RU2546719C1 - Способ получения рельефа на поверхности - Google Patents

Способ получения рельефа на поверхности Download PDF

Info

Publication number
RU2546719C1
RU2546719C1 RU2013154157/28A RU2013154157A RU2546719C1 RU 2546719 C1 RU2546719 C1 RU 2546719C1 RU 2013154157/28 A RU2013154157/28 A RU 2013154157/28A RU 2013154157 A RU2013154157 A RU 2013154157A RU 2546719 C1 RU2546719 C1 RU 2546719C1
Authority
RU
Russia
Prior art keywords
crystal
erosion
radiation
laser
depth
Prior art date
Application number
RU2013154157/28A
Other languages
English (en)
Inventor
Владимир Владимирович Чесноков
Дмитрий Владимирович Чесноков
Денис Вячеславович Кочкарев
Максим Викторович Кузнецов
Валерий Андреевич Райхерт
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУ ВПО "СГГА")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУ ВПО "СГГА") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУ ВПО "СГГА")
Priority to RU2013154157/28A priority Critical patent/RU2546719C1/ru
Application granted granted Critical
Publication of RU2546719C1 publication Critical patent/RU2546719C1/ru

Links

Images

Abstract

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике. Cпособ получения рельефа на поверхности светоизлучающих кристаллов полупроводниковых светодиодов локальными эрозионными воздействиями на поверхность, при этом в соответствии с изобретением, эрозия производится оптико-термическим действием импульсного лазерного излучения, проникающего в кристалл, с глубиной поглощения в кристалле, близкой к глубине эрозии, и длительностью лазерных импульсов, меньшей времени распространения тепловой волны нагревания кристалла на глубину эрозии, причем энергия импульса лазерного излучения не менее приводящей к процессу поверхностного испарения кристалла. Изобретение обеспечивает возможность повышения эффективности излучения светодиодов. 1 з.п. ф-лы, 1 табл., 1 ил.

Description

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, к нелитографическим лазерным микротехнологиям формирования на подложках тонкопленочных структур.
При изготовлении полупроводниковых светодиодов имеется проблема эффективного выхода излучения из объема светоизлучающего кристалла в окружающую среду. Эффективность невысока в связи со значительным отражением света от поверхности кристалла, обычно изготовленного из полупроводника с высоким значением показателя преломления. Вследствие эффекта полного внутреннего отражения лучи, падающие на поверхность изнутри кристалла под углами больше критического угла полного отражения возвращаются в кристалл; через гладкую поверхность кристалла выходит менее 5% возникшего в кристалле излучения. Предложено несколько способов создания рельефа на выходной поверхности излучающего полупроводникового кристалла.
В работе [И.П. Смирнова и др. Увеличение квантовой эффективности флип-чип AlGaInN-светодиодов путем реактивного ионного травления внешней стороны подложек SiC // ФТП. - 2010. - Т.44, вып.5. - С.684-687], выбранной в качестве аналога представленного изобретения, развит метод создания рассеивающего свет микрорельефа на внешней стороне подложек SiC для уменьшения потерь при выводе света из светодиодного кристалла, связанных с эффектом полного внутреннего отражения в структурах AlGaIn/GaN. Предложено использовать тонкие слои фоторезиста в качестве случайных масок для процесса реактивного ионного травления подложки из карбида кремния. Оптимизацией режимов травления на поверхности подложки SiC получен микрорельеф с требуемыми параметрами, что привело к увеличению внешней квантовой эффективности светоизлучающих кристаллов более чем на 25%.
Недостатком аналога является сложность технологии и необходимость значительного времени для проведения реактивного ионного процесса.
В качестве прототипа выбрана работа [В.А. Карачинов, Д.В. Карачинов, М.В. Казакова. Теплофизические и оптические свойства микросистем с луночным рельефом на основе карбида кремния. ЖТФ, 2012, том 82, вып.8], в которой предложен электроэрозионный метод в варианте с жидким диэлектриком создания на поверхности тугоплавкого полупроводникового материала луночного рельефа. Поверхность подвергается воздействию электрических разрядов в жидкой диэлектрической среде, возникающие поверхностные эрозионные лунки распределены на поверхности беспорядочно. Метод создания рельефа является более производительным, технологическое оборудование дешевле.
Недостатком прототипа является невозможность управления соотношениями размеров в возникающей поверхностной лунке (отношением глубины лунки к диаметру), что может не позволить создавать высокоэффективные с точки зрения прохождения излучения рельефы.
Задачами, решаемыми в данном изобретении, являются:
- создание способа создания рельефной поверхности кристалла светодиода с увеличенной эффективностью вывода излучения,
- создание одностадийного способа создания рельефа, не требующего проведения некоторой последовательности технологических операций с переносами образцов из одной технологической установки в другую.
Задача решается тем, что в способе получения рельефа на поверхности светоизлучающих кристаллов полупроводниковых светодиодов локальными эрозионными воздействиями на поверхность, в соответствии с изобретением, эрозия производится оптико-термическим действием импульсного лазерного излучения, проникающего в кристалл с глубиной поглощения в кристалле, близкой к глубине эрозии, и длительностью лазерных импульсов, меньшей времени распространения тепловой волны нагревания кристалла на глубину эрозии, причем энергия импульса лазерного излучения не менее приводящей к процессу поверхностного испарения кристалла.
Предложено также, что лазерное облучение производят в импульсно-периодическом режиме.
В соответствии с изобретением, подложка облучается лазерным пучком локальными участками таким образом, что на поверхности возникают отдельные участки эрозии материала подложки вследствие оптико-термического воздействия излучения; облучение должно вестись импульсно, сфокусированным пучком, который может от импульса к импульсу перемещаться относительно подложки, или широким лазерным пучком, преобразованным в многолучевой при прохождении через специальную маску с несколькими отверстиями.
При фокусировании излучения на поверхность кремниевой подложки световая волна проникает в ее внутренние области; в начальный момент распределение интенсивности в подложке определяется формулой:
I(z,t=0)=Ipexp(-αz),
где z - координата точки в подложке, отсчитываемая от поверхности; α - коэффициент поглощения излучения; Ip - интенсивность поглощенного поверхностью излучения. Интенсивность мощного излучения может быть достаточной для нагревания облучаемой области за импульс до температуры плавления и испарения вещества подложки. Выделившаяся теплота внутри подложки распространяется за счет теплопроводности подложки
l T = χ t
Figure 00000001
,
где χ - теипературопроводность материала, lT - длина тепловой волны в материале, расстояние, которое пройдет температурный фронт за время лазерного импульса t. Температура в центре фокального пятна при гауссовском распределении интенсивности излучения по пятну определялась формулой:
Δ T = ( 1 R ) I 0 t 1 / 2 ( 2 k T ρ c ) 1 / 2
Figure 00000002
где ρ - плотность подложки, kT - теплопроводность, c - удельная теплоемкость, R - коэффициент отражения кремния, I0, Вт/м2 - интенсивность падающего на поверхность излучения.
При воздействии мощного импульсного лазерного излучения на поверхности полупроводников вследствие лучевого нагревания происходят фазовые переходы состояния поверхности - плавление и парообразование, возникают механические усилия, обусловленные изменениями объемов микрообластей материала и градиентами температур. Вопросы определения закономерностей процессов, происходящих при мощном облучении поверхностей, широко обсуждаются в известной научной литературе, но общепризнанной модели, определяющей связь между параметрами облучения и параметрами возникающей на поверхности подложки структуры, по нашим сведениям, нет. По оценкам, при использовании наносекундного импульсного излучения с интенсивностью порядка 1012 Вт/м2 за время импульса подложка может в области фокального пятна и в толще подложки под ним плавиться и испаряться, что приводит к термогидромеханическим эффектам самопроизвольного формирования объемных структур на поверхности подложки. Наши эксперименты показали, что лазерное импульсно-периодическое облучение кремния, карбида кремния и сапфира импульсами длительностью 6 нс позволяет получать на их поверхности в области фокального пятна неупорядоченные рельефы высотой несколько мкм при расстоянии между элементами рельефа от 0,1 до 5 мкм.
Как следует из общефизических соображений, характерные размеры элементов структурирования поверхности, возникающего в результате мощного облучения, должны уменьшаться по мере укорочения длительности импульсов облучения в связи с уменьшением области в облучаемой среде, в которой успевает распространяться выделившаяся тепловая энергия. Важным является также учет глубины поглощения излучения в материале.
В таблице приведены значения температуропроводности и глубины поглощения излучения на нескольких длинах волн для монокристаллических кремния, двуокиси алюминия (лейкосапфира) и карбида кремния.
Таблица
Температуропроводность и коэффициент поглощения излучения беспримесными монокристаллами при комнатной температуре
Материал χ, см2 α, см-1, длина волны λ=355 нм
Кремний 0,0747 4·103 λ=530 нм
Карбид кремния 2,3 <10 (легированный 2000)
Лейкосапфир 0,02 2,5
Оценки показывают, что для формирования поверхностных структур в приповерхностной области толщиной 10 мкм подложки при помощи лазерного облучения коэффициент поглощения должен быть равен α=103 см-1, длина тепловой волны в карбиде кремния при длительности лазерного импульса 10 нс равна lT=1,5 мкм; полученные значения удовлетворяют условию н.п.1 формулы изобретения при использовании кремния или карбида кремния. Для получения лазерным излучением рельефа на сапфире необходимо использовать лазерное излучение, поглощаемое в нем, например, в УФ-диапазоне спектра.
На фигуре 1 показана схема способа лазерного получения зоны эрозии на поверхности подложки. Здесь 1 - подложка светоизлучающего кристалла светодиода, 2 - образующийся рельефный слой, 3 - лазерный пучок, Λ, h, H - характерное значение расстояний между случайно раположенными элементами неупорядоченного рельефа, высота поверхностного рельефа, толщина преобразованного излучением слоя подложки, соответственно, L - ширина облученной зоны подложки.
При падении импульсного излучения 3 на поверхность подложки 1 в области с поперечником L возникает вследствие оптотермического выделения энергии зона эрозии поверхности глубиной H. Глубина зоны поглощения лазерного излучения равна H≈α-1 и регулируется путем подбора длины волны излучения, от которой зависит поглощение излучения в данном материале. Величина перепада высот рельефа 2 меньше глубины H преобразованного слоя. Энергию E импульса падающего лазерного излучения находим из условия, что поглощенная подложкой доля энергии лазерного импульса расходуется на нагревание объема подложки V≈L2H до температуры кипения Ткип, и в связи с малой длительностью импульса прилежащие к этому объему области подложки не успевают заметно нагреваться:
E 0 = E / L 2 ρ c H T к и п A
Figure 00000003
, где ρ, c - плотность и теплоемкость подложки, A - коэффициент поглощения излучения поверхностным слоем подложки, E0 - поверхностная плотность энергии падающего излучения. Формула носит оценочный характер, при выводе не учитывалась теплота плавления, опто-теплофизические константы считались не зависящими от температуры.
В случае облучения сапфировой подложки при значениях H=10 мкм, Ткип=3500°C, A=0,05 имеем E0=1,4·105 Дж/м2. Интенсивность излучения при длительности импульса 10 не равна 1,4·109 Вт/см2. Полученные значения параметров лазерного облучения достигаются в промышленных лазерных установках. Таким образом, условия облучения н.п.1 формулы изобретения могут быть реализованы.
При многократном повторении лазерных импульсов, что реализуется импульсно-периодическим режимом работы лазерного излучателя (п.2 формулы), эффекты эрозии в облучаемой зоне суммируются, что упрощает требования к мощности лазерного излучения и позволяет также управлять параметрами рельефа на эрозионной поверхности. Например, при увеличении числа импульсов и уменьшении импульсной лазерной мощности высота рельефа может быть уменьшена, а число элементов рельефа на участке облучения может быть увеличено.
Таким образом, показано, что новые элементы в предложениях обеспечивают возникновение полезных эффектов; показана реализуемость изобретения, показана достижимость целей изобретения.
Практическое применение изобретение может найти в технологиях изготовления эффективных светодиодов, возможно использование при создании оптических устройств с антибликовыми покрытиями.
Техническим результатом изобретения является способ повышения эффективности излучения светодиодов.

Claims (2)

1. Способ получения рельефа на поверхности светоизлучающих кристаллов полупроводниковых светодиодов локальными эрозионными воздействиями на поверхность, отличающийся тем, что эрозия производится оптико-термическим действием импульсного лазерного излучения, проникающего в кристалл с глубиной поглощения в кристалле, близкой к глубине эрозии, и длительностью лазерных импульсов, меньшей времени распространения тепловой волны нагревания кристалла на глубину эрозии, причем энергия импульса лазерного излучения не менее приводящей к процессу поверхностного испарения кристалла.
2. Способ по п.1, отличающийся тем, что лазерное облучение производят в импульсно-периодическом режиме.
RU2013154157/28A 2013-12-05 2013-12-05 Способ получения рельефа на поверхности RU2546719C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013154157/28A RU2546719C1 (ru) 2013-12-05 2013-12-05 Способ получения рельефа на поверхности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013154157/28A RU2546719C1 (ru) 2013-12-05 2013-12-05 Способ получения рельефа на поверхности

Publications (1)

Publication Number Publication Date
RU2546719C1 true RU2546719C1 (ru) 2015-04-10

Family

ID=53295963

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013154157/28A RU2546719C1 (ru) 2013-12-05 2013-12-05 Способ получения рельефа на поверхности

Country Status (1)

Country Link
RU (1) RU2546719C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613054C1 (ru) * 2015-10-15 2017-03-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Способ формирования тонкоплёночного рисунка на подложке

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311801A (ja) * 2006-05-19 2007-11-29 Samsung Electro Mech Co Ltd 窒化物系半導体発光素子の製造方法
EP2218114A1 (en) * 2007-11-30 2010-08-18 The Regents of the University of California High light extraction efficiency nitride based light emitting diode by surface roughening
RU2416135C2 (ru) * 2006-10-27 2011-04-10 Кэнон Кабусики Кайся Полупроводниковый элемент, способ изготовления полупроводникового изделия и матрица светоизлучающих диодов, полученная с использованием этого способа изготовления
RU2012100323A (ru) * 2012-01-10 2013-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники Способ изготовления светодиода

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311801A (ja) * 2006-05-19 2007-11-29 Samsung Electro Mech Co Ltd 窒化物系半導体発光素子の製造方法
RU2416135C2 (ru) * 2006-10-27 2011-04-10 Кэнон Кабусики Кайся Полупроводниковый элемент, способ изготовления полупроводникового изделия и матрица светоизлучающих диодов, полученная с использованием этого способа изготовления
EP2218114A1 (en) * 2007-11-30 2010-08-18 The Regents of the University of California High light extraction efficiency nitride based light emitting diode by surface roughening
RU2012100323A (ru) * 2012-01-10 2013-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники Способ изготовления светодиода

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613054C1 (ru) * 2015-10-15 2017-03-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Способ формирования тонкоплёночного рисунка на подложке

Similar Documents

Publication Publication Date Title
Liu et al. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications
Phillips et al. Ultrafast laser processing of materials: a review
US6677552B1 (en) System and method for laser micro-machining
Gu et al. Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser
Wang et al. A review on laser drilling and cutting of silicon
RU2401185C2 (ru) Способ лазерной обработки и устройство обработки, основанные на обычных вызванных лазером изменениях материала
Baseman et al. Minimum fluence for laser blow‐off of thin gold films at 248 and 532 nm
Wang et al. Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales
Chen et al. Multilayered structuring of thin-film PV modules by ultrafast laser ablation
Huang et al. Uniformity control of laser-induced periodic surface structures
RU2546719C1 (ru) Способ получения рельефа на поверхности
Zheng et al. Polarisation-independence of femtosecond laser machining of fused silica
Li et al. Fibre laser microvia drilling and ablation of Si with tuneable pulse shapes
Singh et al. Laser micromachining of semiconductor materials
Bäuerle et al. Nanosecond-laser ablation
Fornaroli et al. Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps.
Liu et al. Fabrication of 4H–SiC microvias using a femtosecond laser assisted by a protective layer
Chen et al. Fundamentals of Laser Ablation of the Materials Used in Microfluiducs
Dahal et al. Sub-surface laser damage in sapphire and silicon: A path towards laser wafering
Tokarev Mechanism of laser drilling superhigh-aspect-ratio holes in polymers
WO2018034237A1 (ja) レーザー加工方法、加工物の製造方法、及びレーザー加工装置
TW202021705A (zh) 具有孔洞之透明基板及其製造方法
Kovivchak et al. Wavy microstructures formed at the SiO 2/Si interface under the action of high-power ion-beam pulses
Novoselov V-Scoring of Silicon Instrument Plates by Laser Radiation in Water Medium
Hendow et al. Dynamic pulsing of a MOPA fiber laser for enhanced material processing

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181206