CN101800161B - 等离子体蚀刻方法和等离子体蚀刻装置 - Google Patents

等离子体蚀刻方法和等离子体蚀刻装置 Download PDF

Info

Publication number
CN101800161B
CN101800161B CN2010101039693A CN201010103969A CN101800161B CN 101800161 B CN101800161 B CN 101800161B CN 2010101039693 A CN2010101039693 A CN 2010101039693A CN 201010103969 A CN201010103969 A CN 201010103969A CN 101800161 B CN101800161 B CN 101800161B
Authority
CN
China
Prior art keywords
plasma
high frequency
frequency power
condition
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010101039693A
Other languages
English (en)
Other versions
CN101800161A (zh
Inventor
八田浩一
大矢欣伸
冈本晋
持木宏政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN101800161A publication Critical patent/CN101800161A/zh
Application granted granted Critical
Publication of CN101800161B publication Critical patent/CN101800161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明提供一种等离子体蚀刻方法和等离子体蚀刻装置。该等离子体蚀刻方法,能够以形状性能良好且高蚀刻率对被蚀刻膜进行蚀刻从而形成高深宽比的孔。当通过等离子体蚀刻在蚀刻对象膜形成孔时,接通等离子体生成用高频电力施加单元,在处理容器内生成等离子体,并且交替反复以下第一条件和第二条件:第一条件,从直流电源对上部电极施加负的直流电压,第二条件,关断等离子体生成用高频电力施加单元使处理容器内的等离子体猝灭,并且从直流电源对上部电极施加负的直流电压,利用第一条件由等离子体中的正离子使蚀刻进行,利用第二条件生成负离子,由所述直流电压将负离子供向上述孔内,由此中和孔内的正电荷。

Description

等离子体蚀刻方法和等离子体蚀刻装置
技术领域
本发明涉及对半导体基板等被处理基板实施等离子体蚀刻的等离子体蚀刻方法、等离子体蚀刻装置和存储介质。
背景技术
在例如半导体器件的制造工艺中,为了在形成于作为被处理基板的半导体晶片的规定的层形成规定的图案,多采用将抗蚀剂作为掩膜、通过等离子体进行蚀刻的等离子体蚀刻处理。
作为用于进行这样的等离子体蚀刻的等离子体蚀刻装置,能够使用各种装置,其中,电容耦合型平行平板等离子体蚀刻装置是主流。
电容耦合型平行平板等离子体装置,在腔室内配置一对平行平板电极(上部和下部电极),将处理气体导入腔室内,并且对电极的至少一个施加高频电力而在电极间形成高频电场,通过该高频电场生成处理气体的等离子体,对半导体晶片的规定的层施加等离子体蚀刻。
具体而言,已知一种等离子体蚀刻装置(例如专利文献1),其通过施加等离子体形成用的相对较高频率的高频电力和离子引入用的相对较低频率的高频电力来形成适当的等离子体状态,由此,能够以高选择比实现再现性高的蚀刻处理。而且,在这种蚀刻中,使用在等离子体中正离子占支配地位的处理气体进行蚀刻。
然而,近来,随着半导体器件的微细化的发展,要求深宽比为20以上的HARC(High Aspect Ratio Contact)蚀刻。在这样的HARC蚀刻中作为蚀刻掩膜的光抗蚀剂带负电,在蚀刻初期,电荷在蚀刻面中和,但是当随蚀刻进行而深宽比变高时,正离子在孔的底部积存,使得蚀刻面带正电。因此,对蚀刻的促进起重要作用的正离子在孔内由于排斥而转向,导致产生蚀刻形状的歪曲、变形。此外,正离子难以到达孔的底部,因此导致蚀刻率低下。
专利文献1:日本特开2000-173993号公报
发明内容
本发明是鉴于上述问题而完成的,目的在于提供一种等离子体蚀刻方法和等离子体蚀刻装置,能够形状特性良好且以高蚀刻率对被蚀刻膜进行蚀刻从而形成高深宽比的孔。
此外,本发明的目的在于提供一种存储介质,存储使这种等离子体蚀刻方法得以实行的程序。
为了解决上述问题,本发明的第一方面的等离子体蚀刻方法,其使用等离子体蚀刻装置在蚀刻对象膜形成孔,该等离子体蚀刻装置包括:收纳被处理体且内部能够被真空排气的处理容器、配置于上述处理容器内作为被处理体的载置台发挥作用的下部电极、与上述下部电极相对置地配置于上述处理容器内的上部电极、向上述处理容器内供给处理气体的处理气体供给单元、对上述上部电极或下部电极的至少一方施加等离子体生成用的高频电力的等离子体生成用高频电力施加单元、和对上述上部电极施加负的直流电压的直流电源,上述等离子体蚀刻方法的特征在于:交替反复第一条件和第二条件,其中,上述第一条件为,接通上述等离子体生成用高频电力施加单元,在上述处理容器内生成等离子体,并且从上述直流电源对上述上部电极施加负的直流电压;上述第二条件为,关断上述等离子体生成用高频电力施加单元,使上述处理容器内的等离子体猝灭,并且从上述直流电源对上述上部电极施加负的直流电压,利用上述第一条件由等离子体中的正离子使蚀刻进行,利用上述第二条件生成负离子,利用上述直流电压将负离子供给到上述孔内,由此中和上述孔内的正电荷。
在上述第一方面,上述等离子体蚀刻装置优选还包括对上述下部电极施加偏压施加用的高频电力的偏压施加用高频电力供给单元,与上述等离子体生成用高频电力施加单元的接通、关断同步地使上述偏压施加用高频电力供给单元的输出变化,在关断上述等离子体生成用高频电力施加单元使等离子体猝灭的期间中,设置使上述偏压施加用高频电力供给单元关断、或使上述偏压施加用高频电力供给单元的输出为比第一输出低的输出即第二输出的期间。此外,在该情况下,优选:在接通上述等离子体生成用高频电力施加单元而生成等离子体的期间中,设置使上述偏压施加用高频电力供给单元关断、或使上述偏压施加用高频电力供给单元的输出为比第一输出低的输出即第二输出的期间。
本发明的第二方面的等离子体蚀刻方法,其使用等离子体蚀刻装置在蚀刻对象膜形成孔,该等离子体蚀刻装置包括:收纳被处理体且内部能够被真空排气的处理容器、配置于上述处理容器内作为被处理体的载置台发挥作用的下部电极、与上述下部电极相对置地配置于上述处理容器内的上部电极、向上述处理容器内供给处理气体的处理气体供给单元、对上述上部电极或下部电极的至少一方施加等离子体生成用的高频电力的等离子体生成用高频电力施加单元、和对上述上部电极施加负的直流电压的直流电源,上述等离子体蚀刻方法的特征在于:进行第一阶段,连续地从上述等离子体生成用高频电力施加单元供给高频电力,在上述处理容器内生成等离子体,并且从上述直流电源对上述上部电极施加负的直流电压,然后,进行交替反复第一条件和第二条件的第二阶段,其中,上述第一条件为,接通上述等离子体生成用高频电力施加单元,在上述处理容器内生成等离子体,并且从上述直流电源对上述上部电极施加负的直流电压;上述第二条件为,关断上述等离子体生成用高频电力施加单元,使上述处理容器内的等离子体猝灭,并且从上述直流电源对上述上部电极施加负的直流电压,在上述第二阶段,利用上述第一条件由等离子体中的正离子使蚀刻进行,利用上述第二条件生成负离子,利用上述直流电压将负离子供给到上述孔内,由此中和上述孔内的正电荷。
在上述第二方面,上述等离子体蚀刻装置优选还包括对上述下部电极施加偏压施加用的高频电力的偏压施加用高频电力供给单元,在上述第一阶段,从上述偏压施加用高频电力供给单元连续地以第一输出施加偏压,在上述第二阶段,与上述等离子体生成用高频电力施加单元的接通、关断同步地使上述偏压施加用高频电力供给单元的输出变化,在关断上述等离子体生成用高频电力施加单元使等离子体猝灭的期间中,设置使上述偏压施加用高频电力供给单元关断、或使上述偏压施加用高频电力供给单元的输出为比第一输出低的输出即第二输出的期间。此外,在此时,优选在上述第二阶段,在接通上述等离子体生成用高频电力施加单元而生成等离子体的期间中,设置使上述偏压施加用高频电力供给单元关断、或使上述偏压施加用高频电力供给单元为比第一输出低的输出即第二输出的期间。
在上述第一方面和第二方面,优选上述第二条件的1次的时间为10μsec以上、50μsec以下。此外,上述第一条件和上述第二条件的反复,能够呈脉冲状进行。作为上述被处理体的蚀刻对象膜的典型例,能够列举绝缘膜。
本发明的第三方面的等离子体蚀刻装置,其特征在于,包括:处理容器,其收纳被处理体且内部能够被真空排气;下部电极,其配置于上述处理容器内作为被处理体的载置台发挥作用;上部电极,其与上述下部电极相对置地配置于上述处理容器内;处理气体供给单元,其向上述处理容器内供给处理气体;等离子体生成用高频电力施加单元,其对上述上部电极或下部电极的至少一方施加等离子体生成用的高频电力;直流电源,其对上述上部电极施加负的直流电压;和控制部,其控制上述等离子体生成用高频电力施加单元,上述控制部,进行包括交替反复第一条件和第二条件的控制,其中,上述第一条件为,接通上述等离子体生成用高频电力施加单元,在上述处理容器内生成等离子体,并且从上述直流电源对上述上部电极施加负的直流电压;上述第二条件为,关断上述等离子体生成用高频电力施加单元,使上述处理容器内的等离子体猝灭,并且从上述直流电源对上述上部电极施加负的直流电压,此时,利用上述第一条件利用等离子体中的正离子使蚀刻进行,利用上述第二条件生成负离子,利用上述直流电压将负离子供给到上述孔内,由此中和上述孔内的正电荷。
在上述第三方面,优选还包括对上述下部电极施加偏压施加用的高频电力的偏压施加用高频电力供给单元,上述控制部,与上述等离子体生成用高频电力施加单元的接通、关断同步地使上述偏压施加用高频电力供给单元的输出变化,在关断上述等离子体生成用高频电力施加单元使等离子体猝灭的期间中,设置使上述偏压施加用高频电力供给单元关断、或使上述偏压施加用高频电力供给单元的输出为比第一输出低的输出即第二输出的期间。此外,在该情况下,上述控制部优选:在接通上述等离子体生成用高频电力施加单元而生成等离子体的期间中,设置使上述偏压施加用高频电力供给单元关断、或使上述偏压施加用高频电力供给单元的输出为比第一输出低的输出即第二输出的期间。
本发明的第四方面的计算机可读取的存储介质,其存储有用于控制等离子体蚀刻装置的、在计算机上运行的程序,该等离子体蚀刻装置包括:收纳被处理体且内部能够被真空排气的处理容器、配置于上述处理容器内且用作被处理体的载置台的下部电极、与上述下部电极相对置地配置于上述处理容器内的上部电极、向上述处理容器内供给处理气体的处理气体供给单元、对上述上部电极或下部电极的至少一方施加等离子体生成用的高频电力的等离子体生成用高频电力施加单元、和对上述上部电极施加负的直流电压的直流电源,上述计算机可读取的存储介质的特征在于:上述程序,在计算机上对上述等离子体蚀刻装置进行控制,使得在其运行时进行上述第一方面或第二方面的等离子体蚀刻方法。
根据本发明,交替反复以下第一条件和第二条件:第一条件为,接通等离子体生成用高频电力施加单元,在处理容器内生成等离子体,并且从直流电源对上部电极施加负的直流电压;第二条件为,关断等离子体生成用高频电力施加单元,使处理容器内的等离子体猝灭,并且从直流电源对上部电极施加负的直流电压,利用第一条件由等离子体中的正离子使蚀刻进行,利用第二条件生成负离子,利用上述直流电压将负离子供向上述孔内,由此中和孔内的正电荷,因此,在第二条件时中和孔内的正电荷后,在第一条件生成等离子体时,正离子在孔内无转向地行进。因此,能够获得良好的蚀刻形状,能够抑制由随蚀刻进行而深宽比变高所导致的蚀刻率降低。
附图说明
图1是表示能够实施本发明的等离子体蚀刻方法的等离子体蚀刻装置的概略截面图。
图2是表示图1的等离子体蚀刻装置中与第一高频电源连接的第一匹配器的结构的图。
图3是表示作为本发明的等离子体蚀刻方法所应用的被处理体的半导体晶片的结构例的截面图。
图4是示意表示蚀刻初期的被处理体的状态的截面图。
图5是表示进行了蚀刻后的阶段中被处理体的状态的截面示意图。
图6是表示本发明的实施方式的等离子体蚀刻方法的第二阶段中的直流电源、第一高频电源、等离子体发光强度、正离子、负离子的状态的时序图。
图7是用于说明在第二阶段中关断等离子体生成用的第一高频电源时的状态的示意图。
图8是用于说明在第二阶段中关断等离子体生成用的第一高频电源后使其接通的状态的示意图。
图9是表示本发明的实施方式的等离子体蚀刻方法的第二阶段中的偏压施加用的第二高频电力的优选施加方式的图。
图10是用于说明在等离子体生成时使偏压施加用的高频电力接通、关断的作用的图。
图11是表示在等离子体生成时施加高频偏压的情况下的等离子体中和晶片表面的电子能量的图。
图12是表示在等离子体生成时不施加高频偏压的情况下的等离子体中和晶片表面的电子能量的图。
图13是表示能够实施本发明的等离子体蚀刻方法的其他的等离子体蚀刻装置的概略截面图。
图14是表示图13的等离子体蚀刻装置中与第一高频电源连接的第一匹配器的结构的图。
附图标记说明:
10    腔室(处理容器)
16    基座(下部电极)
34    上部电极
46、46`    第一匹配器
48、48`    第一高频电源
50    可变直流电源
66    处理气体供给源
84    排气装置
88    第二匹配器
90     第二高频电源
95     RF控制器
100    控制部
102    存储部
W      半导体晶片(被处理基板)
具体实施方式
以下,参照附图对本发明的实施方式具体地进行说明。
图1是表示能够实施本发明的等离子体蚀刻方法的等离子体蚀刻装置的概略截面图。
该等离子体蚀刻装置作为电容耦合型平行平板等离子体蚀刻装置而构成,具有例如由表面被阳极氧化处理过的铝构成的、大致圆筒状的腔室(处理容器)10。该腔室10被保护接地。
在腔室10的底部,隔着由陶瓷等构成的绝缘板12配置圆柱状的基座支承台14,在该基座支承台14之上设置有例如由铝构成的基座16。基座16构成下部电极,在其上载置作为被处理基板的半导体晶片W。
在基座16的上表面,设置有以静电力吸附保持半导体晶片W的静电卡盘18。该静电卡盘18具有以一对绝缘层或绝缘片夹着由导电膜构成的电极20的结构,直流电源22与电极20电连接。而且,通过由来自直流电源22的直流电压产生的库仑力等静电力,半导体晶片W被吸附保持于静电卡盘18。
在静电卡盘18(半导体晶片W)的周围,在基座16的上表面配置有用于提高蚀刻的均匀性的、例如由硅构成的导电性的聚焦环(校正环)24。在基座16和基座支承台14的侧面,设置有例如由石英构成的圆筒状的内壁部件26。
在基座支承台14的内部,例如在圆周上设置有冷却介质室28。在该冷却介质室,能够由设置于外部的未图示的冷机单元经由配管30a、30b循环供给规定温度的冷却介质例如冷却水,通过冷却介质的温度对基座上的半导体晶片W的处理温度进行控制。
来自未图示的传热气体供给机构的传热气体例如He气(氦气)经由气体供给线32被供向静电卡盘18的上表面与半导体晶片W的背面之间。
在作为下部电极的基座16的上方,以与基座16相对置的方式平行地设置有上部电极34。而且,上部电极34和下部电极16之间的空间为等离子体生成空间。上部电极34形成与作为下部电极的基座16上的半导体晶片W相对置且与等离子体生成空间接触的面即对置面。
该上部电极34由电极板36和电极支承体38构成,该电极板36通过绝缘性遮挡部件42支承在腔室10的上部,构成与基座16相对置的面且具有多个排出孔37,电极支承体38可装卸自由地支承该电极板36,为由导电性材料例如铝构成的水冷结构。电极板36优选焦耳热较少的低电阻的导体或半导体,此外,如后所述从强化抗蚀剂的观点出发优选含硅物质。从这样的观点出发,电极板36优选由硅或SiC构成。在电极支承体38的内部,设置有气体扩散室40,与气体排出孔37连通的多个气体流通孔41从该气体扩散室40向下方延伸。
在电极支承体38形成有将处理气体导向气体扩散室40的气体导入口62,在该气体导入口62连接有气体供给管64,在气体供给管64连接有处理气体供给源66。在气体供给管64,从上游侧依次设置有质量流量控制器(MFC)68和开闭阀70(也可以用FCS代替MFC)。而且,从处理气体供给源66将作为用于蚀刻的处理气体例如C4F8的这样的氟碳气体(fluorocarbon gas,CxFy)由气体供给管64供至气体扩散室40,经由气体流通孔41和气体排出孔37呈喷淋状地排出到等离子体生成空间。即,上部电极34具有用于供给处理气体的喷淋头的功能。
在上部电极34,经由低通滤波器(LPF)46a与可变直流电源50电连接。可变直流电源50以负极为上部电极34侧的方式连接,对上部电极34施加负的电压。来自可变直流电源50的供电能够通过接通、关断开关52进行接通、关断。此外,可变直流电源50的电流、电压、以及接通、关断开关52的接通、关断,通过控制器51进行控制。低通滤波器(LPF)46a捕获来自后述的第一高频电源和第二高频电源的高频,优选由LR滤波器或LC滤波器构成。
圆筒状的接地导体10a设置为,从腔室10的侧壁向比上部电极34的高度位置更靠上方的位置延伸。
在作为下部电极的基座16,经由第一匹配器46电连接有第一高频电源48。第一高频电源48输出27~100MHz的频率例如40MHz的高频电力。第一匹配器46使负载阻抗与第一高频电源48的内部(或者输出)阻抗匹配,起到当在腔室10内生成等离子体时使第一高频电源48的输出阻抗与负载阻抗在表观上一致的作用。
此外,在作为下部电极的基座16,也经由第二匹配器88电连接有第二高频电源90。通过从该第二高频电源90将高频电力供向作为下部电极的基座16来对半导体晶片W施加偏压,离子被引入半导体晶片W。第二高频电源90输出400kHz~13.56MHz范围内的频率例如3MHz的高频电力。第二匹配器88用于使负载阻抗与第二高频电源90的内部(或者输出)阻抗匹配,起到当在腔室10内生成等离子体时使第二高频电源90的内部阻抗与包含腔室10内的等离子体的负载阻抗在表观上一致的作用。
在第一高频电源48、第二高频电源90、第一匹配器46、和第二匹配器88连接有RF控制器95,该第一高频电源48、第二高频电源90、第一匹配器46、和第二匹配器88通过RF控制器95进行控制。具体而言,RF控制器95能够控制第一高频电源48的接通、关断、以及输出,能够进行控制为以下状态:使第一高频电源48连续地接通而生成等离子体的状态、和交替地接通、关断而以例如脉冲状交替形成等离子体存在的状态和等离子体猝灭的状态这一状态。此外,RF控制器95能够对偏压用的第二高频电源90的接通、关断、以及输出进行控制,能够形成在等离子体处理中以规定的输出连续地施加偏压的状态、以及使第二高频电源90的输出与第一高频电源48的接通、关断同步地将输出控制成例如脉冲状。可以在使第二高频电源90与第一高频电源48的接通、关断同步地控制输出时,交替地进行接通、关断,也可以完全不关断地交替形成高输出和低输出。
该第一匹配器46,如图2所示,具有从第一高频电源46的供电线96分支设置的第一可变电容器97、设置于供电线96的该分支点的第一高频电源48侧的第二可变电容器98、和设置于分支点的相反侧的线圈99。在本实施方式的情况下,与通常的等离子体蚀刻不同,第一高频电源48,当处于高频电力以规定周期接通、关断的模式时,由RF控制器95进行控制,使得第一匹配器46的匹配动作与该接通、关断同步地切换。
在该情况下,当使第一高频电力供给单元48在接通、关断模式下动作时,RF控制器95进行控制,使得在关断时不进行第一匹配器46的动作,而在接通时进行控制使得第一匹配器46进行使第一高频电源48的内部阻抗与包含腔室10内的等离子体的负载阻抗一致的动作。
第二匹配器88,基本上与第一匹配器46同样地构成,当使第二高频电源90的输出与第一高频电源48的接通、关断同步地进行输出控制时,由RF控制器95进行控制,使得第二匹配器88的匹配动作与该输出控制同步地切换。
在该情况下,RF控制器95进行控制,使得当使第二高频电源90与第一高频电源48的接通、关断同步地进行输出控制时不进行第二匹配器88的动作。但是,在第二匹配器88的动作足够快的情况下,也可以进行控制使得在高输出时第二匹配器88进行使第二高频电源90的内部阻抗与包含腔室10内的等离子体的负载阻抗一致这样的动作。
在腔室10的底部设置有排气口80,在该排气口80经由排气管82与排气装置84连接。排气装置84具有涡轮分子泵等真空泵,能够将腔室10内减压至期望的真空度。此外,在腔室10的侧壁设置有半导体晶片W的搬入搬出口85,该搬入搬出口85通过门阀86能够开闭。此外,沿着腔室10的内壁可装卸自由地设置有用于防止蚀刻的副产物(沉积物)附着在腔室10的沉积物屏蔽11。即,沉积物屏蔽11构成腔室壁。此外,沉积物屏蔽11也设置于内壁部件26的外周。在腔室10的底部的腔室侧壁的沉积物屏蔽11和内壁部件26侧的沉积物屏蔽11之间设置有排气板83。作为沉积物屏蔽11和排气板83,能够适用在铝件覆盖Y2O3等陶瓷而成的材料。
在沉积物屏蔽11的构成腔室内壁的部分的与晶片W大致相同高度的部分,设置有与地DC连接的导电性部件(GND块)91,由此起到防止异常放电的效果。另外,该导电性部件91如果设置于等离子体生成区域,则其位置不限于图1的位置,也可以设置于例如基座16的周围等基座16侧,也可以环状地设置于上部电极34的外侧等上部电极附近。
等离子体处理装置的各构成部例如电源系统、气体供给系统、驱动系统、以及RF控制器95等具有与包括微处理器(计算机)的控制部(整体控制装置)100连接进行控制的结构。此外,在控制部100,连接有由操作者为了管理等离子体处理装置而进行指令的输入操作等的键盘、将等离子体处理装置的运行状况可视化显示的显示器等构成的用户界面101。
此外,在控制部100,连接存储有用于通过控制部100的控制来实现在等离子体处理装置中执行的各种处理的控制程序、用于根据处理条件使等离子体处理装置的各构成部执行处理的程序即处理方案的存储部102。处理方案存储于存储部102中的存储介质。存储介质可以是硬盘、半导体存储器,也可以是CDROM、DVD、闪存等可移动的存储介质。此外,也可以从其他装置通过例如专用线路适当地传送方案。
而且,根据需要,按照来自用户界面101的指示等从存储部102调出任意的处理方案使控制部100执行,由此,在控制部100的控制下,能够在等离子体处理装置进行期望的处理。另外,将在本发明的实施方式中所述的等离子体处理装置(等离子体蚀刻装置)设为包括该控制部100的装置。
接下来,对在这样构成的等离子体处理装置中进行的本发明所涉及的高深宽比的接触孔的蚀刻(HARC蚀刻)进行说明。
这里,例如如图3所示那样,准备具有在Si基板120上形成有绝缘膜121并将其上的通过光刻而被图案化的光抗蚀剂膜122作为蚀刻掩膜而形成的结构的半导体晶片W,对绝缘膜121实施HARC蚀刻。
首先,令门阀86为开状态,经由搬入搬出口85将上述结构的半导体晶片W搬入腔室10内,载置于基座16上。而且,通过排气装置84对腔室10内进行排气,并且从处理气体供给源66将处理气体以规定的流量供向气体扩散室40,经由气体流通孔41和气体排出孔37供向腔室10内,并且将其中的压力设为例如0.1~150Pa的范围内的设定值。在该状态下,对作为下部电极的基座16,从第一高频电源48施加27~100MHz的频率例如40MHz的较高频率的等离子体生成用的高频电力,并且从第二高频电源90连续地施加400kHz~13.56MHz的频率例如3MHz的比等离子体生成用的高频电力低的频率的离子引入用的高频电力,进而对上部电极34从可变直流电源50连续地施加规定的直流电压,对半导体晶片W进行第一阶段的蚀刻。此时,半导体晶片W,通过从直流电源22对静电卡盘18的电极20施加直流电压而被静电卡盘18固定。
这里,作为处理气体,能够采用以往所使用的各种气体,例如能够适用由C4F8气体这样的氟碳气体(CxFy)所代表的含有卤素的气体。进而,也可以含有Ar气、O2气等其他的气体。
从形成于上部电极34的电极板36的气体排出孔37排出的处理气体,在通过高频电力产生的、介于上部电极34与作为下部电极的基座16之间的辉光放电(glow discharge)中等离子体化,利用由该等离子体所生成的正离子、自由基,对半导体晶片W的绝缘膜121进行蚀刻。
此时,通过对下部电极施加等离子体形成用的高频电力,能够在距晶片更近的部位生成等离子体,此外能够使等离子体不扩散至较大的区域而抑制处理气体的离解,因此即使在腔室10内的压力高、等离子体密度低这样的条件下,也能够使蚀刻率上升。此外,在等离子体形成用的高频电力的频率高的情况下,也能够确保比较大的离子能量,因此具有高效率。此外,如本实施方式那样,通过对下部电极分别施加等离子体形成用的高频电力和离子引入用的高频电力,能够独立地控制等离子体蚀刻所需的等离子体形成的功能和离子引入的功能。从而,能够满足要求高微细加工性能的蚀刻的条件。进而,对等离子体生成用供给27MHz以上的高频率区域的高频电力,因此,能够在优选的状态下使等离子体高密度化,即使在更低压的条件下,也能够生成高密度的等离子体。此外,当这样形成等离子体时,通过控制器51从可变直流电源50对上部电极34施加负的直流电压,因此,等离子体中的正离子碰撞到上部电极34而在其附近生成二次电子,使该二次电子向铅直方向下方加速而供给到作为被处理体的半导体晶片W。
然而,这样的蚀刻是等离子体中的正离子占支配地位而进行的,但是,在蚀刻初期,通过蚀刻形成的接触孔123较浅,如图4所示,光抗蚀剂膜122通过等离子体中的电子而带负电,由于电子到达蚀刻面,因此即使正离子被供给到蚀刻面,电荷也能中和。从而,蚀刻正常地进行。
然而,随着蚀刻进行,如图5所示那样,当接触孔123的深宽比逐渐变高时,电子变得难以到达接触孔123内,从而在接触孔123内正离子积存,蚀刻面变成带正电的状态。
在该状态下进行蚀刻时,为了蚀刻而进入接触孔123内的正离子,由于与接触孔123内的正电荷之间的排斥而转向,从而导致产生蚀刻形状的歪曲、变形。此外,正离子难以到达孔的底部,因此导致蚀刻率的降低。
因此,在蚀刻进行了某个程度之后,切换为第二阶段,即,保持从可变直流电源50连续地施加直流电压的状态,将等离子体生成用的第一高频电源48交替地接通、关断而交替地反复生成等离子体的状态(有等离子体(plasma on))、和等离子体消失的状态(无等离子体(plasma off))。
图6所示为第二阶段的直流电源50、第一高频电源48、等离子体发光强度、正离子、和负离子的状态。如该图所示,在第二阶段,当关断第一高频电源48时,等离子体发光强度降低,等离子体消失。随着该等离子体发光强度的降低,正离子减少,负离子由于剩余的电子而增加。由于对上部电极34施加有负的直流电压,因此,如图7所示那样,存在于电极间的处理空间的负离子通过直流电压被送入接触孔123内,将其中的正电荷中和。而且,在接下来接通第一高频电源48时,接触孔123内的正电荷减少,因此,如图8所示那样,正离子能够在接触孔123内直线前进。从而,像这样对上部电极34施加负的直流电压、并且交替地接通、关断第一高频电源48从而交替地形成有等离子体时的正离子占支配地位的模式(regime)、和无等离子体时的负离子占支配地位的模式,由此,能够抑制接触孔123内的正离子的转向,使蚀刻形状良好,能够提高蚀刻率。
在该情况下,使等离子体生成用的第一高频电源48关断的时间优选10μsec以上、50μsec以下。通过使其为10μsec以上,能够形成正离子少而负离子多的状态,但是如果超过50μsec,则对蚀刻不起作用的时间变长,效率降低。
在该第二阶段,优选与第一高频电源48的接通、关断同步地使偏压施加用的第二高频电源90的输出变化。具体而言,(1)在关断第一高频电源48使等离子体猝灭的期间,设置关断第二高频电源90或者使输出降低的期间。(2)除此之外,在接通第一高频电源48而生成等离子体的期间,设置关断第二高频电源90或者使输出降低的期间。作为进行(1)和(2)这两方的顺序例,能够列举以下顺序:如图9(a)所示的顺序,即,在关断等离子体生成用的第一高频电源48使等离子体猝灭的期间,关断第二高频电源90或者将其设为低于第一阶段的输出,在接通第一高频电源48而生成等离子体的期间,使偏压施加用的第二高频电源90的输出交替地反复与第一阶段相同的第一输出和关断(输出为0)或低于第一阶段的输出即第二输出;如图9(b)所示的顺序,即,使第一输出和第二输出的切换周期与第一高频电源48的接通、关断周期一致,使其时机错开。作为仅有上述(1)的顺序例,能够列举如图9(c)所示的顺序,即,使第二高频电源的第一输出和第二输出的切换时机与第一高频电源的接通、关断时机完全一致。
关于上述(1),在关断第一高频电源48使等离子体猝灭的期间,当第二高频电源90为第一输出时,在作为下部电极的基座16上残存有相当厚度的等离子体鞘,该等离子体鞘成为负离子的势垒,因此,在等离子体猝灭期间,关断第二高频电源90或者将其设定为第二输出,使等离子体鞘变成0或极小,形成这样的势垒实质上不存在的状态。因此,能够进一步提高接通、关断上述第一高频电源48的效果。
另一方面,关于上述(2),如以下所述。
在接通第一高频电源48而生成等离子体时,通过对上部电极34施加负的直流电压,等离子体中的正离子碰撞到上部电极34而生成二次电子,该二次电子向铅直方向下方加速,但是在偏压施加用的第二高频电源90的输出为第一输出的情况下,如图10(a)所示那样,由于在作为下部电极的基座16上形成有厚的等离子体鞘S,因此,该等离子体鞘S形成二次电子的势垒,几乎不会到达接触孔123内。对此,在偏压施加用的第二高频电源90的输出为0或更低的第二输出的情况下,如图10(b)所示那样,能够使等离子体鞘S变薄,由于二次电子的势垒小,因此,能够通过施加于上部电极34的直流电压使向铅直方向下方加速的二次电子有效地到达接触孔123内,能够中和接触孔123内的正电荷。从而,由此也能够进一步提高接通、关断上述第一高频电源48的效果。
图11是表示在施加2MHz的高频偏压(Vpp=1000V)的情况下的等离子体中(距晶片15mm的上方)和晶片表面的电子能量的图,(a)为等离子体中,(b)为晶片表面。另一方面,图12是表示在没有施加高频偏压的情况下的等离子体中(距晶片15mm的上方)和晶片表面的电子能量的图,(a)为等离子体中,(b)为晶片表面。从这些图中能够确认以下效果:通过关断高频偏压,能降低针对通过施加DC而从上部电极34释放并加速的具有能量的二次电子的势垒。
另外,由于无等离子体而使负离子增加的效果,如果不是等离子体几乎完全消失就不会有效地发挥,因此,在关断第一高频电源48时也施加的直流电压,需要为实质上对等离子体的生成不起作用的大小。此外,根据顺序不同,在关断第一高频电源48时,也存在施加来自第二高频电源90的高频电力的情况,但是此时也需要该高频电力为实质上对等离子体生成不起作用的输出。此外,偏压施加用的第二高频电源90的第二输出,只要是等离子体鞘的厚度为二次电子可透过的程度的厚度这样的输出,则也可以不必为0(关断),但是优选为0(关断)。
接着,对能够实施本发明的方法的其他的等离子体蚀刻装置进行说明。图13是表示能够实施本发明的等离子体蚀刻方法的其他的等离子体蚀刻装置的概略截面图。
该等离子体蚀刻装置,在将等离子体生成用的高频电力施加于上部电极这一点上与图1的装置不同,但是其他的结构基本上与第一实施方式的等离子体蚀刻装置相同,因此在图13中,对与图1相同的部件赋予相同的符号并省略说明。
在本实施方式中,用于生成等离子体的第一高频电源48`经由第一匹配器46`和供电棒44与上部电极34连接。第一高频电源48`具有与第一实施方式的第一高频电源48相同的功能,其频率优选27~100MHz的范围。第一匹配器46`使负载阻抗与第一高频电源48`的内部(或者输出)阻抗匹配,起到当在腔室10内生成等离子体时能够使第一高频电源48`的输出阻抗与负载阻抗在表观上一致的作用。第一匹配器46的输出端子与供电棒44的上端连接。此外,可变直流电源50也经由上述第一匹配器46`和供电棒44与上部电极34连接。
第一匹配器46`,如图14所示,具有从第一高频电源48`的供电线49分支设置的第一可变电容器54、和设置于供电线49的该分支点的下游侧的第二可变电容器56,通过该结构发挥上述的功能。此外,在第一匹配器46`设置有捕获来自第一高频电源48`的高频电力(例如40MHz)和来自第二高频电源90的高频电力(例如3MHz)的滤波器58,使得直流电压电流(以下,简称为“直流电压”)能够被有效地供向上部电极34。即,来自可变直流电源50的直流电流经由滤波器58流到供电线49。该滤波器58由线圈59和电容器60构成,通过该结构,来自第一高频电源48`的高频电力和来自第二高频电源90的高频电力被捕获。此外,在圆筒状接地导体10a的顶部部分与供电棒44之间设置有筒状的绝缘部件44a,由此供电棒44与接地导体10a电绝缘。
在上部电极34,电连接有用于使来自第一高频电源48`的高频电力(例如40MHz)不通过、而来自第二高频电源90的高频电力(例如3MHz)通向地的低通滤波器(LPF)92。该低通滤波器(LPF)92优选由LR滤波器或LC滤波器构成,但是即使仅有1根导线也能够对来自第一高频电源48的高频电力(例如60MHz)提供足够大的电抗,因此也能够这样即可。另一方面,在作为下部电极的基座16,电连接有用于使来自第一高频电源48`的高频电力(例如40MHz)通向地的高通滤波器(HPF)94。
在图13的等离子体蚀刻装置中,也对上部电极34施加直流电压,并且通过接通、关断等离子体生成用的第一高频电源48`,在无等离子体时由负离子中和接触孔内的正电荷,在有等离子体时使正离子直线前进。此外,通过使偏压施加用的第二高频电源90的输出变化,也能够获得由二次电子对接触孔中的正电荷进行中和的效果。
在该图13的装置中,向上部电极34供给等离子体生成用的第一高频电力,向作为下部电极的基座16供给离子引入用的第二高频电力,因此能够扩大等离子体的控制容限,此外,向上部电极34供给27MHz以上的高频率区域的高频电力,因此能够在优选的状态下使等离子体高密度化,即使在更低压的条件下也能够生成高密度的等离子体。
但是,像这样在对上部电极施加等离子体形成用的高频电力的情况下,在上部电极附近生成等离子体,因此,在腔室10内的压力高、等离子体密度低这样的条件下,使对于晶片的蚀刻率上升较为困难。
另外,在上述任一个实施方式中,当对上述第一高频电力和第二高频电力能够采用的频率进行例示时,作为第一高频电力,能够列举27MHz、40MHz、60MHz、80MHz、100MHz,作为第二高频电力,能够列举400kHz、800kHz、1MHz、2MHz、3MHz、13MHz、13.6MHz,能够根据处理适当地组合使用。
以上,对本发明的实施方式进行了说明,但是本发明不限定于上述实施方式,能够做出各种变形。例如,在上述实施方式中,当进行等离子体蚀刻时,进行对上部电极34施加直流电压且连续地施加等离子体生成用的高频电力的第一阶段、和对上部电极34施加直流电压且接通、关断等离子体生成用高频电力的第二阶段,但是也可以仅进行第二阶段。此外,作为本发明适用的被处理体,不限于图3所示的结构,也可以构成为例如在光抗蚀剂和蚀刻对象膜之间具有反射防止膜、硬掩膜。蚀刻对象膜典型的为绝缘膜,但也不限于此。

Claims (12)

1.一种等离子体蚀刻方法,其使用等离子体蚀刻装置在蚀刻对象膜形成孔,该等离子体蚀刻装置包括:收纳被处理体且内部能够被真空排气的处理容器、配置于所述处理容器内作为被处理体的载置台发挥作用的下部电极、与所述下部电极相对置地配置于所述处理容器内的上部电极、向所述处理容器内供给处理气体的处理气体供给单元、对所述上部电极或下部电极的至少一方施加等离子体生成用的高频电力的等离子体生成用高频电力施加单元、和对所述上部电极施加负的直流电压的直流电源,所述等离子体蚀刻方法的特征在于:
交替反复第一条件和第二条件,其中,所述第一条件为,接通所述等离子体生成用高频电力施加单元,在所述处理容器内生成等离子体,并且从所述直流电源对所述上部电极施加负的直流电压;所述第二条件为,关断所述等离子体生成用高频电力施加单元,使所述处理容器内的等离子体猝灭,并且从所述直流电源对所述上部电极施加负的直流电压,
利用所述第一条件由等离子体中的正离子使蚀刻进行,利用所述第二条件生成负离子,利用所述直流电压将负离子供给到所述孔内,由此中和所述孔内的正电荷。
2.如权利要求1所述的等离子体蚀刻方法,其特征在于:
所述等离子体蚀刻装置,还包括对所述下部电极施加用于施加偏压的高频电力的偏压施加用高频电力供给单元,
与所述等离子体生成用高频电力施加单元的接通、关断同步地使所述偏压施加用高频电力供给单元的输出变化,在关断所述等离子体生成用高频电力施加单元使等离子体猝灭的期间中,包括使所述偏压施加用高频电力供给单元关断的期间、或使所述偏压施加用高频电力供给单元的输出为比第一输出低的对等离子体的生成不起作用的第二输出的期间。
3.如权利要求2所述的等离子体蚀刻方法,其特征在于:
在接通所述等离子体生成用高频电力施加单元而生成等离子体的期间中,包括使所述偏压施加用高频电力供给单元关断的期间、或使所述偏压施加用高频电力供给单元的输出为比所述第一输出低的所述第二输出的期间。
4.一种等离子体蚀刻方法,其使用等离子体蚀刻装置在蚀刻对象膜形成孔,该等离子体蚀刻装置包括:收纳被处理体且内部能够被真空排气的处理容器、配置于所述处理容器内作为被处理体的载置台发挥作用的下部电极、与所述下部电极相对置地配置于所述处理容器内的上部电极、向所述处理容器内供给处理气体的处理气体供给单元、对所述上部电极或下部电极的至少一方施加等离子体生成用的高频电力的等离子体生成用高频电力施加单元、和对所述上部电极施加负的直流电压的直流电源,该等离子体蚀刻方法的特征在于:
进行第一阶段,其连续地从所述等离子体生成用高频电力施加单元供给高频电力,在所述处理容器内生成等离子体,并且从所述直流电源对所述上部电极施加负的直流电压,
然后,进行交替反复第一条件和第二条件的第二阶段,其中,所述第一条件为,接通所述等离子体生成用高频电力施加单元,在所述处理容器内生成等离子体,并且从所述直流电源对所述上部电极施加负的直流电压;所述第二条件为,关断所述等离子体生成用高频电力施加单元,使所述处理容器内的等离子体猝灭,并且从所述直流电源对所述上部电极施加负的直流电压,
在所述第二阶段,利用所述第一条件由等离子体中的正离子使蚀刻进行,利用所述第二条件生成负离子,利用所述直流电压将负离子供给到所述孔内,由此中和所述孔内的正电荷。
5.如权利要求4所述的等离子体蚀刻方法,其特征在于:
所述等离子体蚀刻装置,还包括对所述下部电极施加用于施加偏压的高频电力的偏压施加用高频电力供给单元,
在所述第一阶段,从所述偏压施加用高频电力供给单元连续地以第一输出施加偏压,
在所述第二阶段,与所述等离子体生成用高频电力施加单元的接通、关断同步地使所述偏压施加用高频电力供给单元的输出变化,在关断所述等离子体生成用高频电力施加单元使等离子体猝灭的期间中,包括使所述偏压施加用高频电力供给单元关断的期间、或使所述偏压施加用高频电力供给单元的输出为比第一输出低的对等离子体的生成不起作用的第二输出的期间。
6.如权利要求5所述的等离子体蚀刻方法,其特征在于:
在所述第二阶段,在接通所述等离子体生成用高频电力施加单元而生成等离子体的期间中,包括使所述偏压施加用高频电力供给单元关断的期间、或使所述偏压施加用高频电力供给单元为比所述第一输出低的所述第二输出的期间。
7.如权利要求1~6中任一项所述的等离子体蚀刻方法,其特征在于:
所述第二条件实施1次的时间为10μsec以上、50μsec以下。
8.如权利要求1~6中任一项所述的等离子体蚀刻方法,其特征在于:
所述第一条件和所述第二条件的反复呈脉冲状进行。
9.如权利要求1~6中任一项所述的等离子体蚀刻方法,其特征在于:
所述被处理体的蚀刻对象膜是绝缘膜。
10.一种等离子体蚀刻装置,其特征在于,包括:
处理容器,其收纳被处理体且内部能够被真空排气;
下部电极,其配置于所述处理容器内作为被处理体的载置台发挥作用;
上部电极,其与所述下部电极相对置地配置于所述处理容器内;
处理气体供给单元,其向所述处理容器内供给处理气体;
等离子体生成用高频电力施加单元,其对所述上部电极或下部电极的至少一方施加等离子体生成用的高频电力;
直流电源,其对所述上部电极施加负的直流电压;和
控制部,其控制所述等离子体生成用高频电力施加单元,
所述控制部,进行包括交替反复第一条件和第二条件的控制,其中,所述第一条件为,接通所述等离子体生成用高频电力施加单元,在所述处理容器内生成等离子体,并且从所述直流电源对所述上部电极施加负的直流电压;所述第二条件为,关断所述等离子体生成用高频电力施加单元,使所述处理容器内的等离子体猝灭,并且从所述直流电源对所述上部电极施加负的直流电压,
此时,利用所述第一条件由等离子体中的正离子使蚀刻进行,利用所述第二条件生成负离子,利用所述直流电压将负离子供给到所述孔内,由此中和所述孔内的正电荷。
11.如权利要求10所述的等离子体蚀刻装置,其特征在于:
还包括对所述下部电极施加用于施加偏压的高频电力的偏压施加用高频电力供给单元,
所述控制部,与所述等离子体生成用高频电力施加单元的接通、关断同步地使所述偏压施加用高频电力供给单元的输出变化,在关断所述等离子体生成用高频电力施加单元使等离子体猝灭的期间中,包括使所述偏压施加用高频电力供给单元关断的期间、或使所述偏压施加用高频电力供给单元的输出为比第一输出低的对等离子体的生成不起作用的第二输出的期间。
12.如权利要求11所述的等离子体蚀刻装置,其特征在于:
所述控制部,在接通所述等离子体生成用高频电力施加单元而生成等离子体的期间中,包括使所述偏压施加用高频电力供给单元关断的期间、或使所述偏压施加用高频电力供给单元的输出为比所述第一输出低的所述第二输出的期间。
CN2010101039693A 2009-01-26 2010-01-26 等离子体蚀刻方法和等离子体蚀刻装置 Active CN101800161B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009014254A JP5221403B2 (ja) 2009-01-26 2009-01-26 プラズマエッチング方法、プラズマエッチング装置および記憶媒体
JP2009-014254 2009-01-26

Publications (2)

Publication Number Publication Date
CN101800161A CN101800161A (zh) 2010-08-11
CN101800161B true CN101800161B (zh) 2013-08-21

Family

ID=42354502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101039693A Active CN101800161B (zh) 2009-01-26 2010-01-26 等离子体蚀刻方法和等离子体蚀刻装置

Country Status (5)

Country Link
US (1) US8641916B2 (zh)
JP (1) JP5221403B2 (zh)
KR (1) KR101475546B1 (zh)
CN (1) CN101800161B (zh)
TW (1) TWI549178B (zh)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827081B2 (ja) * 2005-12-28 2011-11-30 東京エレクトロン株式会社 プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
US8783220B2 (en) 2008-01-31 2014-07-22 West Virginia University Quarter wave coaxial cavity igniter for combustion engines
US8475673B2 (en) * 2009-04-24 2013-07-02 Lam Research Company Method and apparatus for high aspect ratio dielectric etch
US11615941B2 (en) 2009-05-01 2023-03-28 Advanced Energy Industries, Inc. System, method, and apparatus for controlling ion energy distribution in plasma processing systems
US9767988B2 (en) 2010-08-29 2017-09-19 Advanced Energy Industries, Inc. Method of controlling the switched mode ion energy distribution system
US20130059448A1 (en) * 2011-09-07 2013-03-07 Lam Research Corporation Pulsed Plasma Chamber in Dual Chamber Configuration
US8828883B2 (en) 2010-08-24 2014-09-09 Micron Technology, Inc. Methods and apparatuses for energetic neutral flux generation for processing a substrate
JP5709505B2 (ja) * 2010-12-15 2015-04-30 東京エレクトロン株式会社 プラズマ処理装置、プラズマ処理方法、および記憶媒体
US8802545B2 (en) * 2011-03-14 2014-08-12 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
US20120302065A1 (en) * 2011-05-26 2012-11-29 Nanya Technology Corporation Pulse-plasma etching method and pulse-plasma etching apparatus
KR101241049B1 (ko) 2011-08-01 2013-03-15 주식회사 플라즈마트 플라즈마 발생 장치 및 플라즈마 발생 방법
JP5893864B2 (ja) * 2011-08-02 2016-03-23 東京エレクトロン株式会社 プラズマエッチング方法
KR101246191B1 (ko) 2011-10-13 2013-03-21 주식회사 윈텔 플라즈마 장치 및 기판 처리 장치
US9209034B2 (en) * 2012-02-01 2015-12-08 Tokyo Electron Limited Plasma etching method and plasma etching apparatus
US20130206738A1 (en) * 2012-02-10 2013-08-15 First Solar, Inc. In situ inductive ablation meter
KR102038649B1 (ko) 2012-02-20 2019-10-30 도쿄엘렉트론가부시키가이샤 전원 시스템, 플라즈마 에칭 장치 및 플라즈마 에칭 방법
US9114666B2 (en) * 2012-02-22 2015-08-25 Lam Research Corporation Methods and apparatus for controlling plasma in a plasma processing system
KR101504532B1 (ko) * 2012-03-09 2015-03-24 주식회사 윈텔 플라즈마 처리 방법 및 기판 처리 장치
KR101332337B1 (ko) 2012-06-29 2013-11-22 태원전기산업 (주) 초고주파 발광 램프 장치
US9685297B2 (en) 2012-08-28 2017-06-20 Advanced Energy Industries, Inc. Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system
US9129902B2 (en) * 2013-05-01 2015-09-08 Lam Research Corporation Continuous plasma ETCH process
JP6180799B2 (ja) * 2013-06-06 2017-08-16 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP6169701B2 (ja) * 2013-08-09 2017-07-26 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP6140575B2 (ja) * 2013-08-26 2017-05-31 東京エレクトロン株式会社 半導体装置の製造方法
JP6180890B2 (ja) * 2013-11-08 2017-08-16 株式会社日立ハイテクノロジーズ プラズマ処理方法
CN104752256B (zh) * 2013-12-25 2018-10-16 中微半导体设备(上海)有限公司 一种等离子体刻蚀方法和系统
KR20160145070A (ko) 2014-04-08 2016-12-19 플라스마 이그나이터, 엘엘씨 이중 신호 동축 공동 공진기 플라스마 발생
JP6327970B2 (ja) * 2014-06-19 2018-05-23 東京エレクトロン株式会社 絶縁膜をエッチングする方法
JP6424024B2 (ja) * 2014-06-24 2018-11-14 株式会社日立ハイテクノロジーズ プラズマ処理装置及びプラズマ処理方法
JP6356516B2 (ja) * 2014-07-22 2018-07-11 東芝メモリ株式会社 プラズマ処理装置およびプラズマ処理方法
JP6315809B2 (ja) 2014-08-28 2018-04-25 東京エレクトロン株式会社 エッチング方法
CN109188115A (zh) * 2014-11-20 2019-01-11 平高集团有限公司 一种电极加载方法及装置
US9922806B2 (en) * 2015-06-23 2018-03-20 Tokyo Electron Limited Etching method and plasma processing apparatus
JP6602581B2 (ja) * 2015-07-17 2019-11-06 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
JP6789721B2 (ja) * 2016-08-12 2020-11-25 東京エレクトロン株式会社 基板処理方法及び基板処理装置
US10312048B2 (en) * 2016-12-12 2019-06-04 Applied Materials, Inc. Creating ion energy distribution functions (IEDF)
KR20190014623A (ko) * 2017-08-03 2019-02-13 삼성전자주식회사 플라즈마 공정 장치 및 이를 이용한 반도체 장치 제조 방법
JP7045152B2 (ja) * 2017-08-18 2022-03-31 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
KR102003942B1 (ko) * 2017-11-07 2019-07-25 한국원자력연구원 정합 장치를 포함하는 플라즈마 발생 장치 및 임피던스 정합 방법
KR20200100643A (ko) 2017-11-17 2020-08-26 에이이에스 글로벌 홀딩스 피티이 리미티드 플라즈마 프로세싱 시스템에서 변조 공급기들의 개선된 적용
CN111788655B (zh) 2017-11-17 2024-04-05 先进工程解决方案全球控股私人有限公司 对等离子体处理的离子偏置电压的空间和时间控制
JP7235761B2 (ja) 2017-11-17 2023-03-08 エーイーエス グローバル ホールディングス, プライベート リミテッド プラズマ処理源および基板バイアスの同期パルス化
US20190186369A1 (en) 2017-12-20 2019-06-20 Plasma Igniter, LLC Jet Engine with Plasma-assisted Combustion
CN111052320B (zh) * 2018-01-29 2023-04-14 株式会社爱发科 反应性离子蚀刻装置
JP6965205B2 (ja) * 2018-04-27 2021-11-10 東京エレクトロン株式会社 エッチング装置、及びエッチング方法
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
JP7306886B2 (ja) * 2018-07-30 2023-07-11 東京エレクトロン株式会社 制御方法及びプラズマ処理装置
US10672589B2 (en) * 2018-10-10 2020-06-02 Tokyo Electron Limited Plasma processing apparatus and control method
JP7068140B2 (ja) * 2018-11-05 2022-05-16 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
CN111146086B (zh) * 2018-11-05 2024-05-03 东京毅力科创株式会社 蚀刻方法和等离子体处理装置
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
CN113169040A (zh) * 2018-11-30 2021-07-23 朗姆研究公司 用于原子层沉积或化学气相沉积的方法及设备
US11361947B2 (en) 2019-01-09 2022-06-14 Tokyo Electron Limited Apparatus for plasma processing and method of etching
SG11202107162UA (en) * 2019-01-09 2021-07-29 Tokyo Electron Ltd Plasma treatment device and plasma treatment method
JP7451540B2 (ja) 2019-01-22 2024-03-18 アプライド マテリアルズ インコーポレイテッド パルス状電圧波形を制御するためのフィードバックループ
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
CN116844934A (zh) 2019-02-05 2023-10-03 东京毅力科创株式会社 等离子体处理装置
JP7158308B2 (ja) * 2019-02-14 2022-10-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP6976279B2 (ja) * 2019-03-25 2021-12-08 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
US11887812B2 (en) 2019-07-12 2024-01-30 Advanced Energy Industries, Inc. Bias supply with a single controlled switch
CN112226734A (zh) * 2019-07-15 2021-01-15 住友重机械工业株式会社 负离子生成装置
US11043387B2 (en) * 2019-10-30 2021-06-22 Applied Materials, Inc. Methods and apparatus for processing a substrate
US20210305027A1 (en) * 2020-03-24 2021-09-30 Tokyo Electron Limited Plasma processing apparatus and wear amount measurement method
JP2021180283A (ja) * 2020-05-15 2021-11-18 東京エレクトロン株式会社 載置台アセンブリ、基板処理装置および基板処理方法
KR20210157854A (ko) 2020-06-22 2021-12-29 안재용 기능성 마스크
US11532481B2 (en) * 2020-06-30 2022-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field-effect transistor device and method of forming
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) * 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US20220399185A1 (en) 2021-06-09 2022-12-15 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11670487B1 (en) 2022-01-26 2023-06-06 Advanced Energy Industries, Inc. Bias supply control and data processing
US11942309B2 (en) 2022-01-26 2024-03-26 Advanced Energy Industries, Inc. Bias supply with resonant switching
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11978613B2 (en) 2022-09-01 2024-05-07 Advanced Energy Industries, Inc. Transition control in a bias supply

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842244A (zh) * 2005-03-31 2006-10-04 东京毅力科创株式会社 等离子体处理装置
CN1983518A (zh) * 2004-06-21 2007-06-20 东京毅力科创株式会社 等离子体处理装置和方法
CN101030527A (zh) * 2006-02-28 2007-09-05 东京毅力科创株式会社 等离子体蚀刻方法和计算机可读取的存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2941572B2 (ja) * 1992-08-11 1999-08-25 三菱電機株式会社 プラズマエッチング装置及び半導体装置の製造方法
JPH06342769A (ja) * 1992-08-21 1994-12-13 Nissin Electric Co Ltd エッチング方法及び装置
JPH1079372A (ja) * 1996-09-03 1998-03-24 Matsushita Electric Ind Co Ltd プラズマ処理方法及びプラズマ処理装置
KR100253080B1 (ko) * 1997-06-25 2000-04-15 윤종용 반도체 장치의 건식식각 방법 및 그 제조 장치
JP4230029B2 (ja) 1998-12-02 2009-02-25 東京エレクトロン株式会社 プラズマ処理装置およびエッチング方法
US6566272B2 (en) * 1999-07-23 2003-05-20 Applied Materials Inc. Method for providing pulsed plasma during a portion of a semiconductor wafer process
JP5036143B2 (ja) * 2004-06-21 2012-09-26 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法、ならびにコンピュータ読み取り可能な記憶媒体
US7883632B2 (en) * 2006-03-22 2011-02-08 Tokyo Electron Limited Plasma processing method
US8083961B2 (en) * 2006-07-31 2011-12-27 Tokyo Electron Limited Method and system for controlling the uniformity of a ballistic electron beam by RF modulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983518A (zh) * 2004-06-21 2007-06-20 东京毅力科创株式会社 等离子体处理装置和方法
CN1842244A (zh) * 2005-03-31 2006-10-04 东京毅力科创株式会社 等离子体处理装置
CN101030527A (zh) * 2006-02-28 2007-09-05 东京毅力科创株式会社 等离子体蚀刻方法和计算机可读取的存储介质

Also Published As

Publication number Publication date
JP2010171320A (ja) 2010-08-05
KR101475546B1 (ko) 2014-12-22
US20100190350A1 (en) 2010-07-29
CN101800161A (zh) 2010-08-11
TWI549178B (zh) 2016-09-11
JP5221403B2 (ja) 2013-06-26
US8641916B2 (en) 2014-02-04
TW201044456A (en) 2010-12-16
KR20100087266A (ko) 2010-08-04

Similar Documents

Publication Publication Date Title
CN101800161B (zh) 等离子体蚀刻方法和等离子体蚀刻装置
US11670486B2 (en) Pulsed plasma chamber in dual chamber configuration
CN1992164B (zh) 等离子体蚀刻方法
CN100591190C (zh) 等离子体蚀刻装置和等离子体蚀刻方法
KR102038649B1 (ko) 전원 시스템, 플라즈마 에칭 장치 및 플라즈마 에칭 방법
TWI595528B (zh) 電漿處理方法
CN101523569B (zh) 等离子体蚀刻装置和等离子体蚀刻方法
CN101431854B (zh) 等离子体处理装置
JP5848140B2 (ja) プラズマ処理装置
TWI431683B (zh) Plasma processing device and plasma processing method
CN104900511B (zh) 等离子体蚀刻方法和等离子体蚀刻装置
CN104425242B (zh) 半导体器件的制造方法
KR100876010B1 (ko) 플라즈마 에칭 방법 및 컴퓨터 판독 가능한 기억 매체
CN102187439A (zh) 等离子体蚀刻方法及等离子体蚀刻装置
CN102347231A (zh) 等离子体处理方法和等离子体处理装置
KR102280572B1 (ko) 플라즈마 처리 방법
CN101355017B (zh) 等离子体蚀刻方法、等离子体蚀刻装置和存储介质
CN101030527A (zh) 等离子体蚀刻方法和计算机可读取的存储介质
JP7366188B2 (ja) 電源システム
KR100986023B1 (ko) 바이어스 제어 장치
JP2016096342A (ja) プラズマ処理装置
TWI775166B (zh) 等離子體處理裝置及其處理基片的方法
JP2010067760A (ja) プラズマ処理方法,プラズマ処理装置,記憶媒体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant