CN101939829A - 薄膜晶体管制造方法以及薄膜晶体管 - Google Patents

薄膜晶体管制造方法以及薄膜晶体管 Download PDF

Info

Publication number
CN101939829A
CN101939829A CN2008801227994A CN200880122799A CN101939829A CN 101939829 A CN101939829 A CN 101939829A CN 2008801227994 A CN2008801227994 A CN 2008801227994A CN 200880122799 A CN200880122799 A CN 200880122799A CN 101939829 A CN101939829 A CN 101939829A
Authority
CN
China
Prior art keywords
film
mentioned
amorphous silicon
laser
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801227994A
Other languages
English (en)
Other versions
CN101939829B (zh
Inventor
森村太郎
菊池亨
桥本征典
浅利伸
斋藤一也
中村久三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of CN101939829A publication Critical patent/CN101939829A/zh
Application granted granted Critical
Publication of CN101939829B publication Critical patent/CN101939829B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明的目的在于提供一种非晶硅型薄膜晶体管的制造方法以及薄膜晶体管,以防止元件间的晶体管特性产生偏差,提高载流子迁移率,从而提高生产性。为达到上述目的,本发明的薄膜晶体管的制造方法以源极膜(71)与漏极膜(72)为掩膜用固体绿激光照射非晶硅膜(4)的信道部(41),从而提高迁移率。因受到固体绿激光的照射,非晶硅膜的信道部被结晶化,所以,与现有技术使用准分子激光的方法相比,可使激光的振荡特性比较稳定。从而可用相同的输出功率对大型基板在其基板平面内进行激光照射,能够防止元件间的信道部的结晶度产生偏差。而且,还可延长激光振荡器的维修周期,从而可在降低装置的停机时间成本的同时提高生产性。

Description

薄膜晶体管制造方法以及薄膜晶体管
技术领域
本发明涉及一种载流子迁移率较大的非晶硅型薄膜晶体管的制造方法以及该薄膜晶体管。
背景技术
近年来,有源矩阵型的液晶显示器被广泛应用。有源矩阵型的液晶显示器,在每个像素上都具有作为开关元件的薄膜晶体管(TFT)。
作为薄膜晶体管而言,除了活性层由多晶硅构成的多晶硅型薄膜晶体管之外,还有活性层由非晶硅构成的非晶硅型薄膜晶体管(参照专利文献1)。
与多晶硅型薄膜晶体管相比,非晶硅型薄膜晶体管的优点是,因其活性层制造较容易,所以可在较大面积的基板上均匀地成膜。但是,与多晶硅型薄膜晶体管相比,其载流子的迁移率较低,所以非晶硅型薄膜晶体管很难用于制作高精密的显示器。
另外,公知有这样的技术,即,可对位于源极和漏极之间的活性层的信道部进行雷射回火使该信道部结晶化,从而提高载流子的迁移率。例如,在专利文献1中公开有如下的半导体装置的制造方法,即,用KrF准分子激光(波长248nm)对活性层进行改质处理从而使迁移率提高。
然而,准分子激光需要利用活性气体(稀有气体、卤族气体等的混合气体)的放电,所以其激光输出不稳定,不适合对大面积基板进行稳定的激光照射。所以,使用准分子激光会有这样的问题,即,因元件间的信道部的结晶度不均匀,会造成晶体管的特性有偏差。
还有,使用准分子激光,激光振荡器与光学部件会因活性气体的作用而受到损伤,而且活性气体的纯度也会降低,所以,与使用固体激光相比,其部件的更换频率会较高。这会增加装置的停机时间成本以及运行成本,很难提高生产性。
专利文献1:日本发明专利公开公报特开平10-56180([0110]段)
发明内容
有鉴于此,本发明的目的在于提供一种非晶硅型薄膜晶体管的制造方法以及薄膜晶体管,以防止元件间的晶体管特性产生偏差,提高载流子迁移率,从而提高生产性。
本发明一个实施方式的薄膜晶体管的制造方法包括在栅极膜上形成绝缘膜的工序。非晶硅膜形成在上述绝缘膜上。在上述非晶硅膜上分别于源极所对应的一侧与漏极所对应的一侧形成欧姆接触层,该两侧的欧姆接触层是分开的。在欧姆接触层上形成源极膜以及漏极膜。以上述源极膜以及漏极膜为掩膜,用固体绿激光照射上述非晶硅膜。
本发明的一个实施方式的薄膜晶体管具有栅极膜、绝缘膜、非晶硅膜、欧姆接触层、源极膜、漏极膜、信道部。
上述绝缘膜形成在上述栅极膜上。上述非晶硅膜形成在上述绝缘膜上。上述欧姆接触层形成在上述非晶硅膜上,且分为源极一侧的和漏极一侧的。上述源极膜以及上述漏极膜形成在上述欧姆接触层上。上述信道部具有微结晶结构,是用固体绿激光照射位于上述源极膜与上述漏极膜之间的上述非晶硅膜而形成的。
附图说明
图1为为了说明本发明实施方式的薄膜晶体管制造方法的各工序的局部剖面图;
图2为本发明实施方式中所说明的实验例样本的结构示意图;
图3所示为,根据本发明实施方式所说明的一个实验的结果所得到的,在绝缘膜为氮化硅膜的情况下雷射回火工序中激光功率与载流子迁移率的关系;
图4所示为,根据本发明实施方式所说明的一个实验的结果所得到的,在绝缘膜为氧化硅膜的情况下雷射回火工序中激光功率与载流子迁移率的关系。
附图标记说明
1        基板
2、12    栅极膜
3、13    栅极绝缘膜
4、14    非晶硅膜
5、15    欧姆接触层
6、16    电极层
71       源极膜
72       漏极膜
GL       固体绿激光
具体实施方式
本发明一个实施方式的薄膜晶体管的制造方法包括在栅极膜上形成绝缘膜的工序。非晶硅膜形成在上述绝缘膜上。在上述非晶硅膜上分别于源极所对应的一侧与漏极所对应的一侧形成欧姆接触层,该两侧的欧姆接触层是分开的。在欧姆接触层上形成源极膜以及漏极膜。以上述源极膜以及漏极膜为掩膜,用固体绿激光照射上述非晶硅膜。
固体绿激光为例如以532nm为中心波长的绿色波长带范围的激光,可以利用1064nm的固体激光介质(Nd-YAG/YVO4),用其二次谐波的振荡产生。用该固体绿激光照射非晶硅膜,可使被照射区域产生微结晶。固体绿激光的照射区域相当于位于源极膜与漏极膜之间的非晶硅膜的信道部,所以,该信道部被微结晶化从而其载流子迁移率得到提高。
与现有的使用准分子激光的方法相比,若采用上述薄膜晶体管的制造方法,因为通过固体绿激光的照射使得非晶硅膜的信道部被微结晶化,所以可使激光的振荡特性较稳定。从而,可用具有恒定输出特性的激光对大型的基板进行照射,可防止元件间的信道部的结晶度产生不均匀。而且,还可延长激光振荡器的维修周期,从而可在降低装置的停机时间成本的同时提高生产性。
固体绿激光可以采用连续的激光也可以采用脉冲激光。源极膜与漏极膜对激光起到了掩膜的作用。因此,可以用点射或扫射的方式只选择对非晶硅膜的信道部进行雷射回火处理。
固体绿激光的照射功率可以根据所需的迁移率、以及作为非晶硅膜的衬底的绝缘膜(栅极绝缘膜)的种类进行适当调整。例如,在绝缘膜为氮化硅膜时,激光的功率(能量密度)调整为100mJ/cm2以上700mJ/cm2以下,在在绝缘膜为氧化硅膜时,激光的功率(能量密度)调整为100mJ/cm2以上700mJ/cm2以下。
关于非晶硅膜的形成,典型的可以采用以硅烷(SiH4)为原料气体(反应气体)的等离子化学气相沉积法(等离子CVD法)。若使用这种反应气体形成非晶硅膜,在膜中残存的氢会影响载流子的迁移率。所以,在本发明中,当在绝缘膜上形成了非晶硅膜之后,且在用固体绿激光照射非晶硅膜之前,在高温条件下对非晶硅膜进行热处理。从而,可将非晶硅膜中剩余的氢除去。热处理的环境为减压下的氮气环境,热处理温度为400℃以上。
在用激光对非晶硅膜进行改质后,对该非晶硅膜在减压的氢环境下进行热处理,从而可消除因激光照射在非晶硅膜中增多的悬空键(未结合的键),进而进一步提高晶体管的特性。热处理的温度越高越好,例如400℃。
本发明的一个实施方式的薄膜晶体管具有栅极膜、绝缘膜、非晶硅膜、欧姆接触层、源极膜、漏极膜、信道部。
上述绝缘膜形成在上述栅极膜上。上述非晶硅膜形成在上述绝缘膜上。上述欧姆接触层形成在上述非晶硅膜上,且分为源极一侧的和漏极一侧的。上述源极膜以及上述漏极膜形成在上述欧姆接触层上。上述信道部具有微结晶结构,是用固体绿激光照射位于上述源极膜与上述漏极膜之间的上述非晶硅膜而形成的。
下面根据附图来说明本发明的各实施方式。
图1中(A)~(F)为为了说明本发明实施方式的非晶硅型薄膜的制造方法的各个工序的局部剖面图。
首先,如图1中(A)所示,在基板1的表面上形成栅极膜2。
基板1为绝缘基板,比较典型的是用玻璃基板。栅极膜2例如可由钼或铬、铝等的金属单层膜或金属多层膜形成,成膜方法例如可采用溅镀法。栅极膜2采用光刻技术形成规定的形状图案。栅极膜2的厚度例如可为100nm。
接下来,如图1中(B)所示,在基板1的表面上形成绝缘膜3,该绝缘膜3覆盖在栅极膜2上。
栅极绝缘膜3由氮化硅膜(SiNx)或氧化硅膜(SiO2)等形成,成膜方法例如可以选择CVD法。栅极绝缘膜3的厚度例如可为200nm~500nm。
接下来,如图1中(C)所示,在栅极绝缘膜3上形成非晶硅膜4。
非晶硅膜4相当于晶体管的活性层。非晶硅膜4例如可以用以硅烷(SiH4)为原料气体的等离子CVD法形成。非晶硅膜4的膜厚例如可为50nm~200nm。
非晶硅膜4形成后,将基板1加热,对非晶硅膜4实施脱氢处理。具体为,将基板1放入加热炉中,在减压的氮气环境下,例如用400℃加热30分钟。通过该脱氢处理,可除去在非晶硅膜4的成膜时在膜中含有的多余的氢。
接下来,如图1中(D)所示,非晶硅膜4上依次层积形成欧姆接触层5与电极层6。
欧姆接触层5例如可由如n+型非晶硅之类的低阻抗半导体膜形成。电极层6例如可由如铝等的金属膜形成。形成欧姆接触层5是为了提高非晶硅膜4与电极层6之间的粘合力。欧姆接触层5的厚度例如可为50nm,电极层6的厚度例如可为500nm。
接下来,如图1中(E)所示,在非晶硅膜4上将欧姆接触层5及电极层6分割并形成规定形状的图案,从而形成源极与漏极。电极层6被分割并形成源极膜71及漏极膜72。
从而,位于源极与漏极之间的非晶硅膜4的一部分相对于外部露出。并且在与源极与漏极的形成工序不同的其他工序中,如图所示地对非晶硅膜4及栅极绝缘膜3按图形进行处理以分割出元件。形成图形的方法并无特别限定,例如可以采用湿式蚀刻法或者干式蚀刻法。
接下来,如图1中(F)所示,用固体绿激光GL照射位于源极膜71与漏极膜72之间的非晶硅膜4的信道部41。
非晶硅膜4的信道部41构成了,在对栅极2施加规定的电压时,源极与漏极间载流子(电子或空穴)的迁移区域(信道部)。通过激光照射产生的雷射回火效果,由非晶层构成的信道部41被改质而形成微细结晶层,从而,如下面所述地,提高了载流子的迁移率。
在本实施方式中,固体绿激光GL使用以532nm为中心波长的绿色波长带域内的激光。具体的产生振荡固体绿激光GL的方法为,利用1064nm的固体激光介质(Nd-YAG/YVO4)产生激光,使产生的激光通过KTP(磷酸氧钛钾)等的非线性光学晶体以其二次谐波的形式得到固体绿激光GL。
固体绿激光GL可以是连续的激光也可以是脉冲激光。在本实施方式中,采用脉冲激光,脉冲的频率为4kHz,扫射速度为每秒8mm。源极膜71与漏极膜72对激光的照射起到了掩膜的作用。因此,可以用扫射的方式只选择对非晶硅膜的信道部进行雷射回火处理。
固体绿激光的照射功率可以根据所需的迁移率、以及作为非晶硅膜的衬底的绝缘膜(栅极绝缘膜)的种类进行适当调整。例如,在绝缘膜为氮化硅膜时,激光的功率(能量密度)调整为100mJ/cm2以上700mJ/cm2以下,在在绝缘膜为氧化硅膜时,激光的功率(能量密度)调整为100mJ/cm2以上700mJ/cm2以下。
在激光脉冲的作用下,因激光照射的破坏,非晶硅膜(信道部)中的悬空键会增加,这可能会使载流子的迁移率不能有效提高。所以,本实施方式中,在对信道部41的雷射回火完成后,将基板1置于减压的氢环境中进行热处理,从而可使非晶硅膜4中的悬空键与氢结合以将其消去,进而,如下所述,可实现载流子迁移率的大大提高。
根据本实施方式,以固体绿激光GL为非晶硅膜4的信道部41的改质用激光,所以,与现有技术使用准分子激光的方法相比,可使激光的振荡特性比较稳定。从而对大型基板在其基板平面内进行激光照射时激光振荡器的输出特性保持一致,能够防止元件间的信道部的结晶度产生不均匀。而且,还可延长激光振荡器的维修周期,从而可在降低装置的停机时间成本的同时提高生产性。
下面对根据如上方法制造的薄膜晶体管的晶体管特性进行说明。
图2为实验用样本的大致结构图。在图中,12是指基板或形成栅极(G)用的硅基板,13是指作为绝缘膜的氮化硅膜或氧化硅膜(230nm),14是指非晶硅膜(100nm),15是指作为欧姆接触层的n+型非晶硅(50nm),16是指作为电极层的铝膜,S及D分别为对电极层16进行图形处理而形成的源极膜与漏极膜。
在实验中,首先用固体绿激光照射位于源极膜S与漏极膜D之间的非晶硅膜4的部分区域(信道部),然后在氢环境下进行30分钟热处理(回火),热处理温度为400℃。在氢环境下进行的此热处理(回火)其温度越高迁移率的改善效果越好。所以热处理温度最好在400℃以上。
图3及图4所示为对源极和漏极间的载流子迁移率与固体绿激光的功率之间的关系进行实验所得到的结果。图3中数据所对应的是用氮化硅膜构成栅极绝缘膜13的样本例,图4为用氧化硅膜构成栅极绝缘膜13的样本例。
在图3所示的例子中,激光功率超过400mJ/cm2后,迁移率渐渐上升,在570mJ/cm2附近达到峰值。一般认为这是由于在雷射回火的作用下信道部的非晶结构被改质成微结晶结构从而使得其阻抗降低。但是,在激光功率超过570mJ/cm2之后,迁移率呈降低的趋势。一般认为这是由于信道部的结晶度的不均匀或信道部被熔融等原因造成的。根据此实验结果可知,激光功率为530mJ/cm2以上610mJ/cm2以下时可获得2cm2/Vs的迁移率。
另外,在图4所示的例子中,随着激光功率的增加迁移率也上升,在490mJ/cm2处达到峰值。但是,在激光功率超过490mJ/cm2后,迁移率急剧下降。根据此实验结果可知,激光功率为320mJ/cm2以上530mJ/cm2以下时可获得2cm2/Vs的迁移率。
迁移率的变化随激光的间距、非晶硅膜14的厚度或成膜条件、绝缘膜的种类或成膜条件等条件的变化而不同。根据发明人所作的实验,若要获得2cm2/Vs以上的迁移率,并根据上述的条件,激光功率应该在100mJ/cm2以上700mJ/cm2以下。因此,可根据上述条件在此范围内选择合适的激光功率。
上面说明了本发明的实施方式,然而本发明并不限于上述实施方式,不言而喻,可在不脱离本发明主旨的范围内施加种种变更。
例如,在上述实施方式中所例示的是,用固体绿激光扫射的方式对非晶硅膜4(信道部41)进行雷射回火处理,然而也并不仅限于此,采用固体绿激光点射的方式对信道部41进行处理也可获得与上述相同的效果。

Claims (6)

1.一种薄膜晶体管制造方法,其特征在于,
在栅极膜上形成绝缘膜,
在上述绝缘膜上形成非晶硅膜,
在上述非晶硅膜上于源极一侧与漏极一侧分别形成欧姆接触层,在上述欧姆接触层上分别形成源极膜与漏极膜,
以上述源极膜与上述漏极膜为掩膜用固体绿激光照射上述非晶硅膜。
2.根据权利要求1所述的薄膜晶体管制造方法,其特征在于,
在形成上述绝缘膜的工序中,形成氮化硅膜以作为上述绝缘膜,
在用上述固体绿激光进行照射的工序中,使用的固体绿激光的能量密度为100mJ/cm2以上700mJ/cm2以下。
3.根据权利要求1所述的薄膜晶体管制造方法,其特征在于,
在形成上述绝缘膜的工序中,形成氧化硅膜以作为上述绝缘膜,
在用上述固体绿激光进行照射的工序中,使用的固体绿激光的能量密度为100mJ/cm2以上700mJ/cm2以下。
4.根据权利要求1所述的薄膜晶体管制造方法,其特征在于,
在上述绝缘膜上形成上述非晶硅膜之后,且在用固体绿激光照射上述非晶硅膜之前,对上述非晶硅膜进行热处理。
5.根据权利要求1所述的薄膜晶体管制造方法,其特征在于,
在用固体绿激光照射上述非晶硅膜之后,将上述非晶硅膜在氢环境下进行热处理。
6.一种薄膜晶体管,其特征在于,包括:
栅极膜;
形成在上述栅极膜上的绝缘膜;
形成在上述绝缘膜上的非晶硅膜;
形成在上述非晶硅膜上且分为源极一侧与漏极一侧的欧姆接触层;
形成在上述欧姆接触层上的源极膜与漏极膜;
用固体绿激光照射位于上述源极膜与漏极膜之间的上述非晶硅膜从而形成的微结晶结构的信道部。
CN2008801227994A 2007-12-25 2008-12-12 薄膜晶体管制造方法以及薄膜晶体管 Active CN101939829B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-332774 2007-12-25
JP2007332774 2007-12-25
PCT/JP2008/072685 WO2009081775A1 (ja) 2007-12-25 2008-12-12 薄膜トランジスタの製造方法及び薄膜トランジスタ

Publications (2)

Publication Number Publication Date
CN101939829A true CN101939829A (zh) 2011-01-05
CN101939829B CN101939829B (zh) 2013-03-27

Family

ID=40801081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801227994A Active CN101939829B (zh) 2007-12-25 2008-12-12 薄膜晶体管制造方法以及薄膜晶体管

Country Status (7)

Country Link
US (1) US8673705B2 (zh)
JP (1) JP4856252B2 (zh)
KR (1) KR101133827B1 (zh)
CN (1) CN101939829B (zh)
DE (1) DE112008003488B4 (zh)
TW (1) TW200939357A (zh)
WO (1) WO2009081775A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103493186A (zh) * 2011-11-29 2014-01-01 松下电器产业株式会社 薄膜晶体管阵列的制造方法、薄膜晶体管阵列及显示装置
JP6615658B2 (ja) 2016-03-16 2019-12-04 株式会社ブイ・テクノロジー マスク及び薄膜トランジスタの製造方法
CN109417099A (zh) * 2016-04-25 2019-03-01 堺显示器制品株式会社 薄膜晶体管、显示装置和薄膜晶体管制造方法
CN108735819B (zh) * 2017-04-13 2020-07-14 京东方科技集团股份有限公司 低温多晶硅薄膜晶体管及其制造方法、显示基板
US20200238441A1 (en) * 2017-10-13 2020-07-30 The Trustees Of Columbia University In The City Of New York Systems and methods for spot beam and line beam crystallization
CN113611752B (zh) * 2021-07-19 2024-01-16 Tcl华星光电技术有限公司 低温多晶硅tft的制作方法及低温多晶硅tft

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459739A (en) * 1981-05-26 1984-07-17 Northern Telecom Limited Thin film transistors
JPH07118443B2 (ja) * 1984-05-18 1995-12-18 ソニー株式会社 半導体装置の製法
JPH0362971A (ja) * 1989-07-31 1991-03-19 Sanyo Electric Co Ltd 薄膜トランジスタ
JPH04186735A (ja) * 1990-11-20 1992-07-03 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP3255942B2 (ja) * 1991-06-19 2002-02-12 株式会社半導体エネルギー研究所 逆スタガ薄膜トランジスタの作製方法
JPH1056180A (ja) 1995-09-29 1998-02-24 Canon Inc 半導体装置及びその製造方法
JP2002094078A (ja) * 2000-06-28 2002-03-29 Semiconductor Energy Lab Co Ltd 半導体装置
TW504846B (en) * 2000-06-28 2002-10-01 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
JP4030758B2 (ja) * 2001-12-28 2008-01-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR100979926B1 (ko) * 2002-03-05 2010-09-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체소자 및 그것을 사용한 반도체장치
CN100367479C (zh) * 2005-02-06 2008-02-06 友达光电股份有限公司 一种薄膜晶体管的制造方法
JP2007035964A (ja) 2005-07-27 2007-02-08 Sony Corp 薄膜トランジスタとその製造方法、及び表示装置
JP2007220918A (ja) * 2006-02-16 2007-08-30 Ulvac Japan Ltd レーザアニール方法、薄膜半導体装置及びその製造方法、並びに表示装置及びその製造方法
KR100785020B1 (ko) * 2006-06-09 2007-12-12 삼성전자주식회사 하부 게이트 박막 트랜지스터 및 그 제조방법

Also Published As

Publication number Publication date
CN101939829B (zh) 2013-03-27
US8673705B2 (en) 2014-03-18
KR20100089895A (ko) 2010-08-12
JP4856252B2 (ja) 2012-01-18
DE112008003488B4 (de) 2012-01-19
DE112008003488T5 (de) 2010-10-21
JPWO2009081775A1 (ja) 2011-05-06
TW200939357A (en) 2009-09-16
WO2009081775A1 (ja) 2009-07-02
US20100301339A1 (en) 2010-12-02
KR101133827B1 (ko) 2012-04-06

Similar Documents

Publication Publication Date Title
US7585715B2 (en) Semiconductor device and process for fabricating the same
JP4026182B2 (ja) 半導体装置の製造方法、および電子機器の製造方法
KR100561991B1 (ko) 박막트랜지스터를형성하기위한방법
TW515101B (en) Method for fabrication of field-effect transistor
US20020048869A1 (en) Method of forming semiconductor thin film and plastic substrate
CN101939829B (zh) 薄膜晶体管制造方法以及薄膜晶体管
JP2002151410A (ja) 結晶質半導体材料の製造方法および半導体装置の製造方法
JP3844537B2 (ja) 多結晶半導体膜の製造方法
KR100796607B1 (ko) 다결정 실리콘 결정화방법과 그를 이용한 박막트랜지스터의 제조 방법
JP4239744B2 (ja) 薄膜トランジスタの製造方法
JP2001057432A (ja) 薄膜素子の転写方法
JP4200530B2 (ja) 薄膜トランジスタの製造方法
JP2000068518A (ja) 薄膜トランジスタの製造方法
KR100543002B1 (ko) 블랙 매트릭스를 포함하는 박막 트랜지스터 및 이 박막트랜지스터에 사용되는 다결정 실리콘의 제조 방법
JPH06124889A (ja) 薄膜状半導体装置の作製方法
JPH08139331A (ja) 薄膜トランジスタの製造方法
KR101075261B1 (ko) 다결정 실리콘 박막의 제조방법
KR100841370B1 (ko) 박막 트랜지스터 제조방법
WO2010024278A1 (ja) 薄膜トランジスタの製造方法及び薄膜トランジスタ
KR100751315B1 (ko) 박막 트랜지스터, 박막 트랜지스터 제조 방법 및 이를구비한 평판 디스플레이 소자
KR101177275B1 (ko) 박막의 탈가스 방법 및 이를 이용한 실리콘 박막의제조방법
JPH09172179A (ja) 半導体装置の製造方法
JPH1117190A (ja) 薄膜トランジスタの製造方法
JPH10313122A (ja) 薄膜トランジスタ
JPH02305475A (ja) 薄膜半導体素子とその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant