺序定向。用一组旋转辊或在两对压料辊(轧辊)之间方便地进行挤出物的向前拉伸,然后用拉幅机进行横向拉伸。通常进行拉伸以使定向膜的尺寸在拉伸方向或在每个拉伸方向是其最初尺寸的2至5倍,更优选2.5至4.5倍。通常,在高于聚酯Tg的温度下进行拉伸,优选高于Tg约15℃。如果要求仅在一个方向定向,则可以使用更大的拉伸比(例如,高达约8倍)。没有必要在轴向(加工方向)和横向相等地拉伸,虽然如果期望平衡的性能,则这是优选的。
可以并且优选在高于聚酯的玻璃化转变温度但低于其熔解温度的温度下并在尺寸支架(dimensional support)下通过热固化(热定形)来尺寸上稳定拉伸的膜,以诱导聚酯的结晶。在热固化过程中,可以通过称作“前束(toe-in)”的步骤沿横向TD进行少量的尺寸松驰。前束可以涉及大约2%至4%的尺寸收缩量(收缩率,收缩),但在工艺或加工方向(轴向)(MD)的类似尺寸松驰是难以实现的,因为需要低的线张力并且膜控制和绕制也成问题。实际热固化温度和时间将随着膜的组成以及其期望的最终热收缩而变化,但不应如此选择以致显著降低膜的韧性性能如抗撕裂性。在这些限制内,通常期望约180℃至245℃的热固化温度。
还可以并且确实优选通过使用在线松驰阶段来进一步稳定衬底。可替换地,可以离线进行松驰处理。在该附加的步骤中,在低于热固化阶段的温度下并且在低得多的MD和TD张力下加热膜。由此处理的膜将呈现比在没有这样的后热固化松驰的情况下生产的膜更小的热收缩。
在一种实施方式中,如下进行双轴拉伸膜的热固化和热稳定。在完成拉伸步骤以后,使用优选约135℃至约250℃、更优选235-240℃的热固化温度以及通常在5至40秒、优选8至30秒范围内的加热持续时间,通过尺寸上限制膜的张力在约19至约75kg/m的膜宽度,并且在一个实施方式中约45至约50kg/m的膜宽度范围来进行热固化。然后通过在低张力下对其进行加热来热稳定热固化膜,优选使得膜经受的张力为小于10kg/m的膜宽度,在一个实施方式中小于5kg/m,并且在另外的实施方式中在1至约3.5kg/m膜宽度的范围内,通常利用低于用于热固化步骤的温度并且选择为在约135℃至250℃,优选150至230℃,并且加热的持续时间通常在5至40秒的范围内,并且在一个实施方式中具有20至30秒的持续时间。在特别适用于PEN的一个实施方式中,热固化膜利用在约170到230℃,优选180到210℃范围的温度进行热稳定。
热固化、热稳定的衬底呈现出非常低的残余收缩以及因此高的尺寸稳定性。
优选地,衬底在轴向和横向的每一个中,呈现出在23℃到小于40×10-6/℃,优选小于30×10-6/℃,优选小于25×10-6/℃,优选小于20×10-6/℃,更优选小于15×10-6/℃的衬底的玻璃转化转变温度(Tg(℃))的温度范围内的线性热膨胀系数(CLTE)。在一个实施方式中,PEN衬底具有在小于40×10-6/℃,优选小于30×10-6/℃,优选小于25×10-6/℃,更优选小于20×10-6/℃,更优选小于15×10-6/℃的23℃到+120℃的温度范围内的CLTE。对于PET衬底,在23℃到+80°的温度范围内的CLTE优选小于40×10-6/℃,优选小于30×10-6/℃,优选小于25×10-6/℃,优选小于20×10-6/℃,更优选小于15×10-6/℃。
在一个实施方式中,在轴向和横向中的每一个中,所述衬底在150℃下在30分钟内具有如本文定义所测量的不大于0.5%、优选不大于0.25%、优选不大于0.1%,优选不大于0.05%,并且更优选不大于0.03%的收缩量(收缩率)。优选地,所述衬底(特别是热稳定的、热固化的、双轴定向的PEN衬底)在轴向和横向中的每一个上,在200℃下在10分钟内具有如本文定义所测量的不大于2%,优选不大于1%,优选不大于0.75%,优选不大于0.5%,优选不大于0.25%,并且更优选不大于0.1%的收缩量。在一个实施方式中,所述衬底(特别是热稳定、热固化、双轴定向的PET衬底)在轴向和横向中的每一个上,在120℃下在30分钟内,具有如本文定义所测量的不大于0.5%,优选不大于0.25%,优选不大于0.1%,并且更优选不大于0.05%的收缩量。在优选的实施方式中,热稳定、热固化、双轴定向的PET衬底在轴向和横向中的每一个上,在150℃下在30分钟内,具有如本文定义所测量的不大于0.5%,优选不大于0.25%,优选不大于0.1%,优选不大于0.05%,并且更优选不大于0.03%的收缩量。
在特别优选的实施方式中,所述衬底是包括聚(萘二甲酸乙二醇酯)的热稳定、热固化双轴定向膜,其在200℃下在10分钟后具有前述收缩特征,并且优选具有前述CLTE特征。
衬底可以方便地包含任何添加剂,其常规用于聚酯膜的制造并且已知不会从膜迁移到其表面。因此添加剂将不会在退火过程中污染膜的表面并且不会有助于所观察到的表面雾度的效果。因此,在合适的情况下,可以加入作为固体、或共价结合于聚酯的如交联剂、颜料以及空隙剂(孔隙剂,voiding agent)的制剂(试剂),如抗氧化剂、自由基捕获剂、紫外线吸收剂、热稳定剂、阻燃剂以及抑制剂的制剂,以及最后这样的制剂,其是稳定的非迁移的荧光增白剂、光泽改善剂、降解助剂(prodegradent)、粘度改进剂以及分散稳定剂。尤其是,该衬底可以包括粒状填料,其可以在制造期间改善处理和卷绕性。粒状填料可以,例如,是粒状无机填料(例如,有空隙或无空隙(voiding or non-voiding)的金属或准金属氧化物,如氧化铝、二氧化硅(硅石)和二氧化钛,煅烧磁土和碱金属盐,如钙和钡的碳酸盐和硫酸盐)、或不相容的树脂填料(例如,聚酰胺和烯烃聚合物,尤其是在其分子中包含多达6个碳原子的单-α-烯烃的均聚物或共聚物)或两种或更多种这样的填料的混合物。
可以以常规方式将层组合物的成分混合在一起。例如,通过混合单体反应物(从其衍生成膜聚酯),或可以通过辗转或干掺和或通过在挤压机中混合,来混合成分和聚酯,接着冷却,并且通常粉碎成颗粒或小片。还可以采用母炼技术。
在优选的实施方式中,衬底为光学透明的,优选具有按照标准ASTM D 1003测量的<10%、优选<6%、更优选<3.5%并且特别是<1.5%的散射可见光(雾度)的%。在该实施方式中,填料通常仅以较小的量存在,通常按给定层的重量计不超过0.5%并且优选小于0.2%。
如果需要,膜衬底的暴露表面可以经受化学或物理表面改性处理以改善表面与其后施加的层之间的粘合。一种优选的处理方法,由于其简单和有效,是使膜的暴露表面经受高压电应力并伴随电晕放电。优选的电晕放电处理可以在大气压力的空气中、借助于常规设备并利用高频、高压发生器来进行,其中发生器优选在1至100kV电位下具有1至20kW的功率输出。通过在放电工段以优选1.0至500m/分钟的线速度使膜在电介质支撑辊上通过来常规地完成放电。放电电极可以定位在离移动膜表面的0.1至10.0mm处。
在施加平面化涂层前,所述衬底优选用底漆层涂敷,以改善衬底与平面化涂层组合物的附着。所述底漆层可以是本领域中已知的任何合适的促进附着的聚合组合物,包括聚酯和丙烯酸类树脂。底漆组合物还可以是聚酯树脂与丙烯酸类树脂的混合物。丙烯酸类树脂可以可选地包括噁唑啉基团和聚环氧烷链。底漆组合物的聚合物优选为水溶性的或水-分散性的。
聚酯底漆成分包括那些获自以下二羧酸和二醇的成分。合适的二酸包括对苯二酸、间苯二酸、苯二甲酸、邻苯二甲酸、2,6-萘二羧酸、1,4-环己烷二羧酸、己二酸、癸二酸、偏苯三酸、苯均四酸、二聚酸、以及5-磺基间苯二酸钠。使用两种或更多种二羧酸成分的共聚多酯是优选的。聚酯可以可选地包含微量的不饱和二酸成分如马来酸或衣康酸或少量的羟基羧酸成分如对羟基苯甲酸。合适的二醇包括乙二醇、1,4-丁二醇、二乙二醇、二丙二醇、1,6-己二醇、1,4-环己烷二甲基醇、二甲苯乙二醇(xylene glycol)、二羟甲基丙烷、聚(环氧乙烷)二醇、以及聚(四氢呋喃)二醇。聚酯的玻璃化转变点优选为40至100℃,进一步优选为60至80℃。适宜的聚酯包括PET或PEN与相对少量的一种或多种其它二羧酸共聚单体的共聚多酯,尤其是芳香族二酸如间苯二酸和磺基间苯二酸钠,以及可选地相对少量的不同于乙二醇的一种或多种二醇,如二乙二醇。
在一个实施方式中,底漆层包括丙烯酸酯或甲基丙烯酸酯聚合物树脂。丙烯酸类树脂可以包括一种或多种其它共聚单体。适宜的共聚单体包括:丙烯酸烷基酯、甲基丙烯酸烷基酯(其中烷基基团优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、2-乙基己基、环己基等);含羟基的单体如丙烯酸-2-羟基乙酯、甲基丙烯酸-2-羟基乙酯、丙烯酸-2-羟基丙酯、以及甲基丙烯酸-2-羟基丙酯;含环氧基团的单体如丙烯酸缩水甘油酯、甲基丙烯酸缩水甘油酯、以及烯丙基缩水甘油醚;含羧基基团或其盐的单体,如丙烯酸、甲基丙烯酸、衣康酸、马来酸、富马酸、巴豆酸、苯乙烯磺酸以及它们的盐(钠盐、钾盐、铵盐、季铵盐等);含酰胺基团的单体如丙烯酰胺、甲基丙烯酰胺、N-烷基丙烯酰胺、N-烷基甲基丙烯酰胺、N N-二烷基丙烯酰胺、N,N-二烷基甲基丙烯酸酯(其中烷基基团优先选自上面描述的那些)、N-烷氧基丙烯酰胺、N-烷氧基甲基丙烯酰胺、N,N-二烷氧基丙烯酰胺、N,N-二烷氧基甲基丙烯酰胺(烷氧基基团优选为甲氧基、乙氧基、丁氧基、异丁氧基等)、丙烯酰吗啉、N-羟甲基丙烯酰胺、N-羟甲基甲基丙烯酰胺、N-苯基丙烯酰胺、以及N-苯基甲基丙烯酰胺;酸酐如马来酐和衣康酸酐;异氰酸乙烯酯、异氰酸烯丙酯、苯乙烯、α-甲基苯乙烯、乙烯基甲基醚、乙烯基乙基醚、乙烯基三烷氧基硅烷、马来酸单烷基酯、富马酸单烷基酯、衣康酸单烷基酯、丙烯腈、甲基丙烯腈、亚乙烯基二氯、乙烯、丙烯、氯乙烯、醋酸乙烯酯、以及丁二烯。在优选的实施方式中,丙烯酸类树脂与一种或多种包含噁唑啉基团和聚环氧烷链的单体共聚合。包含噁唑啉基团的单体包括2-乙烯基-2-噁唑啉、2-乙烯基-4-甲基-2-噁唑啉、2-乙烯基-5-甲基-2-噁唑啉、2-异丙烯基-2-噁唑啉、2-异丙烯基-4-甲基-2-噁唑啉、以及2-异丙烯基-5-甲基-2-噁唑啉。可以使用一种或多种共聚单体。2-异丙烯基-2-噁唑啉是优选的。含聚环氧烷链的单体包括通过将聚环氧烷加入到丙烯酸或甲基丙烯酸的酯部分中所获得的单体。聚环氧烷链包括聚环氧甲烷、聚环氧乙烷、聚环氧丙烷、以及聚环氧丁烷。优选的是,聚环氧烷链的重复单元为3至100个。
在底漆组合物包括聚酯和丙烯酸成分的混合物,尤其是包含噁唑啉基团和聚环氧烷链的丙烯酸类树脂,优选的是,聚酯的含量为按重量计5至95%,优选按重量计50至90%,并且丙烯酸类树脂的含量为按重量计5至90%,优选为按重量计10至50%。
其它合适的丙烯酸类树脂包括:
(i)(a)35至40mol%丙烯酸烷基酯、(b)35至40%甲基丙烯酸烷基酯、(c)10至15mol%的含游离羧基基团如衣康酸的共聚单体、以及(d)15至20mol%的芳香族磺酸和/或其盐如对苯乙烯磺酸的共聚物,其一个实例是包括以37.5/37.5/10/15mol%比率的丙烯酸乙酯/甲基丙烯酸甲酯/衣康酸/对苯乙烯磺酸和/或其盐的共聚物,如在EP-A-0429179中所披露的,将其披露内容以引用方式结合于本文;以及
(ii)丙烯酸和/或甲基丙烯酸聚合物树脂,其一个实例是包括约35至60mol%丙烯酸乙酯、约30至55mol%甲基丙烯酸甲酯以及约2至20mol%甲基丙烯酰胺的聚合物,如在EP-A-0408197中所披露的,将其披露内容以引用方式结合于本文。
底漆层或附着层还可以包括交联剂,其可以改善与衬底的附着并且还应能够内部交联。适宜的交联剂包括可选地烷氧基化的蜜胺与甲醛的缩合产物。底漆层或附着层还可以包括交联催化剂,如硫酸铵,以促进交联剂的交联。其它适宜的交联剂和催化剂披露在EP-A-0429179中,将其披露内容以引用方式结合于本文。
另外的适宜的底漆披露在US-3,443,950中,将其披露内容以引用方式结合于本文。
可以在线或离线地将底漆层涂敷到衬底上,但优选“在线”进行,并且优选在双轴拉伸操作的向前和侧向拉伸之间。
在可选地底漆化的衬底的一个或两个表面上设置平面化涂敷层。在一个实施方式中,涂层在可选地底漆化的衬底的两侧上存在。平面化涂敷层广泛地落入三个下面的分类之一:有机、有机/无机混杂以及主要为无机的涂层。
有机平面化涂层组合物通常包括:(i)光敏引发剂;(ii)低分子量活性稀释剂(例如单体丙烯酸酯);(iii)不饱和低聚物(例如,丙烯酸酯、聚氨酯丙烯酸酯、聚醚丙烯酸酯、环氧丙烯酸酯或聚酯丙烯酸酯);以及(iv)溶剂。这样的有机涂层可以通过由光解途径引发的自由基反应来固化。具体配方可以根据所期望的最终性能而变化。在一个实施方式中,所述有机平面化涂层组合物包括溶剂中(如甲基乙基酮)单体和低聚丙烯酸酯(优选包括甲基丙烯酸甲酯和丙烯酸乙酯)的UV-可固化的混合物,通常其中所述涂层组合物包括组合物总重量的约20至30wt%固体的丙烯酸酯,并且进一步包括较少量(例如,按固体的重量计约1%)的光敏引发剂(例如,IrgacureTM 2959;Ciba)。
如在本文中所使用的,术语“低分子量”描述一种可聚合单体物质。术语“活性”是指单体物质的可聚合性。
在另外的实施方式中,有机平面化涂层组合物包括在溶剂(通常为含水溶剂)中的可交联有机聚合物,例如聚乙烯亚胺(PEI)、聚酯、聚乙烯醇(PVOH)、聚酰胺、聚硫醇或聚丙烯酸,以及交联剂(如CymelTM 385或本文提及的那些)。在该实施方式中,所述涂层组合物优选包括PEI(优选具有在600,000至900,000范围内的分子量(Mw))。
有机/无机混杂涂层包括分布在整个有机聚合物基质中的无机颗粒,因此,所述有机成分通常包括低分子量活性成分(如单体丙烯酸酯)和/或不饱和低聚成分(例如,丙烯酸酯、聚氨酯丙烯酸酯、聚醚丙烯酸酯、环氧丙烯酸酯以及聚酯丙烯酸酯)。涂层可以热固化或通过由光解途径引发的自由基反应来固化。因此涂层组合物中光敏引发剂的存在是可选的。溶剂通常存在于涂层组合物中。无机颗粒通常为硅石或金属氧化物,更通常地是硅石,分散在可聚合的有机基质中。无机颗粒优选具有0.005到3μm的平均颗粒直径;在一个实施方式中,为至少0.01μm,并且在一个实施方式中不超过1μm。无机颗粒通常被选择以便基本上不影响衬底或复合膜的光学性能。在一个实施方式中,无机颗粒以按涂层组合物的固体成分的重量计约5%到约60%的量存在,并且优选以按固化的涂层重量计约5%到约60%的量存在。
因此,在一个实施方式中,有机/无机混杂涂层组合物包括低分子量活性成分(例如,单体丙烯酸酯)和/或不饱和低聚成分(例如,丙烯酸酯、聚氨酯丙烯酸酯、聚醚丙烯酸酯、环氧丙烯酸酯以及聚酯丙烯酸酯),优先选自硅石和金属氧化物的无机颗粒,溶剂,以及可选的光敏引发剂。
在另外的实施方式中,可热固化的有机/无机混杂涂层组合物包括环氧树脂连同无机(优选硅石)颗粒,其优选以按涂层组合物(其优选包括按在醇溶液中的总固体的重量计的5至约20%)的固体重量计至少约10%(优选至少约20%,并且优选不超过约75%)的浓度存在。
在另外的实施方式中,UV可固化的有机/无机混杂涂层组合物包括在溶剂(如甲基乙基酮)中的单体丙烯酸酯(通常为多官能丙烯酸酯)连同无机(优选硅石)颗粒,通常其中涂层组合物包括涂层组合物的总重量的约5至50wt%固体的丙烯酸酯和硅石,并且通常进一步包括少量(例如,按固体的重量计约1%)的光敏引发剂。多官能单体丙烯酸酯在本领域中是已知的,并且实例包括二季戊四醇四丙烯酸酯和三(2-丙烯酰乙氧基)异氰脲酸酯。
主要的无机平面化涂层组合物包括包含在可聚合的主要为无机基质如聚硅氧烷中的无机颗粒,并且这样的涂层组合物通常被热固化。在一个实施方式中,无机涂层来自包含以下的涂层组合物:
(a)约5到约50wt%的固体,所述固体包括约10到约70wt%(优选约20到60wt%)的硅石和约90到约30wt%的通式为RSi(OH)3的部分聚合的有机硅烷醇,其中R选自甲基和多达约40%的选自由乙烯基、苯基、γ-缩水甘油氧基丙基、和γ-甲基丙烯酰氧基丙基组成的组的基团,以及
(b)约95到约50wt%的溶剂,所述溶剂包括约10到约90wt%的水和约90到约10wt%的低级脂肪族醇,
特别是其中所述涂层组合物具有约3.0到约8.0,优选约3.0到约6.5,优选至少4.0的pH。
可以例如通过水解原硅酸四乙酯以形成聚硅酸来获得优选该主要为无机涂层组合物的硅石成分。可以利用常规程序,例如,通过加入脂族醇和酸来进行水解。可替换地,在涂层组合物中使用的硅石可以是胶体硅石。胶体硅石应通常具有约5~25nm的颗粒大小,并且优选约7~15nm。可以被使用的典型的胶体硅石包括那些商购的,如“Ludox SM”、“Ludox HS-30”以及“Ludox LS”分散体(Grace Davison)。有机硅烷醇成分具有通式RSi(OH)3。至少约60%的R基团,并且优选约80%至100%的这些基团是甲基。多达约40%的R基团可以是高级烷基或芳基,其选自乙烯基、苯基、γ-缩水甘油氧基丙基、以及γ-甲基丙烯酰氧基丙基。溶剂成分通常包括水和一种或多种低级脂族醇的混合物。水通常包括约10至90wt%的溶剂,而低级脂族醇互补地包括约90至10wt%。脂族醇通常是那些具有1至4个碳原子的脂族醇,如甲醇、乙醇、正丙醇、异丙醇、正丁醇、仲丁醇以及叔丁醇。
平面层的其它实例披露在例如US-4198465、US-3708225、US-4177315、US-4309319、US-4436851、US-4455205、US-0142362、WO-A-03/087247和EP 1418197中,将其披露内容以引用方式并入本文中。
可以利用常规涂敷技术(包括连续以及浸渍涂敷工序)来施加平面涂层组合物。涂层通常被施加以提供约1至约20微米,优选约2至10微米,并且特别是约3至约10微米的干厚度(干燥厚度)。可以“离线”(作为不同于膜制造的工艺步骤)或“在线”(作为膜制造工艺的延续)来施加涂层组合物。所述涂层优选在线进行。
热-可固化的涂层组合物,在施加至衬底以后,可以在约20至约200℃,优选约20至约150℃的温度下被固化。虽然20℃的环境温度需要几天的固化时间,但150℃的高温将在几秒内固化涂层。
平面化的膜呈现出这样的表面,其具有如本文测量的小于0.7nm、优选小于0.6nm、优选小于0.5nm、优选小于0.4nm、优选小于0.3nm、以及理想地小于0.25nm的Ra值,和/或如本文中所测量的小于0.9nm、优选小于0.8nm、优选小于0.75nm、优选小于0.65nm、优选小于0.6nm、优选小于0.50nm、优选0.45nm或更小、优选小于0.35nm、以及理想地小于0.3nm的Rq值。
在通过ALD的气体透过阻挡层的沉积前,平面化的表面可以经受等离子体预处理,如在申请人的共同未决申请WO-A-2006/097733中更详细描述的。通常,等离子体预处理在氩/氮或氩/氧的气氛下实现,进行约2到8分钟的时间,并且优选约5分钟。优选地,等离子体预处理是微波活化的,即,是使用微波等离子体源来实现的,通常不需要另外的等离子体源。
气体透过阻挡层被施加在平面化衬底的表面,即,在平面涂敷层的表面上。阻挡层尤其提供了对水蒸气和/或氧气透过的阻挡(屏蔽)性能,特别地使得水蒸气透过率小于10-3g/m2/天和/或氧气透过率小于10-3/mL/m2/天。优选地,水蒸气透过率小于10-4g/m2/天,优选地小于10-5g/m2/天,优选地小于10-6g/m2/天。优选地,氧气透过率小于10-4g/m2/天,优选地小于10-5g/m2/天。气体透过阻挡层通过原子层沉积(ALD)来施加,其通常在清洁的环境中实现。ALD是自限制的、顺序表面化学,其将材料的共形(conformal)薄膜沉积到衬底上,使得原子尺度沉积成为可能。通过ALD生长的膜以层状形式形成,并且所述过程允许膜生长的原子层控制,如每个单层约0.1埃那么精细。沉积的膜的总厚度通常为约1-500nm。借助ALD,可以在深沟、多孔介质内和颗粒周围沉积厚度完全均匀的涂层。ALD-生长的膜被化学粘合至衬底。(ALD)过程的描述可以在例如“Atomic Layer Epitaxy”by Tuomo Suntola in Thin Solid Films,vol.216(1992)pp.84-89中找到。ALD在化学上类似于化学气相沉积(CVD),除了ALD反应将CVD反应分成两个半反应,在涂敷过程和反应中保持前体材料分离。在所述过程中,层前体的蒸汽在真空室中被吸收在衬底上。所述蒸汽然后从所述室被泵送,留下衬底上的吸收的前体的薄层。随后反应物在热条件下被引入到所述室中,其促进与吸收的前体的反应以形成期望的材料的层。反应副产物从所述室被泵送。材料的随后的层可以通过再次将沉淀暴露于前体蒸汽并重复沉积过程而形成。ALD已经与常规CVD和物理气相沉积(PVD)方法区别,其中生长被引发,并且然后在衬底表面上有限数量的成核位置处继续进行。后面的技术可以导致具有粒状微结构的柱状生长,呈现出柱之间的边界,伴随其气体透过可以是容易的。ALD过程涉及无方向的生长机制以实现无特征的微结构。
本发明中通过ALD形成并适合用作阻挡层的材料是无机的,并且包括周期表的IVB族、VB族、VIB族、IIIA族、IIB族、IVA族、VA族和VIA族的氧化物、氮化物和硫化物以及它们的组合。其中特别感兴趣的是氧化物和氮化物。特别感兴趣的材料包括SiO2、Al2O3、ZnO、ZnS、HfO2、HfON、AlN、和Si3N4。混合的氧化物-氮化物也是感兴趣的。氧化物呈现出光学透明性,其对于电子显示器和光伏电池(其中可见光必须离开或进入所述器件)是有吸引力的。Si和Al的氮化物在可见光谱中也是透明的。
在ALD过程中使用以形成这些阻挡(屏蔽)材料的前体是众所周知的(参见如M.Leskela and M.Ritala,“ALD precursorchemistry:Evolution and future challenges”,Journal de Physique IV,vol.9,pp 837-852(1999)以及其中的参考文献)
用于通过ALD合成阻挡(屏蔽)涂层的衬底温度的优选范围是50到250℃。高于250℃的温度是不期望的,因为它们会造成衬底的化学降解或由于衬底的尺寸变化的ALD涂层的断裂。
气体透过阻挡层的厚度优选在2nm到100nm的范围内,更优选2到50nm。较薄的层对于挠曲更耐受而不造成膜开裂,其是电子器件中柔性衬底的重要性能,因为开裂损害阻挡性能。较薄的阻挡膜也更透明,当在光电子器件中使用时是重要的特征。阻挡层的最小厚度是用于连续的膜覆盖所需的厚度。
在一个实施方式中,粘合促进层在ALD过程前立即设置在衬底上,虽然这样的层通常在本发明中是不必要的,尤其是当使用优选的平面涂层组合物时。可选的粘合促进层的厚度优选在1到100nm的范围内。适于作为粘合促进层的材料通常选自上面描述的阻挡材料的组。氧化铝和氧化硅优选用于粘合促进层,其也可以通过ALD沉积,虽然其它方法如CVD或PVD也可以是合适的。
一旦阻挡层被沉积,随后的层,包括电极和例如导电共轭聚合物层,可以按照本领域中已知的常规制造技术来施加。
因此,在一个实施方式中,本发明的复合膜进一步包括电极层。所述电极层可以为如本领域已知的合适的导电材料的层,或图案化的层,例如金或导电金属氧化物如氧化铟锡,可选地掺杂有如本领域已知的其它金属。适于用于电极层的其它材料是技术人员熟知的并且包括,例如,银、铝、铂、钯、镍。所述电极层是可选透明的或半透明的。在优选的实施方式中,所述电极层包括金。在一个实施方式中,粘合层(tie layer)在电极层的沉积前沉积在涂敷的膜上。这样的粘合层通常包括通过常规技术沉积到涂敷的膜的表面上的金属层,其中所述金属层不同于电极层的导电材料。
本发明的复合膜适于用作衬底和/或密封剂膜,用于电子器件,尤其是柔性电子器件和在其制造中,包括电子、光子和光学组件或结构,并且优选为电子显示器件(包括可卷的电子显示器),光伏电池和半导体器件,尤其是在上面提及的底板的制造中。在一个实施方式中,如这里所用的术语“电子器件”指的是包含作为基本特征的至少聚合物衬底和电子电路的器件。电子和光电子器件可以包括导电聚合物。优选地,所述器件为电子显示器件,包括,例如,电致发光(EL)器件(尤其是有机发光显示器(OLED)),电泳显示器(电-纸)、液晶显示器件或电湿润显示器件;光伏电池;或半导体器件(一般地如有机场效应晶体管、膜晶体管和集成电路)。在一个实施方式中,如这里所用的术语“电致发光显示器件”,并且尤其是术语“有机发光显示(OLED)器件”是指这样的显示器件,其包括设置在两层(每层包括电极)之间的发光电致发光材料(尤其是导电聚合物材料)层,其中所得的复合结构设置在两个衬底(或支撑物或覆盖物)层之间。在一个实施方式中,如在这里所使用的术语“光伏电池”是指一种器件,其包括设置在两层(每层包括电极)之间的导电聚合物材料层,其中所得的复合结构设置在两个衬底(或支撑物或覆盖物)层之间。在一个实施方式中,如这里所使用的术语“晶体管”是指一种器件,其包括至少一层导电聚合物、栅电极、源电极以及漏电极,以及一个或多个衬底层。
因此,根据本发明的另外的方面,提供了一种电子器件,尤其是柔性电子器件,包括如这里定义的复合膜。所述器件通常进一步包括一个或多个电致发光材料层、两个或多个电极、以及一个或多个衬底层。
根据本发明的另外的方面,提供了一种用于制造复合膜的方法,其包括通过原子层沉积在平面化的涂敷聚合物衬底的平面化表面上或每个平面化表面上设置气体透过阻挡层的步骤,其所述平面化的涂敷表面呈现出小于0.7nm的Ra值,和/或小于0.9nm的Rq值。优选地,所述聚合物衬底通过包括下面的步骤的工艺来提供:(a)形成聚合物衬底层;(b)在至少一个方向上拉伸所述衬底层;(c)在高于所述衬底层的聚合物的玻璃化转变温度但低于其熔解温度的温度下,在尺寸限制下以约19到约75kg/m的膜宽度范围的张力进行热固化;以及(d)在高于所述衬底层的所述聚合物的玻璃化转变温度但低于其熔解温度的温度下,热稳定所述膜。优选地,所述平面化的涂敷聚合物衬底通过在聚合物衬底的表面上或每个表面上设置平面涂层组合物来提供,使得所述聚合物衬底的所述平面化的涂敷表面呈现出小于0.7nm的Ra值,和/或小于0.9nm的Rq值。
根据本发明的另外的方面,提供了一种用于制造电子器件,特别是柔性电子器件的方法,所述方法包括在所述电子器件中提供作为衬底和/或密封剂层的复合膜的步骤,其中,所述复合膜包括平面化的涂敷聚合物衬底和通过原子层沉积在其平面化的表面上或每个平面化的表面上沉积的气体透过阻挡层。
根据本发明的另外的方面,提供了一种用于制造复合膜的方法,其包括以下步骤:
(i)提供聚合物衬底,优选包括下面的步骤:
(a)形成聚合物衬底层;
(b)在至少一个方向上拉伸所述衬底层;
(c)在高于所述衬底层的聚合物的玻璃化转变温度但低于其熔解温度的温度下,在尺寸限制下以约19到约75kg/m的膜宽度范围的张力进行热固化;以及
(d)在高于所述衬底层的所述聚合物的玻璃化转变温度但低于其熔解温度的温度下,热稳定所述膜;
(ii)在可选涂底漆的衬底的表面上或每个表面上设置平面涂层组合物,使得所述所述平面化的涂敷衬底的表面呈现出小于0.7nm的Ra值,和/或小于0.9nm的Rq值;以及
(iii)通过原子层沉积在衬底的平面化的表面上或每个平面化的表面上设置气体透过阻挡层。
根据本发明的另外的方面,提供了一种用于制造电子器件,尤其是柔性电子器件的方法,所述方法包括上面段落陈述的方法步骤(i)到(iii),并且进一步包括下面的步骤:
(iv)在所述电子器件中提供作为衬底和/或密封剂层的复合膜,所述复合膜包括所述平面化的聚合物衬底层和所述气体透过阻挡层。
这里描述的复合膜和电子器件的制造方法可以进一步包括提供包含导电材料的电极层的步骤,其通常通过按照本领域中已知的常规制造技术,将导电材料施加在至少部分阻挡层上来进行。这里描述的制造方法中的另外的步骤是提供电致发光材料(如导电聚合物)层。
在通过ALD的气体阻挡层沉积前用平面涂层预处理衬底提供了许多优点。现有技术(参见,例如Carcia et al.,上文)的教导是ALD提供了纹理化的表面之上的适合的无针孔阻挡层并且确实现有技术教导了单独的ALD实现所述目的。然而,本发明的发明人并没有观察到这点。相反,本发明的发明人发现在ALD-层的沉积前平面涂层的另外的应用,并且特别是本文描述的优选的平面涂层,出乎预料地提供了衬底的气体阻挡性能方面的进一步的改进,考虑到现有技术的披露内容,其是非常令人吃惊的。因此,本发明在于认识到一定水平的表面平滑度(如本文定义的)对于向ALD-涂敷的衬底提供高阻挡性能是必须的,尤其是为了实现小于10-3g/m2/天的水蒸气透过率和/或小于10-3/mL/m2/天的氧气透过率。认为优选的涂层,尤其是本文描述的优选的平面涂层为ALD-沉积层的生长提供了特别合适的表面环境,尤其是当ALD层是氧化铝时,并且降低或消除了对于如在WO-2004/105149-A中教导的另外的粘附-促进无机层的需要。通过消除表面污染,平面涂层的存在还提供了衬底表面上的一致的化学,而不是简单的平滑表面。
性能测量
以下方法可以用于表征膜性能:
(i)对尺寸为200mm×10mm的膜样品评估热收缩,其在相对于膜的轴向和横向的特定方向上被切割并标记用于目测。样品的较长尺寸(即,200mm尺寸)对应于要测试其收缩的膜方向,即,为了估计在轴向方向的收缩,试样的200mm尺寸是沿着膜的轴向方向加以定向的。在将样品加热至预定温度(通过放置在处于所述温度的加热炉中)并保持预定的时间间隔以后,将它冷却至室温并手动地重新测量其尺寸。计算热收缩并表示为初始长度的百分比。
(ii)对于基本上透明的膜样品,即包含足够低水平的添加剂、颜料、空隙或其它将使它不透明的物体,评估了膜透明度。这是按照ASTM D-1003-61,利用Gardner XL 211雾度计,通过测量通过膜总厚度的总亮度传输(TLT)和雾度(散射透射可见光的%)来实现的。
(iii)利用示差扫描量热法(DSC)技术测量了聚酯膜的玻璃化转变温度(Tg)。利用TA Instruments Q100 DSC系统进行测量,利用铟标准进行校准。将膜的样品从低于环境温度(大约-20℃)加热至300℃并报道对于加热速率为20°K/分钟的最终温度值。
(iv)通过线性热膨胀系数(CLTE)测量的膜样品的尺寸稳定性如下测量。按照已知的程序对热机械分析仪PE-TMA-7(PerkinElmer)进行校准和检查温度、位移、力、本征变形、基线以及炉温度校准。利用延伸分析钳检查膜。利用膨胀系数非常低的样品(石英)获得延伸钳所需的基线,并且利用CLTE值为众所周知的标准材料,例如纯铝箔,来估计CLTE精度和准确度(取决于扫描后基线扣除)。利用大约12mm的钳分离将选自初始膜样品内已知定向轴的试样安装在系统中并使其受到在5mm宽度上75mN的作用力。按照膜厚度的变化调节作用力,即,以确保一致的张力,并且膜没有沿着分析轴弯曲。将试样长度标准化到在23℃的温度下测得的长度。将试样冷却至8℃,稳定,然后以5℃/分钟从8℃加热至+240℃。CLTE值(α)来自下式:
α=ΔL/(Lx(T2-T1))
其中ΔL是在温度范围(T2-T1)内测得的试样长度变化,而L是在23℃下的初始试样长度。直到Tg的温度,CLTE值被认为是可靠的,因此引用的温度范围的上限稍低于试样的Tg。数据可以作为随着温度的试样长度的%变化的函数作图,标准化到23℃。
(v)利用如下熔体粘度测定法来测量固有粘度(IV)。在已知温度和压力下,通过连接至计算机的变换器来测量预干燥挤出物通过校准模具的流动速率。按照实验确定的回归方程,计算机程序计算熔体粘度值(log10粘度)和当量IV。通过计算机制作IV对时间(以分钟为单位)的曲线并计算降解速率。图形外推到起始时间(zero time)给出初始IV和当量熔体粘度。模孔直径为0.020英寸,其中对于直到0.80的IV,熔体温度为284℃,并且对于IV>0.80,熔体温度为295℃。
(vi)利用如在WO-2006/097733(参见特别是图1和图2)和WO-02/079757-A(以及还由G.Nisato,M Kuilder,P.Bouten,L.Moro,O.Philips and N.Rutherford在Society For Information Display,Digestof Technical Papers,2003,550-553中进一步讨论的,将其测量方法的披露内容以引用方式并入本文中)中描述的钙降解测试来测量复合膜的渗透性,并且特别是其水蒸气透过速率(以g/m2/天为单位)。将测试衬底切成大约10cm×10cm平方的方形,并且在120℃下加热一个小时,以去除残留的水分。在无氧和无水的环境下将钙的薄层(通常100nm)以四个28mm圆盘的图案沉积在测试衬底上。玻璃板或盖经由基本上密封的密封件(seal)沿着衬底的边缘与衬底相互连接,以形成密闭盒。密封件可以例如是胶或焊料金属。钙层最初是高度反射的金属镜。然后,将所述结构置于60℃且90%相对湿度的湿度室中,以加速老化条件。在测试过程中,渗透入盒内的水与钙反应,从而形成氧化钙或氢氧化钙。钙金属的最初层降解成越来越透明的钙盐层。层的透明度或透过性是已经扩散入盒中的水的量的指征。以规则的时间间隔采集测试池的照片,以跟踪样品的发展(evolution)并确定池的降解。照片的自动图像分析(在该实例中利用Image
Figure BPA00001242801600211
软件和平均灰度值的测量)获得钙层的光学透过分布。钙-钙盐堆积层的透过的光学模型化(optical modelling)使得能够确定池中氧化钙/氢氧化钙的厚度分布。测试期间在时间t处的降解的钙层的厚度(z)可以来自平均灰度值,其是通过测量所述层的初始平均灰度值(G0);测试期间在时间t处的层的平均灰度值(Gt);以及在100%钙降解处的层的平均灰度值(G)。实践中,G作为钙圆盘之间的无钙区中的测试衬底的平均灰度值而测量的,并且在本发明中列举的膜中,G的值为大约223。在时间t处钙层的厚度(z)然后通过下面的关系由比率Gt/G计算:
Gt/G=e-αz
其中α为等于[-ln(G0/G)]/z0的常数。
厚度随后可以与作为时间的函数的吸收的水的量相关,产生密封剂的有效透过速率。WVTR的示例性的计算陈述如下,其中初始钙厚度(z0)为100nm,其在768小时后减小到82nm的厚度(z1)。
假定:
钙沉积的直径=2.8×10-2m
钙沉积的面积(A)=π(d/2)2=6.158×10-4m2
起始厚度(z0)=100nm=1.0×10-7m
沉积的钙的密度(ρCa)=1550kg/m3
钙的分子量(MrCa)=40.08g/mol
768小时后的厚度(z1)=82nm
Ca的损失=18%
于是:
体积(VCa)=A.z0=6.158×10-11m3
质量(mCa)=VCaCa=1550kg/m3×6.158×10-11m3=9.545×10-5g
摩尔(molCa)=mCa/MrCa=9.545×10-5g/40.08g/mol=2.381μmol
反应的Ca=2.381μmol×0.18=0.429μmol
扩散以与Ca反应的水分的量利用反应化学计量法计算:Ca+2H2O→Ca(OH)2+H2
反应所需的水的摩尔,以及因此的移动通过阻挡层的水的量由此为:
摩尔(H2O)=2×0.429μmol=0.857μmol
质量(H2O)=0.857×10-6mol×18g/mol=1.54×10-5g
实验通量(fluence)由此为:
1.54×10-5g,经过768小时,穿过6.158×10-4m2的钙
转变为g/m2/天,实验通量(WVTR)因此为:
1.54×10-5g/6.158×10-4m2×24/768=7.82×10-4g/m2/天
为了本发明的目的,本文描述的复合膜的WVTR在168到768小时的时间期间被测量。
阻挡性能还可以按照钙厚度降低到其初始值的50%所用的时间(这里称为半衰期)来表达。优选地,本发明的膜呈现出至少250、优选至少500、优选至少750、并且更优选至少1000的半衰期(小时),特别是与小于10-3g/m2/天的水蒸气透过速率(WVTR)结合。
(vii)利用ASTM D3985测量氧气透过速率。
(viii)采用本领域众所周知的常规的非-接触,白-光,移相干涉技术,利用Wyko NT3300表面轮廓仪,利用波长为604nm的光源来测量表面平滑度。参照WYKO Surface Profiler Technical ReferenceManual(Veeco Process Metrology,Arizona,US;June 1998;将其披露内容以引用方式并入本文中),利用所述技术可获得的表征数据包括:
平均参数-粗糙度平均数(Ra):在评价区域内的测量的高度偏差和由平均表面测量的绝对值的算术平均数。
平均参数-均方根粗糙度(Rq):在评价区域内测量的高度偏差和由平均表面测量的均方根平均数。
极值参数-最大轮廓峰高(Rp):在评价区域内的最高峰的高度,如由平均表面测量的。
平均极值参数-平均最大轮廓峰高(Rpm):在评价区域内的十个最高峰的算术平均值。
极值峰高分布:高于200nm的高度的Rp的值的数量分布。
表面积指数:表面的相对平面度的测量值。
粗糙度参数和峰高度是根据常规技术相对于样品表面区域的平均水平,或“平均表面”测量的。(聚合物膜表面可能不是完全平坦的,并且经常会沿其表面具有平缓的波动(起伏)。平均表面是中心地延伸穿过以及表面高度偏差的平面,分开表面轮廓,使得平均表面之上和之下具有相等体积)。
表面轮廓分析是通过扫描表面轮廓仪器的“视场”(其是单次测量中所扫描的区域)内的膜表面的不连续区域而进行的。膜样品可以利用不连续的视场来分析,或者通过扫描连续的视场以形成阵列来分析。此处进行的分析利用了Wyko NT3300表面轮廓仪的完全分辨率,其中每一个视场包括480×736个像素。
为了Ra和Rq的测量,利用具有50倍放大率的物镜来增强分辨率。所得的视场具有90μm×120μm的尺寸,其中像素大小为0.163μm。
为了Rp和Rpm的测量,使用具有10倍放大率的物镜结合“0.5倍视场的扩增器”,以获得5倍的总放大率,来方便地增大视场。所得的视场具有0.9mm×1.2mm的尺寸,其中像素大小为1.63μm。优选地,Rp小于100nm,更优选小于60nm,更优选小于50nm,更优选小于40nm,更优选小于30nm,并且更优选小于20nm。
为了本文的Ra和Rq的测量,可将在表面区域的相同部分上的5个连续扫描结果结合以得到平均值。以下提供的关于Rp的数据是来自100次测量的平均值。测量是使用10%的调节阈值(信号:噪声比)来进行的,即,低于阈值的数据点被识别为坏数据。
也可以对具有大于200nm高度的极大峰的存在进行表面形貌分析。在该分析中,在5cm2的总面积上以1.63μm的像素大小进行一系列的Rp测量。结果可以以直方图的形式来表示,其中,数据点被指定给峰高度的预先确定的范围,例如其中直方图沿着X轴具有通道(channel)宽度是25nm的等距的通道。直方图可以以峰计数(y轴)与峰高(X轴)的图的形式来表示。可以计算在每5cm2面积300至600nm的范围内的表面峰的数量,如由Rp值确定的,并且指定为N(300-600)。本发明中使用的涂层优选导致膜中N(300-600)的减小,使得减小的F,其是没有和有所述涂层时N(300-600)的比率,至少为5,优选至少15,并且更优选至少30。优选地,涂敷的膜的N(300-600)值为每5cm2面积小于50,优选小于35,优选小于20,优选小于10,并且优选小于5个峰。
表面积指数可由如下的“3-维表面积”和“侧向表面积”来计算。样品区域的“3-维(3-D)表面积”是包括峰和谷的总的暴露的3-D表面积。“侧向表面积”是沿侧向测量的表面积。为了计算3-D表面积,利用四个具有表面高度的像素来生成位于具有X、Y和Z维度的中心的像素。然后使用四个所得的三角形区域来形成近似立方体体积。该四-像素窗口移动通过整个数据-集。侧向表面积通过视野中的像素数量乘以每个像素的XY大小来计算。表面积指数通过3-D表面积除以侧向面积来计算,并且是表面的相对平面度的测量值。非常接近于1(唯一,unity)的指数描述了非常平坦的表面,其中侧向(XY)面积非常接近总3-D面积(XYZ)。
峰-与-谷值,此处称为“PV95”,可以由作为参照平均表面平面的表面高度的函数的正性和负性表面高度的频率分布来获得。值PV95是峰-与-谷的高度差,其通过去除最高和最低的2.5%的数据点而包括分布曲线中95%的峰-与-谷表面高度数据。PV95参数提供了表面高度的总峰-与-谷散布的统计学上显著的测量值。
本发明通过以下实施例来进一步说明。所述实施例不旨在限制如上描述的本发明。在不背离本发明的范围的情况下,可以进行细节的修改。
实施例
I:平面化的衬底的制备
挤出包括PEN的聚合物组合物并浇铸到热旋转抛光辊筒上。然后将膜供给至前向拉伸单元,其中它在一系列温度-受控的辊上在挤出方向上被拉伸至其最初尺寸的大约3.3倍。拉伸温度为大约130℃。膜随后用粘附-促进底漆涂层进行在两个表面上进行处理。然后使膜通过温度为135℃的展幅机,其中膜在侧向被拉伸至其最初尺寸的大约3.4倍。然后在冷却和卷绕到卷轴上以前,在高达235℃的温度下通过常规方式来热固化双轴拉伸的膜,允许网的的横向尺寸减少4%。总厚度为125μm。然后热固化的双轴拉伸的膜被解绕并随后进一步通过使膜穿过另外的一组炉(其最高温度为190℃)在辊-到-辊过程中被热稳定。膜在其边缘处被去支撑并被运送通过低线张力下的炉,允许它松弛和进一步稳定。双轴拉伸的、热固化的、表面-底漆化的和离线-稳定的膜这里被称作对照1。膜随后被解绕,并且一侧通过用平面涂层组合物涂敷而被进一步改性,如下面的实施例1到7详细描述的。
实施例1
涂层组合物是本文描述的无机类型的并在先前披露在WO-A-03/087247中。它在应用前通过下面的步骤来制备:
(i)将737克的甲基三甲氧基硅烷(OSi Specialities)加入到80克的3-缩水甘油氧代丙基三甲氧基硅烷(由Aldrich Chemical Company获得)并在室温下搅拌5分钟。
(ii)将250克的丙-2-醇(Aldrich Chemical Company)与1000克的
Figure BPA00001242801600271
LS胶体氧化硅(Grace Davison Company)和75克的10%含水醋酸的溶液(Aldrich Chemical Company)混合15分钟。
(iii)随后将(i)中的甲氧基硅烷混合物加入到(ii)中酸化的Ludox和丙-2-醇混合物中并搅拌5小时。
(iv)随后用包含1262克的丙-2-醇和756克的水的溶剂混合物稀释溶液并搅拌40小时,由此它准备好用于涂敷。
组合物的最终pH为6.4。
所述涂层被施加到聚酯膜的一个表面上,其随后被加热、冷却和重绕。最终平面涂层的干燥厚度为2μm。
实施例2
将包括甲基乙基酮(2-丁酮)的溶剂中单体和聚合丙烯酸酯(包括甲基丙烯酸甲酯和以及丙烯酸乙酯)和光敏引发剂(IrgacureTM2959;Ciba)的混合物的有机涂层组合物以26.5wt%固体制备(其中约1%的这些固体是光敏引发剂)成约1.22cP(厘泊)的粘度。将涂层施加到在80℃下干燥的衬底,随后通过UV-辐射来固化。
实施例3
将MEK溶剂中包括丙烯酸酯单体和硅石颗粒的混杂有机/无机涂层组合物制备成10%固体和约1.7cP的粘度。涂层被施加并随后通过UV-辐射来立即固化。
实施例4
将水中包括聚乙烯酰胺(Sigma Aldrich code 181978-8;平均分子量Mw为约750,000)和交联剂(CymelTM 385)的涂层组合物(按PEI固体重量计的大约5%)涂敷到衬底上并在180℃下热固化。
实施例5
热-可固化的涂层组合物,包括环氧树脂,其结合有以按涂层组合物的固体重量计的约41%的浓度存在的硅石颗粒,其又包括醇溶液(异丙醇、正丁醇、乙醇和环己酮的混合的溶剂体系)中的按总固体的重量计的约10%。所述组合物在室温下被搅拌6小时,涂敷到衬底上并随后在180℃下热固化。
实施例6
将水溶剂中包括聚酯(TPE 62C;Takemoto Oil and Fat Company,Japan),交联剂(CymelTM 385;Cytec)的热-可固化的涂层(8%总固体,其中86%为聚酯)涂敷到PEN衬底上并在180℃下热固化。
实施例7
将水溶剂中的涂层组合物涂敷到PEN衬底上并在180℃下热固化,涂层组合物包括以涂层组合物的重量计的24%的PVOH(AirvolTM 24-203;Air Products)、以涂层组合物的重量计的10%的表面活性剂(CaflonTM NP10;Uniqema)和变化量(按组合物中存在的PVOH的重量计的0、9、17、24和29%)的交联剂(CymelTM 350;American Cyanamid)。
实施例8至14
将实施例1至7的涂层组合物涂敷到具有125μm的厚度的PET衬底(
Figure BPA00001242801600281
ST506;Dupont Teijin Films)上。
如本文描述的测量的,实施例的平面化的表面呈现出小于0.7nm的Ra值和小于0.9nm的Rq值。对照1的(未平面化的)表面呈现出1.86nm的Ra和2.96nm的Rq。
II:通过ALD的气体阻挡层的沉积
利用三甲基铝作为铝的前体,并且利用臭氧作为氧化剂,通过原子层沉积将Al2O3阻挡层沉积在上面描述的未平面化的和平面化的衬底的一侧上。在清洁室内,在清洁空气站中,利用手术刀片通过切割来自聚合物膜的辊的100mm×100mm区段来制备样品。样品被放在铝载体板上(如此以致仅一侧被涂敷)并加载到OxfordInstruments
Figure BPA00001242801600291
工具中,并且所述室被抽空。三甲基铝前体被允许在100毫托的压力下进入室约2秒。随后所述室被氩吹扫约2秒。氧化剂被允许在100毫托下进入室约2秒。最后,氧化剂被氩吹扫约2秒。对于PEN和PET衬底,沉积期间的衬底温度是120℃。每个沉积的层为约0.1nm厚,并且沉积过程被重复以获得约40nm的总涂层厚度。
所得的复合膜是透明的并显示出高气体阻挡性能。每个ALD-涂敷的实施例或对照膜的8个样品利用本文描述的测试方法来分析。对于实施例1和3以及对照1的结果在下面的表1中示出。半衰期是在本文描述的钙测试中穿过连续的钙层的厚度50%减少的时间(小时)。WVTR值可以基于在限定的时间内在本文描述的钙测试中通过连续的钙层的透过的(累积的)水的量来计算。
表1
  样品   Ra(nm)   Rq(nm)   半衰期(小时)
  对照1   1.86   2.96   166
  实施例1   0.49   0.63   547
  实施例3   0.31   0.43   >768
未预料到的是,ALD-涂敷的但是未平面化的对照1呈现出显著不良的性能,尽管现有技术的教导是单独的ALD技术提供纹理化的表面上适合的无针孔的阻挡层。相反,本发明的发明人发现在ALD层的沉积前平面涂层的另外的应用意外地提供了衬底的气体阻挡性能的进一步的改善。

Claims (35)

1.一种复合膜,包括聚合物衬底和平面化涂敷层,其中,所述平面化衬底的表面呈现出小于0.7nm的Ra值和/或小于0.9nm的Rq值,并且其中所述复合膜进一步包括通过原子层沉积在所述衬底的平面化表面上沉积的气体透过阻挡层。
2.根据权利要求1所述的复合膜,其中,所述聚合物衬底是双轴定向的。
3.根据权利要求1或2所述的复合膜,其中,所述聚合物衬底是热稳定、热固化、双轴定向的衬底。
4.根据任一前述权利要求所述的复合膜,其中,所述聚合物衬底为聚酯衬底。
5.根据权利要求4所述的复合膜,其中,所述聚酯为聚(对苯二甲酸乙二醇酯)或聚(萘二甲酸乙二醇酯)。
6.根据任一前述权利要求所述的复合膜,其中,所述聚合物衬底呈现出在23℃到小于40×10-6/℃的衬底的玻璃化转变温度的温度范围内的线性热膨胀系数(CLTE)。
7.根据任一前述权利要求所述的复合膜,其中,所述聚合物衬底在120℃下在30分钟内呈现出不大于0.05%的收缩量。
8.根据任一前述权利要求所述的复合膜,其中,所述聚合物衬底在150℃下在30分钟内呈现出不大于0.05%的收缩量。
9.根据任一前述权利要求所述的复合膜,其中,所述聚合物衬底在200℃下在10分钟内呈现出小于2%的收缩量。
10.根据任一前述权利要求所述的复合膜,其中,所述聚合物衬底是光学透明的。
11.根据任一前述权利要求所述的复合膜,其中,所述平面化涂敷层来自选自以下的组合物:
(i)有机涂层组合物,包括低分子量活性稀释剂;不饱和低聚物;溶剂;以及光敏引发剂;
(ii)有机/无机混杂涂层组合物,包括低分子量活性成分和/或不饱和低聚成分;无机颗粒,并且可选地进一步包括溶剂和/或光敏引发剂;
(iii)主要为无机的涂层组合物,包括包含在可聚合的主要为无机基质中的无机颗粒;以及
(iv)包括选自聚乙烯亚胺(PEI)、聚酯、聚乙烯醇(PVOH)、聚酰胺、聚硫醇和聚丙烯酸的可交联有机聚合物和交联剂的组合物。
12.根据任一前述权利要求所述的复合膜,其中,所述平面化涂敷层来自选自有机/无机混杂涂层的组合物,所述混杂涂层来自包括低分子量活性成分和/或不饱和低聚成分;溶剂;以及无机颗粒,并且可选地进一步包括光敏引发剂的涂层组合物。
13.根据权利要求12所述的复合膜,其中,所述无机颗粒具有约0.005到约3μm的平均颗粒直径。
14.根据权利要求12或13所述的复合膜,其中,所述无机颗粒以按所述涂层组合物的固体成分的重量计约5%到约60%的量存在。
15.根据权利要求12、13或14所述的复合膜,其中,所述无机颗粒选自硅石和金属氧化物。
16.根据权利要求12到15中任一项所述的复合膜,其中,所述组合物是UV-可固化的。
17.根据权利要求11到16中任一项所述的复合膜,其中,所述低分子量活性成分选自单体丙烯酸酯和/或所述不饱和低聚成分选自丙烯酸酯、尿烷丙烯酸酯、聚醚丙烯酸酯、环氧丙烯酸酯和聚酯丙烯酸酯。
18.根据任一前述权利要求所述的复合膜,其中,所述平面化涂敷层来自包括单体丙烯酸酯、硅石颗粒和光敏引发剂的UV-可固化组合物。
19.根据权利要求1到11中任一项所述的复合膜,其中,所述平面化涂敷层包括在聚硅氧烷基质中的无机颗粒。
20.根据权利要求1到11中任一项所述的复合膜,其中,所述平面化涂敷层来自包括以下的涂层组合物:
(a)约5到约50wt%的固体,所述固体包括约10到约70wt%的硅石和约90到约30wt%的通式为RSi(OH)3的部分聚合的有机硅烷醇,其中R选自甲基和可达约40%的选自由乙烯基、苯基、γ-缩水甘油氧基丙基、和γ-甲基丙烯酰氧基丙基组成的组中的基团,以及
(b)约95到约50wt%的溶剂,所述溶剂包括约10到约90wt%的水和约90到约10wt%的低级脂肪醇,
特别是其中所述涂层组合物具有约3.0到约8.0的pH。
21.根据权利要求1到11中任一项所述的复合膜,其中,所述平面化涂敷层来自包括溶剂中单体和低聚丙烯酸酯的UV-可固化的混合物、以及进一步包括光敏引发剂的组合物。
22.根据任一前述权利要求所述的复合膜,其中,所述平面化涂敷层具有1到20微米的干厚度。
23.根据任一前述权利要求所述的复合膜,其中,所述复合膜呈现出小于10-3g/m2/天的水蒸气透过速率和/或小于10-3/mL/m2/天的氧气透过速率。
24.根据任一前述权利要求所述的复合膜,其中,所述复合膜在钙-测试中呈现出至少250小时的半衰期。
25.根据任一前述权利要求所述的复合膜,其中,所述气体透过阻挡层包括选自SiO2、Al2O3、ZnO、ZnS、HfO2、HfON、AlN、和Si3N4的材料。
26.根据任一前述权利要求所述的复合膜,其中,所述气体透过阻挡层包括Al2O3
27.根据任一前述权利要求所述的复合膜,其中,所述气体透过阻挡层的厚度为2到100nm。
28.根据任一前述权利要求所述的复合膜,进一步包括设置在气体透过阻挡层的所述表面上的电极层。
29.一种电子器件,包括根据权利要求1到28中任一项所限定的复合膜,并且进一步包括电子电路。
30.根据权利要求29所述的电子器件,所述电子器件为电子显示器件、光伏电池或半导体器件。
31.根据权利要求29或30所述的电子器件,所述电子器件为柔性的。
32.一种用于制造复合膜的方法,所述方法包括通过原子层沉积在平面化的涂敷聚合物衬底的平面化表面上或每个平面化表面上设置气体透过阻挡层的步骤,其中所述平面化的涂敷表面呈现出小于0.7nm的Ra值,和/或小于0.9nm的Rq值。
33.根据权利要求32所述的方法,其中所述聚合物衬底通过以下步骤来提供:
(a)形成聚合物衬底层;
(b)在至少一个方向上拉伸所述衬底层;
(c)在高于所述衬底层的聚合物的玻璃化转变温度但低于其熔解温度的温度下,在尺寸限制下在约19到约75kg/m膜宽度范围的张力下进行热固化;以及
(d)在高于所述衬底层的所述聚合物的玻璃化转变温度但低于其熔解温度的温度下,对所述膜进行热稳定。
34.根据权利要求32或33所述的方法,其中,所述平面化的涂敷聚合物衬底通过在聚合物衬底的表面上或每个表面上设置平面化涂层组合物来提供,使得所述聚合物衬底的所述平面化的涂敷表面呈现出小于0.7nm的Ra值,和/或小于0.9nm的Rq值。
35.根据权利要求32、33或34所述的方法,其中,所述复合膜是根据权利要求1到28中任一项所定义的。
CN2009801135802A 2008-04-17 2009-04-17 涂敷的和平面化的聚合物膜 Pending CN102007173A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0807037A GB0807037D0 (en) 2008-04-17 2008-04-17 Coated polymeric films
GB0807037.7 2008-04-17
PCT/GB2009/001003 WO2009127842A1 (en) 2008-04-17 2009-04-17 Coated and planarised polymeric films

Publications (1)

Publication Number Publication Date
CN102007173A true CN102007173A (zh) 2011-04-06

Family

ID=39472290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801135802A Pending CN102007173A (zh) 2008-04-17 2009-04-17 涂敷的和平面化的聚合物膜

Country Status (8)

Country Link
US (1) US20110100454A1 (zh)
EP (1) EP2268721A1 (zh)
JP (1) JP2011518055A (zh)
KR (1) KR20110005872A (zh)
CN (1) CN102007173A (zh)
GB (1) GB0807037D0 (zh)
TW (1) TW200950971A (zh)
WO (1) WO2009127842A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732393A (zh) * 2011-07-28 2014-04-16 凸版印刷株式会社 层叠体、阻气膜、层叠体的制造方法及层叠体制造装置
CN103732392A (zh) * 2011-07-28 2014-04-16 凸版印刷株式会社 层叠体、阻气膜以及它们的制造方法
CN103886934A (zh) * 2014-04-04 2014-06-25 纳诺电子化学(苏州)有限公司 一种透明导电膜
CN104393175A (zh) * 2014-10-16 2015-03-04 南昌大学 一种有机太阳能电池及制备方法
CN104736334A (zh) * 2012-10-18 2015-06-24 凸版印刷株式会社 层积体、阻气膜及其制造方法
CN103998485B (zh) * 2011-12-19 2016-01-27 杜邦帝人薄膜美国有限公司 具有高玻璃化转变温度的聚(萘二甲酸亚烷基二醇酯)的共聚酯酰亚胺和由其制成的膜
CN108102540A (zh) * 2016-11-24 2018-06-01 三星显示有限公司 硬质涂料组合物及包含该硬质涂料组合物的柔性显示装置
CN113931607A (zh) * 2020-07-14 2022-01-14 中国石油化工股份有限公司 一种屏蔽暂堵剂的注入控制方法及其应用
CN113931607B (zh) * 2020-07-14 2024-05-17 中国石油化工股份有限公司 一种屏蔽暂堵剂的注入控制方法及其应用

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0208506D0 (en) * 2002-04-12 2002-05-22 Dupont Teijin Films Us Ltd Film coating
US20100068355A1 (en) * 2006-11-01 2010-03-18 Dupont Teijin Films U.S. Limited Partnership Heat-sealable composite polyester film
US20110209901A1 (en) * 2007-08-02 2011-09-01 Dupont Teijin Films U.S. Limited Partnership Coated polyester film
KR101539711B1 (ko) * 2007-08-30 2015-07-27 듀폰 테이진 필름즈 유.에스. 리미티드 파트너쉽 열성형성 폴리에스테르 필름 뚜껑을 구비한 오븐용 듀얼 식품 패키지
EP2382054A4 (en) * 2008-12-31 2013-04-03 3M Innovative Properties Co SUBSTRATE WITH PLANARIZING COATING AND METHOD OF MANUFACTURING THE SAME
GB201001947D0 (en) * 2010-02-05 2010-03-24 Dupont Teijin Films Us Ltd Polyester films
JP5668294B2 (ja) * 2010-02-23 2015-02-12 凸版印刷株式会社 ガスバリアフィルムおよびその製造方法
JP2012096432A (ja) * 2010-11-01 2012-05-24 Sony Corp バリアフィルム及びその製造方法
JP2012182303A (ja) * 2011-03-01 2012-09-20 Toppan Printing Co Ltd 太陽電池バックシート
US8680171B2 (en) * 2011-07-01 2014-03-25 Arkema France Method of encapsulating a photovoltaic cell and encapsulated photovoltaic cell
CN103732391B (zh) 2011-08-09 2015-10-21 三菱树脂株式会社 透明层叠膜
SG11201402189RA (en) * 2011-12-02 2014-09-26 Toray Industries Polyester film, solar cell backsheet, and solar cell
US8999497B2 (en) * 2011-12-13 2015-04-07 Samsung Electronics Co., Ltd. Barrier film for electronic device and method of manufacturing the same
TWI469872B (zh) 2011-12-13 2015-01-21 Ind Tech Res Inst 低熱膨脹係數聚酯薄膜與其形成方法
US9074052B2 (en) 2011-12-21 2015-07-07 Dupont Teijin Films U.S. Limited Partnership Copolyesterimides of poly(alkylene terephthalate)s having high glass transition temperature and film made therefrom
DE102012201457A1 (de) * 2012-02-01 2013-08-01 Osram Opto Semiconductors Gmbh Verfahren zum herstellen eines optoelektronischen bauelements und optoelektronisches bauelement
JP6197428B2 (ja) * 2012-08-01 2017-09-20 東レ株式会社 ガスバリア性フィルム
JP2014073598A (ja) * 2012-10-03 2014-04-24 Toray Ind Inc ガスバリア性フィルム
KR102161963B1 (ko) 2013-02-06 2020-10-06 미쯔비시 케미컬 주식회사 투명 적층 필름, 투명 도전성 필름 및 가스 배리어성 적층 필름
CN105050808B (zh) 2013-03-27 2018-12-28 凸版印刷株式会社 层积体、阻隔膜及其制造方法
WO2014171890A1 (en) 2013-04-15 2014-10-23 Heptagon Micro Optics Pte. Ltd. Accurate positioning and alignment of a component during processes such as reflow soldering
GB201310837D0 (en) 2013-06-18 2013-07-31 Dupont Teijin Films Us Ltd Polyester film -IV
CN110028687B (zh) * 2013-06-27 2022-03-18 可隆工业株式会社 聚酯膜及其制备方法
JP6183097B2 (ja) * 2013-09-20 2017-08-23 株式会社村田製作所 表面平滑化液晶ポリマーフィルムおよびガスバリアフィルム
GB201317705D0 (en) 2013-10-07 2013-11-20 Dupont Teijin Films Us Ltd Copolyesters
JP6360680B2 (ja) * 2013-12-20 2018-07-18 リンテック株式会社 封止シート、封止体および装置
JP6387625B2 (ja) * 2014-02-24 2018-09-12 大日本印刷株式会社 ガスバリアフィルムの製造方法
GB201411044D0 (en) 2014-06-20 2014-08-06 Dupont Teijin Films Us Ltd Copolyestermides and films made therefrom
JP2015077804A (ja) * 2014-12-18 2015-04-23 凸版印刷株式会社 ガスバリアフィルム
JP6459612B2 (ja) * 2015-02-24 2019-01-30 三菱ケミカル株式会社 電子部材用封止フィルム
FR3037000B1 (fr) * 2015-06-02 2021-09-24 Saint Gobain Isover Membrane multicouche
KR20160148964A (ko) 2015-06-17 2016-12-27 금호타이어 주식회사 타이어 가황금형용 벤트 플러그
EP3433889A1 (en) 2016-03-25 2019-01-30 3M Innovative Properties Company Multilayer barrier films
JP6790445B2 (ja) * 2016-05-11 2020-11-25 凸版印刷株式会社 ガスバリア性フィルム
US10233332B2 (en) * 2016-08-03 2019-03-19 Xerox Corporation UV curable interlayer for electronic printing
US20190275560A1 (en) * 2016-09-14 2019-09-12 Basf Se Method of producing polymer films with gas-barrier properties
US20180348634A1 (en) * 2017-06-06 2018-12-06 Xerox Corporation Fabrication of Electronic Products Using Flexible Substrates
GB202013061D0 (en) * 2020-08-21 2020-10-07 Dupont Teijin Films Us Lp Breathable composite polymeric films
CN113462284B (zh) * 2021-07-16 2022-10-14 广州回天新材料有限公司 一种微波炉涂层粘接用底涂剂及其制备方法
CN113684469B (zh) * 2021-08-06 2023-08-22 宁波摩华科技有限公司 一种用于电子器件的有机防护镀层及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443950A (en) * 1965-10-08 1969-05-13 Du Pont Sequential polymerization processes,compositions and elements
US3708225A (en) * 1971-06-09 1973-01-02 Mbt Corp Coated synthetic plastic lens
US4177315A (en) * 1977-03-04 1979-12-04 E. I. Du Pont De Nemours And Company Coated Polymeric substrates
US4198465A (en) * 1978-11-01 1980-04-15 General Electric Company Photocurable acrylic coated polycarbonate articles
US4309319A (en) * 1978-11-30 1982-01-05 General Electric Company Silicone resin coating composition
US4436851A (en) * 1978-11-30 1984-03-13 General Electric Company Silicone resin coating composition containing an ultraviolet light absorbing agent
US4455205A (en) * 1981-06-01 1984-06-19 General Electric Company UV Curable polysiloxane from colloidal silica, methacryloyl silane, diacrylate, resorcinol monobenzoate and photoinitiator
JP3290375B2 (ja) * 1997-05-12 2002-06-10 松下電器産業株式会社 有機電界発光素子
US6548912B1 (en) * 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
JP4383077B2 (ja) * 2003-03-31 2009-12-16 大日本印刷株式会社 ガスバリア性基板
US7229703B2 (en) * 2003-03-31 2007-06-12 Dai Nippon Printing Co. Ltd. Gas barrier substrate
EP1629543B1 (en) * 2003-05-16 2013-08-07 E.I. Du Pont De Nemours And Company Barrier films for flexible polymer substrates fabricated by atomic layer deposition
JP4298556B2 (ja) * 2004-03-26 2009-07-22 三井化学株式会社 透明ガスバリアフィルム
WO2006014591A2 (en) * 2004-07-08 2006-02-09 Itn Energy Systems, Inc. Permeation barriers for flexible electronics
GB0505517D0 (en) * 2005-03-17 2005-04-27 Dupont Teijin Films Us Ltd Coated polymeric substrates
JP2007090803A (ja) * 2005-09-30 2007-04-12 Fujifilm Corp ガスバリアフィルム、並びに、これを用いた画像表示素子および有機エレクトロルミネッセンス素子

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732392A (zh) * 2011-07-28 2014-04-16 凸版印刷株式会社 层叠体、阻气膜以及它们的制造方法
CN103732393A (zh) * 2011-07-28 2014-04-16 凸版印刷株式会社 层叠体、阻气膜、层叠体的制造方法及层叠体制造装置
CN103732392B (zh) * 2011-07-28 2015-11-25 凸版印刷株式会社 层叠体、阻气膜以及它们的制造方法
CN103732393B (zh) * 2011-07-28 2016-10-05 凸版印刷株式会社 层叠体、阻气膜、层叠体的制造方法及层叠体制造装置
CN103998485B (zh) * 2011-12-19 2016-01-27 杜邦帝人薄膜美国有限公司 具有高玻璃化转变温度的聚(萘二甲酸亚烷基二醇酯)的共聚酯酰亚胺和由其制成的膜
CN108285545A (zh) * 2012-10-18 2018-07-17 凸版印刷株式会社 层积体、阻气膜及其制造方法
CN104736334A (zh) * 2012-10-18 2015-06-24 凸版印刷株式会社 层积体、阻气膜及其制造方法
US9809879B2 (en) 2012-10-18 2017-11-07 Toppan Printing Co., Ltd. Laminate, gas barrier film, and manufacturing method therefor
CN103886934A (zh) * 2014-04-04 2014-06-25 纳诺电子化学(苏州)有限公司 一种透明导电膜
CN104393175A (zh) * 2014-10-16 2015-03-04 南昌大学 一种有机太阳能电池及制备方法
CN108102540A (zh) * 2016-11-24 2018-06-01 三星显示有限公司 硬质涂料组合物及包含该硬质涂料组合物的柔性显示装置
CN113931607A (zh) * 2020-07-14 2022-01-14 中国石油化工股份有限公司 一种屏蔽暂堵剂的注入控制方法及其应用
CN113931607B (zh) * 2020-07-14 2024-05-17 中国石油化工股份有限公司 一种屏蔽暂堵剂的注入控制方法及其应用

Also Published As

Publication number Publication date
US20110100454A1 (en) 2011-05-05
TW200950971A (en) 2009-12-16
KR20110005872A (ko) 2011-01-19
EP2268721A1 (en) 2011-01-05
WO2009127842A1 (en) 2009-10-22
JP2011518055A (ja) 2011-06-23
GB0807037D0 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
CN102007173A (zh) 涂敷的和平面化的聚合物膜
CN101384653B (zh) 涂层聚酯薄膜的制造方法
CN101842423B (zh) 涂覆的聚酯薄膜
TWI388614B (zh) 適合用於光電及電子裝置之複合膜
CN104185548B (zh) 气体阻隔性膜及其制造方法、以及气体阻隔性层叠体
CN103732391B (zh) 透明层叠膜
CN102112309A (zh) 层叠聚酯膜及防反射膜
JP2012159548A (ja) 偏光板用離型ポリエステルフィルム
CN105873763A (zh) 层叠膜和柔性电子器件
TW202325512A (zh) 樹脂片成型用離型膜
JP2023073287A (ja) 光拡散性バリアフィルム
JP2015058687A (ja) 表面平滑化液晶ポリマーフィルムおよびガスバリアフィルム
TW201441051A (zh) 阻氣性薄膜及其製造方法
JP2012137567A (ja) 偏光板用離型ポリエステルフィルム
JP2005104026A (ja) ガスバリア性積層フィルム及び該積層フィルムを用いた画像表示素子
JP2015071736A (ja) 透明導電膜基材用塗布フィルム
JP6150252B2 (ja) 透明導電膜基材用塗布フィルム
CN111356583B (zh) 阻挡膜
TWI795046B (zh) 樹脂片成型用離型膜以及陶瓷生胚之製造方法
WO2017130568A1 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
US20210309883A1 (en) Optical laminate
KR20180001692A (ko) 하드 코팅 필름의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110406