CN113529164B - 温区控制系统和晶体生长设备 - Google Patents

温区控制系统和晶体生长设备 Download PDF

Info

Publication number
CN113529164B
CN113529164B CN202110613325.7A CN202110613325A CN113529164B CN 113529164 B CN113529164 B CN 113529164B CN 202110613325 A CN202110613325 A CN 202110613325A CN 113529164 B CN113529164 B CN 113529164B
Authority
CN
China
Prior art keywords
crystal
guide
flow
control system
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110613325.7A
Other languages
English (en)
Other versions
CN113529164A (zh
Inventor
陈俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhonghuan Leading Semiconductor Technology Co ltd
Zhonghuan Leading Xuzhou Semiconductor Materials Co ltd
Original Assignee
Xuzhou Xinjing Semiconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Xinjing Semiconductor Technology Co Ltd filed Critical Xuzhou Xinjing Semiconductor Technology Co Ltd
Priority to CN202110613325.7A priority Critical patent/CN113529164B/zh
Publication of CN113529164A publication Critical patent/CN113529164A/zh
Priority to PCT/CN2022/096314 priority patent/WO2022253233A1/zh
Priority to TW111120644A priority patent/TWI838758B/zh
Application granted granted Critical
Publication of CN113529164B publication Critical patent/CN113529164B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种温区控制系统和晶体生长设备,温区控制系统包括:导流筒和第一气流通道。导流筒适于围绕晶棒设置,第一气流通道设在导流筒的筒壁内,导流筒上形成有与第一气流通道连通的进气孔以及出气孔,出气孔形成在导流筒的底面且邻近晶棒的三相点;其中,导流筒的底面位于出气孔径向外侧的部分形成有第一导流面。根据本发明实施例的晶体生长设备的温区控制系统,可以将冷却气流引入至晶体熔体液面且邻近晶棒的三相点位置,可以较好地控制晶棒的快速稳定生长;并且,可以使得冷却气流从出气孔进入固液界面之后通过第一导流面的导流作用较为顺畅地流出固液界面,并带走氧化物杂质,减少晶棒的间隙缺陷,做成近完美的晶体。

Description

温区控制系统和晶体生长设备
技术领域
本发明涉及晶体生长技术领域,尤其是涉及一种温区控制系统和晶体生长设备。
背景技术
在单晶硅的生长过程中,本征缺陷有空穴(vacancy)和间隙原子缺陷(interstitial)两种。外延硅片是指通过在硅晶片气相沉积生长一层结晶完整性高的外延单晶硅层,由于结晶性高,在外延层上制作的器件可以显著提高其性能,对于空穴型为主导的近完美晶棒,若空穴的尺寸较小,浓度均匀,在外延硅片的生长过程中,外延沉积的硅结晶层会与空穴反应,湮没空穴,因此可用于外延硅片中。
空穴和间隙缺陷的存在主要与晶棒生长过程中的V/G(生长速度/温度梯度)的控制有关,V/G的变化会导致空穴和间隙缺陷的扩散变化,现有技术中为了保证液口距,V一般是不变的,主要是通过改变G来控制晶体生长,而现有晶体生长设备采用的温区控制系统,主要是以导流筒和水冷套为主,现有的导流筒主要为单一的一体式结构,不会对晶体生长温度梯度G进行控制。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种晶体生长设备的温区控制系统,该温区控制系统可以将冷却气流引入至晶体熔体液面且邻近晶棒的三相点位置,由此控制晶棒在固液界面的温度梯度和制程,从而可以较好地控制晶棒的稳定生长;并且可以使得冷却气流从出气孔进入固液界面之后通过第一导流面的导流作用较为顺畅地流出固液界面,并带走氧化物杂质,减少晶棒的间隙缺陷,生长出是以空穴型缺陷为主的近完美晶棒,能更好地适用于外延片。
本发明还提出了一种具有上述温区控制系统的晶体生长设备。
根据本发明第一方面实施例的晶体生长设备的温区控制系统,包括:导流筒,所述导流筒适于围绕晶棒设置;第一气流通道,所述第一气流通道设在所述导流筒的筒壁内,所述导流筒上形成有与所述第一气流通道连通的进气孔以及出气孔,所述出气孔形成在所述导流筒的底面且邻近所述晶棒的三相点;其中,所述导流筒的底面位于所述出气孔径向外侧的部分形成有第一导流面。
根据本发明实施例的晶体生长设备的温区控制系统,通过在导流筒的筒壁内设置第一气流通道且使得第一气流通道的出气孔邻近晶棒的三相点,可以将冷却气流引入至晶体熔体液面且邻近晶棒的三相点位置,可以控制晶棒在固液界面的温度梯度和制程,从而可以较好地控制晶棒的稳定生长;并且通过在导流筒的底面位于出气孔的径向外侧形成第一导流面,可以使得冷却气流从出气孔进入固液界面之后通过第一导流面的导流作用较为顺畅地流出固液界面,并带走氧化物杂质,减少晶棒的间隙缺陷,生长出的晶棒更好地适用于外延片,做成近完美的晶体。
根据本发明的一些实施例,所述第一导流面包括邻近所述出气孔的第一导流部,所述第一导流部与平行于水平面设置。
根据本发明的一些可选实施例,所述第一导流面包括连接在所述第一导流部的径向外侧的第二导流部,所述第二导流部在沿径向向外的方向上朝向上倾斜延伸。
根据本发明的一些可选实施例,所述导流筒的底面位于所述出气孔径向内侧的部分形成有第二导流面,所述第二导流面与所述第一导流部共面设置,所述第二导流面的径向宽度小于所述第一导流部的径向宽度。
根据本发明的一些实施例,所述导流筒的筒壁内形成有空腔,所述空腔内设有第一保温件,所述第一保温件内形成有所述第一气流通道。
根据本发明的一些可选实施例,所述第一导流面对应的壁厚大于所述空腔其余部分的壁度。
根据本发明的一些实施例,所述导流筒的上端面覆盖有第二保温件。
根据本发明的一些实施例,所述温区控制系统包括水冷套,所述水冷套套设在所述晶棒的外周侧,所述水冷套的至少下部分位于所述导流筒和所述晶棒之间,所述导流筒的内周侧形成有顶部敞开的容纳槽,所述水冷套的至少下部分位于所述容纳槽内。
根据本发明的一些可选实施例,所述水冷套、所述导流筒与所述晶棒之间限定出第二气流通道,所述容纳槽位于所述水冷套下方的部分构成所述第二气流通道的一部分,所述容纳槽的底壁面形成有第三导流面。
在本发明的一些实施例中,所述第三导流面的至少一部分在沿径向向内的方向上朝向下倾斜延伸。
可选地,所述第三导流面与竖直方向之间的夹角范围为15-45°。
根据本发明的一些实施例,所述温区控制系统包括水冷套,所述水冷套套设在所述晶棒的外周侧,所述水冷套的至少下部分位于所述导流筒和所述晶棒之间,所述水冷套与所述导流筒之间的径向距离大于30mm。
根据本发明第二方面实施例的晶体生长设备,包括:容器,所述容器用于容纳用于生长晶体的晶体熔体;温区控制系统,温区控制系统为根据本发明上述第一方面实施例的温区控制系统,所述导流筒的下端伸入至所述容器内并位于所述晶体熔体液面的上方。
根据本发明实施例的晶体生长设备,通过设置上述的温区控制系统,可以将冷却气流引入至晶体熔体液面且邻近晶棒的三相点位置,可以控制晶棒在固液界面的温度梯度和制程,从而可以较好地控制晶棒的稳定生长;并且可以使得冷却气流从出气孔进入固液界面之后通过第一导流面的导流作用较为顺畅地流出固液界面,并带走氧化物杂质,减少晶棒的间隙缺陷,生长出的晶棒更好地适用于外延片,做成近完美的晶体。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一些实施例的晶体生长设备的示意图;
图2是根据本发明另一些实施例的晶体生长设备的示意图;
图3是根据本发明又一些实施例的晶体生长设备的示意图;
图4是图1-图3中的晶体生长设备中的冷却气流流动示意图;
图5是图1中的晶体生长设备中的冷却气流流动以及气流中的氧化物分布示意图;
图6是图2中的晶体生长设备中的冷却气流流动以及气流中的氧化物分布示意图;
图7是图3中的晶体生长设备中的冷却气流流动以及气流中的氧化物分布示意图;
图8是图1-图3中的晶体生长设备生长出的晶棒内的缺陷分布对比图。
附图标记:
晶体生长设备100;
壳体1;容器2;加热器3;
导流筒4;第一导流面41;第一导流部411;第二导流部412;第二导流面42;第三导流面43;容纳槽44;空腔45;进气孔46;出气孔47;
第一保温件5;第一气流通道51;第二保温件6;
水冷套7;第二气流通道71;
晶体熔体200;晶体熔体液面201;
晶棒300。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
下面参考图1-图7描述根据本发明实施例的晶体生长设备100的温区控制系统。晶体生长设备100可以为单晶生长设备,晶体生长设备100可以用于生长单晶,例如可以用于生长单晶硅。
如图1-图3所示,根据本发明第一方面实施例的晶体生长设备100的温区控制系统,包括:导流筒4和第一气流通道51。
导流筒4适于围绕晶棒300设置,导流筒4可以为石墨件,从而使得导流筒4具有耐高温性能。导流筒4可以大致呈圆筒形,导流筒4套设在晶棒300的外周侧且导流筒4的内周壁与晶棒300间隔开设置,导流筒4可以与晶棒300同轴设置。第一气流通道51设在导流筒4的筒壁内,导流筒4的外壁面上可以形成有与第一气流通道51均连通的进气孔46以及出气孔47,冷却气流可以从进气孔46进入第一气流通道51内,流经第一气流通道51后从出气孔47排出。出气孔47形成在导流筒4的底面且出气孔47邻近晶棒300的三相点,从出气孔47排出的冷却气流流向导流筒4的下方,具体地,流向晶体熔体液面201。
并且,由于出气孔47靠近晶棒300的三相点(所述“三相点”是指固、液、气三相交界位置,具体地,是指晶棒300、晶体熔体液面201以及晶体熔体液面201上方的气体三相交界位置),这样从出气孔47流出的冷却气流可以邻近晶棒300的三相点位置,在气流沿着晶体熔体液面201的上方空间流动的过程中,可以快速地带走三相点位置的热量,使得中心区的空穴扩散到边缘,空穴增加,并且浓度均匀,由此生长出以空穴型缺陷为主导的近完美晶圆。
其中,导流筒4的底面位于出气孔47径向外侧的部分形成有第一导流面41,从出气孔47流出的冷却气流进入晶体熔体液面201上方后,通过第一导流面41的导流作用,可以使得冷却气流较为顺畅地流出晶体熔体液面201,并带走热量以及氧化物杂质(例如一氧化硅),减少晶棒300内的间隙缺陷,生长出的晶棒300近似完美晶圆,更好地适用于外延片。
可选地,冷却气流可以为惰性气体,例如冷却气流可以为氩气。
可选地,出气孔47可以呈环形且沿导流筒4的周向延伸;出气孔47也可以为多个且沿导流筒4的周向间隔排布,出气孔47可以为圆形、椭圆形、多边形、长条形等,出气孔47可以沿导流筒4的周向延伸。通过将出气孔47沿导流筒4的周向设置,可以使得导流筒4的底部出气均匀,使得出气孔47流出的冷却气流流向晶棒300的外周侧呈环形的三相界面位置,从而使得晶棒300的周向三相界面位置均得到冷却,从而使得晶棒300较为均匀稳定地生长。
可选地,在出气孔47沿导流筒4的周向排布时,第一导流面41可以呈沿导流筒4的周向延伸的环形,从而可以对不同位置处的出气孔47或者出气孔47的不同位置流出的气流均可以起到有效的导流作用。
根据本发明实施例的晶体生长设备100的温区控制系统,通过在导流筒4的筒壁内设置第一气流通道51且使得第一气流通道51的出气孔47邻近晶棒300的三相点,可以将冷却气流引入至晶体熔体液面201且邻近晶棒300的三相点位置,可以控制晶棒300在固液界面的温度梯度和制程,从而可以较好地控制晶棒300的快速稳定生长;并且通过在导流筒4的底面位于出气孔47的径向外侧形成第一导流面41,可以使得冷却气流从出气孔47进入晶体熔体液面201之后通过第一导流面41的导流作用较为顺畅地流出晶体熔体液面201,并带走氧化物杂质,减少晶棒300内的间隙缺陷,生长出的晶棒300近似完美晶圆,更适用于外延片。
根据本发明的一些实施例,参照图1、图2、图4-图6,第一导流面41包括邻近出气孔47的第一导流部411,第一导流部411平行于水平面设置。通过将第一导流部411设置为平行于水平面,从出气孔47向下排出的冷却气流流经第一导流部411的过程中,由于第一导流部411的延伸方向与出气孔47向下排出的冷却气流的方向夹角相对较小。在冷却气流从出气孔47排出至流经第一导流部411的过程中,可以使得冷却气流的流动方向改变相对较小,从而使得冷却气流可以沿着第一导流部411更为顺畅的流动,减少冷却气流沿着导流筒4的底面与晶体熔体液面201之间的空间流动时产生的涡流,从而可以减少晶体生长过程中气流造成的扰动以及对温度造成的波动,减少复杂的对流对晶体成长过程的不利影响,提高晶体生长温度的稳定性,从而提高成晶率。并且,可以使得冷却气流更好地带走晶体熔体液面201的氧化物杂质,减少氧化物杂质,从而可以减少晶棒300内的间隙缺陷,做成近完美晶体。
根据本发明的一些可选实施例,参照图1、图2、图4-图6,第一导流面41包括连接在第一导流部411的径向外侧的第二导流部412,第二导流部412在沿径向向外的方向上朝向上倾斜延伸。通过将第一导流面41设置为包括水平设置的第一导流部411以及倾斜设置的第二导流部412,由于第一导流部411相对于第二导流部412与向下排出的冷却气流的方向之间的夹角较小,这样从出气孔47流出的冷却气流先流经第一导流部411的导向作用,然后再流经第二导流部412的导向作用,冷却气流经过第二导流部412的导向作用,可以使得冷却气流朝向斜向上流动以流出晶体熔体液面201的上方空间,从而可以通过冷却气流将热量以及氧化物杂质带走。
根据本发明的一些可选实施例,参照图1、图2、图4-图6,导流筒4的底面位于出气孔47径向内侧的部分形成有第二导流面42,第二导流面42与第一导流部411共面设置,第二导流面42的径向宽度小于第一导流部411的径向宽度。第二导流面42可以对从导流筒4的内周侧与晶棒300之间的空间进入的冷却气流进行导流,从导流筒4的内周侧与晶棒300之间的空间进入固液界面的冷却气流也可以快速带走固液界面的热量,使得中心区的空穴的扩散到边缘,空穴增加,并且浓度均匀,由此生长出以空穴型为主导的近完美晶圆。在从导流筒4的内周侧与晶棒300之间的空间进入的冷却气流经第二导流面42朝向远离晶棒300的方向流动的过程中,该冷却气流在将热量带走的同时,也可以将固液界面的氧化物杂质带走。并且,在从导流筒4的内周侧与晶棒300之间的空间进入的冷却气流经第二导流面42朝向远离晶棒300的方向流动的过程中,可以带动从导流筒4的出气孔47流出的气流朝向远离晶棒300的方向流动。
并且,通过使得第二导流面42与第一导流部411共面设置,可以使得气流从第二导流面42流向第一导流部411的过程中流动更为顺畅,减少涡流产生;同时,通过使得第二导流面42的径向宽度小于第一导流部411的径向宽度,可以使得出气孔47更加靠近三相点位置,从而可以进一步地控制固液界面的温度梯度,进一步地提高晶棒300的V/G值,进而生长出以空穴缺陷主导的近完美晶圆。
其中,需要解释的是,第二导流面42的径向宽度以及第一导流部411的径向宽度均是指沿导流筒4的径向的宽度。
根据本发明的一些实施例,参照图1-图3,导流筒4的筒壁内形成有空腔45,空腔45内设有第一保温件5,第一保温件5可以为软毡,第一保温件5可以填充在该空腔45内,第一保温件5内形成有第一气流通道51。通过在导流筒4的筒壁内设置第一保温件5且在第一保温件5内形成第一气流通道51,第一保温件5可以起到良好的保温隔热作用,减少外部温度以及环境对于第一气流通道51内的冷却气流的温度影响,使得第一气流通道51内的冷却气流的温度控制更为精确且更易控制形成稳定温度场,从而有利于晶体的稳定成长。
根据本发明的一些可选实施例,参照图1、图2、图4-图6,第一导流面41对应的壁厚大于空腔45的其余部分的壁厚。通过将第一导流面41对应的筒壁厚度设置较大,可以增强导流筒4在该位置处的保温隔热作用,在冷却气流带走热量并流经第一导流面41的过程中,可以减少流经第一导流面41的冷却气流以及晶体熔体液面201产生的热量对流经导流筒4内的第一气流通道51内的冷却气流的影响,使得第一气流通道51内的冷却气流的温度控制更为精确且更易控制形成稳定温度场,从而有利于晶体的稳定成长。
根据本发明的一些实施例,参照图1-图3,导流筒4的上端面覆盖有第二保温件6,第二保温件6可以为硬毡。通过在导流筒4的上端面覆盖第二保温件6,通过第二保温件6的保温隔热作用,可以减少或避免冷却气流影响垂直隔热效果而使得用于加热晶体熔体200的加热器3的上方散热过快,保证加热效率。
根据本发明的一些实施例,参照图1-图7,温区控制系统包括水冷套7,水冷套7套设在晶棒300的外周侧,水冷套7与晶棒300间隔开设置,水冷套7的壁内形成有水冷通道,冷却水可以流入水冷套7内,流入水冷通道内的冷却水与水冷套7换热后可以流出水冷套7,从而形成冷却循环。通过设置的水冷套7可以进一步地对晶棒300进行冷却,保证晶体的稳定快速生长,且减少结晶缺陷。水冷套7的至少下部分位于导流筒4和晶棒300之间,例如水冷套7的下半部分可以位于导流筒4和晶棒300之间,水冷套7与导流筒4可以间隔开设置,减少水冷套7对导流筒4内的第一气流通道51的温度影响,从而可以减少水冷套7对第一气流通道51内的冷却气流对晶体生产温度场的分布影响。
其中,导流筒4的内周侧形成有顶部敞开的容纳槽44,水冷套7的至少下部分位于容纳槽44内,例如水冷套7的下半部分位于容纳槽44内。温区控制系统由此可以形成更加稳定的温度梯度,从而生长出近完美晶圆。
根据本发明的一些可选实施例,参照图1-图7,水冷套7、导流筒4与晶棒300之间限定出第二气流通道71,容纳槽44位于水冷套7下方的部分构成第二气流通道71的一部分,容纳槽44的底壁面形成有第三导流面43。从第二气流通道71进入固液界面的冷却气流也可以快速带走固液界面的热量,使得中心区的空穴的扩散到边缘,空穴增加,并且浓度均匀,由此生长出以空穴型为主导的近完美晶圆。在从第二气流通道71进入的冷却气流,可以经第三导流面43的导向作用使得该冷却气流较为顺畅地朝向固液界面方向流动,而后流经第二导流面42并朝向远离晶棒300的方向流动,该冷却气流在将热量带走的同时,也可以将固液界面的氧化物杂质带走。并且,从第二气流通道71流出的冷却气流经第二导流面42朝向远离晶棒300的方向流动的过程中,可以带动从导流筒4的出气孔47流出的气流朝向远离晶棒300的方向流动。
通过在容纳槽44的底面设置第三导流面43,可以使得流经第二气流通道71的冷却气流快速顺畅地流动至固液界面处,减少固液界面或三相点附近的涡流产生,从而可以减少晶体生长过程中气流造成的扰动以及对温度造成的波动,减少复杂的对流对晶体成长过程的不利影响,提高晶体生长温度的稳定性,从而提高成晶率。并且,可以使得冷却气流更好地带走固液界面或三相点的氧化物杂质,减少晶体内氧化物杂质含量,从而可以减少晶棒300的间隙缺陷,做成近完美晶体。
在本发明的一些实施例中,参照图1-图7,第三导流面43的至少一部分在沿径向向内的方向上朝向下倾斜延伸。通过将第三导流面43倾斜设置,可以更为顺畅且快速地将第二气流通道71内的冷却气流导流向固液界面处,进一步地减少固液界面或三相点附近的涡流产生,从而可以进一步地减少晶棒300的间隙缺陷,更好地做成近完美晶体。
可选地,第三导流面43与竖直方向之间的夹角范围可以为15-45°。通过将第三导流面43与竖直方向之间的夹角设置在上述范围内,既可以保证第三导流面43具有良好的导流作用,并且可以避免水冷套7与容纳槽44的底面发生干涉,保证水冷套7套设在晶棒300外周侧的轴向长度,保证冷却效果。
根据本发明的一些实施例,参照图1-图7,温区控制系统包括水冷套7,水冷套7套设在晶棒300的外周侧,水冷套7与晶棒300间隔开设置,水冷套7的壁内形成有水冷通道,冷却水可以流入水冷套7内,流入水冷通道内的冷却水与水冷套7换热后可以流出水冷套7,从而形成冷却循环。通过设置的水冷套7可以进一步地对晶棒300进行冷却,保证晶体的稳定快速生长,且减少结晶缺陷。水冷套7的至少下部分位于导流筒4和晶棒300之间,例如水冷套7的下半部分位于导流筒4和晶棒300之间,水冷套7与导流筒4可以间隔开设置,减少水冷套7对导流筒4内的第一气流通道51的温度影响,从而可以减少水冷套7对第一气流通道51内的冷却气流对晶体生产温度场的分布影响。
可选地,水冷套7与导流筒4之间的径向距离大于30mm。从而可以更有效地减少水冷套7对导流筒4内的第一气流通道51的温度影响,从而可以更有效地减少水冷套7对第一气流通道51内的冷却气流对晶体生产温度场的分布影响。
如图1-图3所示,根据本发明第二方面实施例的晶体生长设备100,包括:容器2和温区控制系统,容器2用于容纳用于生长晶体的晶体熔体200,容器2可以为耐高温的坩埚,例如容器2可以为石英件。温区控制系统为根据本发明上述第一方面实施例的温区控制系统,导流筒4的下端伸入至容器2内并位于晶体熔体液面201的上方。
进一步地,晶体生长设备100还可以包括供气系统,供气系统用于对第一气流通道51供气,在温区控制系统包括上述的第二气流通道71时,供气系统也可以对第二气流通道71供气。
可选地,晶体生长设备100还可以包括供水系统,在晶体生长设备100包括上述的水冷套7时,供水系统可以为水冷套7供水。
例如,在图1-图3的具体示例中,晶体生长设备100包括壳体1、容器2、加热器3以及上述的温区控制系统,其中温区控制系统包括上述的导流筒4、水冷套7、第一保温件5和第二保温件6。温区控制系统、容器2以及加热器3均设在壳体1内,壳体1侧壁内可以夹设有保温层,加热器3设置在容器2的外周侧和/或容器2的下方,加热器3对放置在容器2内的晶体熔体200进行加热,导流筒4与水冷套7均与壳体1相连。导流筒4围绕晶棒300设置且导流筒4的下端伸入至容器2内且位于晶体熔体液面201的上方,水冷套7套设在晶棒300的外周侧且水冷套7的下半部分位于导流筒4和晶棒300之间。
根据本发明实施例的晶体生长设备100,通过设置上述的温区控制系统,可以将冷却气流引入至晶体熔体液面201且邻近晶棒300的三相点位置,可以控制晶棒300在固液界面的温度梯度和制程,从而可以较好地控制晶棒300的稳定生长;并且可以使得冷却气流从出气孔47进入固液界面之后通过第一导流面41的导流作用较为顺畅地流出固液界面,并带走氧化物杂质,减少晶棒300的间隙缺陷,生长出的晶棒300近似完美晶圆,更好地适用于外延片。
下面参照图1-图7并结合图8描述根据本发明三个实施例的晶体生长设备100、晶体生长设备100内的冷却气流以及气流中的氧化物分布、利用该晶体生长设备100生长出的晶棒300内的缺陷对比分布。
图1示出的是晶体生长设备100的其中一个实施例,图2示出的是晶体生长设备100的另一个实施例,图3示出的是晶体生长设备100的又一个实施例,这三个实施例的不同之处仅在于导流筒4的结构。
具体地,图1示例中的晶体生长设备100的导流筒4,该导流筒4的底面形成有第一导流面41和第二导流面42,第一导流面41包括上述的第一导流部411和第二导流部412,第二导流面42与第一导流部411共面设置,第二导流面42的径向宽度小于第一导流部411的径向宽度;位于水冷套7下方的第三导流面43在沿径向向内的方向上朝向下倾斜延伸。
图2示例中的晶体生长设备100的导流筒4,该导流筒4的底面形成有第一导流面41和第二导流面42,第一导流面41包括上述的第一导流部411和第二导流部412,第二导流面42与第一导流部411共面设置,第二导流面42的径向宽度小于第一导流部411的径向宽度;位于水冷套7下方的第三导流面43在沿径向向内的方向上朝向下倾斜延伸。
图3示例中的晶体生长设备100的导流筒4,该导流筒4的底面形成有第一导流面41和第二导流面42,第一导流面41整体在沿径向向外的方向上朝向上倾斜延伸,第二导流面42平行于水平面;位于水冷套7下方的第三导流面43平行于水平面。
其中,图3示例中的导流筒4的结构与图1示例中的导流筒4以及图2示例中的导流筒4的结构不同之处在于:第一导流面41以及第三导流面43的形状,图3示例中的第二导流面42的径向宽度最大,图1示例中的第一导流面41对应的壁厚以及图2示例中的第一导流面41对应的壁厚均大于图3示例中的第一导流面41对应的壁厚。
图1示例中的导流筒4结构与图2示例中的导流筒4结构区别在于:图1示例中的第一导流部411径向宽度大于图2示例中的第一导流部411的径向宽度;图1示例中的第二导流面42径向宽度小于图2示例中的第二导流面42的径向宽度;图1示例中的第三导流面43与竖直方向之间的夹角小于图2示例中的第三导流面43与竖直方向之间的夹角。
参照图4-图8,其中图4中的4-1对应图1中的晶体生长设备100中的冷却气流流动示意图,图4中的4-2对应图2中的晶体生长设备100中的冷却气流流动示意图,图4中的4-3对应图3中的晶体生长设备100中的冷却气流流动示意图。
通过试验以及仿真可以看出,参照图4,图1示例中的晶体生长设备100以及图2示例中的晶体生长设备100的固液界面或三相点位置附近的涡流较少,图3示例中的晶体生长设备100的固液界面或三相点位置附近的涡流较多。由此可见,通过将第一导流面41设置为包括水平延伸的第一导流部411以及将第三导流面43设置为倾斜面,可以起到对气流的顺畅导流作用,可以显著减少涡流产生,特别是可以显著减少固液界面或三相点附近的涡流产生。
进一步地,参照图5-图7,图5-图7除了示出冷却气流中涡流的产生,并且示出了气流中氧化物的浓度分布。具体地,图5中B1圈出的区域所对应的氧化物浓度为右侧的C1处所代表的氧化物浓度值;图6中B2圈出的区域所对应的氧化物浓度为右侧的C2处所代表的氧化物浓度值;图7中B3圈出的区域所对应的氧化物浓度为右侧的C3处所代表的氧化物浓度值。由图可知,图1示例中的晶体生长设备100中的固液界面附近冷却气流内的氧化物浓度分布最低,其浓度值约为5.515×1014atom/cm3,图2示例中的晶体生长设备100中的固液界面附近冷却气流内的氧化物浓度分布较低,其浓度值约为6.68×1014atom/cm3,图3示例中的晶体生长设备100中的固液界面附近冷却气流内的氧化物浓度分布最高,其浓度值约为7.08×1014atom/cm3。由此可见,通过将第一导流面41设置为包括水平延伸的第一导流部411以及将第三导流面43设置为倾斜面,可以起到对气流的顺畅导流作用,可以显著减少涡流产生,特别是可以显著减少固液界面或三相点附近的涡流产生,并且顺畅流动的气流可以有效地带走氧化物杂质,避免氧化物杂质滞留。
再进一步地,参照图8并结合图4-图7,图8中的a1-a3均是示出晶棒300的径向一半内缺陷分布图。图8中的横坐标代表晶棒300的轴向长度,其中横坐标的左边代表晶棒300的头部位置,横坐标的右边代表晶棒300的固液界面处。图8中a1代表图1示例中的晶体生长设备100生长出的晶棒300内的缺陷分布图,图8中a2代表图2示例中的晶体生长设备100生长出的晶棒300内的缺陷分布图,图8中a3代表图3示例中的晶体生长设备100生长出的晶棒300内的缺陷分布图。图8中大于零的数值代表空穴缺陷,且数值越大代表空穴缺陷密度越大;图8中小于零的数值代表间隙缺陷,且数值越小代表间隙密度越大。
具体地,图8中a1示例中的D1区域、a2示例中的E1区域、a3示例中的F1区域所对应的缺陷密度值为右侧G1处所代表的空穴缺陷密度值;图8中a1示例中的D2区域、a2示例中的E2区域、a3示例中的F2区域所对应的缺陷密度值为右侧G2处所代表的空穴缺陷密度值;图8中a1示例中的D3区域、a2示例中的E3区域、a3示例中的F3区域所对应的缺陷密度值为右侧G3处所代表的空穴缺陷密度值;图8中a1示例中的D4区域、a2示例中的E4区域、a3示例中的F4区域所对应的缺陷密度值为右侧G4处所代表的空穴缺陷密度值。图8中a1示例中除去D1-D4区域的其他区域均为间隙缺陷密度分布;图8中a2示例中除去E1-E4区域的其他区域均为间隙缺陷密度分布;图8中a3示例中除去F1-F4区域的其他区域均为间隙缺陷密度分布。
由此可见,a1所代表的晶棒300内间隙缺陷分布范围最小且分布密度相对最小,a1所代表的晶棒300内空穴缺陷分布范围最大且分布密度相对最大;a2所代表的晶棒300内间隙缺陷分布范围较小且分布密度相对较小,a2所代表的晶棒300内空穴缺陷分布范围较大且分布密度相对较大;a3所代表的晶棒300内间隙缺陷分布范围最大且分布密度相对最大,a3所代表的晶棒300内空穴缺陷分布范围最小且分布密度相对最小。
结合上述的分析可知,图1示例中的晶体生长设备100生长出的晶棒300内间隙缺陷最少,最接近完美晶体。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (11)

1.一种晶体生长设备的温区控制系统,其特征在于,包括:
导流筒,所述导流筒适于围绕晶棒设置;
水冷套,所述水冷套套设在所述晶棒的外周侧,所述水冷套的至少下部分位于所述导流筒和所述晶棒之间,所述水冷套与所述导流筒之间的径向距离大于30mm;
第一气流通道,所述第一气流通道设在所述导流筒的筒壁内,所述导流筒上形成有与所述第一气流通道连通的进气孔以及出气孔,所述出气孔形成在所述导流筒的底面且邻近所述晶棒的三相点,所述进气孔形成在晶体生长设备的侧壁;
其中,所述第一气流通道包括:沿所述导流筒轴向连接的第一通道部和第二通道部,所述第一通道部与水平面的夹角小于所述第二通道部与水平面的夹角,
所述导流筒的底面位于所述出气孔径向外侧的部分形成有第一导流面,所述第一导流面包括:第一导流部,以及连接在所述第一导流部的径向外侧的第二导流部,
所述导流筒的底面位于所述出气孔径向内侧的部分形成有第二导流面,
在所述导流筒的轴向方向上,所述出气孔与所述第一导流部和所述第二导流面的底面平齐。
2.根据权利要求1所述的晶体生长设备的温区控制系统,其特征在于,所述第一导流面包括邻近所述出气孔的第一导流部,所述第一导流部平行于水平面设置。
3.根据权利要求2所述的晶体生长设备的温区控制系统,其特征在于,所述第一导流面包括连接在所述第一导流部的径向外侧的第二导流部,所述第二导流部在沿径向向外的方向上朝向上倾斜延伸。
4.根据权利要求2所述的晶体生长设备的温区控制系统,其特征在于,所述导流筒的底面位于所述出气孔径向内侧的部分形成有第二导流面,所述第二导流面与所述第一导流部共面设置,所述第二导流面的径向宽度小于所述第一导流部的径向宽度。
5.根据权利要求1所述的晶体生长设备的温区控制系统,其特征在于,所述导流筒的筒壁内形成有空腔,所述空腔内设有第一保温件,所述第一保温件内形成有所述第一气流通道。
6.根据权利要求5所述的晶体生长设备的温区控制系统,其特征在于,所述第一导流面对应的壁厚大于所述空腔其余部分的壁厚。
7.根据权利要求1所述的晶体生长设备的温区控制系统,其特征在于,所述导流筒的上端面覆盖有第二保温件。
8.根据权利要求1-7中任一项所述的晶体生长设备的温区控制系统,其特征在于,所述导流筒的内周侧形成有顶部敞开的容纳槽,所述水冷套的至少下部分位于所述容纳槽内,所述水冷套、所述导流筒与所述晶棒之间限定出第二气流通道,所述容纳槽位于所述水冷套下方的部分构成所述第二气流通道的一部分,所述容纳槽的底壁面形成有第三导流面。
9.根据权利要求8所述的晶体生长设备的温区控制系统,其特征在于,所述第三导流面的至少一部分在沿径向向内的方向上朝向下倾斜延伸。
10.根据权利要求9所述的晶体生长设备的温区控制系统,其特征在于,所述第三导流面与竖直方向之间的夹角范围为15-45°。
11.一种晶体生长设备,其特征在于,包括:
容器,所述容器用于容纳用于生长晶体的晶体熔体;
温区控制系统,温区控制系统为根据权利要求1-10中任一项所述的温区控制系统,所述导流筒的下端伸入至所述容器内并位于所述晶体熔体液面的上方。
CN202110613325.7A 2021-06-02 2021-06-02 温区控制系统和晶体生长设备 Active CN113529164B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110613325.7A CN113529164B (zh) 2021-06-02 2021-06-02 温区控制系统和晶体生长设备
PCT/CN2022/096314 WO2022253233A1 (zh) 2021-06-02 2022-05-31 温区控制系统和晶体生长设备
TW111120644A TWI838758B (zh) 2021-06-02 2022-06-02 溫區控制系統和晶體生長設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110613325.7A CN113529164B (zh) 2021-06-02 2021-06-02 温区控制系统和晶体生长设备

Publications (2)

Publication Number Publication Date
CN113529164A CN113529164A (zh) 2021-10-22
CN113529164B true CN113529164B (zh) 2023-03-14

Family

ID=78095026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110613325.7A Active CN113529164B (zh) 2021-06-02 2021-06-02 温区控制系统和晶体生长设备

Country Status (3)

Country Link
CN (1) CN113529164B (zh)
TW (1) TWI838758B (zh)
WO (1) WO2022253233A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113529164B (zh) * 2021-06-02 2023-03-14 徐州鑫晶半导体科技有限公司 温区控制系统和晶体生长设备
CN114150371B (zh) * 2021-12-06 2023-05-12 中环领先(徐州)半导体材料有限公司 冷却组件及其控制方法、晶体生长装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205062228U (zh) * 2015-09-22 2016-03-02 晶科能源有限公司 一种直拉单晶导流筒
CN105442037A (zh) * 2015-12-08 2016-03-30 西安交通大学 一种高速单晶生长装置
CN111663178A (zh) * 2019-03-08 2020-09-15 宁夏隆基硅材料有限公司 直拉单晶用热屏装置及单晶硅生产设备
CN112281210A (zh) * 2020-10-10 2021-01-29 徐州鑫晶半导体科技有限公司 晶体的生长装置及生长方法
CN112301416A (zh) * 2020-10-27 2021-02-02 青海大学 一种单晶炉热屏导流筒

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11313049B2 (en) * 2015-10-19 2022-04-26 Globalwafers Co., Ltd. Crystal pulling systems and methods for producing monocrystalline ingots with reduced edge band defects
CN113529164B (zh) * 2021-06-02 2023-03-14 徐州鑫晶半导体科技有限公司 温区控制系统和晶体生长设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205062228U (zh) * 2015-09-22 2016-03-02 晶科能源有限公司 一种直拉单晶导流筒
CN105442037A (zh) * 2015-12-08 2016-03-30 西安交通大学 一种高速单晶生长装置
CN111663178A (zh) * 2019-03-08 2020-09-15 宁夏隆基硅材料有限公司 直拉单晶用热屏装置及单晶硅生产设备
CN112281210A (zh) * 2020-10-10 2021-01-29 徐州鑫晶半导体科技有限公司 晶体的生长装置及生长方法
CN112301416A (zh) * 2020-10-27 2021-02-02 青海大学 一种单晶炉热屏导流筒

Also Published As

Publication number Publication date
TW202246592A (zh) 2022-12-01
WO2022253233A1 (zh) 2022-12-08
CN113529164A (zh) 2021-10-22
TWI838758B (zh) 2024-04-11

Similar Documents

Publication Publication Date Title
CN113529164B (zh) 温区控制系统和晶体生长设备
EP1021598B1 (en) Heat shield for crystal puller
CN110923806B (zh) 一种单晶炉及单晶硅棒的制备方法
KR100220613B1 (ko) 반도체 단결정 육성장치
JP6101368B2 (ja) 冷却速度制御装置及びこれを含むインゴット成長装置
CN107217296B (zh) 一种硅片水平生长设备和方法
CN1936108A (zh) 高质量硅单晶结晶块的生长装置及使用此装置的生长方法
KR101385997B1 (ko) 단결정 제조장치 및 단결정 제조방법
JP2021011423A (ja) 高品質半導体単結晶の水平成長のためのシステム、およびそれを製造する方法
TWI598475B (zh) 在連續柴可斯基(czochralski)方法中用於改良晶體成長之堰
US6071341A (en) Apparatus for fabricating single-crystal silicon
CN205893453U (zh) 一种用于单晶炉的导流筒
EP3483310B1 (en) Monocrystalline silicon production apparatus and monocrystalline silicon production method
US20070240629A1 (en) Method for manufacturing a silicon single crystal
CN114606566B (zh) 冷却装置及其控制方法、晶体生长设备
KR101725603B1 (ko) 잉곳 성장장치
JP2009184863A (ja) 単結晶製造装置及び単結晶製造方法
TWI730528B (zh) 分體式導流筒
CN109666968B (zh) 硅单晶的制造方法
KR0130180B1 (ko) 캐리어 가스를 이용하여 산화규소를 배출하는 방법 및 그를 이용한 단결정의 인상장치
EP0483365A1 (en) Silicon single crystal manufacturing apparatus
CN218478822U (zh) 一种碳化硅晶体生长导向装置
CN114108078B (zh) 坩埚组件和具有其的单晶生长装置
CN114574943B (zh) 一种单晶炉及一种单晶
KR20070064210A (ko) 단결정 잉곳 성장장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 221004 No.1 Xinxin Road, Xuzhou Economic and Technological Development Zone, Jiangsu Province

Patentee after: Zhonghuan Leading (Xuzhou) Semiconductor Materials Co.,Ltd.

Address before: 221004 No.1 Xinxin Road, Xuzhou Economic and Technological Development Zone, Jiangsu Province

Patentee before: XUZHOU XINJING SEMICONDUCTOR TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20230522

Address after: 221004 No.1 Xinxin Road, Xuzhou Economic and Technological Development Zone, Jiangsu Province

Patentee after: Zhonghuan Leading (Xuzhou) Semiconductor Materials Co.,Ltd.

Patentee after: Zhonghuan leading semiconductor materials Co.,Ltd.

Address before: 221004 No.1 Xinxin Road, Xuzhou Economic and Technological Development Zone, Jiangsu Province

Patentee before: Zhonghuan Leading (Xuzhou) Semiconductor Materials Co.,Ltd.

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: 221004 No.1 Xinxin Road, Xuzhou Economic and Technological Development Zone, Jiangsu Province

Patentee after: Zhonghuan Leading (Xuzhou) Semiconductor Materials Co.,Ltd.

Country or region after: China

Patentee after: Zhonghuan Leading Semiconductor Technology Co.,Ltd.

Address before: 221004 No.1 Xinxin Road, Xuzhou Economic and Technological Development Zone, Jiangsu Province

Patentee before: Zhonghuan Leading (Xuzhou) Semiconductor Materials Co.,Ltd.

Country or region before: China

Patentee before: Zhonghuan leading semiconductor materials Co.,Ltd.

CP03 Change of name, title or address