WO2022253233A1 - 温区控制系统和晶体生长设备 - Google Patents

温区控制系统和晶体生长设备 Download PDF

Info

Publication number
WO2022253233A1
WO2022253233A1 PCT/CN2022/096314 CN2022096314W WO2022253233A1 WO 2022253233 A1 WO2022253233 A1 WO 2022253233A1 CN 2022096314 W CN2022096314 W CN 2022096314W WO 2022253233 A1 WO2022253233 A1 WO 2022253233A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
control system
crystal growth
crystal
temperature zone
Prior art date
Application number
PCT/CN2022/096314
Other languages
English (en)
French (fr)
Inventor
陈俊宏
Original Assignee
徐州鑫晶半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州鑫晶半导体科技有限公司 filed Critical 徐州鑫晶半导体科技有限公司
Publication of WO2022253233A1 publication Critical patent/WO2022253233A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present application relates to the technical field of crystal growth, in particular to a temperature zone control system and crystal growth equipment.
  • Epitaxial silicon wafer refers to the growth of a layer of epitaxial single crystal silicon layer with high crystallization integrity by vapor deposition on silicon wafer. Due to the high crystallinity, the performance of devices made on the epitaxial layer can be significantly improved. Near perfect ingot, if the size of holes is small and the concentration is uniform, during the growth process of epitaxial silicon wafers, the epitaxially deposited silicon crystal layer will react with holes and annihilate holes, so it can be used in epitaxial silicon wafers.
  • the existence of holes and interstitial defects is mainly related to the control of V/G (growth speed/temperature gradient) in the crystal rod growth process, and the change of V/G will cause the diffusion changes of holes and interstitial defects.
  • V/G growth speed/temperature gradient
  • the temperature zone control system used in the existing crystal growth equipment is mainly based on the guide tube and the water cooling jacket.
  • the existing The guide tube is mainly a single integrated structure, which does not control the crystal growth temperature gradient G.
  • an object of the present application is to propose a temperature zone control system of crystal growth equipment, which can introduce the cooling air flow to the triple point position of the liquid surface of the crystal melt and adjacent to the ingot, thereby controlling
  • the temperature gradient and process of the ingot at the solid-liquid interface can better control the stable growth of the ingot; and it can make the cooling air flow through the first diversion surface after entering the solid-liquid interface from the air outlet. It flows out of the solid-liquid interface, and takes away oxide impurities, reduces the interstitial defects of the ingot, and grows a near-perfect ingot mainly with hole-type defects, which is more suitable for epitaxial wafers.
  • the present application also proposes a crystal growth device with the above-mentioned temperature zone control system.
  • the temperature zone control system of crystal growth equipment includes: a flow guide tube, which is suitable for being arranged around the crystal rod; a first air flow channel, and the first air flow channel is provided at the In the cylinder wall of the guide tube, an air inlet and an air outlet hole communicating with the first air flow channel are formed on the guide tube, and the air outlet hole is formed on the bottom surface of the guide tube and adjacent to the The triple point of the crystal rod; wherein, the first guide surface is formed on the bottom surface of the guide cylinder located outside the air outlet in the radial direction.
  • the cooling air flow can be Introduced into the crystal melt liquid level and adjacent to the triple point position of the ingot, the temperature gradient and process of the ingot at the solid-liquid interface can be controlled, so that the stable growth of the ingot can be better controlled; and through the The bottom surface is located on the radially outer side of the air outlet to form the first guide surface, which can make the cooling air flow out of the solid-liquid interface through the first guide surface after entering the solid-liquid interface from the air outlet, and take away the oxides Impurities can reduce gap defects in crystal rods, and the grown crystal rods are better suitable for epitaxial wafers and made into near-perfect crystals.
  • the first air guide surface includes a first air guide portion adjacent to the air outlet, and the first air guide portion is arranged parallel to a horizontal plane.
  • the first air guide surface includes a second air guide part connected radially outside the first air guide part, and the second air guide part is radially outward The direction extends obliquely upwards.
  • a second guide surface is formed on the bottom surface of the guide cylinder at the radial inner side of the air outlet, and the second guide surface is coplanar with the first guide part. , the radial width of the second guide surface is smaller than the radial width of the first guide part.
  • a cavity is formed in the tube wall of the guide tube, a first heat insulating element is disposed in the cavity, and the first air flow channel is formed in the first heat insulating element.
  • the corresponding wall thickness of the first guide surface is larger than the wall thickness of the rest of the cavity.
  • the upper end surface of the guide tube is covered with a second heat preservation member.
  • the temperature zone control system includes a water-cooling jacket, the water-cooling jacket is sleeved on the outer peripheral side of the crystal rod, and at least the lower part of the water-cooling jacket is located between the draft tube and the crystal rod. Between the rods, an accommodating groove with an open top is formed on the inner peripheral side of the guide tube, and at least the lower part of the water cooling jacket is located in the accommodating groove.
  • a second air flow channel is defined between the water cooling jacket, the flow guide tube and the crystal rod, and the part of the accommodation groove below the water cooling jacket constitutes the second air flow As part of the channel, the bottom wall of the receiving groove is formed with a third guide surface.
  • At least a part of the third guide surface extends obliquely downward in a radially inward direction.
  • the angle range between the third guide surface and the vertical direction is 15-45°.
  • the temperature zone control system includes a water-cooling jacket, the water-cooling jacket is sleeved on the outer peripheral side of the crystal rod, and at least the lower part of the water-cooling jacket is located between the draft tube and the crystal rod. Between the rods, the radial distance between the water cooling jacket and the guide tube is greater than 30mm.
  • the crystal growth equipment includes: a container, the container is used to accommodate the crystal melt used for growing crystals; a temperature zone control system, the temperature zone control system is implemented according to the above-mentioned first aspect of the present application In the temperature zone control system of the example, the lower end of the draft tube protrudes into the container and is located above the liquid level of the crystal melt.
  • the cooling air flow can be introduced to the liquid surface of the crystal melt and adjacent to the triple point of the ingot, and the temperature of the ingot at the solid-liquid interface can be controlled Gradient and process, so that the stable growth of the ingot can be better controlled; and the cooling air flow can flow out of the solid-liquid interface through the diversion of the first diversion surface after entering the solid-liquid interface from the air outlet hole, and take it away Oxide impurities reduce gap defects in crystal rods, and the grown crystal rods are more suitable for epitaxial wafers and made into near-perfect crystals.
  • Figure 1 is a schematic diagram of a crystal growth apparatus according to some embodiments of the present application.
  • FIG. 2 is a schematic diagram of crystal growth equipment according to other embodiments of the present application.
  • Figure 3 is a schematic diagram of crystal growth equipment according to some other embodiments of the present application.
  • Fig. 4 is a schematic diagram of cooling air flow in the crystal growth equipment in Fig. 1-Fig. 3;
  • Fig. 5 is a schematic diagram of the flow of cooling gas flow and the distribution of oxides in the gas flow in the crystal growth equipment in Fig. 1;
  • Fig. 6 is a schematic diagram of the flow of cooling gas flow and the distribution of oxides in the gas flow in the crystal growth equipment in Fig. 2;
  • Fig. 7 is a schematic diagram of the flow of the cooling gas flow in the crystal growth equipment in Fig. 3 and the distribution of oxides in the gas flow;
  • FIG. 8 is a comparison diagram of defect distribution in crystal rods grown by the crystal growth equipment shown in FIGS. 1-3 .
  • Guide cylinder 4 first guide surface 41; first guide part 411; second guide part 412; second guide surface 42; third guide surface 43; accommodation groove 44; cavity 45; air intake hole 46; vent hole 47;
  • Crystal melt 200 Crystal melt level 201;
  • the temperature zone control system of the crystal growth equipment 100 will be described below with reference to FIGS. 1-7 .
  • the crystal growth device 100 may be a single crystal growth device, and the crystal growth device 100 may be used to grow a single crystal, for example, may be used to grow a single crystal silicon.
  • the temperature zone control system of the crystal growth equipment 100 includes: a draft tube 4 and a first air flow channel 51 .
  • the guide tube 4 is adapted to be arranged around the ingot 300 , and the guide tube 4 may be a graphite piece, so that the guide tube 4 has high temperature resistance.
  • the guide tube 4 can be roughly cylindrical.
  • the guide tube 4 is sleeved on the outer peripheral side of the crystal rod 300 and the inner peripheral wall of the guide tube 4 is spaced apart from the crystal rod 300.
  • the guide tube 4 can be the same as the crystal rod 300. axis settings.
  • the first airflow channel 51 is located in the cylinder wall of the guide tube 4, the outer wall surface of the guide tube 4 can be formed with the air inlet 46 and the air outlet 47 that are all communicated with the first airflow channel 51, and the cooling air can flow from the inlet
  • the air hole 46 enters the first airflow channel 51 , flows through the first airflow channel 51 and then exits from the air outlet hole 47 .
  • the cooling air flow or protective air flow in the furnace body of the crystal growth equipment enters the furnace body through the furnace opening on the top of the furnace body, and natural convection is performed in the furnace body by utilizing natural flow factors such as temperature gradient.
  • the air inlet 46 communicates with the air inlet on the furnace wall on the side of the furnace body of the crystal growth equipment, and the cooling air flow is driven by the airflow blowing equipment outside the equipment through the air inlet and the air inlet. 46 is blown into the guide tube to form forced convection in the furnace body of the crystal growth equipment, thereby making the flow and velocity of the cooling air flow controllable and improving the cooling effect.
  • the air outlet hole 47 is formed on the bottom surface of the air guide tube 4 and the air outlet hole 47 is adjacent to the triple point of the ingot 300.
  • the cooling air flow discharged from the air outlet hole 47 flows below the air guide tube 4, specifically, flows to the liquid surface 201 of the crystal melt .
  • the "triple point” refers to the solid, liquid and gas three-phase junction position, specifically, refers to the crystal ingot 300, the crystal melt liquid surface 201 and the The gas three-phase junction position above the liquid surface 201 of the crystal melt), so that the cooling airflow flowing out from the air outlet 47 can be adjacent to the triple point position of the ingot 300, and when the air flow flows along the space above the liquid surface 201 of the crystal melt During the process, the heat at the position of the triple point can be quickly taken away, so that the holes in the central area diffuse to the edge, the holes increase, and the concentration is uniform, thereby growing a near-perfect wafer dominated by hole-type defects.
  • the bottom surface of the guide tube 4 is positioned at the radial outer part of the air outlet hole 47 to form a first guide surface 41, after the cooling airflow flowing out from the air outlet hole 47 enters above the liquid surface 201 of the crystal melt, it passes through the first guide surface
  • the diversion effect of 41 can make the cooling airflow flow out of the crystal melt liquid surface 201 more smoothly, and take away heat and oxide impurities (such as silicon monoxide), reduce the gap defects in the ingot 300, and the grown ingot 300 Approximate perfect wafers, better suited for epitaxial wafers.
  • the cooling gas flow can be an inert gas, for example, the cooling gas flow can be argon.
  • the air outlet hole 47 can be annular and extend along the circumferential direction of the air guiding cylinder 4; the air outlet hole 47 can also be multiple and arranged at intervals along the circumferential direction of the air guiding cylinder 4, and the air outlet hole 47 can be The shape is circular, elliptical, polygonal, long, etc., and the air outlet 47 can extend along the circumferential direction of the guide tube 4 .
  • the air outlet hole 47 By arranging the air outlet hole 47 along the circumference of the air guiding cylinder 4, the air outlet at the bottom of the air guiding cylinder 4 can be made uniform, so that the cooling airflow flowing out of the air outlet hole 47 flows to the three-phase interface position that is annular on the outer peripheral side of the ingot 300, thereby All the peripheral three-phase interface positions of the ingot 300 are cooled, so that the ingot 300 grows more uniformly and stably.
  • the first guide surface 41 can be in the form of a ring extending along the circumferential direction of the guide tube 4, so that the The air outlet hole 47 or the airflow flowing out from different positions of the air outlet hole 47 can play an effective guiding role.
  • the first air flow passage 51 is provided in the cylinder wall of the draft guide cylinder 4 and the air outlet 47 of the first air flow passage 51 is adjacent to the three phases of the ingot 300 point, the cooling air flow can be introduced to the crystal melt surface 201 and the triple point position adjacent to the ingot 300, and the temperature gradient and process of the ingot 300 at the solid-liquid interface can be controlled, so that the temperature of the ingot 300 can be better controlled Fast and stable growth; and by forming the first guide surface 41 at the radially outer side of the air outlet hole 47 on the bottom surface of the guide tube 4, the cooling air flow can pass through the first guide flow after entering the crystal melt surface 201 from the air outlet hole 47
  • the diversion effect of the surface 41 flows out of the crystal melt surface 201 relatively smoothly, and removes oxide impurities, reduces gap defects in the ingot 300, and the grown ingot 300 is nearly a perfect wafer, which is more suitable for epitaxial wafers.
  • the first guide surface 41 includes a first guide portion 411 adjacent to the air outlet 47 , and the first guide portion 411 is arranged parallel to the horizontal plane. .
  • the first guide part 411 By setting the first guide part 411 parallel to the horizontal plane, when the cooling air flow discharged downward from the air outlet hole 47 flows through the first guide part 411, due to the extension direction of the first guide part 411 and the air outlet hole 47 The direction angle of the cooling air flow discharged downward is relatively small.
  • the flow direction of the cooling air flow can be changed relatively little, so that the cooling air flow can move along the first air guide portion 411 more smoothly.
  • flow reduce the eddy current generated when the cooling air flow flows along the space between the bottom surface of the draft tube 4 and the liquid surface 201 of the crystal melt, thereby reducing the disturbance caused by the air flow and the fluctuation caused to the temperature during the crystal growth process, and reducing the complexity
  • the adverse effect of convection on the crystal growth process improves the stability of the crystal growth temperature, thereby increasing the crystallization rate.
  • the cooling air flow can better take away the oxide impurities on the liquid surface 201 of the crystal melt and reduce the oxide impurities, thereby reducing gap defects in the ingot 300 and making a near-perfect crystal.
  • the first flow guide surface 41 includes a second flow guide portion 412 connected radially outside the first flow guide portion 411 ,
  • the second flow guiding portion 412 extends obliquely upward in a radially outward direction.
  • the first guide surface 41 By setting the first guide surface 41 to include the first guide part 411 arranged horizontally and the second guide part 412 arranged obliquely, since the first guide part 411 discharges downward relative to the second guide part 412 The included angle between the directions of the cooling airflow is small, so that the cooling airflow flowing out from the air outlet hole 47 first flows through the guiding effect of the first air guiding part 411, and then flows through the guiding effect of the second air guiding part 412, cooling The guiding effect of the air flow through the second guide part 412 can make the cooling air flow obliquely upward to flow out of the space above the liquid surface 201 of the crystal melt, so that heat and oxide impurities can be taken away by the cooling air flow.
  • the flow surface 42 is coplanar with the first flow guide part 411 , and the radial width of the second flow guide surface 42 is smaller than the radial width of the first flow guide part 411 .
  • the second guide surface 42 can guide the cooling air flow entering from the space between the inner peripheral side of the draft tube 4 and the crystal ingot 300 , and from the space between the inner peripheral side of the draft tube 4 and the crystal ingot 300 .
  • the cooling air flow entering the solid-liquid interface can also quickly take away the heat of the solid-liquid interface, so that the holes in the central area diffuse to the edge, the holes increase, and the concentration is uniform, thus growing a near-perfect particle dominated by holes.
  • the cooling air flow that enters from the space between the inner peripheral side of the draft tube 4 and the ingot 300 flows through the second air guide surface 42 toward the direction away from the ingot 300 the cooling air flow takes heat away.
  • oxide impurities at the solid-liquid interface can also be taken away.
  • the cooling air entering the space between the inner peripheral side of the flow guide tube 4 and the ingot 300 flows through the second flow guide surface 42 toward the direction away from the crystal ingot 300 it can drive the flow from the flow guide tube 4
  • the airflow flowing out of the air outlet hole 47 flows in a direction away from the ingot 300 .
  • the air flow can flow more smoothly from the second guide surface 42 to the first guide part 411, reducing the generation of eddy currents;
  • the radial width of the second guide surface 42 smaller than the radial width of the first guide part 411, the air outlet hole 47 can be made closer to the triple point, thereby further controlling the temperature gradient of the solid-liquid interface, The V/G value of the ingot 300 is further increased, and then a near-perfect wafer dominated by hole defects can be grown.
  • the radial width of the second flow guiding surface 42 and the radial width of the first flow guiding portion 411 both refer to the width along the radial direction of the flow guiding tube 4 .
  • a cavity 45 is formed in the tube wall of the guide tube 4, and a first heat insulating part 5 is arranged in the cavity 45, and the first heat insulating part 5 can be a soft felt , the first heat preservation component 5 can be filled in the cavity 45 , and the first air flow channel 51 is formed in the first heat preservation component 5 .
  • the first thermal insulation member 5 By arranging the first thermal insulation member 5 in the cylinder wall of the guide cylinder 4 and forming the first airflow channel 51 in the first thermal insulation member 5, the first thermal insulation member 5 can play a good heat insulation effect, reduce the external temperature and The influence of the environment on the temperature of the cooling airflow in the first airflow channel 51 makes the temperature control of the cooling airflow in the first airflow channel 51 more precise and easier to control to form a stable temperature field, which is conducive to the stable growth of crystals.
  • the corresponding wall thickness of the first guide surface 41 is greater than the wall thickness of the rest of the cavity 45 .
  • the thermal insulation effect of the guide tube 4 at this position can be enhanced, and the heat is taken away by the cooling air flow and flows through the first guide surface 41
  • the influence of the cooling air flow passing through the first air guide surface 41 and the heat generated by the crystal melt surface 201 on the cooling air flow passing through the first air flow channel 51 in the air guide tube 4 can be reduced, so that the first air flow channel
  • the temperature control of the cooling airflow in 51 is more precise and easier to control to form a stable temperature field, which is beneficial to the stable growth of crystals.
  • the upper end surface of the guide tube 4 is covered with a second heat preservation member 6, and the second heat preservation member 6 may be a hard felt.
  • the thermal insulation effect of the second thermal insulation member 6 can reduce or prevent the cooling air flow from affecting the vertical thermal insulation effect so that the heating for heating the crystal melt 200
  • the top of device 3 dissipates heat too quickly to ensure heating efficiency.
  • the temperature zone control system includes a water cooling jacket 7, the water cooling jacket 7 is set on the outer peripheral side of the ingot 300, the water cooling jacket 7 is spaced apart from the ingot 300, and the water cooling jacket A water-cooling channel is formed in the wall of 7, cooling water can flow into the water-cooling jacket 7, and the cooling water flowing into the water-cooling channel can flow out of the water-cooling jacket 7 after exchanging heat with the water-cooling jacket 7, thereby forming a cooling cycle.
  • the ingot 300 can be further cooled by the provided water cooling jacket 7 to ensure stable and rapid crystal growth and reduce crystal defects.
  • At least the lower part of the water cooling jacket 7 is located between the flow guide tube 4 and the crystal rod 300, for example, the lower half of the water cooling jacket 7 can be located between the flow guide tube 4 and the crystal rod 300, and the water cooling jacket 7 and the flow guide tube 4 can be separated Turn on the setting to reduce the influence of the water cooling jacket 7 on the temperature of the first air flow channel 51 in the draft guide tube 4, thereby reducing the influence of the water cooling jacket 7 on the distribution of the cooling air flow in the first air flow channel 51 on the crystal production temperature field.
  • an accommodating groove 44 with an open top is formed on the inner peripheral side of the guide tube 4 , at least the lower part of the water cooling jacket 7 is located in the accommodating groove 44 , for example, the lower half of the water cooling jacket 7 is located in the accommodating groove 44 .
  • the temperature zone control system can thus form a more stable temperature gradient, thereby growing near-perfect wafers.
  • the second air flow channel 71 is defined between the water cooling jacket 7 , the flow guide tube 4 and the crystal rod 300 , and the part of the accommodating groove 44 located below the water cooling jacket 7 constitutes A part of the second air passage 71 , the bottom wall of the receiving groove 44 forms the third guide surface 43 .
  • the cooling air flow entering the solid-liquid interface from the second airflow channel 71 can also quickly take away the heat of the solid-liquid interface, so that the holes in the central area diffuse to the edge, the holes increase, and the concentration is uniform, thus growing a hole type-dominated near-perfect wafers.
  • the cooling airflow that enters from the second airflow channel 71 can be guided by the third flow guiding surface 43 so that the cooling airflow can flow toward the solid-liquid interface more smoothly, and then flow through the second flow guiding surface 42 and move away from the crystal. Flowing in the direction of the rod 300, the cooling air flow can also take away the oxide impurities at the solid-liquid interface while taking away the heat. Moreover, when the cooling air flowing out from the second air flow channel 71 passes through the second air guide surface 42 and flows in a direction away from the ingot 300 , it can drive the air flow out from the air outlet hole 47 of the air guide tube 4 to move away from the ingot 300 direction flow.
  • the cooling air flow passing through the second air flow channel 71 can flow quickly and smoothly to the solid-liquid interface, reducing the generation of eddy currents near the solid-liquid interface or the triple point, Therefore, it can reduce the disturbance caused by the airflow and the fluctuation caused by the temperature during the crystal growth process, reduce the adverse effect of complex convection on the crystal growth process, improve the stability of the crystal growth temperature, and thus increase the crystal formation rate.
  • the cooling air flow can better take away the oxide impurities at the solid-liquid interface or the triple point, and reduce the content of oxide impurities in the crystal, thereby reducing gap defects in the ingot 300 and making a near-perfect crystal.
  • the third guide surface 43 extends obliquely downward in a radially inward direction.
  • the cooling airflow in the second airflow channel 71 can be guided to the solid-liquid interface more smoothly and quickly, further reducing the generation of eddy currents near the solid-liquid interface or the triple point , so that the interstitial defects of the ingot 300 can be further reduced, and a near-perfect crystal can be made better.
  • the range of the included angle between the third guide surface 43 and the vertical direction may be 15-45°.
  • the angle between the third flow guide surface 43 and the vertical direction within the above range, it can ensure that the third flow guide surface 43 has a good flow guide effect, and can avoid the interference between the water cooling jacket 7 and the receiving groove 44. Interference occurs on the bottom surface to ensure the axial length of the water cooling jacket 7 set on the outer peripheral side of the ingot 300 to ensure the cooling effect.
  • the temperature zone control system includes a water cooling jacket 7, the water cooling jacket 7 is set on the outer peripheral side of the ingot 300, the water cooling jacket 7 is spaced apart from the ingot 300, and the water cooling jacket A water-cooling channel is formed in the wall of 7, cooling water can flow into the water-cooling jacket 7, and the cooling water flowing into the water-cooling channel can flow out of the water-cooling jacket 7 after exchanging heat with the water-cooling jacket 7, thereby forming a cooling cycle.
  • the ingot 300 can be further cooled by the provided water cooling jacket 7 to ensure stable and rapid crystal growth and reduce crystal defects.
  • At least the lower part of the water cooling jacket 7 is located between the flow guide tube 4 and the crystal rod 300, for example, the lower half of the water cooling jacket 7 is located between the flow guide tube 4 and the crystal rod 300, and the water cooling jacket 7 and the flow guide tube 4 can be spaced apart Set to reduce the influence of the water cooling jacket 7 on the temperature of the first air flow channel 51 in the draft guide tube 4, thereby reducing the influence of the water cooling jacket 7 on the distribution of the cooling air flow in the first air flow channel 51 on the crystal production temperature field.
  • the radial distance between the water cooling jacket 7 and the guide tube 4 is greater than 30 mm.
  • the crystal growth equipment 100 includes: a container 2 and a temperature zone control system, the container 2 is used to accommodate a crystal melt 200 for growing crystals, and the container 2 It can be a high temperature resistant crucible, for example, the container 2 can be a quartz piece.
  • the temperature zone control system is the temperature zone control system according to the embodiment of the above-mentioned first aspect of the present application.
  • the lower end of the draft tube 4 protrudes into the container 2 and is located above the liquid surface 201 of the crystal melt.
  • the crystal growth equipment 100 may also include a gas supply system, which is used to supply gas to the first airflow channel 51.
  • the gas supply system may also supply gas to the first airflow channel 71.
  • Two air flow passages 71 supply air.
  • the crystal growth equipment 100 may also include a water supply system.
  • the water supply system may supply water to the water cooling jacket 7 .
  • the crystal growth equipment 100 includes a casing 1, a container 2, a heater 3, and the above-mentioned temperature zone control system, wherein the temperature zone control system includes the above-mentioned draft tube 4, water-cooled Cover 7, first heat preservation part 5 and second heat preservation part 6.
  • the temperature zone control system, the container 2 and the heater 3 are all arranged in the casing 1, and an insulation layer can be interposed in the side wall of the casing 1, and the heater 3 is arranged on the outer peripheral side of the container 2 and/or below the container 2,
  • the heater 3 heats the crystal melt 200 placed in the container 2 , and the draft tube 4 and the water cooling jacket 7 are both connected to the shell 1 .
  • the guide tube 4 is arranged around the ingot 300 and the lower end of the guide tube 4 extends into the container 2 and is located above the liquid surface 201 of the crystal melt.
  • the lower half is located between the guide tube 4 and the crystal rod 300 .
  • the cooling air flow can be introduced to the triple point position of the liquid surface 201 of the crystal melt and adjacent to the crystal ingot 300, and the ingot 300 can be controlled in the solid state.
  • the temperature gradient and process of the liquid interface can better control the stable growth of the ingot 300; and the cooling air flow can flow out smoothly through the diversion of the first guide surface 41 after entering the solid-liquid interface from the air outlet 47 solid-liquid interface, and take away oxide impurities, reduce gap defects of the crystal rod 300, and the grown crystal rod 300 is close to a perfect wafer, which is better suitable for epitaxial wafers.
  • the crystal growth equipment 100, the cooling airflow in the crystal growth equipment 100 and the distribution of oxides in the airflow according to three embodiments of the present application, and the crystal growth equipment grown by the crystal growth equipment 100 will be described below with reference to FIGS. Contrastive distribution of defects in the ingot 300 .
  • What Fig. 1 shows is one of the embodiments of crystal growth equipment 100
  • what Fig. 2 shows is another embodiment of crystal growth equipment 100
  • what Fig. 3 shows is another embodiment of crystal growth equipment 100, these three
  • the difference between the two embodiments only lies in the structure of the guide tube 4 .
  • the second flow guide surface 42 is coplanar with the first flow guide portion 411, and the radial width of the second flow guide surface 42 is smaller than the diameter of the first flow guide portion 411 To the width; the third guide surface 43 located below the water cooling jacket 7 extends obliquely downward in the radially inward direction.
  • the guide cylinder 4 of the crystal growth equipment 100 in the example of FIG. The flow part 411 and the second flow guide part 412, the second flow guide surface 42 is coplanar with the first flow guide part 411, and the radial width of the second flow guide surface 42 is smaller than the radial width of the first flow guide part 411;
  • the third guide surface 43 located below the water cooling jacket 7 extends obliquely downward in the radially inward direction.
  • the guide cylinder 4 of the crystal growth equipment 100 in the example in FIG. The outer direction extends obliquely upwards, the second guide surface 42 is parallel to the horizontal plane; the third guide surface 43 located below the water cooling jacket 7 is parallel to the horizontal plane.
  • the structure of the guide tube 4 in the example of FIG. 3 is different from the structure of the guide tube 4 in the example of FIG. 1 and the structure of the guide tube 4 in the example of FIG. 2 in that: the first guide surface 41 and the third guide surface
  • the shape of the flow surface 43, the radial width of the second flow guide surface 42 in the example of FIG. 3 is the largest, the corresponding wall thickness of the first flow guide surface 41 in the example of FIG. 1 and the first flow guide surface 41 in the example of FIG. 2
  • the corresponding wall thicknesses are all greater than the corresponding wall thicknesses of the first guide surface 41 in the example shown in FIG. 3 .
  • the difference between the structure of the guide tube 4 in the example of Figure 1 and the structure of the guide tube 4 in the example of Figure 2 is that the radial width of the first guide part 411 in the example of Figure 1 is larger than that of the first guide part 411 in the example of Figure 2
  • the radial width of the second guide surface 42 in the example of Fig. 1 is less than the radial width of the second guide surface 42 in the example of Fig. 2
  • the third guide surface 43 in the example of Fig. 1 is vertical
  • the included angle between the directions is smaller than the included angle between the third guide surface 43 and the vertical direction in the example of FIG. 2 .
  • FIG. 4 With reference to Fig. 4-Fig. 8, wherein 4-1 in Fig. 4 corresponds to the cooling air flow schematic diagram in the crystal growth equipment 100 in Fig. 1, and 4-2 in Fig. 4 corresponds to the cooling in the crystal growth device 100 in Fig. 2 In the schematic diagram of air flow, 4-3 in FIG. 4 corresponds to the schematic diagram of cooling air flow in the crystal growth device 100 in FIG. 3 .
  • the crystal growth equipment 100 in the example of Fig. 1 and the crystal growth equipment 100 in the example of Fig. 2 have few eddy currents near the solid-liquid interface or triple point position, in the example of Fig. 3
  • the crystal growth apparatus 100 has many eddy currents near the solid-liquid interface or triple point. It can be seen that by setting the first air guide surface 41 to include the first air guide portion 411 extending horizontally and the third air guide surface 43 as an inclined surface, the smooth air guide effect on the airflow can be achieved, and the airflow can be significantly improved. Reduced eddy current generation, especially near the solid-liquid interface or triple point can be significantly reduced.
  • FIG. 5-FIG. 7 not only show the generation of vortex in the cooling airflow, but also show the concentration distribution of oxides in the airflow.
  • the oxide concentration corresponding to the area circled by B1 in Figure 5 is the oxide concentration value represented by C1 on the right
  • the oxide concentration corresponding to the area circled by B2 in Figure 6 is the value of C2 on the right
  • the oxide concentration value represented; the oxide concentration corresponding to the area circled by B3 in Figure 7 is the oxide concentration value represented by C3 on the right. It can be seen from the figure that the oxide concentration distribution in the cooling airflow near the solid-liquid interface in the crystal growth equipment 100 in the example of FIG.
  • the oxide concentration distribution in the cooling airflow near the solid-liquid interface is relatively low, and its concentration value is about 6.68 ⁇ 1014atom/cm3.
  • the oxide concentration distribution in the cooling airflow near the solid-liquid interface in the crystal growth device 100 in the example of FIG. 3 The highest, its concentration value is about 7.08 ⁇ 1014atom/cm3. It can be seen that by setting the first air guide surface 41 to include the first air guide portion 411 extending horizontally and the third air guide surface 43 as an inclined surface, the smooth air guide effect on the airflow can be achieved, and the airflow can be significantly improved. Reduce the generation of eddy currents, especially the generation of eddy currents near the solid-liquid interface or the triple point can be significantly reduced, and the smooth flowing air flow can effectively take away oxide impurities and avoid the retention of oxide impurities.
  • a1-a3 in FIG. 8 are all diagrams showing the distribution of defects in the radial half of the ingot 300 .
  • the abscissa in FIG. 8 represents the axial length of the ingot 300 , wherein the left side of the abscissa represents the head position of the ingot 300 , and the right side of the abscissa represents the solid-liquid interface of the ingot 300 .
  • a1 represents the defect distribution map in the crystal rod 300 grown by the crystal growth equipment 100 in the example of Fig. 1
  • a2 in Fig. 8 represents the defect distribution in the crystal rod 300 grown by the crystal growth device 100 in the example of Fig.
  • a3 in FIG. 8 represents the distribution of defects in the ingot 300 grown by the crystal growth equipment 100 in the example of FIG. 3 .
  • a value greater than zero in FIG. 8 represents hole defects, and a larger value represents a greater density of hole defects; a value smaller than zero in FIG. 8 represents gap defects, and a smaller value represents a greater density of gaps.
  • the defect density values corresponding to the D1 region in the a1 example in Figure 8, the E1 region in the a2 example, and the F1 region in the a3 example are the hole defect density values represented by G1 on the right; the a1 example in Figure 8
  • the defect density values corresponding to the D2 area in the example, the E2 area in the a2 example, and the F2 area in the a3 example are the hole defect density values represented by the G2 on the right; the D3 area in the a1 example in Figure 8, the a2 example in the
  • the defect density value corresponding to the E3 region of the , and the F3 region in the a3 example is the hole defect density value represented by the right G3; the D4 region in the a1 example in Figure 8, the E4 region in the a2 example, and the a3 example
  • the defect density value corresponding to the F4 region is the hole defect density value represented by G4 on the right.
  • the other areas except the D1-D4 area are all interstitial defect density distributions; in the example a2 in Figure 8, the other areas except the E1-E4 area are all interstitial defect density distributions; in the example a3 in Figure 8, F1 is excluded The other regions in the -F4 region are all interstitial defect density distributions.
  • the distribution range of interstitial defects in the ingot 300 represented by a1 is the smallest and the distribution density is relatively the smallest
  • the distribution range of the hole defects in the ingot 300 represented by a1 is the largest and the distribution density is the largest
  • the ingot 300 represented by a2 The distribution range of internal interstitial defects is small and the distribution density is relatively small
  • the distribution range of void defects in the ingot 300 represented by a2 is relatively large and the distribution density is relatively large
  • the distribution range of interstitial defects in the ingot 300 represented by a3 is the largest and The distribution density is relatively the largest
  • the distribution range and distribution density of hole defects in the ingot 300 represented by a3 is the smallest and the distribution density is relatively the smallest.
  • the ingot 300 grown by the crystal growth equipment 100 in the example of FIG. 1 has the least interstitial defects and is closest to a perfect crystal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种温区控制系统和晶体生长设备(100),温区控制系统包括:导流筒(4)和第一气流通道(51)。导流筒(4)适于围绕晶棒(300)设置,第一气流通道(51)设在导流筒(4)的筒壁内,导流筒(4)上形成有与第一气流通道(51)连通的进气孔(46)以及出气孔(47),出气孔(47)形成在导流筒(4)的底面且邻近晶棒(300)的三相点;其中,导流筒(4)的底面位于出气孔(47)径向外侧的部分形成有第一导流面(41)。

Description

温区控制系统和晶体生长设备
相关申请的交叉引用
本申请基于申请号为202110613325.7,申请日为2021年06月02日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及晶体生长技术领域,尤其是涉及一种温区控制系统和晶体生长设备。
背景技术
在单晶硅的生长过程中,本征缺陷有空穴(vacancy)和间隙原子缺陷(interstitial)两种。外延硅片是指通过在硅晶片气相沉积生长一层结晶完整性高的外延单晶硅层,由于结晶性高,在外延层上制作的器件可以显著提高其性能,对于空穴型为主导的近完美晶棒,若空穴的尺寸较小,浓度均匀,在外延硅片的生长过程中,外延沉积的硅结晶层会与空穴反应,湮没空穴,因此可用于外延硅片中。
空穴和间隙缺陷的存在主要与晶棒生长过程中的V/G(生长速度/温度梯度)的控制有关,V/G的变化会导致空穴和间隙缺陷的扩散变化,现有技术中为了保证液口距,V一般是不变的,主要是通过改变G来控制晶体生长,而现有晶体生长设备采用的温区控制系统,主要是以导流筒和水冷套为主,现有的导流筒主要为单一的一体式结构,不会对晶体生长温度梯度G进行控制。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种晶体生长设备的温区控制系统,该温区控制系统可以将冷却气流引入至晶体熔体液面且邻近晶棒的三相点位置,由此控制晶棒在固液界面的温度梯度和制程,从而可以较好地控制晶棒的稳定生长;并且可以使得冷却气流从出气孔进入固液界面之后通过第一导流面的导流作用较为顺畅地流出固液界面,并带走氧化物杂质,减少晶棒的间隙缺陷,生长出是以空穴型缺陷为主的近完美晶棒,能更好地适用于外延片。
本申请还提出了一种具有上述温区控制系统的晶体生长设备。
根据本申请第一方面实施例的晶体生长设备的温区控制系统,包括:导流筒,所述导流筒适于围绕晶棒设置;第一气流通道,所述第一气流通道设在所述导流筒的筒壁内,所 述导流筒上形成有与所述第一气流通道连通的进气孔以及出气孔,所述出气孔形成在所述导流筒的底面且邻近所述晶棒的三相点;其中,所述导流筒的底面位于所述出气孔径向外侧的部分形成有第一导流面。
根据本申请实施例的晶体生长设备的温区控制系统,通过在导流筒的筒壁内设置第一气流通道且使得第一气流通道的出气孔邻近晶棒的三相点,可以将冷却气流引入至晶体熔体液面且邻近晶棒的三相点位置,可以控制晶棒在固液界面的温度梯度和制程,从而可以较好地控制晶棒的稳定生长;并且通过在导流筒的底面位于出气孔的径向外侧形成第一导流面,可以使得冷却气流从出气孔进入固液界面之后通过第一导流面的导流作用较为顺畅地流出固液界面,并带走氧化物杂质,减少晶棒的间隙缺陷,生长出的晶棒更好地适用于外延片,做成近完美的晶体。
根据本申请的一些实施例,所述第一导流面包括邻近所述出气孔的第一导流部,所述第一导流部与平行于水平面设置。
根据本申请的一些实施例,所述第一导流面包括连接在所述第一导流部的径向外侧的第二导流部,所述第二导流部在沿径向向外的方向上朝向上倾斜延伸。
根据本申请的一些实施例,所述导流筒的底面位于所述出气孔径向内侧的部分形成有第二导流面,所述第二导流面与所述第一导流部共面设置,所述第二导流面的径向宽度小于所述第一导流部的径向宽度。
根据本申请的一些实施例,所述导流筒的筒壁内形成有空腔,所述空腔内设有第一保温件,所述第一保温件内形成有所述第一气流通道。
根据本申请的一些可选实施例,所述第一导流面对应的壁厚大于所述空腔其余部分的壁度。
根据本申请的一些实施例,所述导流筒的上端面覆盖有第二保温件。
根据本申请的一些实施例,所述温区控制系统包括水冷套,所述水冷套套设在所述晶棒的外周侧,所述水冷套的至少下部分位于所述导流筒和所述晶棒之间,所述导流筒的内周侧形成有顶部敞开的容纳槽,所述水冷套的至少下部分位于所述容纳槽内。
根据本申请的一些实施例,所述水冷套、所述导流筒与所述晶棒之间限定出第二气流通道,所述容纳槽位于所述水冷套下方的部分构成所述第二气流通道的一部分,所述容纳槽的底壁面形成有第三导流面。
在本申请的一些实施例中,所述第三导流面的至少一部分在沿径向向内的方向上朝向下倾斜延伸。
作为一种可选的情况,所述第三导流面与竖直方向之间的夹角范围为15-45°。
根据本申请的一些实施例,所述温区控制系统包括水冷套,所述水冷套套设在所述晶 棒的外周侧,所述水冷套的至少下部分位于所述导流筒和所述晶棒之间,所述水冷套与所述导流筒之间的径向距离大于30mm。
根据本申请第二方面实施例的晶体生长设备,包括:容器,所述容器用于容纳用于生长晶体的晶体熔体;温区控制系统,温区控制系统为根据本申请上述第一方面实施例的温区控制系统,所述导流筒的下端伸入至所述容器内并位于所述晶体熔体液面的上方。
根据本申请实施例的晶体生长设备,通过设置上述的温区控制系统,可以将冷却气流引入至晶体熔体液面且邻近晶棒的三相点位置,可以控制晶棒在固液界面的温度梯度和制程,从而可以较好地控制晶棒的稳定生长;并且可以使得冷却气流从出气孔进入固液界面之后通过第一导流面的导流作用较为顺畅地流出固液界面,并带走氧化物杂质,减少晶棒的间隙缺陷,生长出的晶棒更好地适用于外延片,做成近完美的晶体。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一些实施例的晶体生长设备的示意图;
图2是根据本申请另一些实施例的晶体生长设备的示意图;
图3是根据本申请又一些实施例的晶体生长设备的示意图;
图4是图1-图3中的晶体生长设备中的冷却气流流动示意图;
图5是图1中的晶体生长设备中的冷却气流流动以及气流中的氧化物分布示意图;
图6是图2中的晶体生长设备中的冷却气流流动以及气流中的氧化物分布示意图;
图7是图3中的晶体生长设备中的冷却气流流动以及气流中的氧化物分布示意图;
图8是图1-图3中的晶体生长设备生长出的晶棒内的缺陷分布对比图。
附图标记:
晶体生长设备100;
壳体1;容器2;加热器3;
导流筒4;第一导流面41;第一导流部411;第二导流部412;第二导流面42;第三导流面43;容纳槽44;空腔45;进气孔46;出气孔47;
第一保温件5;第一气流通道51;第二保温件6;
水冷套7;第二气流通道71;
晶体熔体200;晶体熔体液面201;
晶棒300。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图7描述根据本申请实施例的晶体生长设备100的温区控制系统。晶体生长设备100可以为单晶生长设备,晶体生长设备100可以用于生长单晶,例如可以用于生长单晶硅。
如图1-图3所示,根据本申请第一方面实施例的晶体生长设备100的温区控制系统,包括:导流筒4和第一气流通道51。
导流筒4适于围绕晶棒300设置,导流筒4可以为石墨件,从而使得导流筒4具有耐高温性能。导流筒4可以大致呈圆筒形,导流筒4套设在晶棒300的外周侧且导流筒4的内周壁与晶棒300间隔开设置,导流筒4可以与晶棒300同轴设置。第一气流通道51设在导流筒4的筒壁内,导流筒4的外壁面上可以形成有与第一气流通道51均连通的进气孔46以及出气孔47,冷却气流可以从进气孔46进入第一气流通道51内,流经第一气流通道51后从出气孔47排出。
相关技术中,晶体生长设备的炉体中的冷却气流或者保护气流由炉体顶部的炉口进入炉体,在炉体中利用温度梯度等气流自然流动因素进行自然对流。本发明实施例中,进气孔46与设置于晶体生长设备的炉体侧面的炉壁上的进气口连通,冷却气流由设备外在气流吹送设备的驱动下经过进气口以及进气孔46吹进导流筒,在晶体生长设备的炉体内形成强制对流,由此使得冷却气流的流量、流速均可控制,提高冷却效果。
出气孔47形成在导流筒4的底面且出气孔47邻近晶棒300的三相点,从出气孔47排出的冷却气流流向导流筒4的下方,具体地,流向晶体熔体液面201。
并且,由于出气孔47靠近晶棒300的三相点(所述“三相点”是指固、液、气三相交界位置,具体地,是指晶棒300、晶体熔体液面201以及晶体熔体液面201上方的气体三相交界位置),这样从出气孔47流出的冷却气流可以邻近晶棒300的三相点位置,在气流沿着晶体熔体液面201的上方空间流动的过程中,可以快速地带走三相点位置的热量,使得中心区的空穴扩散到边缘,空穴增加,并且浓度均匀,由此生长出以空穴型缺陷为主导的近完美晶圆。
其中,导流筒4的底面位于出气孔47径向外侧的部分形成有第一导流面41,从出气孔47流出的冷却气流进入晶体熔体液面201上方后,通过第一导流面41的导流作用,可以 使得冷却气流较为顺畅地流出晶体熔体液面201,并带走热量以及氧化物杂质(例如一氧化硅),减少晶棒300内的间隙缺陷,生长出的晶棒300近似完美晶圆,更好地适用于外延片。
作为一种可选的情况,冷却气流可以为惰性气体,例如冷却气流可以为氩气。
作为一种可选的情况,出气孔47可以呈环形且沿导流筒4的周向延伸;出气孔47也可以为多个且沿导流筒4的周向间隔排布,出气孔47可以为圆形、椭圆形、多边形、长条形等,出气孔47可以沿导流筒4的周向延伸。通过将出气孔47沿导流筒4的周向设置,可以使得导流筒4的底部出气均匀,使得出气孔47流出的冷却气流流向晶棒300的外周侧呈环形的三相界面位置,从而使得晶棒300的周向三相界面位置均得到冷却,从而使得晶棒300较为均匀稳定地生长。
作为一种可选的情况,在出气孔47沿导流筒4的周向排布时,第一导流面41可以呈沿导流筒4的周向延伸的环形,从而可以对不同位置处的出气孔47或者出气孔47的不同位置流出的气流均可以起到有效的导流作用。
根据本申请实施例的晶体生长设备100的温区控制系统,通过在导流筒4的筒壁内设置第一气流通道51且使得第一气流通道51的出气孔47邻近晶棒300的三相点,可以将冷却气流引入至晶体熔体液面201且邻近晶棒300的三相点位置,可以控制晶棒300在固液界面的温度梯度和制程,从而可以较好地控制晶棒300的快速稳定生长;并且通过在导流筒4的底面位于出气孔47的径向外侧形成第一导流面41,可以使得冷却气流从出气孔47进入晶体熔体液面201之后通过第一导流面41的导流作用较为顺畅地流出晶体熔体液面201,并带走氧化物杂质,减少晶棒300内的间隙缺陷,生长出的晶棒300近似完美晶圆,更适用于外延片。
根据本申请的一些实施例,参照图1、图2、图4-图6,第一导流面41包括邻近出气孔47的第一导流部411,第一导流部411平行于水平面设置。通过将第一导流部411设置为平行于水平面,从出气孔47向下排出的冷却气流流经第一导流部411的过程中,由于第一导流部411的延伸方向与出气孔47向下排出的冷却气流的方向夹角相对较小。在冷却气流从出气孔47排出至流经第一导流部411的过程中,可以使得冷却气流的流动方向改变相对较小,从而使得冷却气流可以沿着第一导流部411更为顺畅的流动,减少冷却气流沿着导流筒4的底面与晶体熔体液面201之间的空间流动时产生的涡流,从而可以减少晶体生长过程中气流造成的扰动以及对温度造成的波动,减少复杂的对流对晶体成长过程的不利影响,提高晶体生长温度的稳定性,从而提高成晶率。并且,可以使得冷却气流更好地带走晶体熔体液面201的氧化物杂质,减少氧化物杂质,从而可以减少晶棒300内的间隙缺陷,做成近完美晶体。
根据本申请的一些可选实施例,参照图1、图2、图4-图6,第一导流面41包括连接在第一导流部411的径向外侧的第二导流部412,第二导流部412在沿径向向外的方向上朝向上倾斜延伸。通过将第一导流面41设置为包括水平设置的第一导流部411以及倾斜设置的第二导流部412,由于第一导流部411相对于第二导流部412与向下排出的冷却气流的方向之间的夹角较小,这样从出气孔47流出的冷却气流先流经第一导流部411的导向作用,然后再流经第二导流部412的导向作用,冷却气流经过第二导流部412的导向作用,可以使得冷却气流朝向斜向上流动以流出晶体熔体液面201的上方空间,从而可以通过冷却气流将热量以及氧化物杂质带走。
根据本申请的一些可选实施例,参照图1、图2、图4-图6,导流筒4的底面位于出气孔47径向内侧的部分形成有第二导流面42,第二导流面42与第一导流部411共面设置,第二导流面42的径向宽度小于第一导流部411的径向宽度。第二导流面42可以对从导流筒4的内周侧与晶棒300之间的空间进入的冷却气流进行导流,从导流筒4的内周侧与晶棒300之间的空间进入固液界面的冷却气流也可以快速带走固液界面的热量,使得中心区的空穴的扩散到边缘,空穴增加,并且浓度均匀,由此生长出以空穴型为主导的近完美晶圆。在从导流筒4的内周侧与晶棒300之间的空间进入的冷却气流经第二导流面42朝向远离晶棒300的方向流动的过程中,该冷却气流在将热量带走的同时,也可以将固液界面的氧化物杂质带走。并且,在从导流筒4的内周侧与晶棒300之间的空间进入的冷却气流经第二导流面42朝向远离晶棒300的方向流动的过程中,可以带动从导流筒4的出气孔47流出的气流朝向远离晶棒300的方向流动。
并且,通过使得第二导流面42与第一导流部411共面设置,可以使得气流从第二导流面42流向第一导流部411的过程中流动更为顺畅,减少涡流产生;同时,通过使得第二导流面42的径向宽度小于第一导流部411的径向宽度,可以使得出气孔47更加靠近三相点位置,从而可以进一步地控制固液界面的温度梯度,进一步地提高晶棒300的V/G值,进而生长出以空穴缺陷主导的近完美晶圆。
其中,需要解释的是,第二导流面42的径向宽度以及第一导流部411的径向宽度均是指沿导流筒4的径向的宽度。
根据本申请的一些实施例,参照图1-图3,导流筒4的筒壁内形成有空腔45,空腔45内设有第一保温件5,第一保温件5可以为软毡,第一保温件5可以填充在该空腔45内,第一保温件5内形成有第一气流通道51。通过在导流筒4的筒壁内设置第一保温件5且在第一保温件5内形成第一气流通道51,第一保温件5可以起到良好的保温隔热作用,减少外部温度以及环境对于第一气流通道51内的冷却气流的温度影响,使得第一气流通道51内的冷却气流的温度控制更为精确且更易控制形成稳定温度场,从而有利于晶体的稳定成 长。
根据本申请的一些可选实施例,参照图1、图2、图4-图6,第一导流面41对应的壁厚大于空腔45的其余部分的壁厚。通过将第一导流面41对应的筒壁厚度设置较大,可以增强导流筒4在该位置处的保温隔热作用,在冷却气流带走热量并流经第一导流面41的过程中,可以减少流经第一导流面41的冷却气流以及晶体熔体液面201产生的热量对流经导流筒4内的第一气流通道51内的冷却气流的影响,使得第一气流通道51内的冷却气流的温度控制更为精确且更易控制形成稳定温度场,从而有利于晶体的稳定成长。
根据本申请的一些实施例,参照图1-图3,导流筒4的上端面覆盖有第二保温件6,第二保温件6可以为硬毡。通过在导流筒4的上端面覆盖第二保温件6,通过第二保温件6的保温隔热作用,可以减少或避免冷却气流影响垂直隔热效果而使得用于加热晶体熔体200的加热器3的上方散热过快,保证加热效率。
根据本申请的一些实施例,参照图1-图7,温区控制系统包括水冷套7,水冷套7套设在晶棒300的外周侧,水冷套7与晶棒300间隔开设置,水冷套7的壁内形成有水冷通道,冷却水可以流入水冷套7内,流入水冷通道内的冷却水与水冷套7换热后可以流出水冷套7,从而形成冷却循环。通过设置的水冷套7可以进一步地对晶棒300进行冷却,保证晶体的稳定快速生长,且减少结晶缺陷。水冷套7的至少下部分位于导流筒4和晶棒300之间,例如水冷套7的下半部分可以位于导流筒4和晶棒300之间,水冷套7与导流筒4可以间隔开设置,减少水冷套7对导流筒4内的第一气流通道51的温度影响,从而可以减少水冷套7对第一气流通道51内的冷却气流对晶体生产温度场的分布影响。
其中,导流筒4的内周侧形成有顶部敞开的容纳槽44,水冷套7的至少下部分位于容纳槽44内,例如水冷套7的下半部分位于容纳槽44内。温区控制系统由此可以形成更加稳定的温度梯度,从而生长出近完美晶圆。
根据本申请的一些可选实施例,参照图1-图7,水冷套7、导流筒4与晶棒300之间限定出第二气流通道71,容纳槽44位于水冷套7下方的部分构成第二气流通道71的一部分,容纳槽44的底壁面形成有第三导流面43。从第二气流通道71进入固液界面的冷却气流也可以快速带走固液界面的热量,使得中心区的空穴的扩散到边缘,空穴增加,并且浓度均匀,由此生长出以空穴型为主导的近完美晶圆。在从第二气流通道71进入的冷却气流,可以经第三导流面43的导向作用使得该冷却气流较为顺畅地朝向固液界面方向流动,而后流经第二导流面42并朝向远离晶棒300的方向流动,该冷却气流在将热量带走的同时,也可以将固液界面的氧化物杂质带走。并且,从第二气流通道71流出的冷却气流经第二导流面42朝向远离晶棒300的方向流动的过程中,可以带动从导流筒4的出气孔47流出的气流朝向远离晶棒300的方向流动。
通过在容纳槽44的底面设置第三导流面43,可以使得流经第二气流通道71的冷却气流快速顺畅地流动至固液界面处,减少固液界面或三相点附近的涡流产生,从而可以减少晶体生长过程中气流造成的扰动以及对温度造成的波动,减少复杂的对流对晶体成长过程的不利影响,提高晶体生长温度的稳定性,从而提高成晶率。并且,可以使得冷却气流更好地带走固液界面或三相点的氧化物杂质,减少晶体内氧化物杂质含量,从而可以减少晶棒300的间隙缺陷,做成近完美晶体。
在本申请的一些实施例中,参照图1-图7,第三导流面43的至少一部分在沿径向向内的方向上朝向下倾斜延伸。通过将第三导流面43倾斜设置,可以更为顺畅且快速地将第二气流通道71内的冷却气流导流向固液界面处,进一步地减少固液界面或三相点附近的涡流产生,从而可以进一步地减少晶棒300的间隙缺陷,更好地做成近完美晶体。
作为一种可选的情况,第三导流面43与竖直方向之间的夹角范围可以为15-45°。通过将第三导流面43与竖直方向之间的夹角设置在上述范围内,既可以保证第三导流面43具有良好的导流作用,并且可以避免水冷套7与容纳槽44的底面发生干涉,保证水冷套7套设在晶棒300外周侧的轴向长度,保证冷却效果。
根据本申请的一些实施例,参照图1-图7,温区控制系统包括水冷套7,水冷套7套设在晶棒300的外周侧,水冷套7与晶棒300间隔开设置,水冷套7的壁内形成有水冷通道,冷却水可以流入水冷套7内,流入水冷通道内的冷却水与水冷套7换热后可以流出水冷套7,从而形成冷却循环。通过设置的水冷套7可以进一步地对晶棒300进行冷却,保证晶体的稳定快速生长,且减少结晶缺陷。水冷套7的至少下部分位于导流筒4和晶棒300之间,例如水冷套7的下半部分位于导流筒4和晶棒300之间,水冷套7与导流筒4可以间隔开设置,减少水冷套7对导流筒4内的第一气流通道51的温度影响,从而可以减少水冷套7对第一气流通道51内的冷却气流对晶体生产温度场的分布影响。
作为一种可选的情况,水冷套7与导流筒4之间的径向距离大于30mm。从而可以更有效地减少水冷套7对导流筒4内的第一气流通道51的温度影响,从而可以更有效地减少水冷套7对第一气流通道51内的冷却气流对晶体生产温度场的分布影响。
如图1-图3所示,根据本申请第二方面实施例的晶体生长设备100,包括:容器2和温区控制系统,容器2用于容纳用于生长晶体的晶体熔体200,容器2可以为耐高温的坩埚,例如容器2可以为石英件。温区控制系统为根据本申请上述第一方面实施例的温区控制系统,导流筒4的下端伸入至容器2内并位于晶体熔体液面201的上方。
进一步地,晶体生长设备100还可以包括供气系统,供气系统用于对第一气流通道51供气,在温区控制系统包括上述的第二气流通道71时,供气系统也可以对第二气流通道 71供气。
作为一种可选的情况,晶体生长设备100还可以包括供水系统,在晶体生长设备100包括上述的水冷套7时,供水系统可以为水冷套7供水。
例如,在图1-图3的具体示例中,晶体生长设备100包括壳体1、容器2、加热器3以及上述的温区控制系统,其中温区控制系统包括上述的导流筒4、水冷套7、第一保温件5和第二保温件6。温区控制系统、容器2以及加热器3均设在壳体1内,壳体1侧壁内可以夹设有保温层,加热器3设置在容器2的外周侧和/或容器2的下方,加热器3对放置在容器2内的晶体熔体200进行加热,导流筒4与水冷套7均与壳体1相连。导流筒4围绕晶棒300设置且导流筒4的下端伸入至容器2内且位于晶体熔体液面201的上方,水冷套7套设在晶棒300的外周侧且水冷套7的下半部分位于导流筒4和晶棒300之间。
根据本申请实施例的晶体生长设备100,通过设置上述的温区控制系统,可以将冷却气流引入至晶体熔体液面201且邻近晶棒300的三相点位置,可以控制晶棒300在固液界面的温度梯度和制程,从而可以较好地控制晶棒300的稳定生长;并且可以使得冷却气流从出气孔47进入固液界面之后通过第一导流面41的导流作用较为顺畅地流出固液界面,并带走氧化物杂质,减少晶棒300的间隙缺陷,生长出的晶棒300近似完美晶圆,更好地适用于外延片。
下面参照图1-图7并结合图8描述根据本申请三个实施例的晶体生长设备100、晶体生长设备100内的冷却气流以及气流中的氧化物分布、利用该晶体生长设备100生长出的晶棒300内的缺陷对比分布。
图1示出的是晶体生长设备100的其中一个实施例,图2示出的是晶体生长设备100的另一个实施例,图3示出的是晶体生长设备100的又一个实施例,这三个实施例的不同之处仅在于导流筒4的结构。
具体地,图1示例中的晶体生长设备100的导流筒4,该导流筒4的底面形成有第一导流面41和第二导流面42,第一导流面41包括上述的第一导流部411和第二导流部412,第二导流面42与第一导流部411共面设置,第二导流面42的径向宽度小于第一导流部411的径向宽度;位于水冷套7下方的第三导流面43在沿径向向内的方向上朝向下倾斜延伸。
图2示例中的晶体生长设备100的导流筒4,该导流筒4的底面形成有第一导流面41和第二导流面42,第一导流面41包括上述的第一导流部411和第二导流部412,第二导流面42与第一导流部411共面设置,第二导流面42的径向宽度小于第一导流部411的径向宽度;位于水冷套7下方的第三导流面43在沿径向向内的方向上朝向下倾斜延伸。
图3示例中的晶体生长设备100的导流筒4,该导流筒4的底面形成有第一导流面41 和第二导流面42,第一导流面41整体在沿径向向外的方向上朝向上倾斜延伸,第二导流面42平行于水平面;位于水冷套7下方的第三导流面43平行于水平面。
其中,图3示例中的导流筒4的结构与图1示例中的导流筒4以及图2示例中的导流筒4的结构不同之处在于:第一导流面41以及第三导流面43的形状,图3示例中的第二导流面42的径向宽度最大,图1示例中的第一导流面41对应的壁厚以及图2示例中的第一导流面41对应的壁厚均大于图3示例中的第一导流面41对应的壁厚。
图1示例中的导流筒4结构与图2示例中的导流筒4结构区别在于:图1示例中的第一导流部411径向宽度大于图2示例中的第一导流部411的径向宽度;图1示例中的第二导流面42径向宽度小于图2示例中的第二导流面42的径向宽度;图1示例中的第三导流面43与竖直方向之间的夹角小于图2示例中的第三导流面43与竖直方向之间的夹角。
参照图4-图8,其中图4中的4-1对应图1中的晶体生长设备100中的冷却气流流动示意图,图4中的4-2对应图2中的晶体生长设备100中的冷却气流流动示意图,图4中的4-3对应图3中的晶体生长设备100中的冷却气流流动示意图。
通过试验以及仿真可以看出,参照图4,图1示例中的晶体生长设备100以及图2示例中的晶体生长设备100的固液界面或三相点位置附近的涡流较少,图3示例中的晶体生长设备100的固液界面或三相点位置附近的涡流较多。由此可见,通过将第一导流面41设置为包括水平延伸的第一导流部411以及将第三导流面43设置为倾斜面,可以起到对气流的顺畅导流作用,可以显著减少涡流产生,特别是可以显著减少固液界面或三相点附近的涡流产生。
进一步地,参照图5-图7,图5-图7除了示出冷却气流中涡流的产生,并且示出了气流中氧化物的浓度分布。具体地,图5中B1圈出的区域所对应的氧化物浓度为右侧的C1处所代表的氧化物浓度值;图6中B2圈出的区域所对应的氧化物浓度为右侧的C2处所代表的氧化物浓度值;图7中B3圈出的区域所对应的氧化物浓度为右侧的C3处所代表的氧化物浓度值。由图可知,图1示例中的晶体生长设备100中的固液界面附近冷却气流内的氧化物浓度分布最低,其浓度值约为5.515×1014atom/cm3,图2示例中的晶体生长设备100中的固液界面附近冷却气流内的氧化物浓度分布较低,其浓度值约为6.68×1014atom/cm3,图3示例中的晶体生长设备100中的固液界面附近冷却气流内的氧化物浓度分布最高,其浓度值约为7.08×1014atom/cm3。由此可见,通过将第一导流面41设置为包括水平延伸的第一导流部411以及将第三导流面43设置为倾斜面,可以起到对气流的顺畅导流作用,可以显著减少涡流产生,特别是可以显著减少固液界面或三相点附近的涡流产生,并且顺畅流动的气流可以有效地带走氧化物杂质,避免氧化物杂质滞留。
再进一步地,参照图8并结合图4-图7,图8中的a1-a3均是示出晶棒300的径向一 半内缺陷分布图。图8中的横坐标代表晶棒300的轴向长度,其中横坐标的左边代表晶棒300的头部位置,横坐标的右边代表晶棒300的固液界面处。图8中a1代表图1示例中的晶体生长设备100生长出的晶棒300内的缺陷分布图,图8中a2代表图2示例中的晶体生长设备100生长出的晶棒300内的缺陷分布图,图8中a3代表图3示例中的晶体生长设备100生长出的晶棒300内的缺陷分布图。图8中大于零的数值代表空穴缺陷,且数值越大代表空穴缺陷密度越大;图8中小于零的数值代表间隙缺陷,且数值越小代表间隙密度越大。
具体地,图8中a1示例中的D1区域、a2示例中的E1区域、a3示例中的F1区域所对应的缺陷密度值为右侧G1处所代表的空穴缺陷密度值;图8中a1示例中的D2区域、a2示例中的E2区域、a3示例中的F2区域所对应的缺陷密度值为右侧G2处所代表的空穴缺陷密度值;图8中a1示例中的D3区域、a2示例中的E3区域、a3示例中的F3区域所对应的缺陷密度值为右侧G3处所代表的空穴缺陷密度值;图8中a1示例中的D4区域、a2示例中的E4区域、a3示例中的F4区域所对应的缺陷密度值为右侧G4处所代表的空穴缺陷密度值。图8中a1示例中除去D1-D4区域的其他区域均为间隙缺陷密度分布;图8中a2示例中除去E1-E4区域的其他区域均为间隙缺陷密度分布;图8中a3示例中除去F1-F4区域的其他区域均为间隙缺陷密度分布。
由此可见,a1所代表的晶棒300内间隙缺陷分布范围最小且分布密度相对最小,a1所代表的晶棒300内空穴缺陷分布范围最大且分布密度相对最大;a2所代表的晶棒300内间隙缺陷分布范围较小且分布密度相对较小,a2所代表的晶棒300内空穴缺陷分布范围较大且分布密度相对较大;a3所代表的晶棒300内间隙缺陷分布范围最大且分布密度相对最大,a3所代表的晶棒300内空穴缺陷分布范围最小且分布密度相对最小。
结合上述的分析可知,图1示例中的晶体生长设备100生长出的晶棒300内间隙缺陷最少,最接近完美晶体。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申 请的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种晶体生长设备的温区控制系统,其中,包括:
    导流筒,所述导流筒适于围绕晶棒设置;
    第一气流通道,所述第一气流通道设在所述导流筒的筒壁内,所述导流筒上形成有与所述第一气流通道连通的进气孔以及出气孔,所述出气孔形成在所述导流筒的底面且邻近所述晶棒的三相点;
    其中,所述导流筒的底面位于所述出气孔径向外侧的部分形成有第一导流面。
  2. 根据权利要求1所述的晶体生长设备的温区控制系统,其中,所述第一导流面包括邻近所述出气孔的第一导流部,所述第一导流部平行于水平面设置。
  3. 根据权利要求2所述的晶体生长设备的温区控制系统,其中,所述第一导流面包括连接在所述第一导流部的径向外侧的第二导流部,所述第二导流部在沿径向向外的方向上朝向上倾斜延伸。
  4. 根据权利要求2所述的晶体生长设备的温区控制系统,其中,所述导流筒的底面位于所述出气孔径向内侧的部分形成有第二导流面,所述第二导流面与所述第一导流部共面设置,所述第二导流面的径向宽度小于所述第一导流部的径向宽度。
  5. 根据权利要求1-4中任一项所述的晶体生长设备的温区控制系统,其中,所述导流筒的筒壁内形成有空腔,所述空腔内设有第一保温件,所述第一保温件内形成有所述第一气流通道。
  6. 根据权利要求5所述的晶体生长设备的温区控制系统,其中,所述第一导流面对应的壁厚大于所述空腔其余部分的壁厚。
  7. 根据权利要求1-6中任一项所述的晶体生长设备的温区控制系统,其中,所述导流筒的上端面覆盖有第二保温件。
  8. 根据权利要求1-7中任一项所述的晶体生长设备的温区控制系统,其中,包括水冷套,所述水冷套套设在所述晶棒的外周侧,所述水冷套的至少下部分位于所述导流筒和所述晶棒之间,所述导流筒的内周侧形成有顶部敞开的容纳槽,所述水冷套的至少下部分位于所述容纳槽内,所述水冷套、所述导流筒与所述晶棒之间限定出第二气流通道,所述容纳槽位于所述水冷套下方的部分构成所述第二气流通道的一部分,所述容纳槽的底壁面形成有第三导流面。
  9. 根据权利要求8所述的晶体生长设备的温区控制系统,其中,所述第三导流面的至少一部分在沿径向向内的方向上朝向下倾斜延伸。
  10. 根据权利要求9所述的晶体生长设备的温区控制系统,其中,所述第三导流面与 竖直方向之间的夹角范围为15-45°。
  11. 根据权利要求1-7中任一项所述的晶体生长设备的温区控制系统,其中,包括水冷套,所述水冷套套设在所述晶棒的外周侧,所述水冷套的至少下部分位于所述导流筒和所述晶棒之间,所述水冷套与所述导流筒之间的径向距离大于30mm。
  12. 一种晶体生长设备,其中,包括:
    容器,所述容器用于容纳用于生长晶体的晶体熔体;
    温区控制系统,温区控制系统为根据权利要求1-11中任一项所述的温区控制系统,所述导流筒的下端伸入至所述容器内并位于所述晶体熔体液面的上方。
PCT/CN2022/096314 2021-06-02 2022-05-31 温区控制系统和晶体生长设备 WO2022253233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110613325.7A CN113529164B (zh) 2021-06-02 2021-06-02 温区控制系统和晶体生长设备
CN202110613325.7 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022253233A1 true WO2022253233A1 (zh) 2022-12-08

Family

ID=78095026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096314 WO2022253233A1 (zh) 2021-06-02 2022-05-31 温区控制系统和晶体生长设备

Country Status (2)

Country Link
CN (1) CN113529164B (zh)
WO (1) WO2022253233A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113529164B (zh) * 2021-06-02 2023-03-14 徐州鑫晶半导体科技有限公司 温区控制系统和晶体生长设备
CN114150371B (zh) * 2021-12-06 2023-05-12 中环领先(徐州)半导体材料有限公司 冷却组件及其控制方法、晶体生长装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170107639A1 (en) * 2015-10-19 2017-04-20 Sunedison Semiconductor Limited (Uen201334164H) Crystal pulling systems and methods for producing monocrystalline ingots with reduced edge band defects
CN111663178A (zh) * 2019-03-08 2020-09-15 宁夏隆基硅材料有限公司 直拉单晶用热屏装置及单晶硅生产设备
CN112281210A (zh) * 2020-10-10 2021-01-29 徐州鑫晶半导体科技有限公司 晶体的生长装置及生长方法
CN113529164A (zh) * 2021-06-02 2021-10-22 徐州鑫晶半导体科技有限公司 温区控制系统和晶体生长设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205062228U (zh) * 2015-09-22 2016-03-02 晶科能源有限公司 一种直拉单晶导流筒
CN105442037A (zh) * 2015-12-08 2016-03-30 西安交通大学 一种高速单晶生长装置
CN112301416A (zh) * 2020-10-27 2021-02-02 青海大学 一种单晶炉热屏导流筒

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170107639A1 (en) * 2015-10-19 2017-04-20 Sunedison Semiconductor Limited (Uen201334164H) Crystal pulling systems and methods for producing monocrystalline ingots with reduced edge band defects
CN111663178A (zh) * 2019-03-08 2020-09-15 宁夏隆基硅材料有限公司 直拉单晶用热屏装置及单晶硅生产设备
CN112281210A (zh) * 2020-10-10 2021-01-29 徐州鑫晶半导体科技有限公司 晶体的生长装置及生长方法
CN113529164A (zh) * 2021-06-02 2021-10-22 徐州鑫晶半导体科技有限公司 温区控制系统和晶体生长设备

Also Published As

Publication number Publication date
CN113529164A (zh) 2021-10-22
TW202246592A (zh) 2022-12-01
CN113529164B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2022253233A1 (zh) 温区控制系统和晶体生长设备
TWI424102B (zh) 從熔體中生長矽單晶的方法和裝置
US5922127A (en) Heat shield for crystal puller
US11441238B2 (en) Silicon monocrystal manufacturing method and silicon monocrystal pulling device
CN112281210A (zh) 晶体的生长装置及生长方法
KR20210127182A (ko) 반도체 결정 성장 장치
JP2024502870A (ja) 単結晶炉用導流筒、単結晶炉及び導流筒の加工方法
TWI838758B (zh) 溫區控制系統和晶體生長設備
WO2023142898A1 (zh) 冷却装置及其控制方法、晶体生长设备
EP0483365A1 (en) Silicon single crystal manufacturing apparatus
KR0130180B1 (ko) 캐리어 가스를 이용하여 산화규소를 배출하는 방법 및 그를 이용한 단결정의 인상장치
CN113638038A (zh) 一种低氧杂质含量的单晶炉
CN109666968B (zh) 硅单晶的制造方法
CN115074829B (zh) 拉晶炉
CN114574943B (zh) 一种单晶炉及一种单晶
TW202022172A (zh) 分體式導流筒
TWI836869B (zh) 冷卻裝置及其控制方法、晶體生長設備
JP2003221296A (ja) 単結晶の製造装置及び製造方法
JPH09309787A (ja) 単結晶引上げ装置用水冷筒
WO2012009900A1 (zh) 可消除挥发份在热屏外侧沉积的单晶炉热场
JPH11139899A (ja) 横磁界下シリコン単結晶引上装置
JPS63176388A (ja) 単結晶引上げ装置
RU2355834C1 (ru) Устройство для выращивания монокристаллов кремния методом чохральского
JP2557003B2 (ja) シリコン単結晶の製造装置
US5785757A (en) Apparatus for fabricating a single-crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815277

Country of ref document: EP

Kind code of ref document: A1