CN101874307A - 通过表面粗糙化的高光提取效率的基于氮化物的发光二极管 - Google Patents

通过表面粗糙化的高光提取效率的基于氮化物的发光二极管 Download PDF

Info

Publication number
CN101874307A
CN101874307A CN200880117788A CN200880117788A CN101874307A CN 101874307 A CN101874307 A CN 101874307A CN 200880117788 A CN200880117788 A CN 200880117788A CN 200880117788 A CN200880117788 A CN 200880117788A CN 101874307 A CN101874307 A CN 101874307A
Authority
CN
China
Prior art keywords
nitride
iii
led
light
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880117788A
Other languages
English (en)
Other versions
CN101874307B (zh
Inventor
钟弘
阿努拉格·蒂雅吉
肯尼思·J·万波拉
詹姆斯·S·斯佩克
史蒂文·P·登巴尔斯
中村秀治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN101874307A publication Critical patent/CN101874307A/zh
Application granted granted Critical
Publication of CN101874307B publication Critical patent/CN101874307B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

本发明揭示一种III-氮化物发光二极管(LED)及其制造方法,其中纹理化所述LED的III-氮化物层的半极性或非极性平面的至少一个表面,借此形成经纹理化表面以增加光提取。可通过等离子辅助化学蚀刻、光刻之后进行蚀刻或纳米压印之后进行蚀刻来执行所述纹理化。

Description

通过表面粗糙化的高光提取效率的基于氮化物的发光二极管
相关申请案交叉参考
此申请案根据35U.S.C.章节119(e)的规定主张由钟宏(Hong Zhong)、啊奴瑞格泰基(Anurag Tyagi)、肯尼思J瓦姆波拉(Kenneth J.Vampola)、詹姆斯S斯班克(James S.Speck)、史蒂文P丹巴尔斯(Steven P.DenBaars)及中村修二(ShujiNakamura)于2007年11月30日申请的名称为“通过表面粗糙化的高光提取效率的基于氮化物的发光二极管(HIGH LIGHT EXTRACTION EFFICIENCY NITRIDEBASED LIGHT EMITTING DIODE BY SURFACE ROUGHENING)”的同在申请中及已共同让与的美国临时专利申请案第60/991,617号(代理人档案号30794.258-US-P1(2008-277-1))的权利,此申请案以引用方式并入本文中。
技术领域
本发明涉及发光二极管(LED),且更特定来说涉及经由表面粗糙化的高光提取效率的基于氮化镓的LED。
背景技术
(注意:此申请案参考如在整篇说明书中由括号内的一个或一个以上参考编号(例如[x])指示的许多不同出版文献。可在下文名称为“参考文献”的章节中找到根据所述参考编号排序的所述不同出版文献列表。所述出版文献中的每一者均以引用方式并入本文中。)
基于氮化镓(GaN)的宽带隙半导体LED已使用了近15年。LED开发的进步已在LED技术中引起极大改变,实现全色LED显示器、LED交通信号、白色LED等等。
高效率白色LED已获得许多兴趣作为萤光灯的可能替代物-白色LED的发光效能(130-150流明/瓦特[1])已超过普通萤光灯的发光效能(75流明/瓦特)。然而,当前市售基于纤锌矿氮化物的LED的特征在于在多量子阱(MQW)内部存在用于其[0001]c极性生长定向的极化相关电场。在异质结面处的自发及压电极化两者的不连续性在量子阱中产生内部电场,此引起载流子分离(量子束缚史塔克效应(QCSE))并减小量子阱内的辐射复合速率[2到5]。
为减小所述极化相关效应,已证明在非极性平面(亦即,(1-100)m平面或(11-20)a平面)上生长Ⅲ-氮化物装置[6到7]。减小并可能消除所述效应的另一方法是在相对于c方向倾斜的晶体平面(亦即,半极性平面)上生长Ⅲ-氮化物装置。还已证明生长于不同半极性平面(包含(10-1-1)、(10-1-3)、(11-22)及其它)上的装置[8到10]。与c平面Ⅲ-氮化物材料相比较所述平面在异质结构中具有减小的极化不连续性;且对于离所述c平面~45度定向的半极性平面来说,在InGaN/GaN异质结构中不存在极化不连续性[5]。最近,随着高质量独立GaN衬底的出现,已报道在非极性m平面、半极性(10-1-1)及(11-22)独立GaN衬底上具有介于407nm与513nm之间的峰值发射波长的高效能非极性及半极性LED。所述LED的效能显着部分概括于表1中[11到15]。所述装置显示量子阱中极大减小的极化相关电场,此使得一个人能够在LED内部采用较厚量子阱,相信此对于在高电流下操作的装置来说至关重要。因此,生长于非极性及半极性定向的GaN衬底上的LED承载着商业上有用的固态照明应用的极大希望且随着高质量独立GaN衬底变得更可用而为商业可行。
表1:对最近报道的半极性及非极性LED的效能的概括。
  峰值发射波长   晶体定向   在20mA驱动电流下的输出功率   在20mA驱动电流下的外部量子效率
  407nm(蓝紫色)、411nm(蓝紫色)   非极性m平面、半极性(10-1-1)平面   23.7mW、20.58mW   38.9%、33.9%
  444nm(蓝色)   半极性(10-1-1)平面   16.21mW(在脉冲式操作下,10%工作循环)   29%在脉冲式操作下,10%工作循环)
  489nm(蓝绿色)   半极性(11-22)平面   9mW(在脉冲式操作下,10%工作循环)   18%在脉冲式操作下,10%工作循环)
  516nm(绿色)   半极性(11-22)平面   5mW   10.5%
用以改进LED效率的当前技术归入两种不同类别:增加内部量子效率或提取效率。
增加由晶体质量及外延层结构所确定之内部量子效率可能相当困难。蓝色LED的典型内部量子效率值大于70%[16]且生长于低位错GaN衬底上的紫外线(UV)LED最近展示出高达80%的内部量子效率[17]。在所述值上可能存在很小改进空间,尤其对于生长于高质量独立GaN衬底上的非极性及半极性定向的装置也是如此。
另一方面,存在充分的光提取效率改进空间。对于裸芯片基于氮化物的LED来说,因GaN(n=2.5)与空气(n=1)之间相当巨大的折射率差,因此光逃逸锥的角度仅为23度,此导致低至4.18%的不足光提取效率[18]。所述逃逸锥外部的光在所述装置内部重复反射并最终由有源区或电极吸收。
可使用表面粗糙化程序来显着减小内部光损耗并促进光从所述装置逃逸。图1是经表面粗糙化的LED的示意性横截面图解说明,其包括n型电极10、n型Ⅲ-氮化物层11、Ⅲ-氮化物有源区12、p型Ⅲ-氮化物层13及经由金锡结合15结合至硅子安装座16的p型电极14。使用光增强型化学(PEC)蚀刻来粗糙化n型层11的背侧17,所述背侧是氮面(N面)GaN表面。箭头18指示由所述LED发射的光的可能轨迹。与光滑表面及其它方面相同的装置相比较,针对经表面粗糙化的LED测量到130%的输出功率增加[19]。
虽然通过PEC蚀刻进行表面粗糙化是用于改进从基于氮化物的LED的光提取的必要条件,但此技术的有效性大体上依赖于即将粗糙化表面的晶体定向及极性,尤其c极性[0001]GaN的氮面[21]。因此,PEC蚀刻可能不能应用于其它GaN晶体定向及极性的表面,包含a面(11-20)、非极性m面(1-100)及大多数半极性表面。缺少用于表面粗糙化的方法已变成非极性及半极性LED为实现较高提取效率的主要障碍,且因此需要较高总体效率且因此经改进粗糙化技术来解决此问题。
发明内容
本发明描述一种增加从基于氮化物的LED的光提取效率的方法,其涉及光刻及等离子辅助化学干式蚀刻。通过增加光提取,因此期盼后续效率改进。本发明的一个最值得注意的优点在于其显着增加从基于氮化物的LED(包含沿非极性及半极性定向生长的膜)的光提取效率。另外,与其它光提取增强技术(例如,使用光子晶体)相比较,此发明更直接。更重要的是,不同于也为简单光提取增强技术的光增强型化学蚀刻,本发明更通用,因为其可应用于任何氮化物半导体表面而不管其晶体结构如何。
因此,为克服上述现有技术中的限制,且为克服在阅读及理解本说明书时将变得显而易见的其它限制,本发明描述一种用于制造Ⅲ-氮化物LED的方法,其包括纹理化所述LED的Ⅲ-氮化物层的半极性或非极性平面的至少一个表面以形成经纹理化表面,其中通过等离子辅助化学蚀刻来执行所述纹理化步骤。可通过光刻之后进行所述蚀刻来执行所述纹理化步骤,或可使用纳米压印之后进行所述蚀刻来形成所述经纹理化表面。主要从所述经纹理化表面提取所述LED的有源区发射的光。
所述纹理化步骤可进一步包括:(1)形成带有至少一个侧壁的至少一个特征,所述至少一个侧壁反射并透射从所述特征内部入射的至少一个光射线;及使所述侧壁倾斜以使得每次反射所述射线时,所述射线相对于所述侧壁的表面法线的入射角减小,从而在所述射线的所述入射角小于临界角时,所述射线穿过所述侧壁的透射增加,且在所述射线的所述入射角至少等于所述临界角时,所述侧壁反射所述射线。
本发明进一步揭示一种用于从Ⅲ-氮化物LED发射光的方法,其包括从所述LED的Ⅲ-氮化物层的半极性或非极性平面的至少一个经纹理化表面发射所述光,其中通过等离子辅助化学蚀刻来执行所述纹理化。
本发明进一步揭示一种Ⅲ-氮化物LED,其包括n型Ⅲ-氮化物;p型Ⅲ-氮化物;发射光的Ⅲ-氮化物有源层,其形成于所述n型Ⅲ-氮化物与p型Ⅲ-氮化物之间;Ⅲ-氮化物光提取表面,其位于所述n型Ⅲ-氮化物上并与外部介质形成界面,其中所述Ⅲ-氮化物光提取表面具有带有至少一个倾斜侧壁的若干特征,所述至少一个倾斜侧壁在所述界面处将所述光透射到外部介质空气中并在所述界面处反射所述光,其中:(1)经反射的光在于所述特征内部经历若干后续反射之后具有增加的相对于所述界面的入射角且因此被透射到所述外部介质的机会增加,且(2)所述n型Ⅲ-氮化物、p型Ⅲ-氮化物及Ⅲ-氮化物有源层为半极性或非极性层。所述外部介质可以为折射率小于Ⅲ-氮化物的介质,例如空气或真空。
附图说明
现参考其中相同参考编号始终表示对应零件的图式:
图1是具有通过光增强型化学蚀刻粗糙化的背侧的(Al、Ga、In)N LED的示意性横截面。
图2是具有通过本发明粗糙化的背侧的呈悬挂时的几何形状的(Al、Ga、In)N LED的示意性横截面。
图3a是GaN表面在粗糙化之后的扫描电子显微镜(SEM)图像。
图3b是GaN表面在粗糙化之后的横截面SEM图像。
图4图解说明光从锥形特征逃逸的过程。
图5是GaN表面在粗糙化之后的光学显微镜图像。
图6图解说明锥形特征的几何形状。
图7是流程图,其图解说明用于制造高光提取效率LED结构的方法。
图8是半极性(11-22)GaN表面在通过光增强型化学蚀刻粗糙化之后的SEM图像。
图9是具有通过本发明粗糙化的背侧的呈倒装芯片设计的(Al、Ga、In)N LED的示意性横截面。
图10是具有通过本发明粗糙化的背侧及与成形氧化锌或透明导体结合的p型Ⅲ-氮化物层的呈倒装芯片设计的(Al、Ga、In)N LED的示意性横截面。
图11是图解说明本发明的方法的流程图。
具体实施方式
在对优选实施例的以下说明中,参考形成其一部分的随附图式,且其中以图解说明方式显示其中可实践本发明的具体实施例。应理解,可利用其它实施例并且可在不背离本发明的范围的情形下做出结构性改变。
技术说明
本发明描述一种用于增加从基于氮化物的LED的光提取效率的技术,其涉及光刻及等离子辅助化学干式蚀刻。通过增加光提取,因此期盼后续的效率改进。
在本发明的一个实施例中,粗糙化LED生长阵面的相对侧的独立GaN衬底表面。在制造所述装置之后,接着将所述LED置于成形的光学元件内。
图2显示根据本发明优选实施例的以悬挂时的几何形状封装的经表面粗糙化的LED的图示。所述LED由如下部分组成:p型金属电极20、半透明p型电极21、p型Ⅲ-氮化物层22、Ⅲ-氮化物有源区23、n型Ⅲ-氮化物层24、其上通过等离子辅助化学蚀刻来执行表面粗糙化的经双侧抛光的独立GaN衬底25、金属头座26、金属线27(连接到p电极20)、金属线28(连接到n型金属电极29)及其中囊封LED芯片的硅酮锥模具30。箭头31指示由所述LED发射的光的可能轨迹。
在界定了蚀刻掩模之后,在GaN衬底25的背侧表面32上执行等离子辅助化学蚀刻。借助某一比例的不同腐蚀性气体(包含但不限于:基于氯及氟的气体及其它气体),在某一室压力及等离子功率下,等离子辅助化学蚀刻界定带有特征在于倾斜侧壁的特征的未遮蔽区域。因此,表面32是通过形成拼起大部分表面32的锥形特征来粗糙化。类似陨石坑的凹坑可作为适当的蚀刻条件、蚀刻时间及蚀刻掩模材料使用的组合的结果而形成于每一锥形特征的顶部上。通过感应耦合等离子(ICP)蚀刻器实施的实例性粗糙化程序的蚀刻条件包含某一比率的基于氯及基于氟的气体(10∶1到150∶1)、适当的ICP功率(介于100瓦到1000瓦之间)、期望的偏置功率(介于10瓦到500瓦之间)及适宜的室压力(1到50帕斯卡)。
图3a是GaN表面在30分钟的通过使用圆形蚀刻掩模(直径2微米且中心之间分开8微米)的实例性粗糙化程序处理之后的SEM图像,且图3b是相同样本的横截面SEM图像。图3a及3b图解说明表面是如何通过形成拼起大部分所述表面的锥形特征33(带有倾斜侧壁34)来粗糙化及凹坑35可如何形成于每一锥形特征33的顶部上。
相信锥形特征(或经截头锥形特征)对光提取有益[20]。图4图解说明光从此类锥形特征40、33逃逸的过程。在特征-空气边界42处入射的光射线41透射穿过氮化物半导体-空气界面(或特征-空气边界42)(虚线箭头43)或由边界42反射(实线箭头44)。大部分经反射的射线44在于特征40(所述特征导致半导体-空气界面(或特征-空气界面42)处的入射角增加(90°-θ))内部经历若干后续反射45之后可最终通过特征-空气界面42处的近乎法线入射从锥40逃逸46。在上文中,特征-空气界面42及半导体-空气界面是等效的。例如,光射线41源自有源区,且特征40通常与n型氮化物层具有界面47。
图5是经粗糙化表面的光学显微镜图像。由粗糙化程序产生的褪色及暗表面可归因于在空气与GaN边界处的光散射,且此表面一般来说具有比光滑的“镜面状”对应表面更好的光提取特性[19]。
如图6中所示,经粗糙化特征60的几何形状包含侧壁倾斜角度61、锥直径62和63及锥高度64以及所述锥形特征60的数密度可通过使用适当的蚀刻掩模及适宜的蚀刻条件进行调整以实现最优光提取。应注意,等离子辅助化学蚀刻是非平衡过程,因此此粗糙化程序可应用于任何氮化物半导体表面上,而不管其晶体定向及极性如何。
借助此设计,在有源区内产生的光能够从裸片两侧有效地逃逸;且朝向衬底传播的光的提取效率可因表面粗糙化而显着增加。因此,期盼对输出功率的改进。
处理步骤
图7图解说明本发明一个实施例的处理步骤。
方框70表示例如在经双侧抛光的独立GaN衬底上通过有机金属化学气相沉积(MOCVD)生长外延层(装置生长),借此形成样本的步骤。
方框71表示使所述样本退火以活化p型掺杂物的步骤(p型活化)。
方框72表示通过等离子辅助化学蚀刻进行表面粗糙化的步骤。
方框73表示使用溶剂及酸清洁所述经粗糙化样本的步骤(样本清洁)。
方框74表示(在p型层上)沉积p型电极(例如,镍及氧化铟锡(ITO)半透明电极)的步骤。
方框75表示例如通过基于氯的干式蚀刻来界定台面区域的步骤。
方框76表示沉积p型及n型金属垫(例如,沉积钛、铝、镍及金n型电极及p型电极)的步骤。
方框77表示例如以悬挂时的几何形状封装所述LED的步骤。
可能修改及变更
所述LED可由如下各项组成:极性c面(0001)(Al、Ga、In)N、非极性a面(11-20)及m面(1-100)(Al、Ga、In)N或半极性(Al、Ga、In)N,其中半极性是指拥有两个非零h、i或k密勒指数及非零l密勒指数{hikl}的各种各样的平面。
此外,除独立及大块的GaN衬底之外,所述LED还可在异质衬底上生长,例如蓝宝石、碳化硅、硅、锗、砷化镓、磷化镓、磷化铟或尖晶石晶片,且可采用例如激光剥离的技术来将所述衬底与氮化物半导体分开以便可进行粗糙化过程。
如果即将粗糙化表面的晶体定向是半极性(11-22)定向的GaN表面,则也可通过光增强型化学(PEC)蚀刻程序来实施表面粗糙化。所述经粗糙化表面由一个或一个以上三角形金字塔覆盖,如图8中所示,所述三角形金字塔由如下各项组成:c极性(0001)GaN表面及m面[1-100]GaN表面。
此粗糙化技术可应用于除优选实施例中所涵盖的一个结构之外的各种高光提取效率LED结构。
图9是根据本发明实例性实施例的高光提取效率LED的图示。呈倒装芯片结构的LED包括通过本发明粗糙化92的独立GaN衬底91、n型Ⅲ-氮化物93、n型电极94、Ⅲ-氮化物有源区95、p型Ⅲ-氮化物层96、p型电极及光反射器97及主体子安装座98。箭头99指示由所述LED发射的光的可能轨迹。
图10是根据本发明实例性实施例的高光提取效率LED的图示。所述LED包括n型Ⅲ-氮化物层1001、Ⅲ-氮化物有源区1002、p型Ⅲ-氮化物层1003、n型电极1004及主体子安装座1005。独立GaN衬底1007的背侧1006通过本发明来粗糙化。具有p型电极的n型氧化锌(ZnO)锥形元件1008毗邻p型Ⅲ-氮化物层1003,其可帮助改进对有源层1002朝向p型层1003发射的光1009a的光提取。箭头1009a、1009b指示从LED的有源区1002发射的光的可能轨迹。图中还显示外部介质1010。
图11是图解说明一种用于制造Ⅲ-氮化物发光二极管(LED)的方法的流程图。
方框1100表示纹理化所述LED的Ⅲ-氮化物层的半极性或非极性平面的至少一个表面以形成经纹理化表面1006的步骤,其中通过等离子辅助化学蚀刻来执行所述纹理化步骤。可通过光刻之后进行蚀刻来执行所述纹理化步骤。可使用纳米压印之后进行蚀刻来形成经纹理化表面1006。可主要从经纹理化表面1006提取由所述LED的有源区发射的光。方框1100的纹理化步骤可进一步包括(也参考图4):
(1)方框1101,其表示形成带有至少一个侧壁42的至少一个特征40的步骤,所述至少一个侧壁反射44并透射43、46从特征40内部入射的至少一个光射线41,及
(2)方框1102,其表示如下步骤:使侧壁42倾斜以使得每次反射44射线时,射线44相对于侧壁42的表面法线n的入射角θ减小,从而(a)在该射线的入射角θ小于临界角(θC)时,该射线穿过侧壁42的透射46增加,且(b)在射线41、44的入射角θ至少等于θC时,该射线至少部分地由侧壁42反射44。θC是高于其会发生全内反射的临界角,θC=arcsin(nexternal/ninternal),其中next是外部介质1015的折射率且ninternal是内部介质(即,特征40)的折射率。表面法线n是垂直于侧壁42的幻影线。
方框1103(还指图4及图10)表示使用图11的方法制造的装置。所述装置可以为Ⅲ-氮化物发光二极管(LED),其包括n型Ⅲ-氮化物1001;p型Ⅲ-氮化物1003;用于发射光(1009a、1009b)的Ⅲ-氮化物有源层1002,其形成于n型Ⅲ-氮化物1001与p型Ⅲ-氮化物1003之间;Ⅲ-氮化物光提取表面1006,其位于衬底1007上或n型Ⅲ-氮化物1001上并与外部介质1010形成界面,其中Ⅲ-氮化物光提取表面1006具有带有至少一个倾斜侧壁42的特征40,所述至少一个倾斜侧壁在所述界面处将光1009b透射到外部介质1010中并在所述界面处反射所述光,其中:(1)经反射的光44在于特征40内部经历若干后续反射45之后在界面42处具有增加的入射角(90°-θ)且因此被透射1009b至外部介质1010的机会增加,且(2)n型Ⅲ-氮化物1001、p型Ⅲ-氮化物1003及Ⅲ-氮化物有源层1002是半极性或非极性层。外部介质1010通常是折射率小于Ⅲ-氮化物的介质,例如空气或真空。
在以上说明中,Ⅲ-氮化物可称为Ⅲ族氮化物或仅称为氮化物或(Al、Ga、In、B)N或Al(1-x-y)InyGaxN,其中0<x<1及0<y<1。
优点及改进
本发明的一个最值得注意的优点在于其显着增加从基于氮化物的LED(包含沿非极性及半极性定向生长的LED)的光提取效率。另外,与其它光提取增强技术(例如,使用光子晶体)相比较,此发明更直接。更重要的是,不同于也是简单光提取增强技术的PEC蚀刻,此发明本更通用,因为其可应用于任何氮化物半导体表面而不管其晶体结构如何。本发明将实现高功率及高效率LED。
参考文献
以下参考文献以引用方式并入本文中:
1.http://www.engadget.com/2006/12/12/seoul-semiconductor-squeezes-240-lumens-into-brightest-led
2.应用物理快报(Appl.Phys.Lett.),69(27),pp.4188-2190(1996)。
3.MRS互联网J.氮化物半导体(MRS Internet J.Nitride Semicond.),Res3,(15)(1998)。
4.物理固态相学B(Phys.Status Solidi B),216(1),pp.391-398(1999).
5.J.应用物理(J.Appl.Phys.),100,pp.023522-023522-10(2006).
6.自然(Nature),406,pp.865-868(2000).
7.Jpn.J.应用物理(Jpn.J.Appl.Phys.)42,pp.L1039-1040(2003).
8.应用物理学报,87,pp.231110-231110-3(2005).
9.Jpn.J.应用物理,45,pp.L904-L906(2006).
10.J.应用物理,100,pp.113109-113109-5(2006).
11.Jpn.J.应用物理,46,pp.L154-L157(2007).
12.Jpn.J.应用物理,46,pp.L129-L131(2007).
13.应用物理快报,90,pp.233504-233504-3(2007).
14.电子学快报(Electronics Lett.),43.No.15(2007).
15.物理固态相学(RRL),1,No.4,pp.162-164(2007).
16.物理固态相学(a)178,pp.331(2000).
17.“发光二极管”(第二版),剑桥,pp.93
18.应用物理学报,79,pp.711-714(2001).
19.应用物理学报,84(6),pp.855-858(2004).
20.J.晶体生长(J.Crys.Grow.),298,pp.703-705(2007).
21.“GaN装置结构的高选择性PEC蚀刻(Highly Selective Etching of GaNDevice Structures)”,pp.80-90(2004)
总结
此对本发明的优选实施例的说明加以总结。已出于图解说明及说明的目的呈现对本发明的一个或一个以上实施例的前述描述。其并非打算穷尽列举或将本发明限于所揭示的精确形式。鉴于以上教示,可做出许多修改及变更。本发明的范围不打算受此实施方式的限制而仅受以上权利要求书的限制。

Claims (9)

1.一种用于制造III-氮化物发光二极管(LED)的方法,其包括:
纹理化所述LED的III-氮化物层的半极性或非极性平面的至少一个表面以形成经纹理化表面,其中通过等离子辅助化学蚀刻来执行所述纹理化步骤。
2.如权利要求1所述的方法,其中通过光刻之后进行所述蚀刻来执行所述纹理化步骤。
3.如权利要求1所述的方法,其中使用纳米压印之后进行所述蚀刻来形成所述经纹理化表面。
4.如权利要求1所述的方法,其中从所述经纹理化表面提取由所述LED的有源区发射的光。
5.如权利要求1所述的方法,其中所述纹理化步骤进一步包括:
(1)形成带有至少一个侧壁的至少一个特征,所述至少一个侧壁反射并透射从所述特征内部入射的至少一个光射线;及
(2)使所述侧壁倾斜,以使得每次反射所述射线时所述射线相对于所述侧壁的表面法线的入射角减小,从而:
(a)在所述射线的所述入射角小于临界角时,所述射线穿过所述侧壁的透射增加,且
(b)在所述射线的所述入射角至少等于所述临界角时,所述侧壁反射所述射线。
6.一种用于从III-氮化物发光二极管(LED)发射光的方法,其包括:
从所述LED的III-氮化物层的半极性或非极性平面的至少一个经纹理化表面发射所述光,其中通过等离子辅助化学蚀刻来执行所述纹理化。
7.一种III-氮化物发光二极管(LED),其包括:
(a)n型III-氮化物;
(b)p型III-氮化物;
(c)发射光的III-氮化物有源层,其形成于所述n型III-氮化物与p型III-氮化物之间;
(d)III-氮化物光提取表面,其位于所述n型III-氮化物上并与外部介质形成界面,其中所述Ⅲ-氮化物光提取表面具有带有至少一个倾斜侧壁的特征,所述至少一个倾斜侧壁在所述界面处将所述光透射到外部介质空气中并在所述界面处反射所述光,其中:
(1)所述经反射的光在于所述特征内部经历若干后续反射之后具有增加的相对于所述界面的入射角且因此被透射到所述外部介质的机会增加,且
(2)所述n型III-氮化物、p型III-氮化物及III-氮化物有源层为半极性或非极性层。
8.如权利要求7所述的LED,其中所述外部介质为折射率小于III-氮化物的介质。
9.如权利要求7所述的LED,其中所述外部介质为空气或真空。
CN200880117788.7A 2007-11-30 2008-12-01 通过表面粗糙化的高光提取效率的基于氮化物的发光二极管 Expired - Fee Related CN101874307B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US99161707P 2007-11-30 2007-11-30
US60/991,617 2007-11-30
PCT/US2008/085191 WO2009070809A1 (en) 2007-11-30 2008-12-01 High light extraction efficiency nitride based light emitting diode by surface roughening

Publications (2)

Publication Number Publication Date
CN101874307A true CN101874307A (zh) 2010-10-27
CN101874307B CN101874307B (zh) 2014-06-18

Family

ID=40679029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880117788.7A Expired - Fee Related CN101874307B (zh) 2007-11-30 2008-12-01 通过表面粗糙化的高光提取效率的基于氮化物的发光二极管

Country Status (7)

Country Link
US (3) US8114698B2 (zh)
EP (1) EP2218114A4 (zh)
JP (2) JP2011505700A (zh)
KR (1) KR20100097179A (zh)
CN (1) CN101874307B (zh)
TW (2) TWI452726B (zh)
WO (1) WO2009070809A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623579A (zh) * 2011-01-28 2012-08-01 展晶科技(深圳)有限公司 半导体发光芯片制造方法
CN104300062A (zh) * 2013-07-18 2015-01-21 Lg伊诺特有限公司 发光器件
CN106972346A (zh) * 2010-03-04 2017-07-21 加利福尼亚大学董事会 在C‑方向错切小于+/‑15度的m‑平面基底上的半极性III‑氮化物光电子装置
WO2017124879A1 (zh) * 2016-01-18 2017-07-27 厦门市三安光电科技有限公司 一种半极性led结构及其制备方法
CN110034216A (zh) * 2018-01-12 2019-07-19 中国科学院苏州纳米技术与纳米仿生研究所 Iii-v族氮化物深紫外发光二极管结构及其制作方法
CN112968085A (zh) * 2020-12-04 2021-06-15 重庆康佳光电技术研究院有限公司 一种外延片的制作方法、芯片的制作方法及芯片

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073400A1 (en) 2006-12-11 2008-06-19 The Regents Of The University Of California Transparent light emitting diodes
WO2009015386A1 (en) 2007-07-26 2009-01-29 The Regents Of The University Of California Light emitting diodes with a p-type surface
EP2218114A4 (en) * 2007-11-30 2014-12-24 Univ California SURFACE MOUNTED ON A NITRIDE WITH HIGH LIGHT EXTRACTION EFFICIENCY THROUGH SURFACE WELDING
US8097081B2 (en) 2008-06-05 2012-01-17 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US9157167B1 (en) 2008-06-05 2015-10-13 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US8871024B2 (en) 2008-06-05 2014-10-28 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US9404197B2 (en) 2008-07-07 2016-08-02 Soraa, Inc. Large area, low-defect gallium-containing nitride crystals, method of making, and method of use
WO2011044554A1 (en) 2009-10-09 2011-04-14 Soraa, Inc. Method for synthesis of high quality large area bulk gallium based crystals
US8021481B2 (en) 2008-08-07 2011-09-20 Soraa, Inc. Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride
US8979999B2 (en) 2008-08-07 2015-03-17 Soraa, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US8430958B2 (en) 2008-08-07 2013-04-30 Soraa, Inc. Apparatus and method for seed crystal utilization in large-scale manufacturing of gallium nitride
US7976630B2 (en) 2008-09-11 2011-07-12 Soraa, Inc. Large-area seed for ammonothermal growth of bulk gallium nitride and method of manufacture
US8354679B1 (en) 2008-10-02 2013-01-15 Soraa, Inc. Microcavity light emitting diode method of manufacture
US8455894B1 (en) 2008-10-17 2013-06-04 Soraa, Inc. Photonic-crystal light emitting diode and method of manufacture
US9589792B2 (en) 2012-11-26 2017-03-07 Soraa, Inc. High quality group-III metal nitride crystals, methods of making, and methods of use
USRE47114E1 (en) 2008-12-12 2018-11-06 Slt Technologies, Inc. Polycrystalline group III metal nitride with getter and method of making
US8461071B2 (en) 2008-12-12 2013-06-11 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
US8878230B2 (en) 2010-03-11 2014-11-04 Soraa, Inc. Semi-insulating group III metal nitride and method of manufacture
US9543392B1 (en) 2008-12-12 2017-01-10 Soraa, Inc. Transparent group III metal nitride and method of manufacture
US8987156B2 (en) 2008-12-12 2015-03-24 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8299473B1 (en) 2009-04-07 2012-10-30 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
US8791499B1 (en) 2009-05-27 2014-07-29 Soraa, Inc. GaN containing optical devices and method with ESD stability
US9000466B1 (en) 2010-08-23 2015-04-07 Soraa, Inc. Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening
US9293667B2 (en) 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
CN102630349B (zh) 2009-09-18 2017-06-13 天空公司 功率发光二极管及利用电流密度操作的方法
US20110186887A1 (en) * 2009-09-21 2011-08-04 Soraa, Inc. Reflection Mode Wavelength Conversion Material for Optical Devices Using Non-Polar or Semipolar Gallium Containing Materials
US8435347B2 (en) 2009-09-29 2013-05-07 Soraa, Inc. High pressure apparatus with stackable rings
JP2013510433A (ja) * 2009-11-03 2013-03-21 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 1つ以上の表面上において酸化亜鉛(ZnO)ナノロッドアレイを利用する発光ダイオード構造、およびそのようなZnOナノロッドアレイを製作するための低コスト方法
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8740413B1 (en) 2010-02-03 2014-06-03 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US20110215348A1 (en) * 2010-02-03 2011-09-08 Soraa, Inc. Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials
US9564320B2 (en) 2010-06-18 2017-02-07 Soraa, Inc. Large area nitride crystal and method for making it
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US20120007102A1 (en) * 2010-07-08 2012-01-12 Soraa, Inc. High Voltage Device and Method for Optical Devices
US8729559B2 (en) 2010-10-13 2014-05-20 Soraa, Inc. Method of making bulk InGaN substrates and devices thereon
CN101964386A (zh) * 2010-10-25 2011-02-02 厦门市三安光电科技有限公司 一种粗化表面发光二极管制作方法
US8896235B1 (en) 2010-11-17 2014-11-25 Soraa, Inc. High temperature LED system using an AC power source
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US8846421B2 (en) 2011-03-10 2014-09-30 Mds Co. Ltd. Method of manufacturing lead frame for light-emitting device package and light-emitting device package
JP5862354B2 (ja) 2011-04-15 2016-02-16 三菱化学株式会社 窒化物系発光ダイオード素子とその製造方法
US10319881B2 (en) 2011-06-15 2019-06-11 Sensor Electronic Technology, Inc. Device including transparent layer with profiled surface for improved extraction
US10522714B2 (en) 2011-06-15 2019-12-31 Sensor Electronic Technology, Inc. Device with inverted large scale light extraction structures
WO2012174367A2 (en) * 2011-06-15 2012-12-20 Sensor Electronic Technology, Inc. Device with inverted large scale light extraction structures
US9142741B2 (en) 2011-06-15 2015-09-22 Sensor Electronic Technology, Inc. Emitting device with improved extraction
US9741899B2 (en) * 2011-06-15 2017-08-22 Sensor Electronic Technology, Inc. Device with inverted large scale light extraction structures
US9337387B2 (en) 2011-06-15 2016-05-10 Sensor Electronic Technology, Inc. Emitting device with improved extraction
WO2013001781A1 (ja) * 2011-06-27 2013-01-03 パナソニック株式会社 窒化物系半導体発光素子
US8492185B1 (en) 2011-07-14 2013-07-23 Soraa, Inc. Large area nonpolar or semipolar gallium and nitrogen containing substrate and resulting devices
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US9488324B2 (en) 2011-09-02 2016-11-08 Soraa, Inc. Accessories for LED lamp systems
WO2013050917A1 (en) * 2011-10-06 2013-04-11 Koninklijke Philips Electronics N.V. Surface treatment of a semiconductor light emitting device
US20130087780A1 (en) * 2011-10-07 2013-04-11 Southern Taiwan University Of Technology Group iii nitride semiconductor light emitting diode
US9694158B2 (en) 2011-10-21 2017-07-04 Ahmad Mohamad Slim Torque for incrementally advancing a catheter during right heart catheterization
US10029955B1 (en) 2011-10-24 2018-07-24 Slt Technologies, Inc. Capsule for high pressure, high temperature processing of materials and methods of use
KR101861997B1 (ko) * 2011-10-31 2018-05-29 엘지이노텍 주식회사 발광소자 및 발광소자 제조방법
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
KR101294000B1 (ko) * 2011-12-16 2013-08-07 (재)한국나노기술원 임프린트 스템프를 이용한 발광다이오드 소자의 제조 방법
US8482104B2 (en) 2012-01-09 2013-07-09 Soraa, Inc. Method for growth of indium-containing nitride films
RU2504867C2 (ru) * 2012-01-10 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники Способ изготовления светодиода
KR102158440B1 (ko) 2012-01-10 2020-09-23 루미리즈 홀딩 비.브이. 선택적인 영역 조면화에 의해 제어되는 led 광 출력
WO2013105015A1 (en) 2012-01-12 2013-07-18 Koninklijke Philips N.V. Sidewall etching of led die to improve light extraction
KR102022659B1 (ko) * 2012-02-20 2019-11-04 서울바이오시스 주식회사 고효율 발광 다이오드 및 그것을 제조하는 방법
JP2015509669A (ja) * 2012-03-06 2015-03-30 ソラア インコーポレーテッドSoraa Inc. 導波光効果を低減させる低屈折率材料層を有する発光ダイオード
US8985794B1 (en) 2012-04-17 2015-03-24 Soraa, Inc. Providing remote blue phosphors in an LED lamp
JP5900131B2 (ja) * 2012-04-24 2016-04-06 豊田合成株式会社 発光装置
US10145026B2 (en) 2012-06-04 2018-12-04 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US8971368B1 (en) 2012-08-16 2015-03-03 Soraa Laser Diode, Inc. Laser devices having a gallium and nitrogen containing semipolar surface orientation
KR101389049B1 (ko) * 2012-08-29 2014-04-28 한국산업기술대학교산학협력단 산화 아연계 투명 전극을 이용한 반극성 질화물계 발광 소자
US9275912B1 (en) 2012-08-30 2016-03-01 Soraa, Inc. Method for quantification of extended defects in gallium-containing nitride crystals
US9299555B1 (en) 2012-09-28 2016-03-29 Soraa, Inc. Ultrapure mineralizers and methods for nitride crystal growth
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US8802471B1 (en) 2012-12-21 2014-08-12 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
WO2014141691A1 (ja) 2013-03-15 2014-09-18 パナソニック株式会社 発光モジュール
KR101389462B1 (ko) * 2013-04-10 2014-04-28 주식회사 소프트에피 3족 질화물 반도체 소자
RU2528112C1 (ru) * 2013-04-26 2014-09-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) Ультрафиолетовый светодиод на нитридных гетероструктурах
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
DE102013108876B4 (de) * 2013-08-16 2022-08-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Fotolithografisches Verfahren zur Herstellung einer Struktur in einem Strahlung emittierenden Halbleiterbauelement
TW201511327A (zh) 2013-09-06 2015-03-16 Ind Tech Res Inst 發光二極體
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
RU2546719C1 (ru) * 2013-12-05 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУ ВПО "СГГА") Способ получения рельефа на поверхности
JP2015207752A (ja) * 2014-04-08 2015-11-19 パナソニックIpマネジメント株式会社 窒化物半導体発光ダイオード
WO2017127461A1 (en) 2016-01-18 2017-07-27 Sensor Electronic Technology, Inc. Semiconductor device with improved light propagation
WO2018038927A1 (en) 2016-08-26 2018-03-01 The Penn State Research Foundation High light-extraction efficiency (lee) light-emitting diode (led)
US10174438B2 (en) 2017-03-30 2019-01-08 Slt Technologies, Inc. Apparatus for high pressure reaction
US10564356B2 (en) 2017-11-16 2020-02-18 Samsung Electronics Co., Ltd. Heterogeneous integrated circuit for short wavelengths
US11393765B2 (en) 2017-11-16 2022-07-19 Samsung Electronics Co., Ltd. Heterogeneous integrated circuit for short wavelengths
US11466384B2 (en) 2019-01-08 2022-10-11 Slt Technologies, Inc. Method of forming a high quality group-III metal nitride boule or wafer using a patterned substrate
JP2023513570A (ja) 2020-02-11 2023-03-31 エスエルティー テクノロジーズ インコーポレイテッド 改善されたiii族窒化物基板、その製造方法、並びにその使用方法
US11721549B2 (en) 2020-02-11 2023-08-08 Slt Technologies, Inc. Large area group III nitride crystals and substrates, methods of making, and methods of use
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device
RU2755769C1 (ru) * 2021-02-25 2021-09-21 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления светоизлучающего диода

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007252A (en) * 1934-07-09 1935-07-09 Lockwoven Hosiery Company Burial garment
JPH08293489A (ja) * 1995-04-25 1996-11-05 Sharp Corp 窒化ガリウム系化合物半導体のドライエッチング方法
JP3252702B2 (ja) * 1996-03-28 2002-02-04 信越半導体株式会社 気相エッチング工程を含む半導体単結晶鏡面ウエーハの製造方法およびこの方法で製造される半導体単結晶鏡面ウエーハ
US5770919A (en) * 1996-12-31 1998-06-23 Micron Technology, Inc. Field emission device micropoint with current-limiting resistive structure and method for making same
US6413874B1 (en) 1997-12-26 2002-07-02 Canon Kabushiki Kaisha Method and apparatus for etching a semiconductor article and method of preparing a semiconductor article by using the same
DE10000759C1 (de) * 2000-01-11 2001-05-23 Infineon Technologies Ag Verfahren zur Erzeugung von Justiermarken
US20030222263A1 (en) * 2002-06-04 2003-12-04 Kopin Corporation High-efficiency light-emitting diodes
JP2004111514A (ja) 2002-09-17 2004-04-08 Sanyo Electric Co Ltd 窒化物系半導体発光素子およびその製造方法
US7786503B2 (en) * 2002-12-27 2010-08-31 Momentive Performance Materials Inc. Gallium nitride crystals and wafers and method of making
JP4396816B2 (ja) * 2003-10-17 2010-01-13 日立電線株式会社 Iii族窒化物半導体基板およびその製造方法
KR101156146B1 (ko) 2003-12-09 2012-06-18 재팬 사이언스 앤드 테크놀로지 에이젼시 질소면의 표면상의 구조물 제조를 통한 고효율 3족 질화물계 발광다이오드
US7408201B2 (en) * 2004-03-19 2008-08-05 Philips Lumileds Lighting Company, Llc Polarized semiconductor light emitting device
US7517728B2 (en) * 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
EP1787330A4 (en) 2004-05-10 2011-04-13 Univ California MANUFACTURE OF ULTRA-THIN FILMS OF INDIUM AND GALLIUM NITRIDE, HETEROSTRUCTURES AND OTHER PARTS BY ORGANOMETALLIC VAPOR DEPOSITION
JP5194334B2 (ja) * 2004-05-18 2013-05-08 住友電気工業株式会社 Iii族窒化物半導体デバイスの製造方法
US7534633B2 (en) * 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
JP4572645B2 (ja) * 2004-09-30 2010-11-04 パナソニック電工株式会社 発光素子の製造方法
US7932111B2 (en) * 2005-02-23 2011-04-26 Cree, Inc. Substrate removal process for high light extraction LEDs
KR100610639B1 (ko) * 2005-07-22 2006-08-09 삼성전기주식회사 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
JP4843284B2 (ja) * 2005-09-22 2011-12-21 パナソニック電工株式会社 半導体発光素子およびその製造方法
JP2009518874A (ja) 2005-12-08 2009-05-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高効率発光ダイオード(led)
JP2007165409A (ja) * 2005-12-09 2007-06-28 Rohm Co Ltd 半導体発光素子及び半導体発光素子の製造方法
JP4986445B2 (ja) * 2005-12-13 2012-07-25 昭和電工株式会社 窒化ガリウム系化合物半導体発光素子
TWI325642B (en) * 2005-12-14 2010-06-01 Showa Denko Kk Gallium nitride type compound semiconductor light-emitting device and process for producing the same
WO2007098215A2 (en) * 2006-02-17 2007-08-30 The Regents Of The University Of California Method for growth of semipolar (al,in,ga,b)n optoelectronic devices
JP2009536606A (ja) * 2006-05-09 2009-10-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 非極性および半極性(Al、Ga、In)Nの原位置欠陥低減技術
TWI304278B (en) * 2006-06-16 2008-12-11 Ind Tech Res Inst Semiconductor emitting device substrate and method of fabricating the same
US7737636B2 (en) * 2006-11-09 2010-06-15 Intematix Corporation LED assembly with an LED and adjacent lens and method of making same
EP2095437A4 (en) * 2006-11-15 2013-11-20 Univ California SPHERE LED WITH HIGH LIGHT EXTRACTION EFFICIENCY
JP2008305971A (ja) * 2007-06-07 2008-12-18 Rohm Co Ltd 発光素子
US7858995B2 (en) * 2007-08-03 2010-12-28 Rohm Co., Ltd. Semiconductor light emitting device
JP2009081374A (ja) * 2007-09-27 2009-04-16 Rohm Co Ltd 半導体発光素子
EP2218114A4 (en) * 2007-11-30 2014-12-24 Univ California SURFACE MOUNTED ON A NITRIDE WITH HIGH LIGHT EXTRACTION EFFICIENCY THROUGH SURFACE WELDING

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972346A (zh) * 2010-03-04 2017-07-21 加利福尼亚大学董事会 在C‑方向错切小于+/‑15度的m‑平面基底上的半极性III‑氮化物光电子装置
CN106972346B (zh) * 2010-03-04 2019-12-10 加利福尼亚大学董事会 在C-方向错切小于+/-15度的m-平面基底上的半极性III-氮化物光电子装置
US11552452B2 (en) 2010-03-04 2023-01-10 The Regents Of The University Of California Semi-polar III-nitride optoelectronic devices on m-plane substrates with miscuts less than +/− 15 degrees in the c-direction
CN102623579A (zh) * 2011-01-28 2012-08-01 展晶科技(深圳)有限公司 半导体发光芯片制造方法
CN104300062A (zh) * 2013-07-18 2015-01-21 Lg伊诺特有限公司 发光器件
CN104300062B (zh) * 2013-07-18 2019-01-29 Lg伊诺特有限公司 发光器件
WO2017124879A1 (zh) * 2016-01-18 2017-07-27 厦门市三安光电科技有限公司 一种半极性led结构及其制备方法
CN110034216A (zh) * 2018-01-12 2019-07-19 中国科学院苏州纳米技术与纳米仿生研究所 Iii-v族氮化物深紫外发光二极管结构及其制作方法
CN112968085A (zh) * 2020-12-04 2021-06-15 重庆康佳光电技术研究院有限公司 一种外延片的制作方法、芯片的制作方法及芯片

Also Published As

Publication number Publication date
TW201442280A (zh) 2014-11-01
WO2009070809A1 (en) 2009-06-04
US8835200B2 (en) 2014-09-16
KR20100097179A (ko) 2010-09-02
EP2218114A1 (en) 2010-08-18
US20140346542A1 (en) 2014-11-27
US8114698B2 (en) 2012-02-14
CN101874307B (zh) 2014-06-18
US20120104412A1 (en) 2012-05-03
EP2218114A4 (en) 2014-12-24
JP2015065481A (ja) 2015-04-09
JP2011505700A (ja) 2011-02-24
TW200939540A (en) 2009-09-16
TWI452726B (zh) 2014-09-11
US20090146170A1 (en) 2009-06-11
US9040326B2 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
CN101874307B (zh) 通过表面粗糙化的高光提取效率的基于氮化物的发光二极管
CN1996626B (zh) 氮化物基发光器件及其制造方法
JP4557542B2 (ja) 窒化物発光装置及び高発光効率窒化物発光装置
TWI231077B (en) Semiconductor light emitting device and its manufacturing method
JP7022997B2 (ja) 半導体素子およびこれを含む半導体素子パッケージ
US7705363B2 (en) Light emitting device having a light extraction structure
Monemar et al. Nanowire-based visible light emitters, present status and outlook
JP2014197704A (ja) 発光デバイスおよび発光デバイスの作製方法
JP2004363532A (ja) 垂直構造窒化ガリウム系発光ダイオードの製造方法
CN103681996B (zh) 一种紫外发光二极管及其制备方法
JP2006332383A (ja) 半導体発光素子およびその製造方法
KR20160067145A (ko) 반도체 발광소자용 기판의 제조방법, 반도체 발광소자의 제조방법, 반도체 발광소자용 기판 및 반도체 발광소자
CN100580966C (zh) 一种绿光发光二极管
US20130153951A1 (en) Semiconductor light-emitting device
CN103311397A (zh) 通过压力缓降生长改进的LED的p-GaN层
JP2010267699A (ja) 発光ダイオードおよびその製造方法
WO2021035676A1 (zh) 一种超薄结构深紫外led及其制备方法
WO2023087314A1 (zh) 发光二极管及制备方法和显示面板
KR20070011041A (ko) 광추출 효율을 높인 발광다이오드 소자 및 이의 제조방법
CN107863421A (zh) 发光器件及其制造方法
KR101097888B1 (ko) 질화물계 반도체 발광 소자 및 기판 제조 방법
TWI643359B (zh) 發光二極體
JP2011082587A (ja) 表面粗化による高効率窒化ガリウムベースの発光ダイオード
JP2010157772A (ja) 窒化物発光装置及び高発光効率窒化物発光装置
JP2010147192A (ja) 半導体発光素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140618

Termination date: 20151201

EXPY Termination of patent right or utility model