CN101886289B - 从熔体中生长硅单晶的方法和装置 - Google Patents

从熔体中生长硅单晶的方法和装置 Download PDF

Info

Publication number
CN101886289B
CN101886289B CN201010154972.8A CN201010154972A CN101886289B CN 101886289 B CN101886289 B CN 101886289B CN 201010154972 A CN201010154972 A CN 201010154972A CN 101886289 B CN101886289 B CN 101886289B
Authority
CN
China
Prior art keywords
melt
free surface
magneticinduction
silicon single
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010154972.8A
Other languages
English (en)
Other versions
CN101886289A (zh
Inventor
P·菲拉尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic AG filed Critical Siltronic AG
Publication of CN101886289A publication Critical patent/CN101886289A/zh
Application granted granted Critical
Publication of CN101886289B publication Critical patent/CN101886289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B21/00Unidirectional solidification of eutectic materials
    • C30B21/06Unidirectional solidification of eutectic materials by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/10Production of homogeneous polycrystalline material with defined structure from liquids by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种从熔体中生长硅单晶的方法和装置。所述方法包括:在坩埚中提供所述熔体;在熔体上施加水平磁场,所述磁场在场中心C具有磁感应B;将气体在所述硅单晶与热遮蔽体之间导向熔体自由表面;并且控制所述气体流过以基本上垂直于所述磁感应B的方向延伸的熔体自由表面区域。所述的装置包括:用于承载熔体的坩埚;用于在熔体上施加水平磁场磁系统,所述磁场在磁场中心C处具有磁感应B;围绕硅单晶的热遮蔽体,该热遮蔽体具有与面对熔体自由表面的底盖连接的低端,该低端相对于坩埚轴M具有非轴对称形状,从而在硅单晶和热遮蔽体之间导向熔体自由表面的气体被底盖驱使流过熔体自由表面,所述熔体自由表面按基本上垂直于磁感应B的方向进行延伸。

Description

从熔体中生长硅单晶的方法和装置
本发明涉及从熔体中生长硅单晶的方法和装置。更确切的说,涉及一种生长硅单晶的方法,是通过切克劳斯基(Czochralskimethod)方法生长硅单晶时在熔体上施加水平磁场,即所谓的HMCZ法。
如专利EP0745706A1中揭示,已知在熔体上施加水平磁场减少了坩埚中熔体的对流及SiO的溶解。因而,在熔体上施加水平磁场对于生产具有较低氧浓度的硅单晶来说,是一种较为合适的手段。
还已知,通过增加惰性气体在硅单晶和熔体自由表面的热遮蔽体之间的流动速度,能够降低硅单晶中的氧含量。增加的气体流动速率加快了对从熔体中蒸发出来的SiO的运输,因而在硅单晶的生长中会掺入较少的氧。
JP 2004-196569A公开了一种HMCZ方法,其包含同时控制水平磁场的轴向位置以及气流强度,以便生产低氧硅单晶。但是,控制水平磁场的轴向位置需要复杂的控制系统。
本发明的目标是提供一种方法,该方法适合于生产低氧硅单晶,并且只需少量的手段来控制氧含量。
该目标通过一种从熔体中生长硅单晶的方法来实现,所述方法包含:
在坩埚中提供熔体;
在熔体上施加水平磁场,磁场在磁场中心C具有磁感应B;
将在硅单晶和热遮蔽体之间的气体导向熔体自由表面,并且
控制气体从熔体自由表面区域上方通过,所述熔体自由表面按基本上垂直于磁感应B的方向延伸。
该目标进一步通过一种从熔体中生长硅单晶的装置来实现,该装置包含:
用于承载熔体的坩埚,
磁系统,用于在熔体上施加水平磁场,该磁场在磁场中心C具有磁感应B,
围绕硅单晶的热遮蔽体,该热遮蔽体具有与面对熔体自由表面的底盖连接的低端,该低端相对于坩埚轴M具有非轴对称形状,从而在硅单晶和热遮蔽体之间导向熔体自由表面的气体被底盖驱使流过熔体自由表面,所述熔体自由表面按基本上垂直于磁感应B的方向进行延伸。
通过采用本发明,可以在至少大于50%、优选至少大于70%、最优选大于至少80%的硅单晶圆柱部分长度上生长出氧浓度小于5*107个原子/cm3(根据新ASTM)的硅单晶。
施加在熔体上的水平磁场抑制了熔体内的热对流,主要是抑制熔体区域中平行于磁感应(B)方向的热对流。根据本发明,使导向熔体自由表面的气体流过熔体自由表面区域,在所述区域内熔体中SiO的蒸发有所增强,原因是该方向上的热对流没有被水平磁场所抑制。控制所述气体从熔体自由表面上方区域流过提高了SiO的移除,并且明显降低了熔体和硅单晶中的氧浓度。
根据另一方面,本发明还提供了一种降低惰性气体消耗的技术方案,所述惰性气体用来控制大直径硅单晶(如直径300mm,450mm或者更大)中的氧浓度。通常来说,获得生长的硅单晶中目标氧含量所需的惰性气体流速取决于硅单晶的直径。例如,与直径为200mm的单晶中保持相同氧浓度所需的惰性气体流速相比,在直径为300mm的硅单晶中保持目标氧浓度需要更高的惰性气体流速。如果必须采用常规方法抽拉直径超过300mm的硅单晶,则会由于技术原因(如泵或者真空系统不足),导致越来越难以提供所需的气流。但是,通过采用本发明所述方法,可以避免这些困难,因为与采用常规方法获得相同氧含量所需的惰性气体流速相比,获得硅单晶中一定氧目标浓度所需的惰性气体流速更低。
水平磁场通常借助于磁系统产生,磁系统包括围绕坩埚对称设置的(相对于坩埚轴M)的若干线圈。本发明限定的磁场中心C是为将线圈分为两半的水平面与坩埚轴M的相交点。磁感应B表示磁场中心C处水平磁场的磁感应。
图1为显示适于根据HMCZ方法生长硅单晶的炉的典型特征的示意性截面图,以及本发明的特征。
将承载熔体2的坩埚1布置在壳体3内,并且置于提升轴4上。通过抽拉机构16从熔体中抽拉单晶5,同时向熔体施加水平磁场。提供围绕单晶的热遮蔽体6,以便保护晶体免受来自设置于坩埚1周围的侧加热器7产生的热辐射。根据优选的实施方案,另一加热器18被放置在坩埚的下方。壳体稳定地用气体清洗,所述气体通过气体进入口进入壳体,再通过多个气体排放开孔17流出壳体。气体在单晶与热遮蔽体之间被导向熔体自由表面8,并进一步由热遮蔽体和坩埚壁之间的熔体自由表面流至气体排放开孔17。所述气体优选以相对于中心轴M非轴对称的方式(way)在单晶与热遮蔽体之间导向熔体自由表面。磁场由围绕坩埚对称布置的线圈9产生。水平磁场的磁场中心C为将线圈分为两半的水平面与坩埚中心轴M的相交点。磁场中心的磁感应由磁感应B表示。根据本发明,热遮蔽体16包含底盖10,该底盖10连接(如通过螺钉连接)至热遮蔽体下端,并且面对熔体自由表面8。底盖相对于坩埚中心轴M是非轴对称的,并且用作控制气体流过按基本上垂直于磁感应B方向延伸的熔体自由表面区域的工具,即用作控制气体以与中心轴M非轴对称的方式流过熔体自由表面的工具。根据本发明的优选实施方案,热遮蔽体连接到支撑体上,以实现热遮蔽体的旋转。通过旋转热遮蔽体和连接在其上的底盖,容许更精确地控制气体流过熔体自由表面。热遮蔽体旋转到左(右)边,将使气体流到从左(右)边区域。而且优选排放开孔17按照与坩埚轴M非轴对称的方式布置,从而提高气体流过熔体自由表面区域,所述熔体自由表面以基本上垂直于磁感应B的方向延伸。
图2示出根据本发明实施方案的底盖。底盖包括环部分(ring section)11,边缘部分(brim section)12和颈部部分(collar section)13。边缘部分可以为平的、中凸的或者凹面的。所述的环具有足够大的内直径,使得硅单晶能够抽拉通过。边缘部分从环水平延伸,颈部部分与边缘部分的外边缘相连,并且沿与熔体垂直的方向延伸。
本发明的效果进一步参照图3和图4进行解释,其中图3为图4的截面图,并且表示以平行于磁感应B的方向穿过单晶的轴向切割。主要显示了单晶5,坩埚1,熔体2以及底盖10。箭头“Si”表示熔体对流的方向。箭头“Ar”表示气体(例如,惰性气体如氩气)流动的方向,该气体最初在热遮蔽体(未示出)与单晶之间导向熔体自由表面8。
底盖10为非轴对称形状,从而使在单晶与热遮蔽体之间导向熔体自由表面的气体流过熔体自由表面区域,所述熔体自由表面区域按基本上垂直于磁感应B的方向延伸。在所述区域内,SiO的蒸发率提高,这是由于熔体中热对流“Si”受水平磁场的影响较小,而且在此区域内“Ar”气流容易地除去从熔体中蒸发的SiO。
在熔体自由表面部分上方延伸出的区域具有中心角α,α角不小于45°并且不大于135°,所述部分的中心轴D与磁感应B垂直取向,或者由于坩埚旋转的影响,以偏离所述垂直取向至多-30°或30°的方向来取向。
边缘部分12、颈部部分13、熔体自由表面8和硅单晶5形成通道14的边界,该通道控制气体沿着颈部部分的内壁流向颈部部分的开孔15。通过设置底盖,使离开开孔的气体流过熔体自由表面区域上方,所述熔体自由表面区域基本上垂直于磁感应B的方向延伸。边缘部分12和颈部部分13的形状优选为横向延伸至磁感应B。这使在熔体表面和边缘部分之间流动的气流速度加快,并且进一步提高从熔体中除去SiO的速度。
图5-8示出根据优选实施方案的边缘部分。所述边缘部分的形状可以是长方形(图5)或者椭圆形(图7),或者可以是具有圆整末端的长方形(图6)或具有椭圆形拓宽末端的长方形(图8)。在边缘部分横向增大至磁感应B的情况下,边缘部分的长度L和宽度W的比率L/W满足公式:1.1<L/W<3.0。长度L和宽度W在环11的中心相交。
底盖优选的设计为:使得底盖对硅单晶生长界面处轴向温度梯度的影响尽可能小,并减小由于吸收来自熔体的热辐射而导致的能量消耗。基于上述理由,底盖的形状优选设计为例如基本上不以磁感应B的方向延伸。优选的制备底盖的材料为石墨。
图9和10表示在没有显示晶体和热遮蔽体情况下的硅熔体自由表面的顶视图。根据论证,所述部分的中心轴D垂直于磁感应B取向,或者偏离所述垂直取向至多±30角度β来取向。β角的数值取决于坩埚旋转方向,即取决于顺时针(图10)或者逆时针(图9)旋转。

Claims (9)

1.一种从熔体中生长硅单晶的方法,该方法包括:
在坩埚中提供所述熔体;
在熔体上施加水平磁场,所述磁场在场中心C具有磁感应B;
将气体在所述硅单晶与热遮蔽体之间导向熔体自由表面;并且
控制所述气体,使得气体以相对于坩埚中心轴M非轴对称的方式被驱使流过以基本上垂直于所述磁感应B的方向延伸的熔体自由表面区域。
2.根据权利要求1所述的方法,其中所述区域形成具有中心角α的熔体自由表面部分,α不小于45°并且不大于135°,而且所述部分包括中心轴D,该轴垂直于所述磁感应B取向,或者以与所述垂直线偏离至多-30°或+30°的方向取向。
3.根据权利要求1或2所述的方法,其包括通过旋转热遮蔽体来控制气体流过熔体自由表面区域。
4.根据权利要求1或2所述的方法,其包括从坩埚中以基本上垂直于磁感应B的方向排出气体。
5.一种从熔体中生长硅单晶的装置,该装置包括
用于承载熔体的坩埚;
用于在熔体上施加水平磁场d磁系统,所述磁场在磁场中心C处具有磁感应B;
围绕硅单晶的热遮蔽体,该热遮蔽体具有与面对熔体自由表面的底盖连接的低端,该低端相对于坩埚中心轴M具有非轴对称形状,从而在硅单晶和热遮蔽体之间导向熔体自由表面的气体被底盖驱使流过熔体自由表面,所述熔体自由表面按基本上垂直于磁感应B的方向进行延伸,
其中所述底盖包含环部分,该环部分被边缘部分和颈部部分围绕,所述边缘部分与颈部部分形成通道,该通道具有用于使气体流过熔体自由表面区域的开孔。
6.根据权利要求5所述的装置,其中所述区域形成具有中心角α的熔体自由表面部分,α不小于45°并且不大于135°,而且所述部分包括中心轴D,该轴垂直于所述磁感应B取向,或者以与所述垂直线偏离至多-30°或+30°的方向取向。
7.根据权利要求5所述的装置,其中所述边缘部分横向延伸至磁感应B,所述边缘部分的形状可以是长方形或者椭圆形,或者可以是具有圆整末端的长方形或具有椭圆形拓宽末端的长方形。
8.根据权利要求5或7所述的装置,其中所述边缘部分的长L和宽W在环的中心相交,长宽比L/M满足公式:1.1<L/W<3.0。
9.根据权利要求5或6所述的装置,其包括以相对于坩埚中心轴M非轴对称的方式设置的气体排放开孔,从而促进气体流过基本上垂直于磁感应B延伸的熔体自由表面区域。
CN201010154972.8A 2009-05-13 2010-03-30 从熔体中生长硅单晶的方法和装置 Active CN101886289B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09006477.5 2009-05-13
EP09006477A EP2270264B1 (en) 2009-05-13 2009-05-13 A method and an apparatus for growing a silicon single crystal from melt

Publications (2)

Publication Number Publication Date
CN101886289A CN101886289A (zh) 2010-11-17
CN101886289B true CN101886289B (zh) 2013-09-25

Family

ID=40973246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010154972.8A Active CN101886289B (zh) 2009-05-13 2010-03-30 从熔体中生长硅单晶的方法和装置

Country Status (8)

Country Link
US (2) US8460462B2 (zh)
EP (1) EP2270264B1 (zh)
JP (1) JP5618614B2 (zh)
KR (1) KR101301892B1 (zh)
CN (1) CN101886289B (zh)
AT (1) ATE539182T1 (zh)
SG (1) SG166718A1 (zh)
TW (1) TWI424102B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983195B1 (ko) * 2007-12-28 2010-09-20 주식회사 실트론 2차원 선결함이 제어된 실리콘 잉곳, 웨이퍼, 에피택셜웨이퍼와, 그 제조방법 및 제조장치
JP5904079B2 (ja) * 2012-10-03 2016-04-13 信越半導体株式会社 シリコン単結晶育成装置及びシリコン単結晶育成方法
CN107779946A (zh) * 2016-08-25 2018-03-09 上海新昇半导体科技有限公司 热屏组件及单晶提拉炉热场结构
KR101871059B1 (ko) * 2016-11-17 2018-07-20 에스케이실트론 주식회사 단결정 잉곳 성장장치
KR101892107B1 (ko) * 2017-06-01 2018-08-27 에스케이실트론 주식회사 실리콘 단결정 성장 장치 및 이를 이용한 실리콘 단결정 성장 방법
JP6977619B2 (ja) * 2018-02-28 2021-12-08 株式会社Sumco シリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法
CN112095153B (zh) * 2019-06-18 2021-05-11 上海新昇半导体科技有限公司 一种半导体晶体生长装置
CN112095142B (zh) * 2019-06-18 2021-08-10 上海新昇半导体科技有限公司 一种半导体晶体生长装置
CN112095143B (zh) * 2019-06-18 2021-08-10 上海新昇半导体科技有限公司 一种半导体晶体生长装置
CN112680788B (zh) 2019-10-17 2022-02-01 上海新昇半导体科技有限公司 一种半导体晶体生长装置
CN112680793B (zh) 2019-10-17 2022-02-01 上海新昇半导体科技有限公司 一种半导体晶体生长装置
JP7432734B2 (ja) * 2020-08-10 2024-02-16 西安奕斯偉材料科技股▲ふん▼有限公司 単結晶炉の組立スリーブ及び単結晶炉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394825A (en) * 1992-02-28 1995-03-07 Crystal Systems, Inc. Method and apparatus for growing shaped crystals
US5792255A (en) * 1995-06-01 1998-08-11 Shin-Etsu Handotai Co., Ltd. Manufacturing method of single crystal
CN1417386A (zh) * 2001-11-01 2003-05-14 北京有色金属研究总院 直拉硅单晶炉热屏方法及热屏蔽器
CN1528956A (zh) * 2003-10-15 2004-09-15 浙江大学 一种磁场下生长低缺陷密度直拉硅单晶的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004519A (en) * 1986-12-12 1991-04-02 Texas Instruments Incorporated Radiation heat shield for silicon melt-in manufacturing of single crystal silicon
DE4442829A1 (de) 1994-12-01 1996-06-05 Wacker Siltronic Halbleitermat Vorrichtung und Verfahren zur Herstellung eines Einkristalls
JPH09208385A (ja) * 1996-01-30 1997-08-12 Mitsubishi Materials Corp シリコン単結晶の育成方法及びその装置
JPH10167891A (ja) 1996-12-04 1998-06-23 Komatsu Electron Metals Co Ltd 単結晶シリコンの製造装置および製造方法
JP3550487B2 (ja) * 1997-11-06 2004-08-04 東芝セラミックス株式会社 横磁界下シリコン単結晶引上装置
JP2000026484A (ja) 1998-07-10 2000-01-25 Kao Corp リン酸エステルの製法
JP3589077B2 (ja) * 1999-03-17 2004-11-17 信越半導体株式会社 シリコン単結晶の製造方法ならびにこの方法で製造された単結晶およびシリコンウエーハ
DE60041429D1 (de) 1999-03-17 2009-03-12 Shinetsu Handotai Kk Verfahren zur herstellung von silicium einkristallen
JP4408148B2 (ja) 1999-06-17 2010-02-03 Sumco Techxiv株式会社 単結晶製造方法およびその装置
JP4776065B2 (ja) 2000-09-19 2011-09-21 Sumco Techxiv株式会社 Cz法単結晶引上げ装置
JP4153293B2 (ja) 2002-12-17 2008-09-24 コバレントマテリアル株式会社 シリコン単結晶引上方法
JP2006069841A (ja) * 2004-09-02 2006-03-16 Sumco Corp 磁場印加式シリコン単結晶の引上げ方法
US7427325B2 (en) * 2005-12-30 2008-09-23 Siltron, Inc. Method for producing high quality silicon single crystal ingot and silicon single crystal wafer made thereby
JP4829176B2 (ja) * 2007-06-08 2011-12-07 シルトロニック・ジャパン株式会社 単結晶の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394825A (en) * 1992-02-28 1995-03-07 Crystal Systems, Inc. Method and apparatus for growing shaped crystals
US5792255A (en) * 1995-06-01 1998-08-11 Shin-Etsu Handotai Co., Ltd. Manufacturing method of single crystal
CN1417386A (zh) * 2001-11-01 2003-05-14 北京有色金属研究总院 直拉硅单晶炉热屏方法及热屏蔽器
CN1528956A (zh) * 2003-10-15 2004-09-15 浙江大学 一种磁场下生长低缺陷密度直拉硅单晶的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2004-196569A 2004.07.15

Also Published As

Publication number Publication date
US20100288185A1 (en) 2010-11-18
EP2270264A1 (en) 2011-01-05
US20130220216A1 (en) 2013-08-29
CN101886289A (zh) 2010-11-17
US8679251B2 (en) 2014-03-25
US8460462B2 (en) 2013-06-11
ATE539182T1 (de) 2012-01-15
JP2010265168A (ja) 2010-11-25
TWI424102B (zh) 2014-01-21
KR20100122852A (ko) 2010-11-23
JP5618614B2 (ja) 2014-11-05
EP2270264B1 (en) 2011-12-28
TW201040329A (en) 2010-11-16
KR101301892B1 (ko) 2013-09-04
SG166718A1 (en) 2010-12-29

Similar Documents

Publication Publication Date Title
CN101886289B (zh) 从熔体中生长硅单晶的方法和装置
JP4095975B2 (ja) シリコン単結晶を製造するための方法及び装置、シリコン単結晶及びこれから切り出された半導体ウェーハ
WO2012173251A1 (ja) SiC単結晶の製造装置及び製造方法
KR102039208B1 (ko) 산소를 제어하기 위한 도가니 어셈블리 및 관련 방법들
WO2022253233A1 (zh) 温区控制系统和晶体生长设备
KR101391057B1 (ko) 단결정 반도체 제조 장치 및 제조 방법
JP2011132043A (ja) シリコン単結晶引上装置及びそれを用いたシリコン単結晶の製造方法
JP2827789B2 (ja) 単結晶引上げ装置用不活性ガス整流・吹付け装置
US20200027732A1 (en) Method for manufacturing silicon single crystal, flow straightening member, and single crystal pulling device
EP2993259B1 (en) Silicon single crystal fabrication method
JP5782323B2 (ja) 単結晶引上方法
TW201144490A (en) Method for producing semiconduc tor wafers composed of silicon
CN104487619B (zh) 用于通过溶液生长法制造SiC单晶的装置、以及用于使用该制造装置和该制造装置中使用的坩埚制造SiC单晶的方法
TWI761454B (zh) 單晶矽的製造方法
JP2003183098A (ja) SiC単結晶の製造方法及びSiC単結晶の製造装置
JP3550487B2 (ja) 横磁界下シリコン単結晶引上装置
JP2023510092A (ja) n型ドーパントによってドープされたシリコン単結晶を製造するための方法および装置
CN109666968B (zh) 硅单晶的制造方法
JP2012091967A (ja) 炭化珪素単結晶の製造装置および製造方法
JP2005145724A (ja) シリコン単結晶の製造方法及びシリコン単結晶
TWI838758B (zh) 溫區控制系統和晶體生長設備
JP2019514836A (ja) 単結晶シリコンの半導体ウェハを製造するための方法、単結晶シリコンの半導体ウェハを製造するための装置および単結晶シリコンの半導体ウェハ
WO2023223691A1 (ja) シリコン単結晶の育成方法、シリコンウェーハの製造方法、および単結晶引き上げ装置
CN108884587A (zh) 晶体生长装置及相关方法
JPH01160893A (ja) シリコン単結晶中の酸素濃度制御方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant